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Abstract

The performance analysis of a network link is a well studied problem. However,

the most interesting issue for a service provider is to evaluate the end-to-end quality of

service (QoS). The evaluation of the end-to-end QoS (e.g. loss probability or delay)

depends on the traffic statistic which is constantly modified as the traffic traverse the

network, making its analysis a very difficult problem. In this work we use a simpli-

fied framework known as fictitious network analysis that allows us to estimate on-line

the end-to-end loss ratio from input traffic traces statistics. We prove that the defined

estimator is consistent and that a Central Limit Theorem is verified. Based on these

estimations an admission control mechanism can be implemented. More precisely, we

propose a simply method to estimate the control admission region, i.e. which are the

flows that can be accepted in the network that verifies that its end-to-end loss ratio is

smaller than a given threshold.

While decisions based on the fictitious network analysis are safe, it may lead to

network resources under-utilization (it generally overestimates the QoS parameters). In

this work we establish sufficient conditions to assure that results obtained by means of

the fictitious network coincide with real ones (there is no overestimation). We present

first the conditions in the one-link case and extend them to the multilink case, necessary

to evaluate the end-to-end loss ratio. When different results are obtained we define a

method to find a bound for the overestimation. We also present numerical examples to

compare the performance obtained in the real and the fictitious network, validating our

main results.
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1. Introduction

The admission control mechanisms proposed in the literature are mainly based on

one link analysis [3]. However, for a service provider the most interesting issue is about
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admission control mechanisms based on the end-to-end quality of service (QoS) eval-

uation. Recently some authors propose an end-to-end admission control mechanism

based on active measurements [12]. In this paper we propose a different approach

based on analytical models.

In order to design an admission control mechanism many issues must be addressed.

The focus of this work is on the estimation of the admission control region. We look

for a simply and efficient procedure for such estimation which can be applied on line.

To evaluate end-to-end QoS guarantees in a network, a performance model is re-

quired. In this work we will analyze the model called the “fictitious network model”

in the context of many sources and small buffer asymptotic, introduced by Ozturk et

al.[13]. We will show that this model allows to simple and on-line estimations of end

to end QoS parameters, which will be in turn used to decide which flows can access

the network.

Ozturk et al. find a useful way to analyze the overflow probability in a network

interior link and show that when the fictitious network model is applied, an overesti-

mation is obtained. The fictitious network analysis gives then a simple and efficient yet

conservative way to implement on-line admission control mechanisms. However, the

overestimation can translate into wasted network resources. If a flow is admitted, its

QoS is guaranteed but the link capacities can be under-used.

In this work we analyzw in detail the fictitious network model and we find con-

ditions to assure that the fictitious network analysis in an interior link gives the same

overflow probability than the real network analysis, being much simpler. We also find

a method to bound the overestimation when these conditions are not met. Preliminary

results were analyzed in a previous work [2].

Next we analyze how to apply previous results to the evaluation of the end-to-

end loss ratio. Again, we found conditions to assure that the calculations made over

the fictitious network coincide with the real ones. Error bounds are also available in

case these conditions are not verified. In addition, since no model is assumed for

the input traffic, we define an estimator of the end-to-end Loss ratio based on traffic

measurements. We show that this estimator is a good one, i.e. is consistent and verifies

a Central Limit Theorem (CLT). These results allow us to define an admission control

mechanism based on the expected end-to-end Loss Ratio a flow traversing the network

will obtain.

In section 2 we summarize some related works in order to give a brief description

of the problem´s context. The model introduced by Ozturk et al. is explained in section

3 where we summarize their main results. Our main results for the one link case are

presented in section 4. In section 5 we analyze how these results can be extended to

the multilink case. In section 6 we analyze how to estimate the end-to-end loss ratio

from traces of the input traffic in the fictitious network. In section 7 we show some

numerical examples to compare the real and the fictitious network results and validate

our main results. Finally, we summarize and conclude our work in section 8.

2. Related works

Network designers and operators need a model to evaluate the end to end network

performance in an Internet core backbone. Since losses are “rare” events, some re-
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searchers have proposed the use of Large Deviations Theory for network performance

evaluation.

In this context, the effective bandwidth notion was introduced some years ago. The

notion of equivalent bandwidth was formerly used to study the access control problem

for some networks, as ATM. Many contributions following this approach were done

during the 90’s to analyze the access control in some networks based on the IntServ

model or others. In that situation, the access node receives a connection request and

has to estimate the resources it requires, in order to allow or deny the new connection.

Kelly’s Effective Bandwidth (EB) [10] may be used in such situations as the “equivalent

capacity” needed by the new connection. In this context, the flow to be statistically

characterized is an individual flow, and may be directly related with the data source

(for instance, voice or video codecs). This situation was studied using the so called

large buffer asymptotic, in which the link buffer grows to infinity, and its filling above

some threshold is analyzed. This approach cannot be used in backbone links, where

buffers are not devised to store bursts but to resolve simultaneous packet arrival, being

consequently small. The application of Large Deviations Theory to the analysis of a

network backbone must be performed on the basis of the many sources asymptotic.

In this regime we take buffer size B = Nb (with N the number of sources), output

capacity C = Nc and make N go to infinity. Results about loss probability in this

regime can be found in [7, 8, 16, 17].

Using Large Deviations, Wischik [17] proves the following formula (called inf sup

formula) for the overflow probability:

log P(QN > B) ≈ − inf
t≥0

sup
s≥0

((B + Ct)s − Nstα(s, t))

where QN represents the stationary amount of work in the queue, C is the link capacity,

B is the buffer size and N is the number of incoming multiplexed sources of effective

bandwidth α(s, t).
Wischik also shows in [18] that in the many sources asymptotic regime the aggre-

gation of independent copies of a traffic source at the link output and the aggregation

of similar characteristics at the link input, have the same effective bandwidth in the

limit when the number of sources goes to infinity. This result allows to evaluate the

end to end performance of some kind of networks like “in-tree” ones. Unfortunately

this analysis can not be extended to networks with a general topology.

