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Abstract. As sensor networks gain popularity and technology scaling allows 
further processing in each network node, the programming of these distributed 
computational structures becomes a serious bottleneck. Interpreted languages 
adoption may allow a smaller programming effort, and since they show a 
denser code representation than their directly executed counterpart, interpreted 
code exhibits smaller power dissipation during over-the-air reprogramming. As 
technology scales, the processing energy cost tends to reduce more than 
communication energy, which is bounded by the required irradiated radio 
power. By allowing the execution of more complex software WSN can be used 
for more refined applications, like image processing, compression and 
recognition. Also, interpretation can allow the use of object oriented technology 
software, allowing high productivity gains. However, the interpretation 
overhead cost and the extra memory required in Java, for example, argue 
against interpreted languages adoption in WSN. In this paper we show the 
design space for interpreted languages, and demonstrate that there is a large 
application domain where interpretation benefits can be used together with 
energy efficiency. 

Introduction 

Wireless sensor networks are a new computing platform that combines computation, 
sensing, and communication with a physical environment. The sensor node, a new 
class of networked embedded computer, is characterized by severe resource 
constraints, especially energy, since they are powered from batteries or harvest energy 
from the surrounding environment. As technology scales, the capacity of integrated 
processors increase and new applications can be devised where previously their cost 
in terms of price and energy were unacceptable. Sensor network applications used to 
be tightly close to the hardware and after deployment the sensors distribution and 
function remained unaltered. As a result, current applications are unlikely to change 
much during network lifetime, since they have not been designed for that at all. 
However, we envisage a new generation of nodes equipped with a more rich set of 
sensors, like the artificial retina [1], were costly local processing is mandatory. If 
more computational power is available at each node, the amount of possible 
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applications tend to explode, enabling a broader utilization of a WSN, and an 
increased lifetime thanks to reprogramability of new applications on the same 
platform. 
However, this increasing complexity of applications using wireless sensor networks 
soon becomes a barrier to the adoption of these networks. The currently available 
wireless sensor network programming models do not scale well from simple data 
collection models to collaborative information processing ones. On a different 
scenario, complex distributed applications have been developed for powerful 
platforms (such PDA, laptops, etc.), but they are not appropriate for scarce resource 
platforms like the so-called Berkeley motes or even for more powerful but emerging 
ones, since the batteries would be drained too soon. New programming models are 
essential to develop complex distributed applications, and at the same time obtain a 
decent level of energy-efficiency.  
Because of the large amounts of nodes present in a WSN, and since they usually are 
in an unreachable location, they are expected to run for years unattended. The 
necessity to perform software changes in deployed wireless sensor network is an 
important issue that increasingly calls the attention of the scientific community. 
Reprogramming the software of a running sensor network enables to correct software 
bugs, test new applications more easily and consequently helps to shorten the 
development time [2]. Moreover, application reconfiguration can be done by 
reprogramming the application software. Even though the application behavior 
adjustment could be performed by modifying operational parameters, a more 
profound modification, like algorithm changes or even completely updating the 
software application, cannot be achieved by simply adjusting a set of parameters. 
Since the new application needs to be transmitted though the network, the 
reprogramming has an associated energy cost. Moreover, the execution cost depends 
on the program representation level. An interpreted representation will have an 
execution overhead if compared to a direct executed program. On the other hand, an 
interpreted representation typically is smaller than its natively executed counterpart. 
Furthermore, application specific virtual machines could lead to dense program 
representation, thus reducing communication cost [3]. Therefore, a precise and more 
profound analysis is still required to build models for energy and its trade-offs with 
other system metrics [4]. 
In this paper we analyze the design space for interpreted languages, considering the 
different power modes of communication and processing components, and how these 
evolve with technology scaling. 

The remainder of this paper is organized as follows. In Section 2, we survey related 
work. In Section 3 a first order analytical energy model is derived, considering the 
different power modes and the activity profiles of the communicating and the 
processing units. In Section 4 we present the results and delimit the actual space for 
interpretation in WSN.  In Section 5 we discuss possible evolutions of the design 
space according to the foreseen technology evolution. Finally, Section 6 contains 
concluding remarks and future research directions. 
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Related work 

The reasons for adopting interpreted languages in WSN are mainly two: the 
appropriate programming model and the opportunity for energy optimization, and 
both are interrelated. 

