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Abstract. We present a novel shape recognition method based on an al-
gorithm to detect contrasted level lines for extraction, on Shape Context
for encoding and on an a contrario approach for matching. The contri-
butions naturally lead to a semi-local Shape Context. Results show that
this method is able to work in contexts where Shape Context cannot,
such as content-based video retrieval.

1 Introduction

The problem of Shape Matching and Recognition can be described as a three-
stage process [1]: (i) edge detection; (ii) invariant coding and matching of semi-
local shapes; and (iii) grouping of local shape matches.

The first step is most commonly solved by the use of a Canny edge detector
which has at least two drawbacks: (a) several parameters have to be manu-
ally tuned depending on contrast and noise; and (b) edges are represented as a
non-structured set of edge points which needs to be later grouped into curves,
which is a non trivial and error prone task. In this work we substitute the Canny
edge detector by a refinement of the Meaningful Boundaries (MB) algorithm [2].
The representation of edges as well-contrasted pieces of level-lines (inspired from
mathematical morphology) avoids the edgel linking stage, and the use of Gestalt-
inspired [3] a contrario detection theory [2] provides a theoretically sound and
effective means of selecting parameters and the contrast/noise trade-off. In ad-
dition our refinement (see section 3) eliminates the main shortcomming of the
basic MB algorithm, thus avoiding that low-contrast parts of the level-lines keep
well-contrasted parts from being detected. Fig. 1 compares our MB refinement
with the Canny edge detector. Observe that the use of continuous level-lines
extracted from a bilinearly interpolated image provide much more finer-grained
information, solve the edge-linking problem more effectively and does not intro-
duce a significant computational penalty (thanks to the bilinear FLST [1]).

Once shapes have been extracted from the image, a suitable representation
to describe them has to be chosen (step (ii) above). Belongie et al. proposed a
shape descriptor that is called Shape Context (SC) [4]. SC has many advantages
and has been used succesfully in several applications. SC encodes shapes from
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Fig. 1: (a) original image; (b) an area on its upper left corner; (c) detailed view of
Canny’s filter applied to (a); (d) detailed view of MB applied to (a).

the edge map of an image and it therefore inherits its aforementioned drawbacks.
The novel contribution of this work (see section 3) is to fuse SC and MB in what
we call Morphological Shape Context (MSC). Results presented further show
that this descriptor is able to work in contexts where SC cannot.
The matching step is the least studied of all the processes involved in visual
recognition. Most methods use a nearest neighbor approach to match two sets
of descriptors [5]. In this work we present an a contrario shape context matching
criterion (see [6] and section 4), which gives a clear-cut answer to this issue.

Shape matching as described so far (step (ii)) only allows to match relatively
simple semi-local shapes. More complex shapes will be represented by groups of
shapes that are geometrically arranged in the same manner in both images. Such
groups can be detected as a third clustering step. In this work we do not describe
this stage in detail but use a basic RANSAC [7] implementation in section 5, in
order to experimentally evaluate the results of steps (i) and (ii) in the context
of content-based video retrieval applications.

2 Shape Extraction

This section addresses the problem of extracting the shapes present in an im-
age. We make use of the Fast Level Set Transform (FLST) method where the
level sets are extracted from an image, and we propose an extension of the MB
algorithm [2], that detects contrasted level lines in grey level images. Let C be a
level line of the image u and x0, x1, . . . , xn−1 denote n regularly sampled points
of C, with geodesic distance two pixels, which in the a contrario noise model
are assumed to be independent. In particular the gradients at these points are
independent random variables. For xi ∈ C, let µj (0 ≤ j ≤ n − 1) be the j-th
value of the increasingly sorted vector of the contrast at xi defined by |Du|(xi)
(the image gradient norm |Du| can be computed on a 2× 2 neighborhood).

The curve detection algorithm consists in adequately rejecting the null hy-
pothesis H0: the values of |Du| are i.i.d., extracted from a noise image with the
same gradient histogram as the image u itself.