Eun y Shroff [9], have shown that in the many sources asymptotic regime, the

probability of the buffer size to be grater than zero goes to zero when the number

of sources goes to infinity. This result is valid for a discrete time queue and for a

continuous time queue if the source is bounded or can be expressed as an integral of a

stationary stochastic process.

A slightly different asymptotic with many sources and small buffer characteristics

was proposed by Ozturk, Mazumdar and Likhanov in [13]. They consider an asymp-

totic regime defined by N traffic sources, link capacity increasing proportionally with

N but buffer size such that lim B(N)
N → 0. In their work they calculate the rate function

for the buffer overflow probability and also for the end to end loss ratio. This last re-

sult can be used to evaluate the end to end QoS performance in a network backbone in
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contrast with the Wischick result explained before, where it is necessary to aggregate

at each link N i.i.d. copies of the previous output link.

Ozturk et al. also introduce the “fictitious network” model. The fictitious network

is a network with the same topology than the real one, but where each flow aggre-

gate goes to a link on its path without being affected by the upstream links until that

link. The fictitious network analysis is simpler and so, more adequate to on-line perfor-

mance evaluation and traffic engineering. Ozturk et al. show that the fictitious network

analysis overestimates the overflow probability. In this work we analyze when, for an

interior network link, the overflow probability calculated using the fictitious network

is equal to the overflow probability of the real network. Ramon Casellas [5] has also

studied the overestimation problem in the fictitious network. He found a condition to

assure that there is no overestimation. This condition is a particular case of the suf-

ficient condition proven in this work. In the next section we summarize Ozturk et al.

main results.

3. Many sources and small buffer asymptotic performance model

3.1. Ozturk, Mazumdar and Likhanov work

Consider a network of L links which is accessed by M types of independent traffic.

Consider a discrete time fluid FIFO model where traffic arrives at time t ∈ Z and

is served immediately if buffer is empty and is buffered otherwise. Each link k has

capacity NCk and buffer size Bk(N) where Bk(N)/N → 0 with N → ∞. Input

traffic of type m=1,...,M, denoted Xm,N is stationary and ergodic and has rate Xm,N
t

at time t (workload at time t of N sources of type m).

Let µN
m = E(Xm,N

0 )/N and Xm,N (t1, t2) =
t2∑

t=t1

Xm,N
t . We assume that µN

m →
N→∞

µm and Xm,N (0, t)/N satisfies the following Large Deviation Principle (LDP) with

good rate function IXm

t (x):

− inf
x∈Γo

IXm

t (x) ≤ lim inf
N→∞

1

N
log P

(
Xm,N (0, t)

N
∈ Γ

)
(1)

≤ lim sup
N→∞

1

N
log P

(
Xm,N (0, t)

N
∈ Γ

)
≤ − inf

x∈Γ
IXm

t (x) (2)

where Γ ⊂ R is a Borel set with interior Γo and closure Γ and IXm

t (x) : R →
[0,∞) is a continuous mapping with compact level sets. We also assume the following

technical condition: ∀ m and a > µm,

lim inf
t→∞

IXm

t (at)

log t
> 0

Type m traffic has a fixed route without loops and its path is represented by the

vector k
m = (km

1 , ...., km
lm

), where km
i ∈ (1, .., L). The set Mk = {m : km

i = k, 1 ≤
i ≤ lm} denotes the types of traffic that goes through link k. To guarantee system

stability it is assumed that ∑

m∈Mk

µm < Ck (3)
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The main result of Ozturk et al. work is the following theorem.

Theorem 3.1. Let Xm,N
k,t be the rate of type m traffic at link k at time t. There exist a

continuous function gm
k : R

M → R relating the instantaneous input rate at link k for

traffic type m to all of the instantaneous external input traffic rates such that:

Xm,N
k,0

N
= gm

k

(
X1,N

0

N
, ...,

XM,N
0

N

)
+ o(1) (4)

The buffer overflow probabilities are given by:

lim
N→∞

1

N
log P (overflow in link k) = −Ik =

− inf

{
M∑

m=1

IXm

1 (xm) : x = (xm) ∈ R
M ,

M∑

m=1

gm
k (x) ≥ Ck

}
(5)

In (4), o(1) verifies that lim
N→∞

o(1) = 0 since
Bk(N)

N →
N→∞

0. The function gm
k (x) is

constructed in the proof of the theorem. Ozturk et al. prove that the continuous function

relating the instantaneous input rate at link i for traffic m to all of the instantaneous

external input traffic rates is the same function relating these variables in a no buffers

network. The function relating the instantaneous output rate at link i for traffic m to all

of the instantaneous input traffic rates at this link is:

fm
i (x,Ci) =

xmCi

max(
∑

j∈Mi

xj , Ci)
(6)

In a feed-forward network the function gm
k (x) can be written as composition of the

functions of type (6) in a recursive way. Using equation (6) the buffer overflow prob-

ability can be calculated for any network link, by solving the optimization problem of

equation (5). We need to know the network topology, the link capacities and, for each

arrival traffic type m, the rate functions IXm

1 .

Ozturk et al. define also the total (end to end) loss ratio as the ratio between the

expected value of lost bits at all links along a route and the mean of input traffic in bits,

for stream m identified by Xm. With the previous definition they find the following

asymptotic for the loss ratio L
m,N :

lim
N→∞

1

N
log L

m,N = − min
k∈km

Ik (7)

The main problem of this approach is that the optimization problem of equation (5)

could be very hard to solve for real-size networks. The calculation of the function

gm
k (x) is recursive and so, when there are many links it becomes complex. In addition,

the virtual paths can change during the network operation. Therefore, it is necessary

to recalculate on-line the function gm
k (x). To solve equation (5), it is also necessary

to optimize a nonlinear function under nonlinear constraints. In order to simplify this

problem, Ozturk et al. introduce the “fictitious network” concept, that is simpler and
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gives conservative results. In the next section we find conditions to assure that there is

no overestimation in the calculus of the link overflow probability in the fictitious net-

work analysis. We also find a bound for the error (difference between the rate function

calculated for the real network and the fictitious one) in those cases where the previous

condition is not satisfied.

