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Abstract. We present a novel methodology to accurately classify the traffic gen-
erated by P2P-TV applications, relying only on the count of packets they ex-
change with other peers during small time-windows. The rationale is that even a
raw count of exchanged packets conveys a wealth of useful information concern-
ing several implementation aspects of a P2P-TV application – such as network
discovery and signaling activities, video content distribution and chunk size, etc.
By validating our framework, which makes use of Support Vector Machines, on a
large set of P2P-TV testbed traces, we show that it is actually possible to reliably
discriminate among different applications by simply counting packets.

1 Introduction

The Internet proved to have an amazing capability of adapting to new services, migrat-
ing from the initial pure datagram paradigm to a real multi-service infrastructure. One
of the most recent steps of this evolution is constituted by P2P-TV, i.e., large-scale real-
time video-streaming services which exploit the peer-to-peer communication paradigm,
and already count millions of users worldwide.

As such, the identification of P2P-TV applications is a topic of undoubted interest,
which has not been addressed yet, despite the valuable effort already devoted to the task
of traffic classification [1,2,3,4,5,6,7,8,9]. In this field behavioral classification [1,2]
is a novel approach which aims at identifying the traffic generated by network hosts or
end-points by the sole examination of their traffic patterns (e.g. number of hosts con-
tacted, transport layer protocol employed, number of different ports used, etc.). This
approach is very light-weight, as it requires neither the inspection of packet payload
as in [3, 4], nor operations on a per-packet basis as in [7, 8]. However, so far, behav-
ioral classification has been able only to discriminate broad application classes (e.g.,
interactive, P2P, Web, etc.) rather than different applications within the same class.

This work is the first to propose a fine-grained classification engine which only ex-
ploits behavioral characteristics – namely, the count of packets exchanged by peers
during small time-windows. Our framework, which is tailored for P2P-TV applications
such as PPLive, SopCast, TVAnts and Joost1, makes use of the Support Vector Ma-
chines. We validate the engine by means of a large and diverse set of traces collected

1 Since October 2008 Joost is no more using P2P to deliver video content.



over a pan-European testbed: experimental results show that it is possible to discrimi-
nate among different P2P-TV applications by simply counting packets – as true positive
classification accounts to more than 81% of packets, bytes and peers in the worst case.

2 Classification Framework

The Rationale
Our aim is to classify P2P-TV end-points, identified by a network address and transport
layer port pair (IP, port). Typically, a P2P-TV application running on a given IP host
multiplexes signaling and video traffic exchanged with other peers on a single port.
We assume our engine to be situated at the edge of the network, where all the traffic
exchanged by a given end-point transits. Furthermore, we restrict our attention to UDP
traffic only, as it is the transport layer protocol preferred by P2P-TV applications.

Since UDP is a connectionless transport protocol, we cannot exploit any kind of
flow semantic to perform the classification. As such, we rely solely on the count of
packets a P2P-TV application exchanges with other peers during small time-windows.
Indeed, we advocate that application signatures based on the raw packet count convey
a wealth of useful information, tied to several design aspects of an application (i.e.,
overlay discovery and signaling activities, video diffusion policy, etc.).

A human analogy may help in clarifying this intuition. Let us compare peers in the
network to people in a party room: human beings have rather different attitudes and
behaviors, just as peers do. For instance, somebody prefers lengthy talks with a few
friends: similarly, some application tends to keep exchanging data with the same peers
as long as possible. Somebody else, on the contrary, may prefer to briefly chat with a
lot of people, just like applications with an intense network discovery activity and a
dynamic diffusion of the video content would do.

Furthermore P2P-TV applications exchange the video stream in chunks, i.e., mini-
mum units of data with a fixed length, that are thus transferred with the same number
of packets: since each application independently selects its own chunk size, differences
in this choice will be reflected by the raw packet count.

Finally, in the following we consider only the downlink traffic direction. Indeed, we
point out that P2P-TV applications need a rather steady downlink throughput to ensure
a smooth playback: in fact, it has been observed that while peers consume equally, they
do not contribute equally [11] to the video diffusion. Therefore, we expect the downlink
traffic direction alone to convey all the needed information for a correct classification.

