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Abstract. In this paper we present an implementation of a perceptual
completion model [1] performed in the three dimensional space of posi-
tion and orientation of level lines of an image. We show that the space is
equipped with a natural subriemannian metric. This model allows to per-
form disocclusion representing both the occluding and occluded objects
simultaneously in the space. The completion is accomplished by com-
puting minimal surfaces with respect to the non Euclidean metric of the
space. The minimality is achieved via diffusion driven mean curvature
flow. Results are presented in a number of cognitive relevant cases.

1 Introduction.

Perceptual completion is performed by the mammalian visual system in a num-
ber of phenomenological cases, deeply studied by psychology of Gestalt to under-
stand the underlying structure of visual processing in humans. The most common
examples comprehend modal completion, amodal completion, transparency, in-
tersection and self intersection of curves [2]. Modal completion is the process of
filling the missing part of an object and building a percept that is phenomenally
undistinguishable from real stimuli. It gives rise to the well known phenomenon
of illusory boundaries (or subjective contours) and it takes place often to com-
plete occluding objects (in Fig. 1(a) the completed triangle is occluding the 3
circles). Amodal completion (Fig. 1(b)) is a perceptual modality for integrating
missing parts of partially occluded objects. Since the occluded figure underlies
the occluding one, it is completed without any sensorial counterpart. In case of
transparency (Fig. 1(c)) and curve intersection (Fig. 1(d)), both occluding and
occluded figures are visible in the scene and the perceptual system is able to
disambiguate them and recognize them as different objects. A point made clear
by the studies of phenomenology of perception is that in all cases of completion
both the occluding and the occluded objects are perceived at the same time in
the scene and therefore there are points in the input stimulus corresponding to
more than one figure at the perceptual level. Many computer vision techniques
have been proposed to model perceptual completion, either heuristically based or
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(a) (b) (c) (d)

Fig. 1. Some examples of perceptual completion: (a) Modal completion, (b) Amodal
completion, (c) Transparency, (d) Curve Intersection.

biologically inspired. Rectilinear and curvilinear subjective contours have been
modeled by D.Mumford with Euler elastica as extremality points of curvature
functionals [3] and by stochastic fields as solution of the Fokker-Planck equation
[4]. In the latter case the stochastic completion field represents the likelihood
that a completion joining two contour fragments passes through any given po-
sition and orientation in the image. An extension taking into account also the
curvature has been proposed in [5]. Amodal completion has been accomplished
by a number of techniques. In [6] [7] an extension of the Mumford functional to
level lines has been used to fill missing regions. Digital inpainting has been intro-
duced as a technique to diffuse existing information on the boundary toward the
interior region [8] [9]. A total variation approach has been proposed in [10]. All
these techniques consider the perceptual space in which completion is performed
has the same dimensionality of the image. This could be a restriction in case we
are interested in the presence of reconstructed occluding and occluded objects in
the scene, as in case of mammalian vision. To overcome this restriction, in [1] has
been proposed a completion model based on the functional architecture of the
visual cortex, where completion is fully performed in the rototranslation group
R2 × S1, allowing the simultaneous reconstruction of occluding and occluded
objects. This model is an improvement of the one proposed in [11] where curves
are lifted in the three dimensional Heisenberg group, but using the group of
rotations and translations in the plane. In [12] the neural connectivity was mod-
elled as a parallel transport over a tangent fiber bundel. Another model has been
introduced in [13] using a tensorial field to complete the missing information.
Other high dimensional models are presented in [14] and in [15].

Following [1], a two dimensional image is lifted to a surface in the 3-dimensional
sub-Riemannian space, an occlusion is considered as a hole in the surface, and
the proposed model complete the missing part of the image with a minimal
surface. Computing a minimal surface in the hole and re-projecting it over the
image domain, we find the same level lines as Morel and Masnou have found in
[6] minimizing an elastica based functional.

In [16] the authors proposed a very fast method for finding the minimal
surface explicitly interpolating the level lines represented in the Sub-Riemannian
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space even if it is not well suited for simultaneous representation of occluded and
occluding objects.

The main objective of this paper is to propose a computational technique for
finding minimal surfaces by diffusion driven mean curvature flow. The technique
is able to simultaneously construct occluded and occluding objects. The surface
is represented as a thin concentrated mass, suitably diffused and concentrated
with a two step algorithm adapted to the sub-Riemannian metric. The diffusion
driven method was first introduced in the Euclidean settings in [17].