The aim of our work is to define an admission control mechanism. Such a mecha-

nism is simple a set of rules to accept or reject a flow that intend to access the network.

This can be done by defining an acceptance region, i.e. which is the set of flows that

can access the network. In [13] an acceptance region based on end-to-end QoS guar-

antees, is defined. This acceptance region is the traffic mix that can flow through the

network without QoS violation. Assume that Xm,N is the sum of Nnm i.i.d. process.

More formally, the acceptance region noted by D is the mix or collection {nm}M
m=1 of

sources which can be flowing through the network while the QoS (loss ratio) for each

class is met, that is:

D = {(nm),m = 1, ...,M : lim
N→∞

1

N
log L

m.N < −γm} with γm > 0 (8)

We will concentrate then in the estimation of this acceptance region. We aim not only

to do it in a efficient way but also in a simple one in order to apply it on-line.

4. Fictitious network analysis

We analyze an interior network link k under the same assumptions that in Ozturk

et al. work. M is the set of traffic types that access the network and Mi is the set of

traffic types that go through link i. We suppose that the network is feed-forward, this

means that each traffic type has a fixed route without loops. In the real network, the

link k overflow probability large deviation function (or rate function) is given by:

IR
k = inf

{
∑

i∈M

IXi

1 (xi) : x = (xi)i∈M,
∑

i∈M

gi
k(x) ≥ Ck

}
(9)

In the fictitious network this function is given by

IF
k = inf

{
∑

i∈Mk

IXi

1 (xi) : x = (xi)i∈Mk
,

∑

i∈Mk

xi ≥ Ck

}
(10)

In the following it is assumed that each traffic type is an aggregate of N i.i.d sources.

This implies that each rate function IXi

1 is convex and IXi

1 (µi) = 0 for all i. Then,

(9) and (10) are convex optimization problems under constraints. The second one has

the advantage that the constraints are linear and there are well known fast methods

to solve it. The functions IXi

1 are continuous, so we solve the following problems

corresponding to the real and fictitious network respectively.
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PR





min
∑

i∈M

IXi

1 (xi)

∑
i∈M

gi
k(x) ≥ Ck

PF





min
∑

i∈Mk

IXi

1 (xi)

∑
i∈Mk

xi ≥ Ck

Definition 4.1. Consider two optimization problems

P1

{
min f1(x)
x ∈ D1

and P2

{
min f2(x)
x ∈ D2

P2 is called a relaxation of P1 if D1 ⊆ D2 and f2(x) ≤ f1(x), ∀x ∈ D1.

Proposition 4.2. If P2 is a relaxation of P1 and x2 is optimum for P2 such x2 ∈ D1

and f2(x2) = f1(x2), then x2 is optimum for P1.

PROOF. f1(x2) = f2(x2) ≤ f2(x) ≤ f1(x) ∀x ∈ D1 ⊆ D2, so x2 is optimum for P1

because it minimizes f1 and belongs to D1.

Proposition 4.3. PF is a relaxation of PR.

PROOF. Since the functions IXi

1 are non negatives, it is clear that
∑

i∈Mk

IXi

1 (xi) ≤
∑

i∈M

IXi

1 (xi) ∀x = (xi)i∈M. Then, we have to prove that

{
x :

∑

i∈M

gi
k(x) ≥ Ck

}
⊆

{
x :

∑

i∈Mk

xi ≥ Ck

}

By definition, gi
k(x) = 0 ∀ i /∈ Mk and gi

k(x) ≤ xi ∀ i ∈ Mk (since gi
k can be

written as composition of functions of type (6)) then

∑

i∈M

gi
k(x) =

∑

i∈Mk

gi
k(x) ≤

∑

i∈Mk

xi

and therefore
∑

i∈Mk

gi
k(x) ≥ Ck, implies

∑
i∈Mk

xi ≥ Ck.

Remark 4.1. If an optimum of the fictitious problem PF verifies the real problem PR

constraints and the objective functions take the same value at this point, then it is an

optimum of the real problem too.

Remark 4.2. The optimality conditions (KKT 2) for the fictitious problem PF are the

following:

1. ∇
(

∑
i∈Mk

IXi

1 (xi) + λ(Ck − ∑
i∈Mk

xi)

)
= 0, with λ Lagrange multiplier.

2Karush-Khum-Tucker [11]
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2. λ ≥ 0.

3.
∑

i∈Mk

xi ≥ Ck.

4. λ

(
Ck − ∑

i∈Mk

xi

)
= 0.

First and second condition imply that:

∂IXi

1

∂xi
(xi) = λ ≥ 0 ∀ i ∈ Mk

If λ = 0, xi = µi ∀i. In this case
∑

i∈Mk

IXi

1 (µi) = 0 and it is not considered. Then

we supposed that
∂IXi

1

∂xi
(xi) > 0, which implies xi > µi. Finally, since λ 6= 0, the last

condition implies that:

Ck −
∑

i∈Mk

xi = 0

Then, x̃ = (x̃i)i∈Mk
optimum for PF verifies:





x̃i > µi ∀ i ∈ Mk

∑
i∈Mk

x̃i = Ck

(11)

The following theorem gives conditions over the network to assure that link k overflow

probability rate function for the real and for the fictitious network are equal (E =
IR
k − IF

k = 0). Since the network is feed forward, it is possible to establish an order

between the links. We say that link i is “previous to” or “less than” link j if for one

path, link i is found before than link j in the flow direction.