Programming models suitable for developing complex distributed applications and 
at the same time being energy-aware are essential to enable more sophisticated 
applications. The difficulty in programming sensor networks comes from their 
inherently distributed nature, and also from their harsh operating conditions, such as 
unreliable communications [5]. The extremely constrained resources prevent the 
adoption of proposed solutions like PIECES [6]. To cope with the energy limited 
budget, sensor network programmers must deal with too many implementation-level 
details besides the application logic that they normally focus on, and usually to design 
extremely efficient systems, break the traditional networking and systems layers, thus 
compromising reuse and other good software engineering principles. Early node-
centric programming models are inadequate and unable to scale up. New service 
architectures, inter-operation protocols, programming models that are resource-aware 
and resource-efficient, even across heterogeneous devices, are needed [7].  

There are several benefits in using virtual machines (VMs) in WSN. First, VMs 
allow applications to be developed uniformly across WSN platforms, platform-
independent applications can be written using VM abstractions whose 
implementations are scaled to meet resource constraints. VMs provide a clean 
separation of system software and application software, which reduces the cost of 
reprogramming after deployment. Finally, VMs mask the variations among the WSN 
platforms through a common execution framework [8]. 

Several works had explored the energy trade-off between communication and 
processing cost, adopting different approaches: dynamic linking of native code, 
interpreted code execution instead of direct execution, or a hybrid between these two 
approaches. 

A reprogramming mechanism via in-situ dynamic run-time linking and loading of 
native code to enable application reconfiguration was proposed in [2]. The energy 
cost of dynamic linking and execution of native code is measured, quantified and 
compared to the energy cost of transmission and execution of code for two virtual 
machines (Java and an optimised one). The obtained execution overhead varied from 
roughly 4 to 100 times, and code reduction size was about 1/15 in the optimised 
version. The break-even point between direct and interpreted execution ranges from 
100 to 40,000 iterations, that is the number of execution completed by a program 
before a new version is distributed.  

Maté [3] is a bytecode interpreter that runs on TinyOS [9], implemented as a single 
TinyOS component that sits on top of several system components, including sensors, 
the network stack, and non-volatile storage.  Code is broken up into small capsules of 
24 instructions, which can self-replicate through the network for code distribution. 
Larger programs can be composed of multiple capsules. Maté's high-level interface 
allows complex programs to be very short (under 100 bytes), and consequently 
reducing the energy cost of transmitting new programs. The execution overhead of 
some typical instruction was measured by the execution of tight loops: 33.5 times for 
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a logical and on two words, and just 1.03 times to send a packet. The code reduction 
size obtained for some applications ranged from 1/100 to 1/400, approximately. 

Many Java virtual machines implemented on bare metal microcontroller targeted 
for wireless sensor networks have been reported, like Squawk[10], and more recently 
Darjeeling [11] and Taka Tuka[12]. All of them perform some post processing, 
performing static linking within group of classes and optimising bytecodes to reduce 
code size. The achieved code reduction was up to 3-4 times w.r.t. the original Java 
classes. 

A hybrid execution environment that enables the co-execution of platform-
independent VM instructions with native instructions was proposed in [8]. Platform-
independent byte code is interpreted by an interpretive execution engine, while a 
lightweight native interface is used to access natively implemented functionality. A 
proxy JIT-compilation on a powerful compilation server is used to compile the 
relevant bytecode for the node. The authors argue that the problems associated with 
purely native or purely virtual execution environments are addressed.  

None of the previous reviewed works consider all the fundamental parameters 
involved in these new and complex WSNs, like execution and update rates. Some 
works establish some relations between those variables, but do not explore the whole 
space for the interpreted languages execution approach. In this work we develop an 
analysis of the usage of interpreted languages taking into account not only the ratio 
from interpreted to native code, but also some physical mote aspects that have been 
previously disregarded, and are shown to be very important. 

Power consumption model 

A precise analysis is required to build energy models, in order to analyze their trade-
offs with other system metrics [4], in order to carefully design the system and extend 
its lifetime to the desired duration. 

The total energy of the system node results from the sum of each sub-system 
module or component contribution, which in turn depends on the activity profile and 
the current consumption of the various operating modes, i.e. for a microcontroller: 
active, idle, sleep mode, among others. Longer time periods can be analysed based on 
a periodic behaviour of duration T.  

Being Ti the time spent at the power level Pi, we define di as the ratio of Ti and the 
period T. For the rest of the time, the processor is in power P0, the lowest possible 
power mode (power down or sleep). The average power can then be expressed as: 
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Eq. (1) shows that the average power is the sum of the increment from the lowest 

power mode to the considered power consumption mode, weighted by the 
corresponding duty-cycle, plus the lowest power mode, which represents the 
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minimum power consumption. Thus, the total minimum power dissipated per node is 
the sum of the minimum power level of all components. Low duty cycle operation is a 
common approach to minimize the energy drain of the higher power modes. As a 
result, the energy drain in the lowest possible power mode becomes significant, and 
must be carefully considered when the average power consumption is calculated. 

