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Abstract

The focus of this work is on the estimation of quality of seev{Qo0S) parameters seen by an application. Our
proposal is based on end-to-end active measurements aisticstblearning tools. We propose a methodology where
the system is trained during short periods with applicatiows and probe packets bursts. We learn the relation be-
tween QoS parameters seen by the application and the stamétwork path, which is inferred from the interarrival
times of the probe packets bursts. We obtain a continuousniarsive QoS monitoring methodology. We propose
two different estimators of the network state and analyze them d&dgraya-Watson estimator and Support Vector
Machines (SVM) for regression. We compare these approaaittsie show results obtained by simulations and by
measures in operational networks.
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1. Introduction mains. In this case, nodes of the path are under the ad-
. ) ) ) . ministration of diterent network operators. Yet another
Most multimedia services in packet switched net- agpect that further complicates the problem is the in-

works have some end-to-end quality of service (Q0S) c¢reasing heterogeneity of the access technologies (xdsl,
constraints that should be enforced like delay, jitter and capjemodem, wifi, wimax, 2G, 3G, mesh networks,

loss rate. However, end-to-end QoS parameters cannofg .
in general be estimated from data obtained in each iso- In the previous context. an imoortant issue in order to
lated router. Therefore, methodologies to perform end- rol tﬁ -t d ' S pd S trol. |

to-end active measurements and estimations have bee/f°N" o (N€ end-to-en QoS is admission control. In a

developed during the last ten years. Examples of such premium services network, an admission control mech-
methodologies can be found in [1, 2, 3, 4, 5, 6, 7, 8, 9 anism based on the end-to-end performance helps the
10,11, 12] TR T T operator to control the end-to-end QoS. This constitutes

Some Internet service operators afEung now one one of the main motivations of this work.

or more “premium” services like video on demand, high ~ An end-to-end admission control tool involves many
quality video conferences, high definition IPTV, telem- differenttasks. In this work we focus specifically in how
atic services with real time requirements, etc.. However, to monitor the network in order to predict the end-to-end
the rate at which these services have grown is smaller Q0S seen by a premium service. With this information
than initially expected. One of the main reasons be- an admission control tool can decide whether it accepts
hind this slowness is probably thefiiiulties that exist @ new service request or not. Although this problem is
in the current Internet architecture to guarantee end-to- Our main motivation, the tools proposed in this work
end QoS. The dierent proposals developed during the can be applied to many other operation and manage-
last 15 years in order to assure QoS (like IntSenf#-Di ~ ment problems; e.g. continuous monitoring of a Service
Serv, etc.) were not broadly deployed by the operators. Level Agreement (SLA).
These dfficulties are only exacerbated when the ser- A possible measurement technique for such monitor-
vice provider dfers a service spanning multiple do- ing tool is to send the application ff& (a video for
example) and to measure then its QoS parameters at
c . the receiver. However, in many cases these application
orresponding author . . .
Email addressesbelza@fing.edu.uy (Pablo Belzarena), flows have bandwidth requirements that are not negligi-
aspirot@fing.edu.uy (Laura Aspirot) ble compared with links capacity. This technique could
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overload a congested link, degrading the QoS perceivedof interarrival times. However, this approach presents
by clients using the system. In addition, it may only be some drawbacks, in particular that it does not take into
used then if the measurements are infrequent, and spo-account time correlations. The second contribution ad-
radic QoS degradations are tolerated. However, this is dresses this point, by considering another estimator of
clearly not the case if the operator requires a permanentthe state of the network that captures information about
or frequent network monitoring. time correlations. This estimator is presented in detail
In order to avoid the possibility of being themselves in section 5. As we shall see, it obtains very good results
the cause of congestion, some measuring techniques esand in some cases it is necessary to consider only a very
timate the QoS parameters seen by an application usingsmall subset of parameters related with this estimator to
light probe packets. However, these methodologies do have accurate estimations of the QoS.
not consider the particular characteristics of the applica ~ On the other hand in order to estimate the func-
tion. In this sense, they implicitly assume, for instance, tion ® we propose a statistical learning approach based
that the delay of a specific application can be approxi- on two diferent tools: Nadaraya-Watson estimator and
mated by the probe packets delay. This assumption is Support Vector Machines (SVM). Nadaraya-Watson, a
naturally not always true since QoS parameters dependmethod which was originally devised for real data [13],

on the statistical behavior of each type offi@ There- is used in this work mainly for functional regression
fore, in many cases, this kind of estimation yields inac- [14]. In particular we will use SVM in its regression
curate results. variant, called Support Vector Regression (SVR). SVR

We propose a methodology that is an intermediate has been extensively used for many applications since
point between both approaches (to send a multimediathe nineties [15, 16]. However, networking researchers
flow during long periods or to send light probe packets started to apply SVR only a few years ago [17, 18, 19].
during short periods) and provides an accurate estima-The nonparametric approach considered in this work
tion of QoS parameters seen by an application without differs from others in the literature, as will be discussed
overloading the network during long periods. in section 8). Our main contribution in this aspect con-

The basic idea is to learn the relation between the sists in analyzing the use of these two estimators in the
probe packets interarrival times statistic and the QoS case of nonstationary data. In particular, we provide
parameters seen by an application. We will assume thattheoretical insight for applying a functional Nadaraya-
the former characterizes the state of the network. Once Watson estimator in a nonstationary context. Moreover,
the relation has been learned, we may predict the QoSwe study the impact of nonstationary data when apply-

parameters just by sending light probe packets. ing SVM techniques. In this case we present an imple-
More formally, we consider the regression model mentation of SVM that leads to accurate estimates even
Y = O(X) + ¢ in the presence of nonstationarity.

We organize this paper in the following way. In sec-
whereX, Y ande are random variables. The random tion 2 we detail our approach to monitor the QoS pa-
variableX is an estimation of the state of the network, rameters seen by an application. In section 3 there is
the respons¥ is the QoS parameter seen by the appli- a brief introduction to the statistical learning tools used
cation (delay, jitter, loss rate, etc.) amds a centered in this work: Nadaraya-Watson and Support Vector Ma-
random variable which represents possible errors (e.g.chines. In section 4 we characterize the state of the net-
in modelling, measurements, etc.) wherandX are work by the empirical distribution of the probe pack-
assumed independent. ets interarrival times and the QoS estimation is based
The previous formulation evidences two problems. on functional Nadaraya-Watson. We analyze some pre-
First, it is necessary to find an accurate estimation of liminary experimental results for video applications. In
the state of the network (the variab¥g. Second, it is section 5 we propose an alternative estimator of the state
necessary to estimate the functidn We estimate this  of the network, one which is related with the length of
function learningd from samples of the random vari- the queues. We also discuss the advantages of this es-
ablesY andX. timator when applying SVM tools. In section 6 we an-
Concerning the estimation of the state of the network, alyze the impact of video characteristics in video QoS
this work presents two contributions. The first one is a estimations. In section 7 we show results from exper-
functional approach, where the estimation considers the iments in three dierent operational networks. In sec-
empirical distribution function of probe packets interar- tion 8 we analyze other works that estimates QoS seen
rival times. This allows us to take into account other fea- by applications. Finally, in section 9, we discuss the
tures that we cannot capture for example with the mean main conclusions of this work .
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2. Problem formulation and proposed solution

We first consider the case of a path with a single-link.

traffic can be inaccurate. This problem is analyzed by
Machiraju et al. [21], that present a rigorous probabilis-
tic approach to active probing methods for crossita

The multi-link case is discussed later. We assume that estimation. They analyze the system identifiability and

the cross trflic, the link capacity and the Hir size are
unknown. The QoS parameter seen by the application
is calledY and it is a function of the link and tfiac
characteristics:

Y = F(X, Vi, C, B)

whereX; is the cross trdic stochastic proces¥; is the

stochastic process corresponding to the application traf-

fic, C is the link capacity an® is the bufer size.
The link capacityC and the befer sizeB are not

show that diferent cross tr@ic types can give rise to the
same sequence of observed probe delays. Therefore, it
is not always possible to determine the distribution of
any desired aspect of the crosdfi@by using probes.
However, we are not looking for an accurate estima-
tor of the cross trdic. Ultimately, we want to estimate
Y. Therefore, our interest is to find an estimator (repre-
sented by the variabl¥) that is a function of the probe
packets interarrival times and, most importantly, that al-
lows us to distinguish between possible states of the net-
work . Later we will discuss some possible options for

known but are assumed to have constant values duringX, i.e. some possible functions of the probe packets in-

the monitoring process. As the goal is to estimate a QoS
parameter over the known procégqa video sequence
for example),V; can be considered as an input to our
problem. Taking into account the previous considera-
tions, we can say that = F(X;). At the end of this
section we further discuss these assumption€ 0B,
andV;.

Let us now discuss how we addressed the problem of

estimating the cross tfiéac X;. Since we will work both
with the single and the multi-link cases, we shall refer to
the X; estimator as “estimator of the state of the network
path”.

The methodology for estimating crossffra consists

terarrival times.

In order to estimat® andY we consider two dfer-
ent phases. The first phase is called the learning phase.
In the learning phase we send a burst of probe packets
with fixed interdeparture time and fixed sike Imme-
diately after the probe packets we send a video sequence
sample during a short period. This procedure s repeated
periodically sending the probe packets and the video se-
guence alternatively as shown in figure 2.