Theorem 4.4 (Sufficient Condition). If x̃ = (x̃i)i∈Mk
is optimum for PF , and the

following condition is verified for all links i less than k:

Ck −
∑

j∈Mk\Mi

µj ≤ Ci −
∑

j∈Mi\Mk

µj ∀ i < k (12)

then x∗ defined by:

(x∗)i =

{
x̃i if i ∈ Mk

µi if i /∈ Mk

is optimum for PR.

PROOF. The objective functions of the optimization problems (9) and (10) take the

same values at x∗ because IXi

1 (µi) = 0 ∀i:
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∑

i∈M

IXi

1 (x∗
i ) =

∑

i∈Mk

IXi

1 (x̃i) +
∑

i∈M\Mk

IXi

1 (µi) =
∑

i∈Mk

IXi

1 (x̃i)

Considering proposition (4.3), it is enough to prove that x∗ satisfy the real problem

constraints: ∑

i∈M

gi
k(x∗

i ) ≥ Ck

By definition gi
k(x∗) = 0 ∀ i /∈ Mk. Moreover the function gi

k can be written as

composition of function of type (6), so if
∑

j∈Mi

(x∗
j ) ≤ Ci ∀ i, then gi

k(x∗) = (x∗)i

∀ i ∈ Mk and

∑

i∈M

gi
k(x∗) =

∑

i∈Mk

(x∗)i =
∑

i∈Mk

x̃i = Ck

proving the theorem. In the last equality we use that x̃ verifies (11), since it is optimum

for PF . Then, it is sufficient to prove that
∑

j∈Mi

(x∗)j ≤ Ci ∀ i < k. Separating the

sum,

∑

j∈Mi

(x∗)j =
∑

j∈Mi∩Mk

x̃j +
∑

j∈Mi\Mk

µj ≤ Ci ∀ i < k (13)

and then we have to guarantee that

∑

j∈Mi∩Mk

x̃j ≤ Ci −
∑

j∈Mi\Mk

µj ∀ i < k

Since x̃ is optimum for PF , it satisfy Ck =
∑

j∈Mk

x̃j , and therefore

∑

j∈Mk∩Mi

x̃j = Ck −
∑

j∈Mk\Mi

x̃j

Also, x̃j > µj ∀ j ∈ Mk

∑

j∈Mk∩Mi

x̃j ≤ Ck −
∑

j∈Mk\Mi

µj

Using the hypothesis, we have that:

∑

j∈Mk∩Mi

x̃j = Ck −
∑

j∈Mk\Mi

µj ≤ Ci −
∑

j∈Mi\Mk

µj ∀ i < k

which proves (13) and the theorem.

Example 4.5. Consider a network like in figure 1. We analyze the overflow probability

at link k.

If condition (12) is attained for link k, then E = IR
k − IF

k = 0. This condition is:
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Ci Cj Ck

X1

X2 X3 X4

Figure 1:





Ck − µ4 ≤ Ci − µ2

Ck − µ4 ≤ Cj − µ3

4.1. Sufficient condition in terms of available bandwidth

Definition 4.6. For a traffic type m in a link j, it is defined the available bandwidth

ABWm
j as the difference between the link j capacity and the mean value of the trans-

mission rate of the other traffic types in j.

In terms of the previous definition, the theorem condition (12) assures that the

overflow probability rate function at link k on real and fictitious network are the same

if for all link j < k, and for all m traffic type in Mj ∩Mk, ABWm
j > ABWm

k . This

condition is represented in figure 2 for a simple network with two links.

X 1

X 2

X 3

C j C k

L ink  j L i n k  k

A B W k
A B W j

u 2
u 3

Figure 2:

4.2. Sufficient but not necessary condition

The theorem condition (12) is sufficient to assure that the overflow probability rate

function at link k on real and fictitious networks are the same, but it is not a necessary

condition. In fact, if x̃ is optimum for the fictitious problem, and if x∗ defined as:

(x∗)i =

{
x̃i si i ∈ Mk

µi si i /∈ Mk
(14)

satisfies the real problem constraints, then x∗ is optimum for the real problem. If x∗

verifies the following condition

∑

j∈Mi

(x∗)j ≤ Ci ∀ i < k (15)

it also verifies the real problem constraints and therefore is optimum for the real prob-

lem.
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Therefore, in the case that the theorem condition is not fulfilled, if we found x̃
optimum for the fictitious problem, then is easy to check if the rate functions are equal

or no. It is enough to check (15), where x∗ is defined in (14).

4.3. Error bound

Since the functions IXi

1 are non negatives, it is clear that the rate function for the

real problem is always greater than the fictitious one. Then the error E = IR
k − IF

k is

always non negative. This implies that the fictitious network overestimates the overflow

probability. We are interested in finding an error bound for the overestimation of the

fictitious analysis when conditions (12) and (15) are not satisfied. A simple way to get

this bound is to find a point x which verifies the real problem constraints. In this case,

we have that:

E = IR
k − IF

k ≤
∑

i∈M

IXi

1 (xi) −
∑

i∈Mk

IXi

1 (x̃i)

To assure that x verifies the real problem constraints, we have already seen that it is

enough to show that
∑

j∈Mi

xj ≤ Ci ∀ i < k and
∑

j∈Mk

xj ≥ Ck. Therefore, we have to

solve this inequalities system. From remark (4.2), it can be seen that the optimum of

the fictitious problem is in the boundary of the feasible region (
∑

i∈Mk

x̃i = Ck). Since

we are looking for a point near the optimum of the fictitious problem in the sense that

the error bound be as small as possible, we solve the following system:





∑
j∈Mi

xj ≤ Ci ∀ i < k

∑
j∈Mk

xj = Ck

(16)

For the interesting cases, where there are losses at link k, this system always has a

solution. In the following an algorithm to find a solution of this system is defined. We

define the following point:

(x∗)j =

{
x̃j if j ∈ Mk

0 if j /∈ Mk

If x∗ verifies the conditions (16), we find a point that verifies the real problem con-

straints. In some cases this is not useful because IXj

1 (0) = ∞ and we have that the

error bound is infinite. If P (Xj,N
1 ≤ 0) 6= 0, the function IXj

1 (0) < ∞ and a finite

error bound is obtained. If x∗ is not solution for system (16), then we redefine (by some

small value) the coordinates where
∑

j∈Mi

xj > Ci in such a way that
∑

j∈Mi

xj = Ci.