Since a component could be used for several purposes or be shared by other 
modules, the time spent at each level must be evaluated. For example, the transceiver 
can be used to transfer acquired data from the node to a base, or to receive an update 
of the software application. These services can be considered independent and 
modeled separately.  

Certainly, the energy waste for transitions between different operating modes must 
be considered. To simplify the derived equations these contributions will be take into 
consideration increasing the time spend in the higher power level. 

The node is basically a reactive system that responds to external stimulus: a 
successful reception of a packet, a time trigger to initiate some measurement, data 
ready interruption, and so on. Apart from the active mode the microcontroller must 
remain at an operation level suitable for using the internal timer/counter to be able to 
wake-up from the timer expiration interruption. For example, this lowest power mode 
for microcontroller of a Telosb sensor node [13] - MSP430 microcontroller [14]- is 
the LPM3, and for the CC2420 radio [15] is the off power mode (oscillator and 
voltage regulator being off). 

We developed a first order analytical energy model using Eq. (1), considering the 
previously mentioned power modes, and the activity profiles of the communicating 
and the processing units. Nevertheless, the same procedure can be followed to include 
any other subsystem. When analyzing the interpreted code and native execution trade-
off, the break even iteration is normally derived [3][8]. 

Average power for native code distribution and execution 

The node computing activity can be modeled as a periodic processing system that 
process data with a period Te. On average, the computation amount can be considered 
as a piece of code of size S that runs to completion. Furthermore, the program update 
size is also S. During computation time the microprocessor is in active mode 
dissipating power, Pe

active, executing bytes at a rate Re. The rest of the time the 
microcontroller goes into low power mode with Pe

sleep. 
The execution average power is calculated as a function of the duty cycle: 
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(2) 

where: 
de=S /(Re ·Te) is the execution duty cycle, and 
Pe = Pe

active- Pe
sleep is power increase from the sleep power baseline. 

 
The distribution of new code is performed via radio-frequency communication. 

The average time between each code upgrade is considered to be Td. The radio is in 
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active mode, consuming Pd
active power, during the time needed to transfer the code at a 

rate Rd. The final amount of bytes that goes through the radio is given by the 
multiplication of the code size by the protocol overhead, kmac, and the overhead for 
relying packets through the network, knwk. The rest of the time the radio is in low 
power mode, draining power Pd

sleep. 
The distribution average power is: 
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where: 
dd = Sd /(Rd ·Td) is the distribution duty cycle,  
Sd = kmac·knwk·S, the distribution effective size, and 
Pd = Pd

active- Pd
sleep is power increase from the sleep power baseline. 

 
The total average power for distributing and executing native code is calculated, 

assuming that distribution and processing are independent task and just adding them: 
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where: 
Pd = Pd

sleep + Pd
sleep  is the total sleep power. 

 
Eq.(4) can be written in the following form: 
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where: 
Ed = kmac knwk Pd / Rd  is the energy to distribute a byte of code and, 
Ee = Pe / Re is the energy to execute a byte of code.  

Average power for interpreted code distribution and execution 

The average power for interpreted code is straightforward to compute, considering 
that the time to execute interpreted code is increased by the execution overhead of the 
virtual machine, ke. In the same way, the time to distribute the interpreted code, 
corresponding to certain piece of native code, is affected by the distribution factor kd. 
This factor is the reciprocal of the bloat factor, term used to denote the code size 
increment when interpreted code is compiled to native. 
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The average power for the interpreted case is: 
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The trade-off factor 

The interpreted versus native average power rate is defined as κ, and a value less than 
the unit means that interpreted language is preferable of over native, that is, it 
executes with less power. 
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The trade-ff factor results from relation of the following values: Te, Td, and S, 

which are application dependant, Ed, Ee and Psleep, which are technology parameters, 
and finally the interpreted language factors ke and kd, resulting from the virtual 
machine design. 

For the case that Psleep is much smaller than the average power of distribution and 
execution, the gain factor is simply the sum of each relative power weight multiplied 
by the corresponding factor. 
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 is the average power associated to native code execution.  
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Break even locus 

The break even locus, where the trade-off factor equals the unity (κ=1), does not 
depend on the sleep power nor on the code size. The derived equation still has four 
degrees of freedom, but one can substitute the factor Td/Te by n, so the break even 
locus becomes a 3D surface. The parameter n represents the average number of 
iterations completed by a program before a new version is distributed. 

The following expression must be satisfied, 
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and restricts the surface domains by:  
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The former expression limits the distribution factor to positives values less than the 

unit, since a reduction factor is considered. The last restriction comes simply by 
substituting the first one in the surface Eq. (9). 