TR G

on sending packets from the user equipment and mea-Figure 2: Probe packets (pp) and probe video (video) aretsgether
suring the interarrival times between these packets at the™” order to map the state of the network into the QoS metricsunesal

end of the link. The interdeparture times of the probe
packets have a constant valuk.is the probe packets
size andC is the link capacity. In order to avoid loading
the link, K should be as small as possible.

When two consecutive probe packets are queued in
the same busy period at the link queue, as shown in fig-
ure 1, the interarrival time is equal @ + % whereX;
is the amount of cross tfiéic that arrived at the queue
between probe packetsandi + 1. Then, during the
busy periods, the interarrival times are proportional to
the cross triic volume at least up to a constant.

TRERE

Figure 1: Probe packets (pp) and crossfitg(ct) in one queue busy
period.

If two consecutive probe packets are not queued dur-
ing the same busy period the estimation of the cross
3

over the video sequence.

We build the variableX; by measuring for each test
j the interarrival times of the probe packets burst. We
also measure the QoS paramefgof the corresponding
video sequence resulting in a pa¥;(Y;) for each test.
The problem is how to estimate the function D — R
by ® from these observations, wheXe= D andR is the
real line.

The second phase is called the monitoring phase.
During the monitoring phase we send only the probe
packets. We build the variabl¢ in the same way as
in the learning phase. The QoS paraméfeof the
video sequence is estimated using the functotuilt
in the learning phase, aé= ®(X). It should be noted
that this procedure does not load the network because it
avoids sending the video sequence during the monitor-
ing phase.

Remark 1. The previous discussion is based on the
single-link case. We discuss now some considerations



about the multi-link case. First, we must highlight that We present a brief review of current results about
the multi-link case can be reduced to the single-link one Nadaraya-Watson estimations in subsection 3.1 and
in many important scenarios. For example, when the about Support Vector Regression in subsection 3.2.
application service is flered on a server located in the

ISP backbone (for example a video on demand server) 3.1. The Nadaraya-Watson estimator

and the user access is a cellular link or an ADSL link. This is a nonparametric estimator, i.e. it does not as-

In these cases the only bottleneck is normally the accesssume an explicit form for the functio® nor any par-

link (backbones are generally overprovisioned), which ticular probability distribution for the random variables
is equivalent to the single-link case. involved in the model.

~ However, there are cases where the packets mustwait  Several results on nonparametric regression for real
in more than one queue. In these cases tife@int  as well as multi-dimensional random variables have ap-
queues modify the variable X that we use to characterize peared since the works of Nadaraya and Watson [22,

the cross trgic. This means that we estimate a variable 23]. The Nadaraya-Watson estimator for the real case is
X where the influence of all queues are accumulated. defined as:

Nevertheless, evenin this case our method will work fine N N
if it is possible to distinguish with this variable between > YK (B2 3 YK, (X)
different cross trgic processes observed in the path. 5n(x) = _ =t (1)
n
> K
i=1

(PR9) 5K 00)

Remark 2. Another assumption was that the network
path, the link capacities and the jjer sizes are fixed.
For the last two, this “constant value” assumption is ) . XX
reasonable. However, the route between two points on INtegral over its support is on&n(X)) = K(h_)

the network can change over time. This problem can (Wherell - [lis the euclidian norm) anl, is a sequence

be solved by periodically verifying the route between thgt ten(_js to zero with (call_ed the kernel band_vwdth).
two points, using for example an application like tracer- This estimator may then be mterpreted_ as awe|ghted av-
oute. If a new route is detected two circumstances can &rage of the §amp|é61, - Yo The V\_/elghts are given
arise. If the system has learned information about the PY Kn (Xi) taking into account the distance between
new route, this information can be used for the estima- @nd each point of the sampi, ..., X.

tion. If the system has not learned information about the . .

new route, it is necessary to trigger a learning phase. 3.2. Regression with SVM (SVR)

However, let us highlight that in some cases a changein ~ Let us now discuss the alternative method to estimate
the route does notfect the measures, for example when @ that we shall consider in this paper. Arguably, the
the bottleneck is in the access link and the backbone is simplest form we could assume is a linear regressor as
overprovisioned. follows:

K(-) is a Kernel, which is a positive function whose

D(X) = (%, B) +Bo

In this case, the objective of SVR is to find an hyper-
plane(x, ) + Bo such that all points);, Y;) belong to

an “e-tube” centered at the hyperplane, i.e. the distance
of (X, Y;) to the hyperplane should be less or equal than
eforalli =1,...,n. Moreover, the hyperplane should
be as “flat” as possible where the flatness is related with
the smoothness in the nonlinear case. The regression
problem leads to the following optimization:

Remark 3. In this section we assumed that the system
is trained with a single kind of video (we assume that
V; is a fixed sequence). As the video QoS parameters
depend on a set of characteristics like encoding, bit-
rate, frame-rate or motion level, we can train the sys-
tem with a set of video sequences that represent the dif-
ferent classes of videos. Later the system will use the
corresponding training samples depending on the spe-
cific video that we want to monitor. This point will be

i i i 1
further discussed in section 6. min 5”’8”2
B
e . s.t.:
3. Statistical Learning _
Yi —(Xi,ﬂ>+ﬂ0£8,Vi =1,...,n
In this section we discuss the mathematical tools se- Xi,B+Bo-Yi<e,¥i=1,....n

lected to estimaté in the model
A key assumption in the previous optimization prob-

Y = ®(X) + &. lem is that a feasible solution exists. Obviously this is
4



not always the case. To find feasible solutions, we must Finally, let us highlight that in [24, 25] it is shown that

allow some error, allowing the possibility that some
points do not belong to thes“tube”. Then, the prob-
lem can be reformulated in the following way:

min B +y Y G+ @)
B i—1

s.t.
Y- (X.B) +fo<e+&,Vi=1...,n
X,B+Bo-Yi<e+( ,¥i=1,...,n
4,420

This problem can be solved more easily through the

dual formulation. Using the Lagrangian and the Karush-
Kuhn-Tucker (KKT) conditions, it can be shown that:

n

D) = > (f = o) (X, %) + B

i=1

(3)

Whereaio , aio* are the Lagrange multipliers correspond-
ing to the two sets of constraints. Moreover o #

y and@(xi) —Yi| < &, from the KKT conditions, then
a?, @ must be zero. This means that the points that are
inside the &-tube” do not contribute to the solution: i.e.
these points are not needed to calcuth{®). Only the
points with Lagrange multipliers®, «* # 0 are needed.
These points are called the “support vectors”.

It should be noted that the solution of the regression
problem using SVR depends only on the dot product
between the data (as it is shown in equation (3)). In this
sense, in order to apply SVR in a general spAci is

only necessary to know the form of the dot product in

choosing the flattest function in the feature space leads
to a smooth function in the input space. This is an im-
portant reason to look for a flat solution in the linear
case.

4. The empirical distribution of the probe packets
interarrival times

4.1. Why functional regression?

In this section we introduce, justify and discuss our
first option for variableX: the empirical distribution
of the probe packets interarrival times. When consid-
ering this first proposal, one could argue that it is not
actually necessary to consider the whole distribution
of probe packets interarrival times, but rather a simpli-
fied or shorter description of it. For instance, the mean
andor the variance.

Let us now evaluate this simpler definition of
through a concrete example simulated in ns-2 [37]. We
simulate a link fed with a video trace, crossffraand
probe packets. The crossfiia corresponds to fferent
Markovian ON-OFF sources. We alternate periodically
between two types of ON-OFF sources, corresponding
to high and low cross tfac levels.

Each test consists firstly on a probe packet burst with
fixed interdeparture time. After this burst we send a sim-
ulated video tréic (a video trdfic trace). For each test
j we compute from the probe packets the mean and the

such space. Therefore, the idea for the nonlinear casevariance of the interarrival times (the variatdgin our

is to map the input data into a higher dimensional space
¥ by a functiony : RY — F. Then, we can apply

the linear regression procedure explained above but in

the spacer (called the feature space). This technique
generalizes SVR,fiectively making it a nonparametric
method. The mapping lead us to the following solution:

Ns
D(x) = Z(a? — ™)K (X, X) + B
i=1

whereNs is the number of support vectors akgX;, x)
is a kernel function. A function is called a kernel if it
represents a dot product in the feature space:

K(x, X) = {(¢(X), p(X)).

In particular, we use a radial basis function (rbf) kernel
due to the good performance shown iffelient appli-
cations:
K(x, X) = e s (4)
5

model) and we measure the average delay of the video
packets (the variablg; in our model).

In figure 3 it can be observed the measuye@ideo
delay) and the estimatedusing these possible choices
of X. It should be noted that the estimation does not
distinguish between busy and light periods. This means
that the choserX is not enough to discern between
them. Let us remark that in other unreported experi-
ments, which used simulated data and data taken from
operational networks, the estimations¥oiising these
descriptors were always inaccurate.