Behavioral P2P-TV Signature
More formally, let us consider the traffic received by an end-point Px=(IPx, portx)
during an interval ΔT , which, for the remainder of this work, we fix to ΔT = 5 sec-
onds. During this interval, peer Px will be contacted by K(x) other peers, namely
P1 . . .PK(x), receiving a different number of packets from each of them, say
p1 . . . pK(x). Then, we derive the number Nx

I of peers that sent a number of packets
in an interval I = [a, b] to peer Px i.e. denoting with 1{·} is the indicator function:

Nx
I =

K(x)∑

j=1

1
{
pj ∈ I

}
(1)



 0

 0.2

 0.4

 0.6

 0.8

 1

A
ba

cu
s 

si
gn

at
ur

e 
co

m
po

ne
nt

 
 n

x i(t
)

Experiment Time [ΔT steps]

Joost

n6

SopCast

n4

TVants

n1

PPlive

n0

(a)

 0
 0.1
 0.2
 0.3

0 1 2 3 4 5 6 7 8

pd
f 

of
 m

ea
n 

ab
ac

us
 s

ig
na

tu
re

 − n i

Bin identifier

PPLive
 0

 0.1
 0.2
 0.3 TVAnts

 0
 0.1
 0.2
 0.3 SopCast

 0
 0.1
 0.2
 0.3

1 2 4 8 16 32 64 128 ∞
Maximum number of packets

Joost

(b)

Fig. 1. Abacus signatures of P2P-TV application: (a) temporal evolution and (b) mean value

In particular we use B + 1 intervals of exponential width {I0, . . . , Ii, . . . , IB} such
that I0 = (0, 1], Ii = (2i−1, 2i], and IB = (2B,∞]. In other words, Nx

i = Nx
Ii

will
count the number of peers sending to Px a number of packets in the interval (2i−1, 2i],
while Nx

B = Nx
IB

will count all peers sending at least 2B packets to Px. As previously
explained, we expect that if the application performs network discovery by means of
single packet probes and uses C = 16 packet long chunks, there will be a large number
of peers falling into the Nx

0 and Nx
4 bins. For each time interval ΔT , we then build a

behavioral signature nx = (nx
0 , . . . , nx

B) ∈ R
B+1, by normalizing Nx

i over the total
number K(x) of peers that contacted Px during that interval:

nx
i =

Nx
i∑B

b=0 Nx
b

=
Nx

i

K(x)
, and |nx| =

B∑

i=0

nx
i = 1 (2)

Since signature nx has been derived from a pure count of the number of exchanged
packets, we name it abacus (shorthand for “automated behavioral application classifi-
cation using signatures”). An example of the temporal evolution of abacus signatures
nx(t) is given in Fig. 1-(a). considering the behavior of an arbitrary peer Px during
1-hour long experiment for the four different applications. Time of the experiment runs
on the x-axis in multiples of ΔT , whereas y-axis reports the cumulative abacus signa-
ture, using different fading colors for different bins. Bins are ordered from bottom to
top, so that bin number 0 (which is the darkest one), starts at the bottom of the y-axis
scale and extends until nx

0 . Subsequent bins are then incrementally staggered (with pro-
gressively lighter colors), so that the k-th bin starts at

∑k−1
i=0 nx

i and the last bin extends
until |nx| = 1.

Already at a first glance, we notice that for any given application one bin (which is
labeled in the picture) is remarkably wider than the others. Moreover, while the widest
bin differs across applications, it keeps roughly the same for any given application, dur-
ing most of the experiment duration, despite its actual width changes over time. This
can be more easily gathered by comparing the mean per-application signature, aver-
aged over all time intervals, reported in Fig. 1-(b). for instance, during a 5-seconds
interval, Joost peers tend to exchange either a single or several (33–64) packets to any
given peer, whereas SopCast performs less probing sending also fewer (9–16) packets.



TVants prefers instead lower order bins (2–4 packets), and PPLive makes a significant
use of single packet exchanges, possibly to discover the network, while the rest of its
activity is more spread out over the other bins.