The paper is organized as follows:

– In section 2 we explain the lifting of the image to the 3D position-orientation
space and describe the subriemannian structure of the space.

– In section 3 the main model of image completion is proposed and discussed
in detail.

– In section 4 we present the numerical scheme for the equations presented in
previous sections.

– In section 5 we describe the experiments realized and provide the results
obtained.

– Finally, conclusions are presented.

2 Theoretical background.

2.1 Lifting of the image level lines in a 3D space.

An image I can be represented as a bounded function defined on a domain
M ⊂ R2, I : M → R+. The points of M have coordinates (x, y). At every point
of the image we detect the tangent direction to the level lines (Iy,−Ix), where
Ix and Iy are the components of the image gradient. If θ is the angle between
the tangent and the x-axis the tangent can be rewritten as (cos(θ), sin(θ)).

We want to define the orientation independently of the versus of the tangent
vector. Therefore, we identify a tangent vector with its opposite one. This means
that angles which differ form π will be identified, and

θ(x, y) = − arctan(Ix/Iy) , θ ∈ S1,

where S1 is the set of angles [0, π].
To every point (x, y) is associated a three dimensional vector (x, y, θ), in a

new space homeomorphic to R2×S1. Since the process is repeated at each point,
each level line is lifted to a new curve in the three dimensional space. We will
call admissible curve a curve in R2 × S1 if it is the lifting of a level line.

2.2 The Tangent Bundle and The Integral Curves.

A tangent vector to the lifted curve has the same two first components as the
tangent vector to the level line, i.e. a real multiple of (cos(θ), sin(θ)), and it has
the third component in the direction (0, 0, 1). Hence it can be represented as a
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Fig. 2. A lifted level line in R2 × S1 and the tangent space to the point (x, y, θ).

linear combination of the vectors (cos(θ), sin(θ), 0) and (0, 0, 1) which, from now
on, will be called X1 and X2 respectively. The set of vectors α1X1 + α2X2

defines a plane and every admissible curve is tangent to a vector of the plane.
Hence an admissible curve satisfies the differential equation:

γ′(t) = α1X1(t) + α2X2(t).

It is well known that the ratio α2/α1 is the the curvature k(t) of its 2D projection,
the level line of I.

2.3 Curve length’s and metric of the space.

If we equip the tangent planes with an Euclidean metric then the length of an
admissible curve can be computed as usual integrating the tangent vector.

λ(γ)(t) =
∫ t

0

‖γ′(s)‖ds =
∫ t

0

‖α1X1 + α2X2‖ds =
∫ t

0

α1

√
1 + k2ds. (1)

In order to define a distance in term of the length, we need to answer the following
question: Is it possible to connect every couple of points of R2 × S1 using an
integral curve?

This is not a simple question taking into account that in every point we
have only directions which are linear combinations of two vectors even if we are
immersed in a three dimensional space. However, the answer is yes and it will
become clear in the example below. Otherwise, see [1] for a detailed justification.
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Consequently, it is possible to define a notion of distance between two points
p0 = (x0, y0, θ0) and p1 = (x1, y1, θ1):

d(p0, p1) = inf{λ(γ) : γ is an admmisible curve connecting p0 and p1}. (2)

In the Euclidean case this infimum is realized by a geodesic that is a segment.
Here, the geodesics are locally curvilinear. The metric induced by (2) is clearly
Non-Euclidean, moreover it is not even Riemannian. With the chosen metrics
on the tangent plane, the space co-metric is given by:

g =

 cos(θ) 0
sin(θ) 0

0 1

( cos(θ) sin(θ) 0
0 0 1

)
=

 cos2(θ) cos(θ) sin(θ) 0
cos(θ) sin(θ) sin2(θ) 0

0 0 1

 .

Since the matrix g is not invertible, it can not induce a Riemannian metric on
the space. Spaces equipped with Sub-Riemannian metrics appears often when
one of the dimensions is a state variable depending on the others. In this case
the state variable is θ.

2.4 The lifted surface as an implicit function.

Fig. 3. A lifted image is a surface foliated by the lifted level lines.