Following [8], for a given curve, the probability under H0 that at least k
among the n values µj are greater than µ is given by the tail of the binomial law



B(n, k,Hc(µ)), where Hc(µ) = P (|Du| > µ). The regularized beta function I can
be regarded as an interpolation of the binomial tail to the continuous domain
and can be computed much faster. Thus it is interesting, and more convenient, to
extend this model to the continuous case using the regularized incomplete beta
function I(Hc(µ); l1(k), l2(k)), where l1(k) = l

2
n−k
n and l2(k) = 1 + l

2
k
n . This

represents the probability under H0 that, for a curve of length l, some parts with
total length greater or equal than l1(k) have a contrast greater than µ.

Definition 1. Let C be a finite set of Nll level lines of u. A level line C ∈ C is an
ε-meaningful boundary if NFA(C) ≡ Nll ·K ·min0≤k<K I(Hc(µk); l1(k), l2(k)) <
ε, where K is a parameter of the algorithm. This number is called number of
false alarms (NFA) of C.

As in [1], the expected number of ε-meaningful boundaries in a finite random
set of random curves can be proven to be smaller than ε.

Meaningful boundaries usually appear in parallel and redundant groups, be-
cause of interpolation. The shape extraction algorithm only detects curves with
minimal NFA in such groups [1].

The refinement proposed in Def. 1 is no other than a relaxation of the classic
definition by Desolneux et al. ([2]) which aims at avoiding underdetection by
allowing some parts (up to k < K out of n points) of the curve to be low-
contrasted.

The choice of the value of K cannot be directly made as it is highly dependent
on the length and the constrast of the curve. Thus the value of K has to be chosen
as a function of the curve length and of the image contrast along the curve.

Following Def. 1, we set the value of K as K̂ϕ ≡ arg maxi<n

(Pi
j=0 µjPn−1
j=0 µj

< ϕ

)
where ϕ ∈ [0, 1] is the new parameter of the detection algorithm.

This choice of K is indeed adaptive to the length and contrast of each level
line. It is in fact quite stable for values of ϕ < 0.05. Larger values lead to
an overdetection and, in general, no perceptually significant level lines appear.
Studying how this relates with the laws of visual perception is an interesting
subject for future research. From a computational and pragmatic point of view,
we consider here that this is not a critical parameter that has to be set by the
user because: (i) all experiments were performed with the same value of ϕ = 0.02
obtaining near-optimal performance; and (ii) varying the value of ϕ within the
range (0, 0.05) does not significantly affect the results.

3 Shape Encoding

In this section we overview the SC technique [4], and we present an improved
version that leads to an intrinsic definition of semi-locality in this new descriptor.

The SC considers a sampled version of the image edge map as the shape to
be encoded. The SC of a point in the shape is a coarse histogram of the relative
positions of the remaining points. The histogram bins are taken uniformly in log-
polar space, making the descriptor more sensitive to positions of nearby sample
points than to those farther away.



Let T = {t1, . . . , tn} be the set of points sampled from the edge map of an
input image. For each ti ∈ T , 1 ≤ i ≤ n, the distribution of the n− 1 remaining
points in T is modeled relative to ti as a log-polar histogram (Fig. 2a). We
denote by Θ ×∆ a partition of the log-polar space [0, 2π]× (0, L] into A and B
bins respectively, where L = maxtj∈T ||tj − ti||2. The histogram is defined as

SCti(Θk, ∆m) = #{tj ∈ T : j 6= i, tj − ti ∈ (Θk, ∆m)}

where 0 < k ≤ A and 0 < m ≤ B. The Shape Context of ti (SCti) is defined as
a normalized version of SCti(Θk, ∆m).

Fig. 2a depicts both spatial and matrix representations of a shape context.
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Fig. 2: (a) Shape context of a character ’E’. Left, partition into bins around the point ti;
right, matrix representation of SCti (darker means more weigth). (b) Different ways to
split a shape context. Doted lines separate bins and thick lines separate bin groupings.