On the other hand, in figure 4 we show four empirical
distribution functions for simulated data. Two of them
were obtained in the presence of high crosfitand
the others with low cross tfiac. In this case, we may
clearly appreciate the impact of the two regimesXgn
and distinguish them through it. The next sections ana-
lyze how to estimate the QoS parameters through these
empirical distribution functions.
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Figure 4: Empirical distributions of probe packets intevat times

4.2. Functional Nadaraya-Watson estimator

For functional random variables (i.e. when the regres-
sorX is a random function) Ferraty, Goia and Vieu [26]
introduced a Nadaraya-Watson type estimatoffode-
fined by equation (1), where theffirence with the real
case is thaf| - || is a seminorm on a functional space
D. The estimationD,(Xx) will be accurate if there are
enough training samples near One of the main is-
sues in the functional approach is the “curse of dimen-
sionality”, i.e. the number of samples needed to ac-

curately estimate increases with the dimension of the
space. This issue becomes crucial when the observa

tions come from an infinite dimensional vector space.

This problem is addressed in the literature and we re-

fer for example to [14, 26, 27, 28, 29] forftirent ap-

proaches. These works state the convergence and the

asymptotic distribution of the estimator for stationary
and weakly dependent (for example mixing) functional
random variables.

4.3. Extensions to the nonstationary case
The cross triic X; on the Internet is a dependent

within a “change free region”, where stationarity can be
assumed. They describe the overall network behavior as
a series of piecewise-stationary intervals. Karagiannis
et al. [32] have found nonstationarity atfféirent time
scales analyzing the ftitec of a link belonging to a Tier

1 ISP. They found that the tifec can be considered sta-
tionary at small time scales with events that change its
stationarity at a multi-second scale o larger.

The nonstationarity has fiierent causes, but in any
case it is very important to have estimators that can be
used with nonstationary tfi&c. As our data comes from
the Internet and it is typically nonstationary, we extend
previous results on functional nonparametric regression
to this case. Instead of considering equally distributed
random variableX we consider a model introduced by
Perera in [33] defined by

Xi = ¢(éi, )

where & takes values in a seminormed vector space
with a seminorni| - ||, andz; is a real random variable
that takes values in a finite s, o, . . ., zn}. For each
k=1,...,mthe sequencép(&i, ) is weakly depen-
dent and equally distributed, but the sequeiaeay be
nonstationary as in [33]. The model represents a mix-
ture of weakly dependent stationary processes, but the
mixture is nonstationary and dependent. Herepre-
sents the usual variations of thefirg, and the variable

Z selects between filerent trdtic regimes, and repre-
sents types of network tfiac.

With this model two main theoretical issues appear:
the convergence and the asymptotic distribution of the
estimator. A preliminary result about the estimator con-
vergence was published in [34] and an enlarged version
in [35]. The asymptotic distribution of the estimator for
this model is discussed in [36]. We prove in this work

the almost sure convergence of the estimator, i.e. that
with probability one the estimator converges to the real

value when the number of samples goes to infinity. The

statement and proof of this theorem is in Appendix A.

4.4. First application to simulated data

In this section we analyze the accuracy of estima-
tions with functional Nadaraya-Watson applied to sim-
ulated data. We analyze the estimation procedure by
simulations using the ns-2 simulator. We simulate a

and nonstationary process. This topic has been stud-link fed with a video trace, a simulated crosfii@and

ied by many authors during the last ten years. Zhang probe packets. The crossfiia corresponds to a model

et al. [30, 31] show that many processes on the Internet X = ¢(¢, Z). We have two Markovian ON-OFF sources

(losses for example) can be well modelled as indepen-andZ is a random variable that takes values{@)1}

dent and identical distributed (i.i.d.) random variables selecting periodically between this two sources. Fixing
6



the value oZ we obtain stationary processgg, 0) and that gives a measure of the estimator performance for

w(£,1). the time scalé;. By computingo-zti (nnmforl<<j<r
The first source (source 0) generates Markovian ON- we will chooset;, ., such that

OFF trdfic corresponding tap(¢,0) with average bit

rate varying from 150 Kbps to 450 Kbps and average o, (n,m) = min{o-ztj (nm:1<j< r}

time Ton in the ON state and Tffdn the OFF state vary- _ _ _

ing from 100 to 300 ms. The second source (source 1) In our simulationst = 10 ms and we obtained that

generates Markovian ON-OFF ff corresponding to @ (n.m) was minimized and almost the same in the

(&, 1) with average bit rate varying from 600 Kbps to case oft; = 10 ms and; = 20 ms. Then we select

900 Kbps and average time Ton in the ON state arfel To the interdeparture time 20 ms in order to minimize the

in the OFF state varying from 200 to 500 ms. For each Probe packet load.

period an independent random variable is sampled to se-  1he kernel bandwidth is selected with a similar pro-

lect the average bit rate. The payload of probe packetscedure. For a training samplex;, ¥i) : 1 <i < nj we

is 20 bytes and for the video packets is 1400 bytes. The consider the estimation of; defined byY; = ®n;(Xi)

video sequence has an average bit rate of 480 Kbps. Thewheredy; is obtained from the training sample without

link capacity is 1.6 Mbps. considering X;, Yi). Next we compute
We send this cross ffizc to a network link together n

with the probe packets and the simulated video se- a?(hy) = }Z(Eﬁn,i(xi) _Yi)2

guence. Each test consists on a probe packet burst with N

fixed interdeparture time. After this burstwe send a sim- N .
ulated video tréiic (a video tr#fic trace). For each tegt  for a finite set of kernel bandwidths$ and we select the

we compute from the probe packets the empirical distri- k€rnel bandwidtt, such that

bution function of interarrival timeX; and we measure 2y D .

the average delayj; of the video packets. "(ha) = minfo=(hn) - n € H}.
In order to compute the Nadaraya-Watson estimator  Tpe performance of the estimator is shown in fig-

the kernel is ures 5 and 6. More precisely, in the simulations we ob-
02—12 if xe[-1,1] tained 360 values ofX, Y), which were divided in two
K(x) = { 0 if x ¢ [_1’ 1] subsets. The estimation df is obtained from the last

300 samples and the accuracy of the estimation is evalu-
ated over the first 60 samples by compadngX;) with

1 .
and we use thé* norm for the distance between the the measured average deMyfor j = 1....,60. The

empirical distribution functions. . . o B (%)Y
Concerning the time scales in our experiment the relative error in each pointis computed aé%.
probe trdfic is sent with fixed time between consecu-  Note the precision of the estimation, specially when
tive probe packets. The aim is to find some criterion for compared with figure 3.
choosing the best time scale in order to have accurate
estimates. We considerftérent sequences of observa- 08 ‘ ‘ ‘ ‘ ‘
tions for a finite set of time scalgs§, to, . . ., t,}. In prac-
tice, as we send bursts of probefti@with fixed timet 03} ]
between packets we have observations with time scales
in the seft, 2t, ..., rt}. Considem + mobservations for
each time scale

0.251

Video delay(ms)
1)
)

=]
i
o

{(Xitj,Yit‘):lgign+m, 1<j<r}

o
o

By dividing the sequence for a fixed time scale in two
we can estimate the functiab'i (for the time scald;)

by 5}{ with the firstn samples. We then compute the s - = - - = -
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o
o
&

o
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m
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many of the drawbacks considered before. In order to

present it we first describe the single-link case in sub-

section 5.1, whereas the general network path case is
discussed in subsection 5.2. Experimental results using
the new estimator combined with the Nadaraya-Watson
and SVM techniques are presented in subsections 5.3

0.3r

0.2r

0.1

. . . .
0 10 20 30 40 50 60

Sample number and 54 I’espec'[lve|y
Figure 6: Relative error in the estimation of figure 5. 5.1. The single-link case

Consider a probe packethat arrives to a link queue
at timet;, and leaves the link at tim& (see figure 7). If

4.5. We.akness of this approach ~_ the capacity of the link i€, the diference betweet}
Despite the very good results shown by the estimation angti s such that:

in the previous section, it presents certain drawbacks we

now discuss. Firstly, the empirical distribution of the q(tin) _

probe packets interarrival times does not capture well +K= (tﬁ - t'n)- 5)

the time correlation of the cross fli@ process. This

information is important for estimations in operational q(tin) is the queue length when packetirrives to the
networks because the way the queue is filled depends OMyueue,K = g + D is a constant wher® is the fixed

the cross tréiic correlation. _ _ _ probe packets size arid is the link propagation delay
Moreover, and from a more practical point of View, (j e_the time it takes to transmit one bit over the physical

using an empirical d|str|but|_on may have a high cost in medium). Even if (5) may be used directly to estimate

storage space and computing time. In fact, to develop the queue size, it has an important drawback: the queue

an online system it is important to represent the state gj;e depends on the clocks in twdféirent places, as the

of the network with the minimum number of features. time t. should be stamped at the sender and the tfme

However, we have already seen that considering a "sum-shod be stamped at the receiver. Consider instead the
mary” of this distribution (like the mean or the variance) following equation:

does not yield good results.