The second equation must be verified too and, since some coordinates were reduced,

others coordinates have to increase to get the total sum equal to Ck. Since the system

is compatible, following this method, a solution is always found. There is no guaran-

tee that the solution given by this method minimizes the error bound. However, this

method has a very simple implementation and gives reasonable error bounds as we can

see in the numerical examples of the last section.
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4.4. Error bound in a particular case

We analyze a particular case in which the following conditions are verified:

1. Mi\Mk 6= ∅ ∀ i < k this means that for all link i less than k, there exists at

least one traffic type going through link i and not arriving at link k.

2. Ci −
(

Ck − ∑
j∈Mk\Mi

µj

)
≥ 0 ∀ i.

Consider x̃ = (x̃i)i∈Mk
optimum for (PF ) and x∗ defined by:

(x∗)j =

{
x̃j if j ∈ Mk

x∗
j if j /∈ Mk

(17)

If x∗ verify the real problem constraints, the following error bound is obtained:

E ≤
∑

i∈M

IXi

1 ((x∗)i) −
∑

i∈Mk

IXi

1 (x̃i)

=
∑

i∈Mk

IXi

1 (x̃i) +
∑

iM\Mk

IXi

1 (x∗
i ) −

∑

i∈Mk

IXi

1 (x̃i)

=
∑

i∈M\Mk

IXi

1 (x∗
i ) (18)

By definition of x∗ and the optimality conditions for the fictitious problem, it follows

that: ∑

j∈Mk

(x∗)j =
∑

j∈Mk

(x̃)j = Ck

Therefore, to prove that x∗ verify the real problem constraints (16), it is enough to

show that x∗, verify:

∑

j∈Mi

(x∗)j =
∑

j∈Mi∩Mk

x̃j +
∑

j∈Mi\Mk

x∗
j ≤ Ci ∀ i (19)

In this particular case, by the second condition, it is possible to define x∗
j for j ∈ Mi\Mk

such that

∑

j∈Mi\Mk

x∗
j ≤ Ci −


Ck −

∑

j∈Mk\Mi

µj


 ∀ i

and therefore

∑

j∈Mi

(x∗)j ≤
∑

j∈Mi∩Mk

x̃j + Ci − Ck +
∑

j∈Mk\Mi

µj

On the other hand, since x̃ is optimum for PF ,
∑

j∈Mk

x̃j = Ck and

12



∑

j∈Mi∩Mk

x̃j = Ck −
∑

j∈Mk\Mi

x̃j

Replacing in the previous equation results

∑

j∈Mi

(x∗)j ≤ Ck −
∑

j∈Mk\Mi

x̃j + Ci − Ck +
∑

j∈Mk\Mi

µj

= Ci +
∑

j∈Mk\Mi

(−x̃j + µj) < Ci

since from (11), x̃j > µj ∀ j ∈ Mk.

Then x∗ verifies (16) and therefore is optimum for the real problem. The error

bound obtained is (18). We can found (x∗)j∈M\Mk
such that, the error bound (18)

be minimum in the set of (x∗)j∈M defined in (17) that verifies the real problem con-

straints. It is necessary to solve the following convex optimization problem:





min
∑

i∈M\Mk

IXi

1 (xi)

∑
j∈Mi\Mk

xj ≥ Ci −
∑

j∈Mi∩Mk

x̃j ∀ i = 1, · · · , L

Once again it is sufficient to find (x∗)j∈M that verifies the KKT optimality conditions:

1. ∂
∂xj

IXj

1 (xj) +
∑

i∈kj

λi = 0 ∀ j ∈ M\Mk.

2. λi ≥ 0 ∀ i.

3.
∑

j∈Mi\Mk

xj ≥ Ci −
∑

j∈Mi∩Mk

x̃j ∀ i.

4. λi

(
∑

j∈Mi\Mk

xj −
(

Ci −
∑

j∈Mi∩Mk

x̃j

))
= 0 ∀ i.

We will define an algorithm to find such point. If for j ∈ M\Mk, there is a link i ∈ kj

that verifies

Ci −
∑

h∈Mi∩Mk

x̃h ≤
∑

h∈Mi\Mk

µh

we define x∗ as follows:
∑

h∈Mi\Mk

xh = Ci −
∑

j∈Mi∩Mk

x̃j

This determines a linear equations system that always has a solution, but it can be

undetermined. The choice in that case it is not important because the optimum obtained

is global. For the coordinates j ∈ M\Mk that are not determined with the previous

equations, we define xj = µj . It is easy to check that (x∗)j∈M\Mk
defined by this

algorithm verifies the KKT optimality conditions. Then we have defined an algorithm

that gives the minimum error bound for this particular case.
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5. End-to-End Loss Ratio Evaluation

In the previous section we found sufficient conditions to assure that results on the

fictitious and on the real network analysis coincide for an interior link. However, to

define an admission control mechanism based on the end-to-end quality of service, we

must find a condition that guarantees that the end-to-end loss ratio coincides for both

networks. A natural answer is that the sufficient condition found in theorem 4.4 must

be verified for all links in the considered path. However, as equation 7 suggest, we will

show that this is not necessary since it is enough that the sufficient condition is verified

for the link with minimum overflow probability rate function. This link must be then

identified, and clearly we aim to do it within the fictitious network context. We must

then be sure that the link with minimum rate function is the same for the real and the

fictitious network. In the sequel we address this two issues.