The collection of the SC for every point in the shape is a redundant and
powerful descriptor for that shape but has some drawbacks.

First, the sampling stage is performed by considering that the edge map
corresponds to a Poisson process [4]. This hard-core model produces a non-
deterministic sampling algorithm which means that different runs of the sampling
algorithm may give slightly different results. The immediate consequence is that
two descriptors from exactly the same image, obtained at different times, may
not be equal. In short terms, jitter noise is introduced in the descriptor. In Fig. 3
the effect of the jitter noise is shown, making d(SCti , SCtj ) ≈ 0.11 6= 0 4.

Second, from our point of view the main drawback of SC is that it inherits
the weaknesses from the edge map. We mentioned previously that extracting
curves from the edge map is a hard problem. This fact has a great impact in
shape encoding: there is no intrinsic distinction between what is global and what
is not. An example is shown in Fig. 3, where d(SCti , SCtk) ≈ 0.3 which is clearly
above the jitter noise d(SCti , SCtj ). In short terms, a slight modification of the
shape has a great impact on the distance. The question “Where does a shape
begin and where does it end?” becomes absolutely non trivial. The efforts to
overcome this issue lead to heuristic solutions.

4 d(·, ·) is the χ2 distance and is used throughout this paper
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Fig. 3: (a) image horsehoe1; (b) sampled points from horsehoe1; (c) other sampled
points from horsehoe1, with the same sampling process than those in (b); (d) image
horsehoe2; (e) sampled points from horseshoe2 with the same sampling process than
those in (b) and (c). The points ti, tj ad tk are in the same position of the image.

As stated above, the topographic map provides a natural solution to these
issues. Meaningful boundaries are much more suitable than the edge map for
shape recognition. Meaningful boundaries are used as the set of shapes to be
encoded and recognized from an image [1]. Maximal Stable Extremal Regions
(MSER), which are very close in spirit to MB, have also been used for shape
encoding, see [9] among others.

The main idea is to exploit the benefits of the image structure representation
defined in the previous section and to fuse it with SC. We call this new descriptor
Morphological Shape Context (MSC).

As in SC, each shape in a given image is composed by a set of points. In MSC,
we consider each curve (i.e. meaningful boundary) as a shape. When dealing
with curves, the sampling stage is done in a very natural way, by arc-length
parameterisation, thus eliminating jitter noise. In the resulting algorithm, shapes
are extracted using the MB algorithm. Let us redefine T = {t1, ..., tn} as the
set of points sampled from a meaningful boundary of an image. The SC is then
computed for each sample point ti, 1 ≤ i ≤ n.

Beside the advantages of the representation we described above, one of its
keys is the natural separation between level lines (they do not intersect). It
allows to go from a global shape encoding to a semi-global one in a natural way,
i.e. without fixing any arbitrary threshold. The most powerful advantage is that
individual objects present in the image can be matched separately, which was
not posible in SC.

In [1] the Level Line Descriptor was designed to detect that two images share
exactly the same shape. The “perceptual invariance” is only introduced in the
matching stage. That is not what we are aiming for. We want to keep the intrinsic
“perceptual invariance” given by the SC and be able to detect that two images
share two similar shapes, independently of the matching algorithm.

4 Shape Matching

As shown in [1], the a contrario framework is specially well suited for shape
matching. Let F = {F k|1 ≤ k ≤M} be a database of M shapes. For each shape



F k ∈ F we have a set T k = {tkj |1 ≤ j ≤ nk} where nk is the number of points
in the shape. Let SCtkj be the shape context of tkj , 1 ≤ j ≤ nk, 1 ≤ k ≤M . As
in [6] we assume that each shape context is split in C independent features that
we denote SC(i)

tkj
with 1 ≤ i ≤ C (see Fig. 2b for an example).

Let Q be a query shape and q a point of Q. We define dk(i)j = d(SC(i)
q , SC

(i)

tkj
).

The matching algorithm consists in adequatley rejecting the null hypothesis
H0: the distances dk(i)j are realizations of C independent random variables D(i),
1 ≤ i ≤ C.