We will then look for another function of the inter- t t

. . . . . q( n) q( nfl) 0 _ ;0 i i
arrival times in order to estimaté with a small set of c - ¢ * (tn - tn_l) - (tn - tn_l). (6)
features. The use of SVR rather than Nadaraya-Watson
has an advantage in this context. Nadaraya-Watson is aEquation (6) is obtained by considering two consecutive
nonparametric estimator where the model is representedpackets,n — 1 andn, and the diference between the
by all training points. For each new point the estima- following equations:
tor must be calculated using all training data. How-

ever, SVR only needs to store the support vectors that q(t'n) K = (1o _ i

are fewer than the whole training sample. < "7 ( n ”)’
Therefore, the goal of the next section is to develop an _

accurate estimation procedure using SVR with a small q(tln—l) K = (10 i

set of features taken from the interarrival times. c "7 ( n-1- ”*1)'

Applying equation (6) recursively and assuming that

5. The estimator of the queues state. there exists a tim% where the queue is empty we have

that:
In this section we present another estimator of the (t') N
network path state taking into account the analysis of ) _ [(t(_) —0 ) (t 1)] @)
the previous section. This new estimator will address c 4Gt s

8



This equation allows us to estimate the size of the queue Please note that the mean of equat{Bjis precisely(7)
seen by the probe packets with the important advantagesince (s‘l’ - s?_l) and (s'J - 5'1-1) are centered random
that it depends only on times taken with the same clock, variables with values ifi-Al, A'], [-A°, A°]. However,

as interdeparture timiz — t;_, is known and? —t7 , is the variance off%) has an additional term n\4 n\Ve,
the interarrival time for consecutive packets. where V and \° are the variances fog — ' ande®—

€9 ; and n is the packet number. In the experimjent the
clock should be such that its resolution error variance is
small compared with the variance in the queue size, so
that the term nV4+ nV° becomes negligible. In addition,
we can reduce the error variance due to the the number
of packets (as for packet n the error variance is' RV

nV°) by setting to zero the packet number aﬂ%@ each
time we find an empty queue.

On the other hand, as the time between probe pack-
ets is in the order of milliseconds or less, the clock drift
assume K = R + R, where R is the minimum delay error is generally negligible. Anyway we are assuming
and R, is a random variable that represents the vari- for both problems that the clocks at the arrival and de-

able component of the delay experimented by packet n parture nodes are accurate enough compared with the
In this case target times that we want to analyze.

a(th) a(t)

cC C

Remark 4. The time when the queue is empty can be
estimated looking for interarrival times equal to inter-
departure times.

Remark 5. Equation (7) is also valid in the case where
the interdeparture times are not fixed and for example
they follow some probability distribution.

Remark 6. In equation(5) we assume that K is con-
stant. In order to consider a variable delay we should

e

+Ri-Ro= Y [ -1.) - (t; - 1))
=1

o

1<)

<
T

o

=

3
T

As in equation(7) we can assume that there is a time

t = 0 such that the queue is empty and the variable
component of the delay is zero, 8(132 = Ro=0. The
estimator, i.e. the sum in equatidi), takes into ac-
count the size of the queue and the variable component

of the delay seen by packet n. In this case, even if it /]A M | A
is not a precise estimator of the queue size, it is a suit- o 0 oo e T e 000 200
able estimator of the network state, which is our actual

e o
° o
® 5]

T T

Estimated queue size (seconds)
o
5
3
:

o o
2 3
=2 S
e

objective. Figure 8: Queue size estimated by probe packets for oneesiingl
in the presence of heavy crossfia

Remark 7. Active measurements argfected by time
stamping errors. Two main problems with time stamp-
ing are clock resolution and clock drift.
We will address first the clock resolution issue. The
real departure time!t for probe packet n can be ex-
pressed agt= f + &, wheref! is the time stamp an,
is the error due to clock resolution, a random variable
with values in0, A'], with A’ the clock resolution at the
departure node. The same occurs with arrival times,
0 = 0 + £2, with values in[0, A°], with A° the clock
resolution at the arrival node. In this case equati@i
can be written as

~

>

@

w

~

Estimated queue size (seconds)
N

-

n L L
200 400 800 1000 1200

o

600
Sample number

i n
M = Z [(f‘.’ — f?’_l) — (f‘ - ﬂ_l)] Figure 9: Queue size estimated by probe packets for oneeslingl
C -1 ! ) ! ) in the presence of light cross fiia.
n
+ Z [(89 _ &0 ) _ (8i_ _& )] (8) Finally, we show in figures 8 and 9 the estimation of
J j-1 J j-1 . . . . . .
=t the queue size computing equation (7) in simulations for



two different cross tii@ic processes, obtained with ns-2 Finally, for a sequence of probe packets we define a
in one single-link. We send a burst of probe packets and sequence of estimators, wha&jeis the estimator com-
we generate Markovian ON-OFF crosdfi@in order to puted for packen, by:

show the behavior af(t,) under diferent trafic loads.

n
0 N o N i,1 i,1
t- -t 10
5.2. Extension to a path with many links Z ( | J*l)] (10)

In this section we analyze a path withlinks, where
each link has capacit@,. Letq(t) be the queue size of ~ From this sequence of estimatagswe compute several
link | at timet. Packetn arrives to the link at time!; statistics (e.g., the empirical distribution, the meae, th
and leaves it at timé". Taking into account that variance, etc.) that we use as the state of network path
Xin order to estimate’.
toI 1 tl I’
: : 5.3. Regression using the empirical distributiorgpf
The use ofj, rather than the use of the empirical dis-
A= t" t" — o1 t?’_lll» tribution of the interarrival times has at least one impor-
tant advantage: the estimafqy captures more infor-
for each linkl in the path, equation (7) can be rewritten mation about the correlation of the crosdfi@process
as: than the distribution of the interarrival times.
n In order to analyze this estimator we will use the same
a(ty) = Z -t - (' - tij{l)] simulated data as in section 4. These simulated data cor-
=1 respond to the case of one single-link, but it is presented
n here in order to discuss some propertiegof In sec-
= Z A|+1, AH Vie{l...,N} tion 7 the estimatog, is used with real data in a path
j=1 with many links. We consider 36, Y;) samples ob-
tained with simulated tféic. This samples are divided

in two sets: the validation sz YH:ii=1,..., 120}
N

Z t" ZC' znl A|+1, Au and the training se{t(Xlz, Y?2)ri=121,.. 360}.. The

=1 =1 j=1 estimatoid, (Xil) will be calculated for each point of the
We add to each of the firdi — 1 terms of the sum yalidation sample, using the other 240 points for train-
Cn 2o (A"j _A”l’j) and to the last term we add Ingl_.et us first estimate the QoS parameter using the em-
Cn 21y (ANJ - A1,1‘)- Since the total sum of these pirical distribution oft, and the functional Nadaraya-

and defining

The total queue size over the path is then:

terms Cn 2?:1( IN:‘ll (A,,J— - AI+1,1) +Anj - Al,j) Watson estimator. The estimation was done using the
is zero then: Z|N:1 a (tiﬁl) _ Z{\ill(cl _ kernel banQW|dth thgt minimizes the mean square error.

N N The result is shown in figure 10 where we may appreci-
Cn) X (A”l’i - A'»J') + Cn i (AN+1»J' Ay, J) ate that this procedure obtains a good estimation when

Finally, taking into account thaE!_; (A|+1,j - A, ,)
a(t . ; _ icantly when the delay is low.
# we obtain that S, q (t)(1- 952) = In grder to get insight into the previous problem we
Cn X (AN+1,j - Al,j) and then: consider the empirical distribution of the estimatur
Figure 11 shows several empirical distribution of the
¢ simulated data. The three functions of the right side of
Z c, - Z Anvaj ~ Al' ) the picture correspond to high valuesyoénd the other
=1 distributions correspond to low values ¥%f(a zoom on
Equation (9) means that the sum of the interarrival times these last curves is shown in figure 12). It should be
minus the sum of the interdeparture times of the probe clear from these graphs that thé distance between
packets until one specific probe packet, is equal to a lin- any two empirical distributions is much smaller when
ear combination of the sizes of the queues seen by thisY is low than for greater values of it. Actually, if we di-
probe packet when it arrives at each queue in the path.vide the sample in two, depending on the valu& pive
This quantity is strongly correlated with the state of the would obtain very interesting results regarding the op-
path. timal kernel bandwidth. In the case of the estimajor
10

the delay is high, and that its accuracy decreases signif-
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Figure 10: Estimated and measured video delay using theriealipi
distribution ofd}, (equation (10)) and Nadaraya-Watson.
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Figure 13: Measured and estimated video delay using thermaipi
distribution function of¢, and Nadaraya-Watson with fourfirent
kernel bandwidths.
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Figure 14: Relative error in the estimations of figure 13.

for the low delay values zone the optimal kernel band-
width is 8 x 10°° and in the high delay values zone is
2x1073. The optimum using only one kernel bandwidth
is 1.4 x 10°2 because in the mean square error high val-
ues have more influence. This is the reason why in the
low delay values zone the estimation is less accurate.

A possible solution to this problem would then be to
use diterent values of the kernel bandwidth depending
on the value ofY. For instance in figures 13 and 14 we
show the results obtained by using foufteient kernel
bandwidths. The estimation is accurate and the relative
error is in the worst case around 15 %.

It should be noted that we did not find these problems
when using the empirical distribution of the interarrival
times (figure 5). In that case, the optimal kernel band-
width for low and high values of are relatively similar.
We have shown in figure 4 four empirical distributions
of the interarrival times. Two of them are for cases of
high Y values and the other two are for lowvalues.