Proposition 5.1. Let kf be the link with minimum overflow probability rate function

in the fictitious network for traffic type m:

Ikf
= min

ki∈km
Iki

If the conditions of theorem 4.4 are verified for link kf , the minimum overflow proba-

bility rate function for traffic type m in the real network is also attained at link kf .

PROOF. By definition of kf and the already known relation between rate functions in

the real and the fictitious network, results that:

Ikf
≤ Iki

≤ Iki
∀ki ∈ k

m

Since we assume that conditions of theorem 4.4 are verified for link kf , the rate func-

tions of both network coincide i.e. Ikf
= Ikf

. By replacing Ikf
in the previous

equation, we obtain that:

Ikf
≤ Iki

∀ki ∈ k
m

which completes the proof.

Proposition 5.2. Let k be the link where Ik = − min
k∈km

I
m
k for the real network , i.e.

the link where the minimum rate function of traffic type m is attained. Let Ik be the

rate function of the same link k for the fictitious network. If the sufficient conditions of

theorem 4.4 are verified for link k then L
m = L

m
, i.e. the end-to-end loss ratio for

real and fictitious network coincide.

PROOF. By equation 7 and proposition 5.1, we obtain that:

L
m = lim

N→∞

1

N
log L

m,N = − min
ki∈km

Iki
= −Ik

= −Ik = − min
ki∈km

Iki
= lim

N→∞

1

N
log L

m,N
= L

m
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Remark 5.1. Previous propositions show that to evaluate the end-to-end loss ratio L
m,

it is enough that sufficient conditions of theorem 4.4 are verified by the link k where

the minimum rate function of traffic type m path is attained. In this case, it results that

L
m = L

m
= Ik. If sufficient conditions are not verified, then the error bound obtained

for the one link case can be applied.

6. Rate function estimation

In previous sections we show how to evaluate the end-to-end loos ratio in terms of

the rate function for the fictitious network. In order to implement an on-line admission

control based on this information, we must be able to accurately estimate the corre-

sponding rate function. In this section we analyze how this estimation can be done

using traffic traces of the input traffic.

Let Xm,N
k (0, t) be the traffic type m workload at link k during the time interval

(0, t). We suppose that Xm,N
k is the sum of Nρm independent sources of type m:

Xm,N
k (0, t) =

Nρm∑

i=1

X̃m,i
k (0, t)

In this case, the instantaneous rate of traffic type m at time t is given by:

Xm,N
k,t =

Nρm∑

i=1

X̃m,i
k,t

Given the stationarity of the traffic, we can replace the t-index by 0 and for simplicity

we omit the link index k. Then the instantaneous rate of total input traffic at link k is:

ZN
0 =

∑

m∈Mk

Xm,N
0 =

∑

m∈Mk

Nρm∑

i=1

X̃m,i
0 =

N∑

j=1

Z̃j

where the variables Z̃j are independent and identically distributed (iid) random vari-

ables. Each variable Z̃j has the distribution of a mix of the variables X̃m,i
0 (given by

the proportions ρm of each traffic type m present at link k). This means that instanta-

neous rate of input traffic at link k is the sum of N iid random variables and Cramer

theorem (see for example [17]) can be applied. The variable
ZN

0

N verifies then a large

deviation principle with rate function:

IZ
t (x) = sup

θ≥0
{θx − Λ(θ)} = sup

θ≥0
{θx − log E

(
eθZ̃1

)
} (20)

Given the rate function of the LDP, IZ
t (x), we can calculate IF

k :

IF
k = inf

{
IZ(z) : z ≥ Ck

}
= inf

z≥Ck

sup
θ≥0

{θz − Λ(θ)}

= sup
θ≥0

{θCk − Λ(θ)} (21)
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Before solving the optimization problem 21, we must calculate or estimate Λ(θ). If

some model is assumed for the traffic, Λ(θ) can be calculated analytically. In case

no model is assumed as in our case, it must be estimated from measurements i.e. from

traffic traces. A possible and widely used approach [6, 15] is to estimate the expectation

as a temporal average of a given traffic trace {Z̃N (t)}t=1:n:

E

(
eθZ̃1

)
= E

(
eθ

ZN
0

N

)
≈ 1

n

n∑

t=1

eθZN (t)/N

Then Λ(θ) can be estimated by

Λn(θ) = log

(
1

n

n∑

t=1

eθZN (t)/N

)

Now, the rate function IF
k can be estimated as:

IF
k,n = sup

θ≥0
{θCk − Λn(θ)}

However it remains unclear how good is this estimation. We will show that if Λn(θ) is

a good estimator of Λ(θ), then IF
k,n is also a good estimator for the rate function IF

k .

Theorem 6.1. If Λn(θ) is an estimator of Λ(θ) such that both are C1 functions and:

Λn(θ) −→
n

Λ(θ)

∂

∂θ
Λn(θ) −→

n

∂

∂θ
Λ(θ)

where the convergence is almost surely and uniformly over bounded intervals, then

IF
k,n is a consistent estimator of IF

k . Moreover, if a functional Central Limit Theorem

(CLT) applies to Λn − Λ, i.e,

√
n (Λn(θ) − Λ(θ))

w
=⇒

n
G(θ)

where G(θ) is a continuous gaussian process, then:

√
n

(
IF
k,n − IF

k

) w
=⇒

n
N(0, σ)

where N(0, σ) is a centered normal distribution with variance σ.

PROOF. This theorem can be proved following the same ideas of the proof of Theorem

1. of [1].

Theorem 6.1 assures that under certain conditions we can obtain a consistent estimator

of the rate function and then of the overflow probability and the end-to-end loss ratio.

This conditions are verified for a large family of estimators like for example the time

average estimator proposed here or Markov fluid sources estimators [14]. In addition

to the consistence, a CLT is proved to be valid which allows the calculus of confidence
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intervals for the rate functions. From the previous analysis we conclude that the rate

function and then the admission control region can be accurately estimated form traffic

traces in a simple way. As we claimed before, this can be used in the definition of an

admission control mechanism based in the end-to-end quality of service expected by

the traffic.