Support Vector Machines
Our classification framework makes use of Support Vector Machines (SVMs) [10],
which are well known among the supervised learning methods for their discriminative
power. In SVM, entities to be classified are represented by means of some distinctive
“features”, i.e., the abacus signatures in our case. SVM classification is a two-phase
process. First, SVM needs to be trained with supervised input (i.e., abacus signatures
of known traffic and the corresponding application label). The output of this phase is
a model, which can then be applied in a second phase to classify previously unseen
signatures.

Given a geometric representation of features in a multi-dimensional space, the train-
ing phase partitions the feature space into a set of classes, using a few representative
samples of each class. Then, during the classification phase, any new point is assigned
to the most likely class, depending on the zone the point falls into. Defining the delim-
iting surfaces is complex, since training points can be spread out on the feature space:
the key idea of SVM is to remap the original space into a higher dimensional one, so
that different classes can be separated by the simplest surfaces, i.e., hyper-planes. To
assess the classification results, signatures are computed over known validation traffic
(different from the one used in the training phase), and are then fed to SVM model:
finally, classification results are compared with the real label.

Rejection Criterion
An important point is that, since SVM induces a partition on the abacus feature space,
any new point is necessarily labeled as one of the applications offered to SVM during
the training phase. Since we trained our machine only with P2P-TV traffic, any un-
known application would be mistakenly classified as P2P-TV. Therefore, in order to
have an effective classification engine, we need to define a rejection criterion.

Given two probability density functions, there exist several indexes to evaluate their
similarity. The Bhattacharyya distance BD [12] is a measure of the divergence of two
pdfs, which verifies the triangular inequality. In the case of two discrete probability p
and q in R

n, it is defined by:

BD(p, q) =
√

1 − B where B =
n∑

k=1

√
(p(k) ∗ q(k)) (3)

B is known as Bhattacharyya coefficient and 0 ≤ B ≤ 1. Values of BD near to zero
indicates strong similarity (if p(k) = q(k) ∀k, B = 1 and BD = 0) whereas values
near to one indicates weak similarity.

In our context we reject the SVM classification label C of a sample signature n
whenever the distance BD(n, n(C)) exceeds a given threshold R, where n(C) is the
average signature computed over all training set signatures of application C. In other
words, we accept the SVM decision only if the signature n lies within a radius R from
the center of the SVM training set for that class. Otherwise we label the signature



sample as “unknown”. For the time being we set R = 0.5 and discuss the impact of
this choice, as well as its motivation, later on.

3 Experimental Results

Testbed setup
Assessing traffic classification performance is known not to be a trivial task due to
the difficulty to devise a reliable “oracle” to known the “ground truth”, i.e., what was
the actual application that generated the traffic [4]. Testing the classification engine by
means of artificial traffic (e.g., by generating traffic in a testbed) solves the problem of
knowing the ground truth (i.e., you are the oracle), but care must be taken in order to
ensure testbed traces to be representative of real world traffic.

Therefore, to overcome this issue, we setup a large testbed in the context of NAPA-
WINE, a 7th Framework Programme project funded by the EU [13], whose main fea-
tures are summarized in Tab. 1. Partners took part in the experiments by running P2P-
TV clients on PCs connected either to the institution LAN, or to home networks having
cable/DSL access. In more detail, the setup involved a total of 44 peers, including 37
PCs from 7 different industrial/academic sites, and 7 home PCs. Probes are distributed
over four countries, and connected to 6 different Autonomous Systems, while home
PCs are connected to 7 other ASs and ISPs. Moreover, different experiments and peers
configurations (hardware, OS version, channel popularity, etc.) further ensure that the
testbed is representative of a wide range of scenarios. We considered four different
applications, namely PPLive, SopCast, TVAnts and Joost and we performed several 1-
hour long experiments during April 2008, where partners watched the same channel at
the same time and collected packet-level traces. In all cases, the nominal stream rate
was 384kbps. Overall, the testbed dataset amounts to about 5.5 days worth of video
streaming, 100 · 103 signatures samples, 48 · 106 packets, 26 GBytes of data.