When every point of an entire image is lifted up, a three dimensional surface is
constructed as:

Σ =
{

(x, y, θ) ∈ R2 × S1 : θ(x, y) = − arctan(Ix/Iy)
}
.
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We can identify the lifting of an image with the lifting of every level line. This
point of view allows us to understand a remarkable property of the lifted surface.
In fact, since two level lines of an image never cross, also the lifted level lines
don’t do it. Then we say that the lifted surface is foliated by the lifted curves
(see Fig. 3). We will call rule an admissible curve foliating a surface.

Let’s now represent the surface in terms of the implicit function:

u(x, y, θ) = [cos (θ + arctan(Ix/Iy))]2 . (3)

For every coordinate (x, y) this function attains its maximum in the variable θ in
correspondence to a point (x, y, θ̄) of the surface. The cosine function is chosen

Fig. 4. The lifted image can be viewed as a thick surface and the surface obtained with
eq. 4

in order to have periodicity of u in the third coordinate since it is an angle. Note
we have imposed that the maximum value of u is 1.

The surface Σ can be represented as the zero level set of the function uθ:

Σ = {(x, y, θ) ∈ R2 × S1 : ∂θu(x, y, θ) = 0, ∂θθu(x, y, θ) < 0}. (4)

The condition over ∂θθu is imposed in order to avoid minima of u.

2.5 Sub-riemannian differential operators.

We will define differential operators acting over the function u, in terms of the
subriemannian structure introduced before on the space R2 × S1, instead of the
Euclidean one. We will need to define two differential operators X1 and X2 which
play the role of the Euclidean partial derivatives, and have the same coefficients
as the vector fields X1 and X2. Hence

X1 = cos(θ)∂x + sin(θ)∂y, X2 = ∂θ.
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Accordingly we define the Sub-Riemannian gradient as:

∇SRu = (X1u,X2u).

The notation SR (Sub-Riemannian) will be used in order to avoid confusions with
the classical operators. We define the so called sub-laplacian operator, which is
the analogous of the classical laplacian in this structure:

∆SRu = X2
1u+X2

2u = cos2(θ)uxx + sin2(θ)uyy + 2 cos(θ) sin(θ)uxy + uθθ. (5)

and we define the subriemannian diffusion equation as:

ut = ∆SRu.

Despite of the fact the sublaplacian operator is built just with two directional
derivatives in a 3 dimensional space, the diffusion process reaches every point
due to the connectivity property of the sub-riemannian geometry.

2.6 Differential geometry of the surface.

Since the surface Σ, is the zero level set of the function uθ = X2u, it is possible
to define geometrical properties of Σ, in terms of the function uθ and its sub-
riemannian derivatives. The subriemannian gradient ∇SRuθ is orthogonal to the
surface (w.r. of the subriemannian metric), and an admissible tangent vector is
(−X2uθ, X1uθ). Correspondingly the rules on the surface have the expression

γ′ = −X2uθX1 +X1uθX2. (6)

Analogously the diffusion on the surface, which is the diffusion along the rules,
is expressed in terms of ∇SRuθ.

The foliation feature suggests a natural notion of area in the sub-riemannian
structure R2 × S1. Indeed the area of a lifted surface can be defined as the
integral of the lengths of every rule. With this definition, a minimal surface with
assigned boundary conditions is obtained requiring every rule to have minimal
length.

3 The completion model.

3.1 Basic model.

In this section we present our completion model in the rototraslation group, (see
also [1]).

Let’s consider an image with an occlusion and let us call D the missing part
in the two dimensional domain. In order to complete it, we lift the image to a
surface in the Sub-Riemannian space. This lifted surface will have a hole, which
will be completed with a minimal surface. Indeed, using relation (1), in [1] it
has been proved that the subriemannian minimization of the surface area gives
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rise to the minimization on the rules on the surfaces, whose projection are the
elastica curves. Hence the minimization of the first order area functional on
R2 × S1 correspond to the minimisation of a second order curvature functional
on the image plane [7] [6].

The method we will use is the following: first we lift the non occluded part
of the image with eq. (3) to a function u defined on (R2 \ D) × S1. In the
occluded region D × S1 we assign value zero to the function u. Later we built
an initial surface in the missing region. Finally we evolve this surface with an
approximated diffusion driven mean curvature flow until it becomes minimal.
This is a two step algorithm of diffusion and concentration, as shown in [1]:

– Diffusion of existing information in the subriemannian space with the sub-
laplacian.

– Concentration of diffused information on the fiber S1 over every point (x, y).