In that case, th&® norm was a good metric to distin-
guish among them. In this sense, an alternative solution
to considering several bandwidths is to consider a dif-
ferent norm altogether.



distribution has a heavier tail as load increases (see fig-
ure 11). In this sense, operation points are easily distin-
guishable through a high percentile of the correspond-
ing distribution (e.g. 90 %).

Taking into account the previous considerations we
add the percentage of time with empty queue and the
90 % percentile toX. Figure 16 shows the estimation
using these four parameters, and figure 17 shows the
estimation relative error. Note that the precision in this
case is very good. The worst relative error is obtained
for low values ofY, which is not very important for QoS

Figure 15: Measured and estimated video delay using the r@uen considerations.
the variance ofj, and SVR.

T T
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video delay (seconds)

60
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Instead of using several kernel bandwidths or looking |
for another norm, we will see in the following subsec- o
tion that the simpler alternative of considering a small
set of parameters from, together with SVR also pro-
vides excellent results.

o

video delay (seconds)

5.4. Regression using parameters obtained from the se- 1 ld e & ‘ -l
quencéd, cample sumber

As mentioned in section 1, ideally we would like to  _ _ . . . .

. . . igure 16: Measured and estimated video delay using meaaneae,
design a framework that may be applied online. In or- percentage of time with empty queue and percentile 90 @, aind
der to achieve this, it is important to consider as few as SVR.
possible parameters when making the estimation.

We will first consider, as earlier, the case in which

X is the mean and the variance @f. Before, let us o
briefly discuss how we chose the parameters of SVR.

The parametey (see equation (2)) controls the tradteo
between the error minimization and the “flatness” of the
solution. Moreover, the rbf kernel (equation (4)) is con-
trolled bys. The method used to optimize these parame-
ters is to build a grid and to find the point that minimizes

relative error
bt
B
]
T

o
a

the mean square error over the validation sample. 005
Figure 15 shows the estimation whins the mean
of G». In this case, even if significantly better than the ° ‘ T
results shown in figure 3, the estimation is not particu-
larly accurate. The same figure shows that the estima- Figure 17: Relative error in the estimations of figure 16.

tion is improved when jointly considering the mean and
the variance. However, there are certain areas in which
the precision is unacceptably low (e.g. the circle in fig-
ure 15). 6. QoS estimation with different video sequences

To find features that further distinguish operation
points, let us take a more detailed look at figures 11 and The goal of this section is to verify by simulations
12. For low load situation (figure 12), we may see that thatitis not necessary to train the system with each spe-
the ditference lies mainly on the point at which the dis- cific video sequence. We will verify that the estimation
tribution curve intersects the y-axis. This value may be of the QoS parameters of a video depends only on some
interpreted as the percentage of time the queue is empty.characteristics like codec type, frame rate, movement
On the other hand, we may observe that the queue sizelevel, etc. The results are accurate if the estimation is

12



done with a system trained with another video sequence
with the same characteristics.

—e—measured delay
- = - estimation training with video 1
©_estimation training with video 2

We use the same simulation scenario as in the previ-
ous sections (one single-link with ON-OFF crossiica
but here we feed the link with flerent real traces of a
set of 30 seconds video sequences. These traces are rei
video sequences that we send between two computers
and we capture the video packets (departure time and
packet size) at the sender LAN interface.

We simulate, for each video sequence, 200 samples T —/———— . . ‘ i ‘ ‘
(X,Y) whereX is a vector with mean, variance, percent-
age of time with empty queue, and 90 % percentile, ob-
tained from the sequen@g. Y is the delay measured
over the video sequence.

The 200 pairsX, Y) of each video sequence were di-
vided in two sets. The first 120 experiments were used *[—omam a
as training samples and the other 80 as validation sam-
ples. Using two dierent training sets we estimate the
delay for each video sequence. On the one hand we es-
timate the delay training and validating with the same
video sequence. On the other hand we estimate the |
delay training and validating with flerent video se-
qguences.

In table 1 we show some characteristics of four par-
ticular video sequences. The first three video sequences
were encoded with the same codec and with the same
fr_ame ra_te' The three wde_os are part_ dfmn_t films: Figure 19: Video 3 estimated and measured delay using videall
video 1 is about an electric storm, video 2 is about & yideo 3 as training samples. (The bottom figure is a zoom afifiper
jump from a bridge and video 3 is about a car race. figure in a time interval.)

Video 4 is encoded with another codec and with another
frame rate. ‘ ‘

video 2 delay (s)

video 2 delay (s)

20
'sample number

Figure 18: Video 2 estimated and measured delay using videall
video 2 as training samples. (The bottom figure is a zoom afiiper
figure in a time interval.)
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Table 1: Video characteristics

delay video 4 (s)

Video | Codec | frame rate
1 | MPEG1| 25fps
2 | MPEG1| 25fps T
3 | MPEG1| 25fps Tof AR i b
4 | MPEG4| 30fps :

sample number

Figure 18 shows the estimated delay of the validation _ o _ o
les of video 2 using as trainina sample either video Figure 20: Video 4 estimated and measured delay using videall
samp_ . g g9 p video 4 as training samples. (The bottom figure is a zoom afiiper
2 or video 1. Figure 19 shows the same results but us- figure in a time interval.)
ing video 3 and video 1 respectively. In both cases the
performance of the estimator is very good. On the other
hand, figure 20 shows the obtained results when usingtrain the system for each particular video sequence.
videos 4 and 1. In this case the estimation done with the However, it may be necessary to train the system for
training sample of video 4 has good accuracy, but this is the diferent codecs, frame rates, resolutions and quality
not the case when the training is performed with video levels of the videos. At first sight, this would result in a
1. huge number of measurements, which should consider
The previous results show that it is unnecessary to all the combinations of possible codecs, frame rates,
13



quality levels and resolutions. This raises some con- done between a server located at Universidad de la

siderations on the practical application of this method- Replblica in Uruguay an a server located in Canada.

ology, which we now discuss. Finally, in section 7.3 we present measurements using a
First, let us recall that although one of the main moti- cellular access network.

vations of this work is an admission control system for

a video on demand service or other video services, the 7.1. ADSL tests

methodology developed in this work is applicable for  The first experiment we present was carried out in
other multimedia services. a host connected to the internet through an ADSL ac-
Second, we remark that each video service provider cess. In this case the bottleneck link is precisely the
uses only a small set of the encoding parameters. Theaccess and cross ffi@ was relatively controlled. The
ITU recommendation H264 [38] that is being adopted estimated parametaf was the video delay. Figure 21
by different systems form 3G to HDTV systems has 16 shows the first analysis.
levels (combinations of resolutions, frame rates, etc.).
However, for each specific service only a few levels are
used. For example, a video service for a 3G network
normally uses a MPEG2 or MPEG4-part 10 video codec
with a video resolution adapted for a cell phone and with
a bit rate adapted to its network. A high quality on-
demand video service provider or a TV service provider
uses another set of parameters. |
The following are examples of typical sets of parame-
ters recommended for fiierent services by a video sys- E Creemaedem ]
tem provider [39]: poseebebi—ob— : W 5 eo

30
sample number

video delay (ms)

1. Scenario: mobile content (3G), resolution: 276
144, frame rate: 10-24 fps

2. Scenario: internet standard definition, resolution:
640x 480, frame rate 24 fps

3. Scenario: high definition, resolution: 1280720, We monitor video sequences streamed from an In-
frame rate 24 fps ternet server. Each estimation is calculated using the
o ) ) , .. previous data as training samples. For this reason, the
Taking into accognt_the previous con3|dera'§|ons, LIS first estimations are not accurate and they improve as the
clear that our monltorlng_ system must be trained on_ly number of samples grows. In this case we use functional
for the small set O_f encod!ng parameters t_hat the SerV'CeNadaraya-Watson estimator and the empirical distribu-
provider uses for its specific network service. tion of interarrival times a¥x. Note how several of the
Finally, we note that dierent video encoding param- ot samples are estimated as zero, indicating that no
eters may .have ﬁ'grent relevance fqr our learning sys- data is available to estimate them. Between samples 10
tem. An interesting researph tOP'C' that escapes theand 14, when the estimation seems to be stable, we start
scope of the present paper, is the influence of these dif- peer to peer connection that generates a step change
ferent parameters in the training system. in the cross tréiic. In the new conditions there are not
enough points in the training sample in order to estimate
7. Experimental Results. the video delay. This situation can be seen in sample 15
where the estimation is zero . In sample 35 we finish
In this section we present the results obtained by our the peer to peer connection. We come back to the same
techniques when applied toftrent operational net- state as at the beginning of the test. In sample 55 we
works. The experiments were performed with a mea- restart the peer to peer connection. In this case the sys-
surement software tool specially developed for this pur- tem has training data learned between samples 14 to 34
pose. In order to evaluate the practical limits of our and the estimations are accurate.
methodologies we analyze three scenarios that have dif- In the second experiment we monitor a video
ferent levels of complexity. In section 7.1 we present streamed from an Internet server to a PC located in a
measurements obtained using an ADSL access. In secL AN connected through an ADSL link to the Internet.
tion 7.2 we present some multidomain measurementsWe monitor the video during a long period of time and
14