7. Numerical examples

In this section we present some numerical examples to validate our results. There

are many issues that could be evaluated to analyze the performance of an admission

control mechanism. However, since the overall performance of our proposition de-

pends on how accurate are the results obtained when the fictitious network model is

considered, we will concentrate here only in this aspect.

Example 7.1. Consider a network like in figure 3. We analyze the overflow probability

at link k, assuming that Ci > Ck.

Ci Ck

X1

X2

Figure 3: Example 7.1-Network topology

If condition (12) is attained for link k, then E = IR
k − IF

k = 0. This condition is:

Ck ≤ Ci − µ2

If this condition is not satisfied, since x̃ = Ck is optimum for PF , we first verify if

x∗ = (Ck, µ2) is optimum for (PR). It is sufficient to show that x∗ verifies the real

problem constraints, i.e: {
Ck + µ2 ≤ Ci

Ck = Ck

If Ck + µ2 > Ci, we look for x∗ = (x∗
1, x

∗
2) that verifies

{
x∗

1 + x∗
2 ≤ Ci

x∗
1 = Ck

It is possible to choose x∗
1 = Ck and x∗

2 = Ci − Ck > 0 resulting in the following

error bound:

E ≤ I1(Ck) + I2(Ci − Ck) − I1(x̃1) = I2(Ci − Ck) (22)

In the following numerical example, we calculate the overflow probability rate function

for the real and fictitious network. Let Ci = 16kb/s per source and Ck growing from

4 to 15.5kb/s per source. All traffic sources are on-off Markov processes. For X1, the

bit rate in the on state is 16kb/s, and average times are 0.5s in the on state and 1.5s
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in the off state. For X2, the bit rate in the on state is 16kb/s, and average times are

1s in the on state and 1s in the off state. Since µ1 = 4kb/s the stability condition is

Ck > µ1 = 4kb/s. Using these values, the sufficient condition (12) is, Ck ≤ 8kb/s.

Figure 4 shows that while this condition is satisfied both functions match, but after

Ck ≥ 8kb/s they separate. Figure 4 also shows the overestimation error (E = IR
k −IF

k )

and the error bound (22) described before. In this case, the error bound is exactly the

error.
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Figure 4: Example 7.1-Rate functions and error bound

Example 7.2. Consider a network like in figure 5. We analyze the overflow probability

at link k.

Ci Cj Ck

X1

X2 X3

Figure 5: Example 7.2-Network topology

If condition (12) is attained for link k, then E = IR
k − IF

k = 0. This condition is:

{
Ck − µ3 ≤ Ci − µ2

Ck − µ3 ≤ Cj

If this condition is not satisfied, and x̃ = (x̃1, x̃3) is optimum for PF , we first verify if

x∗ = (x̃1, µ2, x̃3) is optimum for PR. It is sufficient to show that x∗ verifies the real

problem, i.e:





x̃1 + µ2 ≤ Ci

x̃1 ≤ Cj

x̃1 + x̃3 = Ck

If these conditions are not satisfied, we look for x∗ = (x∗
1, x

∗
2, x

∗
3) that satisfies:





x∗
1 + x∗

2 ≤ Ci

x∗
1 ≤ Cj

x∗
1 + x∗

3 = Ck
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We choose x∗
1 = min(x̃1, Ci, Cj). Three different cases are identified. For the first

case x∗
1 = x̃1, we choose: 




x∗
1 = x̃1

x∗
2 = Ci − x̃1

x∗
3 = Ck − x̃1

(23)

In this case the error bound is:

E ≤ I1(x̃1) + I2(Ci − x̃1) + I3(Ck − x̃1) − I1(x̃1) − I3(x̃3)

= I2(Ci − x̃1) + I3(Ck − x̃1) − I3(x̃3) (24)

Using that x̃1 + x̃3 = Ck, we have another possibility for determining an error bound.

We can rewrite the first equation as Ck − x̃3 + x∗
2 ≤ Ci. And, since x̃3 > µ3 we can

choose x∗
2 = Ci − (Ck − µ3) (or any lower value). In this case the error bound is:

E ≤ I1(x̃1) + I2(Ci − (Ck − µ3)) + I3(Ck − x̃1) − I1(x̃1) − I3(x̃3)

= I2(Ci − (Ck − µ3)) + I3(Ck − x̃1) − I3(x̃3) (25)

The best error bound depends on the relative position of the points Ci − (Ck −µ3) and

Ci − x̃1. Since Ci − x̃1 ≤ Ci − (Ck − µ3), if both are less than µ2 then the best error

bound is (24).

For the second case x∗
1 = Ci (Ci ≤ Cj), we choose:





x∗
1 = Ci

x∗
2 = 0

x∗
3 = Ck − Ci

(26)

In this case the error bound is:

E ≤ I1(Ci) + I2(0) + I3(Ck − Ci) − I1(x̃1) − I3(x̃3) (27)

For the last case x∗
1 = Cj (Cj ≤ Ci), we choose:





x∗
1 = Cj

x∗
2 = Ci − Cj

x∗
3 = Ck − Cj

(28)

In this case the error bound is:

E ≤ I1(Cj) + I2(Ci − Cj) + I3(Ck − Cj) − I1(x̃1) − I3(x̃3) (29)

For the following numerical example, we calculate the overflow probability rate func-

tion for the real and the fictitious network. Let Ci = 5.5kb/s, Cj = 7kb/s per source

and Ck ranging from 7 to 25kb/s per source. All traffic sources are on-off Markov

processes. For X1, the bit rate in the on state is 8kb/s. For X2, the bit rate in the on

state is 10kb/s. For X3 the bit rate in the on state is 20kb/s. The average time for all

traffic types are 0.5s on the on state and 1.5s in the off state. Since µ1 = 2kb/s and
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µ3 = 5kb/s the stability condition is Ck > µ1 + µ3 = 7kb/s. Using these values, the

sufficient conditions (12) are:

{
Ck ≤ Ci − µ2 + µ3 = 8kb/s
Ck ≤ Cj + µ3 = 12kb/s

The conditions are satisfied for values of Ck less than 8kb/s. Figure 6 shows that

both functions match even after the condition is not satisfied and up to Ck ≃ 15kb/s.