In order to asses the ability of our system to correctly label as unknown the traffic
generated by non P2P-TV applications, we also collected packet level traces from our
campus network. Particularly we isolated the traffic generated by two widely adopted
P2P applications, i.e. Skype and eDonkey as examples of respectively P2P voice and
file-sharing applications. To identify eDonkey we employed a DPI classifier based on
[14], while for Skype we resorted to [9]. The final dataset amounts to about 2.2GBytes
and 1,4GBytes of data for Skype and eDonkey respectively, which correspond to 500 ·
103 and 300 · 103 signatures.

Discriminating P2P-TV applications
We use the signatures extracted from the testbed traffic to assess the ability of the engine
to reveal P2P-TV traffic and to distinguish the different applications. Numerical results
reported in the following are obtained by training the SVM with 20% of the testbed sig-
natures selected at random, and using the remaining 80% for validation. Experiments
are then repeated 10 times, randomizing the training set each time, so to gather robust
results. Performance are expressed in terms of the amount of True Positive (TP, i.e.
classifying label X correctly as X), and False Negative (FN, i.e. labelling a X sam-
ple as Y ) classifications, and by measuring the TP-Rate (TPR) or recall, defined as
TPR=TP/(TP+FN).



Table 1. Summary of the hosts, sites, countries (CC), autonomous systems (AS) and access types
of the peers involved in the experiments

Host Site CC AS Access Nat FW Host Site CC AS Access Nat FW
1-4 BME HU AS1 high-bw - - 1-4 ENST FR AS4 high-bw - Y

5 ASx DSL 6/0.512 - - 5 ASx DSL 22/1.8 Y -
1-9 PoliTO IT AS2 high-bw - - 1-5 UniTN IT AS2 high-bw - -
10 ASx DSL 4/0.384 - - 6-7 high-bw Y -

11-12 ASx DSL 8/0.384 Y - 8 ASx DSL 2.5/0.384 Y Y
1-4 MT HU AS3 high-bw - - 1-8 WUT PL AS6 high-bw - -
1-3 FFT FR AS5 high-bw - - 9 ASx CATV 6/0.512 - -

Table 2. Confusion matrix of P2P-TV application (left table) and per signature, packets, bytes
and end-point classification results (right table)

Signatures: Confusion Matrix Signatures Packets Bytes Peer
PPLive TVants SopCast Joost Unk TP Mis Unk TP Mis Unk TP Mis Unk TP Unk (n)

PPLive 81.66 0.58 9.55 2.32 5.90 81.7 12.4 5.9 91.3 8.7 0.0 91.6 8.4 0.0 96.2 3.8 (1)
TVants 0.41 98.84 0.15 0.57 0.04 98.8 1.2 0.0 99.6 0.3 0.1 99.6 0.3 0.1 100 0 (0)
SopCast 3.76 0.11 89.62 0.32 6.19 89.6 4.2 6.2 94.7 1.7 3.6 94.0 1.8 4.2 94.4 5.6 (2)
Joost 2.84 0.55 0.28 89.47 6.86 89.5 3.7 6.8 92.1 2.3 5.6 92.2 2.4 5.4 93.3 6.6 (2)

Let us start by observing the left part of Tab. 2, which reports the classification perfor-
mance relative to individual end-point signatures samples, corresponding to ΔT = 5 s.
worth of traffic, adopting a “confusion matrix” representation. For each row, testbed
traffic signatures are classified using SVM and the classification result is reported in
different columns. Diagonals of the matrix correspond to correct classification TPR,
whereas elements outside the diagonal correspond to FN misclassification. Particularly
the last column reports the traffic which is classified as “unknown” by the rejection
criterion. It can be seen that, in the worst case, individual signatures are correctly clas-
sified nearly the 82% of the times. The application most difficult to identify appears
to be PPLive, which generates 9.6% of SopCast False Positives, while for the all oth-
ers the TP percentage exceeds 89%. All applications but TVAnts generate about 6% of
“unknown” false negative (i.e. rejected due to a large BD distance.)