Figure 21: Estimated and measured video delay in an ADSLitink
the presence of peer to peer crosfittaising Nadaraya-Watson.



in this case the user does not generate crofigctrd he mains. We study three flierent parameters: delay,
cross tréfic is generated only by other users of the LAN losses and jitter. The experiments were done between a
or the Internet. As a consequence, and as opposed to theserver located at Universidad de la RepUblica (Uruguay)
previous experiment, we have no control over the cross and a server located in Canada (69.77.X.X).

traffic. We have done 50 experiments. We use the func- We have sent video sequences encoded at 382 kbps
tional Nadaraya-Watson estimator and the variabig and probe packets of 80 bytes on wire at a fixed in-
the empirical distribution of the probe packets interar- terdeparture time of 15 ms. The probe packets repre-
rival times. (As an example Figure 22 shows 30 values sent a constant bit rate ffec of around 40 kbps (i.e.

of X, i.e. 30 empirical distributions of the probe packets approximately 10 times lower load than the video traf-
interarrival times.) In this case each point is estimated fic). The path between both servers is shown in table
with the rest of the data. Figure 23 shows the estima- 2 and has more than twenty links. It should be noted
tion. The accuracy of the estimation is good, except on that hop number 13 implements a load balancing mech-
some peak values. This could be improved with a larger anism. This situation is an additional complication for

training sample. the estimation.
hp number interface ip interface 2
14 2 192.168.240.1 (192.168.240.1)
3 69.77.183.13 (69.77.183.13)
4 69.77.175.90 (69.77.175.90)
er 1 5 69.77.175.94 (69.77.175.94)
s 6 69.77.175.66 (69.77.175.66)
5 7 69.77.175.38 (69.77.175.38)
S ] 8 142.47.135.1 (142.47.135.1)
= 9 142.46.0.14 (142.46.0.14)
% 10 ge-5-2-110.hsa2.Detroitl.Level3.ne] (64.152.144.1)
2 1 11 ae-8-8.ebr2.Chicagol.Level3.net (4.69.133.242)
,g 12 ae-2-54.edge3.Chicago3.Level3.nef (4.68.101.116)
o i 13 sl-st20-chi-5-0.sprintlink.net (144.232.19.173) (144.232.8.113)
% 14 sl-crs2-chi-0-11-5-0.sprintlink.net (144.232.8.218)
=] 15 sl-crs2-chi-0-11-3-0.sprintlink.net (144.232.20.53)
£ d 16 sl-crs1-mia-0-11-2-0.sprintlink.net | (144.232.18.217)
© 17 sl-bb20-mia-13-0-0.sprintlink.net (144.232.2.253)
18 sl-st21-mia-2-0.sprintlink.net (144.232.9.199)
4 19 sl-antel1-1-0.sprintlink.net (144.223.245.162)
20 ibb2unil-pl.antel.net.uy (200.40.22.37)
21 ibb2cen1-1-3.antel.net.uy (200.40.16.89)
% 22 iem2cen1-0-1.antel.net.uy (200.40.17.50)
23 seciu-ibgp.adinet.com.uy (200.40.160.9)
Interarrival time beteween packets (ms) 24 r3.rau.edu.uy (164.73.128.129)
25 eth-fing.rau.edu.uy (164.73.253.34)
Figure 22: 30 empirical distributions of the probe packaterarrival Table 2: Traceroute between the servers

times in an ADSL link.

The experiments were carried out during 15 days in
e November 2008. During these days some route changes
were observed. However, the route in table 2 corre-
sponds to the most stable one (more that the 80 % of
the experiment time). In many cases, the route changed
for a couple of hours and then came back to the stable
one. The time between experiments was 15 minutes.
The bandwidth of the access links of both servers are
4 Mbps and 10 Mbps respectively. We use 7 days of
experiments as training samples and estimate two other
days with this training sample. The first estimation was
o e R 0 @ w e done using Nadaraya-Watson. In this case the variable
X was the empirical distribution of the estimatprand
_Figure 23: Estimated and measured video delay in an ADSLusk fYQl\j\;a; fggfexldzizzsiunzn&i T:r?gs(;ilr?éi/lng\:]/voep:rivaﬁ Iijesr?d
ing Nadaraya-Watson.
nel bandwidths, as explained in subsection 5.3. Mean
delays vary between 220 and 250 ms. This estimation
7.2. Multidomain tests has a mean square error (MSE) of 8.6 over the two days
In this section we analyze the estimation of the QoS validation sample. We have then performed the same
parameters of a video downloaded through multiple do- estimation but using SVR. For the variabfewe have
15
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used diferent features of the estimafy. In table 3 we 1°° E—
list the MSE for each individual feature. T J
Feature MSE §w
mean off, 10.8 2
variance ofgj 12.8 o
percentile 10 36 e
percentile 20 36 zeor
percentile 30 25 5
percentile 40 14 -
percentile 50 12.8 % . * sample number 0 100 e
percentile 60 11.8
percentile 70 11.8 Figure 25: Estimated and measured video jitter in a multisiomet-
percentile 80 12.3 work using SVR. (The bottom figure is a zoom of the upper figare i
percentile 90 13.6 atime interval.)
percentile 95 13
percenaggr;%egpfn?pgty queye ig Finally, we gnalyze the losses seen by the video se-
probe packet losses 23 guence. In this case we analyze threedent sets of

features as variablg:

Table 3: MSE of each individual feature o o
Case 1: the empirical distribution Gf.

Case 2: the probe packet losses.
We have evaluated fierent combinations of these fea- ) )
tures. We found that using &6a vector containing the Case 3: the mean value, the variance, the perc_entlles
mean value, the percentile 70 Gf and the percentage 50, 60, 70, 80, 90, 95 dj,, the percentage of time
of time with empty queue, the MSE is almost the same with empty queue and the probe packet losses.
than the one obtained using the empirical distribution
of g, and Nadaraya-Watson. Figure 24 shows the mea-
sured and estimated values of the video sequence mea
delay. Note how the estimation has a good accuracy.

The MSE in these cases is shown in Table 4, whereas
figure 26 shows the measured and estimated value of the
Nideo packet losses using SVR.

20 Case MSE
i 1 2x10*
2 16x10*
3 12x10*

Table 4: MSE for losses estimated with threffatient set of features

The last case scenario we shall consider is shown in
figure 27. In this case we trained with the same 7 days
as before, but the prediction is performed for fiatient

day than the two previously considered. At the begin-
Figure 24 Estimated and measured video delay inamultidomet- — ing and at the end of the plot the estimation seems to
work using SVR. (The bottom figure is a zoom of the upper figaore i . . .
atime interval.) be accurate. However, in the middle zone the estima-

tion follows the curve of the measured delay but with

The next case is the estimation of the video sequencea difference of around 5 ms. Analyzing the information
jitter. In this case in order to have similar MSE than in collected during the experiments we found that during
the functional case with Nadaraya-Watson it was nec- this day the route changed. Table 5 shows part of the
essary to consider nine features: mean value, variance new route detected. We may conclude then that the new
percentiles 50, 60, 70, 80, 90, 95@fand the percent-  path latency is dferent from the stable one, but that the
age of time with empty queue. Figure 25 shows the queues thatféect the packets delay have essentially the
measured and estimated value of the video jitter. same behavior.
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Figure 26: Estimated and measured video packet losses intidoau
main network using SVR.

hop number interface ip

9 142.46.128.90 (142.46.128.90)
10 if-1-150.mcore3.MTT-Montreal.as6453.net (216.6.111.13)
11 if-13-0.mcore4.NQT-NewYork.as6453.net (216.6.87.21)
12 if-5-0.mcore3.NYY-NewYork.as6453.net (216.6.87.54)
13 if-12-0-0-723.core4. AEQ-Ashburn.as6453.ngt  (216.6.42.61)
14 sl-st20-ash-14-0-1.sprintlink.net (144.223.246.105)
15 sl-bb21-dc-10-0-0.sprintlink.net (144.232.20.151)
16 sl-bb21-mia-6-0-0.sprintlink.net (144.232.9.26)
17 sl-st21-mia-3-0-0.sprintlink.net (144.232.2.240)
18 sl-st21-mia-2-0.sprintlink.net (144.232.9.199)

Table 5: part of the new route

—s—measured
- © -estimated

video delay (ms)

. . . . , , . ,
20 40 60 80 100 120 140 160
sample number

Figure 27: Estimated and measured video delay in a multidome-
work using SVR under a route change with respect to the trgini
phase.

Finally, let us highlight that the methods underesti-
mate some peak values of theffdrentY parameters

case the videos were encoded at an average rate of 96
kbps.

We have done 65 tests sending in each test a video se-
guence and a probe packets burst. In this case the delays
observed are high and have strong variability. When, as
in this case, the number of samples is relatively low,
a technique usually applied to select or to validate the
model is “one left out”. For instance, to choose the
parameters of SVR we have used the following proce-
dure: for each pair of fixed parametefisy) we estimate
each point with the rest of the samples (the 64 remain-
ing points). The choserd,(y) is the one that minimizes
the MSE over the 65 estimated points.