The reason is that x∗ = (x̃1, µ2, x̃3) is optimum for PR. From this point the functions

begin to separate. Figure 6 also shows the functions IR
k , IF

k and IF
k + E′, where E′ is

the error bound. Until Ck = 24kb/s, E′ is calculated using (23), and then using (26).

It is important to note that when Ck > 14kb/s per source, the link utilization falls to

less than 50% and therefore, as it can be seen in figure 6 the rate function IXk

1 takes

values bigger than 0.5. If for example the number of sources feeding the network is

N = 100, the losses are near 10−22. Finally, we have seen that the estimated error

bound is tight and when the error is big, the link overflow probability is small and,

therefore, these links are not relevant for the QoS evaluation.
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Figure 6: Example 7.2-Rate functions and error bound

Example 7.3. Consider a network like in figure 7. We analyse the overflow probability

at link k, assuming that Ci + Cj > Ck.

X 1

X 2

X 3

X 4

C i

C j

C k

Figure 7: Example 7.3-Network topology
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If condition (12) is attained for link k, then E = IR
k − IF

k = 0. This condition is:

{
Ck − µ3 ≤ Ci − µ1

Ck − µ2 ≤ Cj − µ4

If this condition is not satisfied, since x̃ = (x̃2, x̃3) is optimum for PF , we first verify

if x∗ = (µ1, x̃2, x̃3, µ4) is optimum for PR. It sufficient to show that x∗ verifies the

real problem constraints, i.e:





x̃2 + µ1 ≤ Ci

x̃3 + µ4 ≤ Cj

x̃2 + x̃3 = Ck

(30)

If these conditions are not satisfied, we look at first for x∗ = (x∗
1, x̃2, x̃3, x

∗
4) that

satisfies 



x̃2 + x∗
1 ≤ Ci

x̃3 + x∗
4 ≤ Cj

x̃2 + x̃3 = Ck

If x̃2 > Ci or x̃3 > Cj then it is not possible to choose such point. So, we look for

x∗ = (x∗
1, x

∗
2, x

∗
3, x

∗
4) that verifies





x∗
1 + x∗

2 = Ci

x∗
3 + x∗

4 = Cj

x∗
1 + x∗

3 = Ck

One possible choice is: 



x∗
1 = Ci

x∗
2 = 0

x∗
3 = Ck − Ci

x∗
4 = Cj − (Ck − Ci)

(31)

For the following numerical example, we calculate the overflow probability rate func-

tion for the real and fictitious network. Let Ci = 12kb/s, Cj = 14kb/s per source

and Ck growing from 8 to 25.5kb/s per source. All traffic sources are on-off Markov

processes. For X1, the bit rate in the on state is 20kb/s. For X2, the bit rate in the on

state is 16kb/s. For X3, the bit rate in the on state is 16kb/s. For X4, the bit rate in

the on state is 12kb/s. The average times for all traffic types are 0.5s in the on state

and 1.5s in the off state. Since µ2 = 4kb/s and µ3 = 4kb/s the stability condition is

Ck > µ1 + µ3 = 8kb/s. Using these values, the sufficient condition (12) are:

{
Ck < Ci − µ1 + µ3 = 11kb/s
Ck < Cj − µ4 + µ2 = 15kb/s

Figure 8 shows that both functions match even after the condition is not satisfied and

up to Ck ≃ 15kb/s. The reason is that x∗ = (µ1, x̃2, x̃3, µ4) is optimum for the real

problem. From this point the functions begin to separate.

Figure 8 also shows the functions IR
k , IF

k and IF
k +E′, where E′ is the error bound.

Until Ck = 24kb/s, E′ is calculated using (30), and then using (31). As in the previous
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example, when Ck > 16kb/s, the link utilization is less than 50% and that the error

bound is tight for the relevant cases in the QoS evaluation.

All calculations of overflow probability rate functions were done with a software

package developed by our group available in the web [4].
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Figure 8: Example 7.3-Rate functions and error bound

8. Conclusions

In this paper we analyze how the fictitious network model can be applied to the

definition of an admission control mechanism based on the end-to-end quality of ser-

vice that a flow traversing the network will obtain. We have seen that the calculus of

the overflow probability rate function of an interior network link is simpler and faster

than the equivalent task in the real network. For this reason, on-line admission control

systems will be easier to implement (or even feasible instead of impossible) using the

fictitious network analysis.

While this approach is safe, network resources can be under-utilized. To solve this

problem we find a condition, depending only on link capacities and mean traffic rates,

to assure that the overflow probability calculated using the fictitious network has the

same value that the one calculated in the real one. When this condition is not satisfied,

the rate function of the link overflow probability calculated in the fictitious network

can be smaller or equal than the same rate function calculated in the real network. We

have shown that once the fictitious rate function is calculated, it is very simple to verify

if both rate functions are equal or not. If they are not equal, a simple algorithm to find

an error bound is described.

Previous results were extended to evaluate the end-to-end loss ratio. We find that

this parameter can be calculated in terms of the moment generating function of the

input traffic and we show how to estimate it from input traffic traces. We probe also that

consistency and CLT properties of the moment generating function of the input traffic

can be translated to the end-to-end loss ratio estimator through a natural procedure

under very general hypothesis.

Finally, by means of numerical examples, we find that the error bound is tight. In

these examples, it can be seen that when the error is big, the link overflow probability

is very small and, therefore, these links are not relevant for the QoS evaluation. In

spite of this, we can affirm that when the overflow probability at link k in the fictitious

22



network is very small, even if the error is big, this link will not be considered for the

QoS evaluation.
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