3.2 Algorithmic implementation.

The image I is lifted to a surface, represented by the maxima over the fiber
S1 of a function u, by using equation (3) The first step is to propagate existing
information from the boundary of the missing region D×S1 with sub-riemannian
diffusion: ∂tu =

∆SRu if (x, y, θ) ∈ D × S1

∂θθu if (x, y, θ) ∈ (R2 \D)× S1 , t ∈ [0, h]

u(0) = u0

(7)

This first step is necessary to initialize the function u to be a rough solution,
which will be refined by diffusion driven mean curvature flow.

In fact after the initial propagation, a mean curvature evolution of the func-
tion u is implemented by using a two step iterative algorithm consisting in al-
ternative diffusion and concentration:

– Diffuse with the Sub-Laplacian operator (5) for a short time with fixed
boundary conditions in the boundary of D × S1.
In the occluded region we diffuse using the sub-Laplacian operator. This
operator propagates data in the direction of the vectors X1 and X2. The
diffusion in the direction of X1 alone would expand into the occlusion the
information taken from the boundary just in a straight line parallel to the
(x, y) plane. By adding the diffusion in the X2 direction, we allow propaga-
tion on curvilinear paths on R2 × S1, even if we make thicker the surface
represented by u as a side effect. Outside D×S1 we use the equation ut = uθθ
just to keep the same thickness of the surface as in the interior of D × S1.
Note that if we just use this equation for a short time the maximum of u is
not moved and therefore the surface Σ does not change. For the disocclution
problem it is only necessary to consider values of u near the boundary of
D×S1. Only this values will be propagated inside D×S1. Nevertheless, for
improving the visualization we will consider a larger domain outside D×S1.
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– Concentrate the function u over the surface, i.e. make thinner the thick
version of the surface.

After diffusing u for a period of time h, we perform a concentration over its
maximum and denote ū the new function which implicitly define the concen-
trated surface:

ū(x, y, θ) =
(
u(x, y, θ)
umax(x, y)

)γ
, γ > 1 (8)

where:
umax(x, y) = max

θ∈S1
{u(x, y, θ)}. (9)

This procedure renormalize the function u in such a way that the maximum over
each fiber is 1. The concentration, obtained elevating the function u to a suitable
power greater than one, preserves the value of the maximum and reduces all the
other values of u. Thus this mechanism concentrates the function around its
maximum.

Fig. 5. Example of the concentration proccess of a single fiber.

3.3 Multiple concentration.

The three dimensionality of the space allows the coexistence of occluded and
occluding objects at the same time. In terms of the function u it means that we
expect to have more than one maximum in each fiber. However, the equation
described before (9), allows only one maximum per fiber. The method described
above could be slightly modified in order to avoid this limitation. In particular
we propose the following renormalization criterion.



10 G. Sanguinetti, G. Citti, A. Sarti

We first detect the maxima on a fiber over the point (x, y) as the set {θ ∈
S1, ∂θu(x, y, θ) = 0, ∂θθu(x, y, θ) < 0}. We call them θ1, . . . , θn with θi < θi+1.
Then we construct a piecewise linear function unorm (Fig. 6 ) connecting every
local maximum detected and periodic in the variable θ:

unorm(x, y, θ) = u(x, y, θj) + (θ − θj)
u(x, y, θj+1)− u(x, y, θj)

θj+1 − θj
(10)

with θ ∈ [θj , θj+1].
We use eq (10) to re-normalize every single column of u as follows:

ū(x, y, θ) =
(

u(x, y, θ)
unorm(x, y, θ)

)γ
, γ > 1.

After renormalization the function ū keep the same points of maximum as the
function u and attains value 1 at each of these points.

As we mentioned before, this modification allows more than one maximum on
each fiber. Hence applying iteratively this improved concentration technique and

Fig. 6. Example of the improved re-normalization proccess of a single fiber.

the sub-riemannian diffusion, we compute minimal surfaces, in R2×S1 which are
union of graphs of the variable (x, y), which can partially overlap. It corresponds
to the completion of both occluding and occluded object.

4 Numerical scheme.

For the diffusion we use a finite difference scheme. Let us consider a rectangular
grid in space-time (x, y, θ, t). The grid consist of a set of points (xl, ym, θq, tn) =
(l∆x,m∆y, q∆θ, n∆t).
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Following the standard notation, we denote by unlmq the value of the function
u at a grid point. We use forward differences in order to approximate the time
derivative:

Dtu =
un+1
lmq − unlmq

∆t

and center differences for the spatial ones:

Dxu
n
lmq =

un(l+1)mq − u
n
(l−1)mq

2∆x
, Dxxu

n
lmq =

un(l+1)mq − 2unlmq + un(l−1)mq

(∆x)2
.