We observe during the validation that the estimation
was not accurate. More in particular, the resultifig/)
results in a good estimation for the points in the zone
with low delay or in the zone with high delay but not in
both zones. Analyzing this result, we concluded that
the nonstationarity of the data could be the cause of
this problem. The nonstationarity was also present in
the multidomain case. However, the number of samples
there was larger than in this case, making its impact less
noticeable.

Nonstationarity was previously observed and ana-
lyzed by other authors [40, 41, 42, 43], who applied
SVM to other kinds of nonstationary data, for example
to biological data. In their works they proposdfdient
solutions. The main idea behind them is to use a set of
different kernels or a set offtierent parameters in dif-
ferent zones or time-scales of the samples. In this paper
we follow this main idea, but propose a specific solution
to our problem.

The method is as follows. We take the first 30 sam-
ples in order to select the,(y) parameters. We divide
these 30 samples in three classes, of 10 samples each,
according to the value of. The classes correspond to
the higher, lower and intermediate valuesrofwe cal-
culate the pair of parameterg;(d;) that minimizes the
MSE in each clas§, using the one left out procedure de-
scribed before. In addition, we calculate the barycentre
of the pointsX; of each class.

Next, we take the other 35 points not used to select

(delay, jitter, losses). However, it must be taken into the model in order to validate it. We classify each point
account that these peaks are less frequent than the loweix, of the validation sample according to the distance be-
values ofY. Therefore, more training days are needed tween this point and the barycentre of each class. Once

in order to estimate them with the same accuracy.

7.3. Cellular access tests
In this case a GPREDGE connection is used with

the classj; of each point is selected, we select the pa-
rametersy;,, dj,) of the corresponding class. Finally,
we estimate each of the 3% using these parameters
and the other 64 points.

a PC and an EDGE modem. The video sequences are Figures 28 and 29 show the video losses and its mean
streamed from a server located at Facultad de Inge-delay for the 35 points of the validation sample. The
nieria, Universidad de la RepUblica to the PC. In this accuracy of the estimation is very good taking into ac-
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count the variability of the data. Y for this new point. The time consumed to estimate a
new point with the previous procedure in a typical PC
: is between 200-300 ms. This time is very reasonable
-] | for a session level online applications like an admission
control system.

8. Related work

9% of packet losses
©

The aim of this section is to compare our work with
other approaches proposed to estimate the QoS seen by
I I S . S applications. We do not claim that the list of works dis-

’ cussed here is exhaustive. We will remark only the pro-
Figure 28: Estimated and measured video packet losses in a pOSfilS that, in 0_ur opinion, are the most representative
GPRSEDGE network using SVR. of different possible approaches that can be used for es-
timating QoS seen by applications.

One commonly used methodology infers the QoS
seen by an application directly by the performance seen
by a simple sequence of probe packets (using a ping for
example) [45]. This methodology can lead to very im-
portant errors. For example, figure 20 shows that it is
not possible to infer the performance of a video through
the one obtained by another video withfdrent trafic
statistics. Only worse results can be expected if a ping
is used to infer the video QoS performance.

To avoid this problem, some of the proposals to esti-

™ % w0 ol e % E mate QoS parameters were designed for specific appli-
cations or for a specific QoS metric. For example [46]

Figure 29: Estimated and measured video delay in a GERSE predicts the packet losses from packets end-to-end delay
network using SVR. variation modelling the correlation between both for a
specific application. In this work they test their method

Finally we want to state some considerations on the in different ns-2 simulations and the experiments show
algorithm performance for online applications like an a 60%- 90% accuracy. The mainftirences with our
admission control tool. The phase of the algorithm that work are that they analyze only the estimation of pack-
is the most important in terms of performance is the esti- ets losses and that in their methodology it is necessary
mation phase, and not the training one. Consequently, into send the application tfiéc to measure the delay vari-
order to analyze the performance we measure the timeations over the application packets in order to predict
consumed for the estimation of a new end-to-end QoS the packet losses. As they are motivated by VoIP appli-
parameter valu¥ for a system previously trained with ~ cations, sending the applicationfiia is not a problem
1500 training samples. Our monitoring system contin- because this tfic generally does not overload the net-
uously sends the probe packets, and when a new videowork. However, their methodology is not suitable for
is required by the user, the system makes the QoS esti-monitoring when the application titéc rate is not negli-
mation by calling the libsvm tool [44]. It must be taken gible compared with the network capacity, as for exam-
into account that the libsvm tool is a general propose ple in a high definition network or a video application
library and is not optimized for online applications. over a cellular network.

When the video request arrives, using the last 30 sec- Parlos [47] describes a predictor for a multi-step-
onds of the probe packets interarrival times, the system ahead estimation of the end-to-end delay or round trip
calculates the average, variance, the percentile 90% oftime. The methodology requires sending the applica-
the queue estimator and percentage of time with empty tion traffic during some time in order to collect the end-
gueue. These four parameters were the same used foto-end delay data. With this data a neural network is
the system training. After the calculation of these four trained, which is used in order to predict the end-to-
parameters the libsvm tool is called in order to estimate end delay (or RTT) for some steps ahead in the future.
18
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The author presents some experiments using TCP traf-sume a two state Markov model for the losses (peri-
fic. The main motivation of the work is the prediction ods with losses and periods without losses). They es-
of the TCP Round Trip Time. In the experiments Par- timate the parameters of their loss model by sending
los uses a TCP source located in USA and a destinationprobe packets. Later, in order to estimate the losses
point located in Europe reporting an average error of seen by the application knowing the applicatiorfiica
around 10% during the experiments. As in the previous rate they “sample” the losses Markov model. They re-
referenced work, this method focuses only in a specific port mean errors of around-13% in the loss rate. Their
QoS parameter (end-to-end delay or RTT in this case) estimations are done measuring the loss rate during 15
and it is necessary to send the applicatioffitdo train minutes between two Universities in the USA with syn-
the neural network in the present conditions of the net- thetic ON-OFF tré&ic or a CBR-like video. The main
work in order to predict the end-to-end delay or RTT in differences with our work is that their method can only
the near future. be applied to the packet losses process and that their
A different approach but with similar drawbacks can model is parametric in the sense that the packet losses
be found in the paper of Backhouse and Gu [48]. They process is assumed to be a two-state markov model and
propose a video packet loss prediction technique basedthe application tréic is modelled as a CBR or as an
on the relation between the time-varying crosdfita  ON-OFF. They also have some specific assumptions in
rate and the packet losses. This relationship is derivedtheir model, for example they assume that the losses are
by studying the queuing properties in the network. The not influenced by the application ffec. This assump-
cross tréfic is estimated from the interarrivals times of tion is not verified in our experiments where there are
the video packets and applying a Bayesian model. They evidence of losses influenced by the applicatioffita
compare their model by simulations with other packet Although the reported errors are very low, in their ex-
losses models like a two state Markovian model. Their periments the loss rate is estimated over a 15 minutes
goal is diferent than ours: they want to incorporate period that is a long period compared with our estima-
their predictor to a video codec whose encoding rate is tions over video sequences of about 20 or 30 seconds.
adapted to the predicted packet loss probabilities. We have used these short sequences because for admis-
Ohsaki et al. [49] model the relation between the sion control applications we need to take decisions with
packets interdeparture time (the system input) and the present information. During long periods some videos
end-to-end packet delay variation (the output of the sys- could end, others can gain access to the network and the
tem) using a system identification technique. They use present network state can be verffelient than the last
an ARX (Auto Regresive eXogenous) model in orderto 15 minutes average.
estimate the system transfer function. The crod$i¢ra
is modelled as wh|te_ noise. Taking mtq account t_he aim g conclusions
of our work, the main drawback of their method is that
the ARX modelis a linear and time invariantmodel soit ~ This work estimates QoS parameters seen by appli-
can predict only in the near future of the system where cations. We propose a non intrusive procedure based
the linear approximation is valid. on end-to-end active measurements and statistical learn-
Another tool to perform active measurements with- ing tools. We compute two fierent estimators of the
out loading the network can be found in [50]. In this state of the network: the empirical distribution of probe
paper the authors propose a new protocol called MGRP packets interarrival times and an estimator of the queues
(Measurement Manager Protocol) an in-kernel service in the path. The statistical learning approach gives ac-
that schedules and transmits probes on behalf of activecurate results, both in simulations and irffelient op-
measurement tools. MGRP permits measurement algo-erational networks. With the empirical distribution of
rithms to be written as if they were active but imple- probe packets interarrival times and the empirical dis-
mented as if they were passive. The active tools specify tribution of the queues estimator we obtain good results
an entire train of probes and MRGP treats each probe asapplying functional Nadaraya-Watson estimation. We
a vessel that can carry useful payload of other applica- also include some theoretical results that justify its ap-
tions that sends data to the same destination. By filling plication in this context. However, this approach has
most or all probes with useful data MGRP allows ac- some drawbacks: the computational cost and the need
tive algorithms to approach the low overhead of passive to store all the data in order to define a model. With the
ones. estimator of the queues in the path we can extract a few
Tao and Guerin [20] infer the packet losses using a characteristics and analyze the data with Support Vector
parametric model (a Hidden Markov Model). They as- Machines. We also study the problems that arise using
19



this tool when the data is nonstationary. We propose a with limp_,o

solution for this problem allowing accurate results that
may be applied for online estimations.
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A. Proofs of consistency for the functional
Nadaraya-Watson estimator in a nonstationary
case

The Nadaraya-Watson estimator is

YK (B) T YK, (%)
Dn(¥) = 4 == (11)
igl K ( P ) El Kn (XI)
We consider g %
D9 = T o
where

#0955 2 ZY'K”‘X'

nz,b(hn) Z Kn(0).

with ¥(h,) a normalization that depends on the concen-
tration of samples aroundand is defined later.

nX

Lemmal. Let X = (Xp)n=1, Y = O(X) + ¢, with ¢ a
centered real random variable independent from X that
satisfy

H 1. There are two independent procesges (&n)nens

Z = (Zn)nen, Such that¢ is stationary, with values in a
function space, Z is real with values{m, ..., zn} and
there exists a functiop that takes values in a function
spaceD such that

Xn = @(én, Zn).