Definition 2. The pair (q, tkj ) is an ε-meaningful match in the database F if

NFA(q, tkj ) ≡

(
M∑
k′=1

nk′

)
·
C∏
i=1

P (D(i) ≤ dk(i)j | H0) < ε.

This number is called number of false alarms (NFA) of the pair (q, tkj ).

This provides a simple rule to decide whether a single pair (q, tkj ) does match
or not. From one side, this is a clear advantage over other matching methods
since we have an individualized assessment for the quality of each possible match.
From the other side, the threshold is taken on the probability instead of directly
on the distances. Setting a threshold directly on the distances dkj (or dk(i)j for the
case) is hard, since distances do not have an absolute meaning. If all the shapes
in the database look alike, the threshold should be very restrictive. If they differ
significantly from each other, a relaxed threshold would suffice.

Thresholding on the probability is more robust and stable. More stable, since
the same threshold is suitable for different database configurations. More robust,
since we explicitly control false detections. As proven in [1], the expected number
of ε-meaningful matches in a random set of random matches is smaller than ε.

5 Results and Conclusions

In this section we illustrate the performance of the presented methods with
three different examples. All the experiments in this paper were produced using
ϕ = 0.02 for the computation of MB. In both a contrario algorithms taking
ε = 1 should suffice but we set ε = 10−10 for MB and ε = 10−2 for matching to
show the degree of confidence achievable whithout affecting the results.

In the first example, we tested the approach in a video sequence from South
Park, which is textureless and composed only by contours. In Fig. 4a, meaningful
matches between two consecutive frames are depicted. White dots represent the
centers of the MSC. In Fig. 4b, both frames are overlapped to show moving
shapes. Note that in Fig. 4a there are no matches in these areas.

The second example, displayed in Fig. 5, is closely related to the first one.
Here texture is present and a non-rigid character is moving on the foreground.
The matches between frames 3 and 4 of the sequence are shown. Only shapes not



occluded by the movement are matched. The channel logo is correctly matched
since it is located in the foreground and it does not move.

Finally, in Fig. 6 an application to content-based video retrieval is shown. We
searched for the parental guidance logo in a video sequence with more than 6000
frames. Fig. 6a depicts the number of matches for each frame of the video. The
logo is present in three intervals ([0, 76], [2694, 2772] and [4891, 4969]) which
coincide with the three spikes. These spikes are clearly higher than spurious
matches in the rest of the video. The second and third spike are smaller than
the first one, in those intervals the logo is only at 66% of its original size. This
is achieved without any multiscale processing. In Fig. 6b the best match (the
correct one) has a NFA of 2.45 · 10−9 and the worst one (the wrong one), of
9.99 · 10−3. At ε = 10−4 all matches are correct.

The same experiment as in Fig. 6b using SC gives 3 matches instead of the 29
obtained using MSC (Fig. 6c). All MSC matches are correct and all SC matches
are wrong: the global SC approach is unable to match semi-local shapes.

The examples show that semi-locality in the MSC is a key feature to match
shapes in contexts where other shapes are present: when very similar images
present little differences (Fig. 4), when different foregrounds occlude the same
background (Fig. 5), when the query is not present or surrounded by a large set
of shapes (Fig. 6). MSC provides a novel approach to deal with such contexts,
proving itself successful where SC is not.
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Fig. 4: (a) Matches (white dots) between two frames. There are 1525 matches coherent
with a similarity transformation. (b) Both frames overlapped to show moving shapes.

Fig. 5: A video sequence with a non-rigid character moving on the foreground (top).
The channel logo is in the bottom right. Matching between frames 6 and 7: there are
141 meaningful matches (white dots) coherent with a similarity transformation.

(a) (b) (c)

Fig. 6: (a) Number of matches per frame of a video with the displayed query. (b) Best
(solid line) and worst (dashed line) matches for a target frame. (c) Detail of the logo
area with matched points in black dots.