The second directional derivatives are approximated with:

D11u
n
lmq = cos(θq)2Dxxu

n
lmq + sin(θq)2Dyyu

n
lmq

+2 cos(θq) sin(θq)Dxyu
n
lmq

D22u
n
lmq = Dθθu

n
lmq

We impose Neumann boundary conditions on x and y and periodic boundary
conditions on the third direction θ. The time step ∆t is upper bounded by the
usual Courant-Friedrich-Levy condition that ensures the stability of the evolu-
tion [11].

5 Experiments and results.

5.1 Macula cieca example.

Fig. 7. Macula cieca example: original image, Initially lifted surface and the minimal
surface computed.

In this experiment we consider the completion of a figure that has been partially
occluded. This example mimics the missing information due to the presence of
the macula cieca (blind spot) that is modally completed by the human visual
system. As described in the previous section the occluded image is lifted to
a surface with a hole in the three dimensional space and an initial surface is
defined in the missing part with a classical Euclidean diffusion equation. Then
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Fig. 8. Gray level diffusion in the macula cieca example.

the surface is evolved applying iteratively equations (7) and (9) until a steady
state is achieved.

The image dimensions are 100×100 pixels, and we use 100 values to discretize
the variable θ. For the preprocessing step 100 iterations of the Euclidean heat
equation were made using a time step of ∆t = 0.1. The steady state was reached
after 20 iterations with a concentration power in (8) of γ = 2 and 20 steps with
∆t = 0.1 of the subriemannian heat equation (7).

At this point we have completed the missing information of the lifted surface
with a minimal surface in the Sub-Riemannian space. The lifting and completion
processes take into account just the direction of the level lines of the image, as a
geometric information. Then the intensity information of the image is completely
missed.

Let’s define a function v extending the values of the image I on the 3 dimen-
sional space, and constant in the variable θ:

v(x, y, θ) =
{
I(x, y) (x, y, θ) ∈ (R2\D)× S1

0 (x, y, θ) ∈ D × S1

We will use a Laplace Beltrami diffusion algorithm in the sub-riemannian
setting to propagate the function v along the rules of the minimal surface. Since
the rules of the surface, defined in (6) only depend on ∇SRuθ, the Laplace Bel-
trami operator is a linear operator in the variable v whose coefficients depend
on ∇SRuθ:

vt =
|X2uθ|2X2

1v + |X1uθ|2X2
2v

X2
1uθ +X2

2uθ
− X1uθX2uθX1X2v −X1uθX2uθX2X1v

X2
1uθ +X2

2uθ
.

5.2 Occlusion example.

In Figure 9 an occlusion problem is considered. The initial image (top) shows an
underlying object partially occluded by a vertical stripe. The human visual sys-
tem simultaneously segments the occluding object and amodally completes the
occluded one, taking both at the same time as perceived units. In the numerical
experiment first the image is lifted in the sub-riemannian space and the missing



Implementation of a Model for Perceptual Completion in R2 × S1. 13

information is completed. The result shows that the partially occluded object
has been completed and the occluding one has been segmented. Both objects
are present at the same time in the three dimensional space.

For this example the dimensions were again 100 × 100 × 100 pixels. Non
preprocessing step is needed. The steady state was reached after 10 iterations
with a concentration power of γ = 2 in equation 8 and 10 steps with ∆t = 0.1
of the subriemannian diffusion step.

(a) Original Image.

(b) Some steps of the evolution.

Fig. 9. Occlusion example: Mean Curvature Evolution with 2 simultaneous surfaces.

6 Conclusion.

In this paper we utilized a model of perceptual completion inspired from the
visual cortex to perform completion of occluding and occluded objects in im-
ages. In particular we achieved the task by computing minimal surfaces in sub-
riemannian space via diffusion driven mean curvature flow. The implementation
has been performed with a two steps iterative algorithm of diffusion and concen-
tration. A new concentration technique allowing more than one maximum over
the fibers has been proposed. This allows to compute a set of graphs partially
overlapped representing the occluding and the occluded objects. Computational
results on cognitive images have been achieved.
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