We next quantify the classification performance also in terms of the number of cor-
rectly classified packets, bytes and peers. In more detail, to each signature a precise
number of packets and bytes directly corresponds, so that the per-packets and per-byte
metrics can be directly evaluated. In the case of per-peer classification, we instead com-
bine several classification decisions, and evaluate whether the majority of signature
samples for a given end-point has been correctly classified over its whole 1-hour long
experiment. We point out that, while the classification engine is able to take a decision
“early” (more precisely, after a delay of ΔT seconds), in the latter case of end-point
classification we actually need all observations of a given experiment, falling therefore
in the context of “late” classification. Right portion of Tab. 2 reports the percentage of
correct classification (TPR), of misclassification (Mis, corresponding to the sum of row
values that fall outside of the diagonal in the confusion matrix) and rejection (Unk) in
terms of signature, packets, bytes and peer metrics; notice that FN=Mis+Unk.

Interestingly, we see that performance improves for all applications, and especially
for PPLive, when considering packets and bytes metrics with respect to signature
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Fig. 2. TPR of P2P-TV (a) and FPR of non-P2P-TV (b) as a function of the rejection threshold R

samples: this means that misclassification happens when fewer packets/bytes are re-
ceived (i.e., when the application is possibly mal-functioning). In case of end-point
classification, reliability slightly increases, as the recall for all applications is greater
than 93%. While results are more than satisfactory, yet we observe that identification
of some peer fails even in the case of late classification, with a total of 5 tests classified
as unknown, as highlighted in the last column of the table. Digging further we actually
found that mainly 3 hosts are responsible for the misclassification, and moreover all of
them actually showed abnormal functioning during the experiments.

Classifying the Unknown
If the rejection criterion generates about 5% of additional false negatives for the clas-
sification of P2P-TV applications, it reveals to be very effective in correctly handling
unknown applications. In fact for both Skype and eDonkey traces our engine raises only
0.1% of false alarms: in other words, only 0.1% of the signature samples are not label
as “unknown” as they should, but are rather labeled as one of the P2P-TV applications.

Results early shown highly depend on the rejection threshold R, whose choice de-
pends on the following tradeoff. Intuitively, R should be as large as possible, to avoid
classifying P2P-TV as Unknown (i.e., maximize the TPR) but, at the same time, R
should be as small as possible to avoid classifying irrelevant traffic as P2P-TV (i.e.,
minimize the false positive rate, FPR). To validate the choice of R = 0.5 we proceeded
as follows. Using testbed traces, we empirically evaluate the TPR as a function of the
rejection threshold R, which is depicted in Fig. 2-(a). It can be seen that TPR quickly
saturates, meaning that no P2P-TV signature is rejected when R ≥ 0.5. We then use
the non-P2P-TV traffic from our campus network to instead evaluate the FPR as a func-
tion of R, shown in Fig. 2-(b). In this case, due to the partitioning approach of SVM,
eDonkey and Skype signatures are forcibly labeled by SVM as one of the P2P-TV ap-
plications: however, the BD distance of the labeled signature from the center of the
cluster is likely higher than that of a true P2P-TV application. This clearly emerges
from Fig. 2-(b), which show that for low values of R ≤ 0.5, practically no false alarm
is raised.

We specify that these are preliminary results, and that we plan to test the effectiveness
of the rejection criterion on a wider range of non P2P-TV protocols as a future work.
Yet, we showed that our rejection mechanism can correctly handle two widely used



applications, representative of two different families of P2P protocols, by successfully
identify them as unknown.

4 Conclusions

This work proposed a novel technique for the classification of P2P-TV applications,
which relies on the count of packets exchanged amongst peers during small time-
windows, and makes use of Support Vector Machines.

Through measurement collected in a large testbed, we show that our classification
engine, is able to correctly classify more than 81% of signatures in the worst case. If
performance is evaluated considering packets, bytes or peers metrics, correct classifica-
tions amount to 91% in the worst case. Moreover the rejection criterion we designed is
able to correctly handle unknown applications, raising only 0.1% of false alarms.

We believe this work to be a first step toward accurate, fine-grained, behavioral clas-
sification: several aspects remains indeed uncovered (e.g., byte-wise vs packet-wise
signatures, more P2P applications, TCP traffic, training set selection etc.), which we
plan to address in the future.
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