H 2. There exist positive functiong, 1, ...
fined enR* x D, ¢y, ...,
Ac{l,...,

Plle(€1, 2 — Xl < h] = c(Qy(h, %),

,lpm de'
¢k defined inD and a subset
m} such that for all h> 0

20

vk(h, ; ; vk(h,
k(h;‘) =1ifk € A, andlimp_g k((h;;) =0

if k € A°, whereA® is the complement of subsgt In
what follows we writey(hy,) instead oty (hy, X), in order
to simplify notation.

H 3. The functions u— y(u, X) are differentiable in
R*, with derivativey; (u, X) and

lim
h—0 (//k

o x)f Ky (uh, x)du = di(x),

where ¢ are functions defined iM.

H 4. Forallk € {1, mj} the following limit exists

= %)

and we denote it byp
H 5. @ is a continuous function.
H 6. K is positive with support if0, 1].

H 7. The kernel bandwidth h satisfies
liMmpe hp = 0andlimye N(hy) =0

that

Then,
lim E(fa(x) = (%),

where f(x) > 0and f is defined for all & D by

f(u) =) prdk(u)adu).

keA

and
lim E(gn()) = @) F(x).

Remark 8. Hypothesis H 2, as in [29] is about con-
centration of random variables(&,, z), represented by
Yk(h), in a ball centered at x with radius h. In the
real case, for variables ifRY with a density function,
the distribution in a ball centered in 0 and with radius
h is proportional to H. The components of the mix-
ture that finally determine the normalizatigrare those
with indexes inA that correspond to the most concen-
trated variables around x. Hypothesis H 3 implies that
llp(£, z) — X| has density €X)y;. For variables inR?
with a density function, dis a constant for all xe RY.
Hypothesis H 4 guarantees some kind of stationarity “in
mean”. This hypothesis is verified for example by peri-
odic random variables. A counterexample can be con-
structed as in example 2.2 in [33]. HypothesesH 5, H 6,
H 7 are usual for kernel estimation.



In order to show almost sure convergence we con- A.1. Proof of lemma 1
sider the estimator conditioned to the valueZpfind .
we work with a random vector iR2™ as follows. 1
< ~ ~ E(fa(X) = E (Kn(Xi
We consider the variabl¥" = (X", ..., X2™") with (1) ny(hn) ,le (Kn(2)
values inR?™ defined fori > 1 by

As ¢ andZ are independent
o forle{l,....m E(Ka(X)) = E{E(K\(X)IZ)}

m

i L ol 20 (Ool62) 5 1) = > ElKa(g(&, 20)IP(Z = 7)
= ——=Knleléi.2 w(&i,2)) + &i k=1
l//(g") For eaclhk (¢(&, z))i>1 IS a stationary sequence, then
- E [Kn (¢(&, 2)) (p(&, 2))], m n
i) E(h(9) = ) [ﬁE (Kn(lér 200 = 3" PZ = 2.
k=1 n i=1
o forle {m+1 2m} Hypothesis H 2 implies that the density|igf(¢1, z) — Xl
T is the functionu - c(X)y;(u, X) and then
X" = %Kn (e, 2-m)) E [Kn(¢(1, Z))] = hack(X) fo lK(u)(//k(uhn, x)du.
- ¢1(h )E [Kn (@&, Z2-m))] By hypothelses H 2, H 3, H 7 we have that
lim mE [Kn(e(é1, 2d)] = de(X)Ck(X) Ljenr)»

Theorem 8. We assume hypotheses of Lemma 1 and theand by H 4
following additional hypotheses

. (1
lim E(f,(x)) = lim (—h E (Kn(e(£1, 2)))
HO. ForallBCcN,neN,ie(l,...,2m e oo £ \¢(hn)
1 n
o 2 - ) Pz ==
E[Sn(B, x'»")“] e (card(Bn)) ”21: ( )]
n
= Z Pk (X)Ci(X)
where B =Bn[l,nand S (B, )~(i’“) =L Sies X" kea
Analogously
i isfi > (E . 2)) Kn(p(é1,
H 10. The kernel bandwidthsatisfies E(¥) = Z( (¢ (¢(£1, 20)) Kn(p(€1, 20)))
£ w(Pn)
ATLL hn =0 18
D PEi= zk>].
and forsom& << 1 i=1
Then
lim y(h)n*’* = 0. E(Gn(X) = SOE(T() + R,
where
Then, o R = 31 (Bl 20) ~ 600 Knloler )
lim ®p(X) = ®(X) - w(hn)
n—co k=1
almost surely. 1 n o
. Zl P(Z = zk)]
Remark 9. Hypothesis H 9 is about weakly depen- < sup  |p(u) — ¢(X)| E(fa(X))
dence, and it may be obtained for example fram wlIx-ull<hy

mixing assumptions. Hypothesis H 10 gives a kernel and lim,_,., E(gn(X)) = #(X) f(X) comes from continuity
bandwidth convergence speed to prove the theorem.  of ¢ and lim,_,.. E(f.(x)) = f(X).
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A.2. Proof of theorem 8
As ¢n(x) = 2% it is sufficient to prove thatf,(X)

fn(X)
converges almost surely f@¢x) and thag,(x) converges

almost surely t@(x) f(x). We have that
fa(¥) = F(x) = fa(x) = E(fa(x)) + E (fa(X) - f(x)

In(¥)=d(X) F(X) = gn(X)—E (gn(x))+E (9n(x)) —p(x) F (x)
and from proposition 1

lim E (f2(9) - () = 0.

lim E (gn(x)) = F()8(x) =

Then we must prove thatf,(x) — E(fa(x)) and
on(X) — E(gn(X)) converge to zero almost surely.
In order to prove thatf, — E(f,(X)) converges
a zero almost surely it is Sfiicient to prove
complete convergence, that is for al > 0
the series), P(|fn(X) — E (fa(X))| > &) is convergent.
f(¥) = E(1n(0) = sty Zika [Kn(4) ~ E (Ka(X))] =

Wsn where
) — E(Ka(X))]
Applying Markov inequality we have that

P(Ifa(¥) - E(fa(x)l > &) < E(m)
E(st)

()2 We computeE (Sﬁ) conditioned to the trajec-
tory of Z, that isZ* that verifiesZ® = z* if Z; = gz,

foralli > 1. A trajectory is a random variable that

takes values in the space of sequences with values in

{z1, ..., Zm}.
E(Sn)

E[E(s7z)]
fTE(SﬁIZ“’ =7°)du

whereT is the space of trajectories. To prove com-
plete convergence we will prove that for a subset
of trajectories with probability one it is verified that
E(ShZ® =2°) < a, WhereZ (h TR converges. For
each trajectory we compute

E (sﬁ|z<’° = z°°)
(Kn (0(&i,3,)) — E [Kn (¢(&, aim)r]
NS

withlj e {m+1,...,2m}. We group terms depending on
the values oZ and we obtain
n 2m
lis k.
DEEEDIPIS
i=1 k=m+1jeak
whereA = {i : Z =z} n[1,n] and
1 n
gli.,n kn
NPl Z IR
i=1 k=m+1 |€An
2m .
= > Sp(AS R
k=m+1

To computeE ([Zﬁﬂ‘ml Sn (A%, >~(k*“)r) we have that

{ 2m
k=m+1

418k (AmHL KmeLn) | giin (A2ZM, K2mn)
k! .-kl

4
Sh (A", >”<'<’“)

.....

Taking expectation and applying Holder inequality and
hypothesis H 9,

E[Skl (Am+l Xm+1 n) (AZm’ )N(Zmn)]

<E 84 Am+l erln A2m X2m,n %
(& ).l eem ¥

? card(Aﬁm) 2

< C(ke, ..., km)

{ card (nAfnml)]

Then, acard(A¥) < n, we have thak (S}z> = 7°) <
C. The proof ofE (SﬁlZ“’ = z°°) < Cis independent of
the trajectory. To prove complete convergence i-su
cient to choosé,, such that

Z (n‘/’(hn))z

converges, for exampleng(h,))?> > n® with o > 1.
Consideringy(hy) > =1, with 0 < 8 < 1 and hypoth-
esis H 10 we obtain complete convergence to zero for
fa(X) — E[fn(X)]. The proof forgn(x) — E[gn(X)] is anal-
ogous considering*" with k € {1,..., m}.
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