Results 

Measurements of the energy parameters 

We measured the total system current, radio plus microcontroller, of a Telosb mote 
powered by batteries (3.3 V) in steady state for the meaningful combination of 
operation modes. Then, the separated values were obtained subtracting different 
measurements. The protocol overhead kmac is considered constant, and we have used 
an estimated value of 1.2 (range from about 1.1 to 1.3 for payload greater than 70 
bytes). For the code diffusion we considered the Delunge protocol [16], thus the 
overhead factor, knwk, is about 3.35 times the number of received packets and one 
more time for retransmission. Table 1 shows the results. 

Table 1. Telosb mote measured parameters. 

 CC2420  MSP430 Units 
Pd 

active 68.10 Pe 
active 1.20 mW 

Rd 31250 Re 1000000 B/s 
Ed 11360 Ee 1.20  nJ/B 
Pd 

sleep 0.001 Pe 
sleep 0.015 mW 
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Note that the energy values are considered for processing or communicating one 

byte of executed code and not per byte of information processed. The last one is 
usually used to analyse the trade-off between process-before-transmit information, 
while the first one is used to calculate the total energy when a certain amount code is 
executed or transmitted. The rate of distribution to processing energy is almost 
10,000, stressing the huge advantage of locally processing information instead of 
transmitting it.  

The radio oscillator startup time, i.e. transition from low to active power, is about 
600 µs, and corresponds to the time used to transmit about 18 bytes, roughly the 
MAC protocol overhead. The time for the microcontroller to go into active mode is 
about a few clock cycles, considered negligible. 

Code size 

Assuming the evolution of technology, and also using this evolution to integrate more 
powerful processors in a WSN node, we compared the code size for a 10-tap FIR 
filter written in C and compiled to native MSP430 code. Also, we implemented the 
filter in Java and counted class bytecodes, discarding some bytes not useful during 
execution. Table 2 shows the results. 

Table 2. Code and data memory comparison for a FIR filter (MSP430). 

 text Data bss ROM RAM 
Nativef(MSP430) 442 32 40 474 72 
Java 262 - - 262 - 
Java/Native 0.59   0.55  

 
This simple example shows that Java code is denser than native code. However, 

the code reduction obtained is still modest, since a low size class leads to high 
overhead and because the low complexity of the application prevents code reuse. 

Simulation results 

The actual space for interpreted code can be obtained from the above equations and 
the corresponding hardware parameters of Table 1. 

The break-even point triplets {n, ke, kd} are plotted in the Fig. 1 as curves kd (n, ke). 
For example, considering a VM with a 30-fold execution time overhead and a 
distributing factor of 0.1, then the number of iterations (the number of times a 
program is executed before it is updated) required to have the same average power of 
interpreted and native code is about 300. 
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Fig. 1. Break-even locus. 

Discussion 

The energy consumed by the radio can be separated in two components: electronic 
power and transmission radio power. The former is consumed by digital and analog 
processing circuits required for wireless communication or, in other words, digital and 
analog circuits that perform the necessary RF, baseband, and protocol processing. The 
last component, associated to the irradiated power, is consumed by the radio power 
amplifier that depends on the signal power required by the receiver and the path loss 
suffered by the signal. The path loss increases proportionally with receiver-transmitter 
separation distance, and depends on the environment condition, being a power of two 
in free space but up to four in real life channels[17]. As it is dictated by the Shannon's 
Information Theory and Maxwell's Laws, this power cannot be reduced.  

In medium-to-large range communication the radio-power dominates (over the 
electronic-power), and in many cases the transmission power is orders of magnitude 
greater than reception power. However, in short range communication the electronic-
power takes about the same radio power needed for successful reception at the desired 
short-distance, so it can get some benefit from technology progression, limited by the 
remainder component, waveform propagation power, which does not benefit from any 
technology progression. 

Consequently, the communication energy cost tends to get less benefit from 
technology scaling than processing cost. The current consumption of the new 
MSP430F5XX family product is about 30% less than the MSP430F1611 used in the 
Telosb mote, while the consumption of the new radio CC2520 is virtually equal to the 
old CC2420. This is a clear evidence of our argument. What is more, many 
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environmental variables vary little with the distance, pushing to increase the 
separation among nodes, and consequently raising the communication power.  

 Analyzing the break even curves given by Eq. (8), one can argue that as the rate  
Ee /Ed decreases, the number of iterations to reach the break-even point may increase, 
not affecting the energy budget. This fact poses the interpreted code execution 
approach in a promising position in applications where relatively high rate of code 
updates are needed, and especially but not exclusively, where communication 
covering medium-range distances are involved. 

Conclusions and future work 

In this paper we have developed an energy model to investigate the efficiency of 
using interpreted languages as the basic platform for software development of future 
complex applications built on top of WSN. Experimental results have shown that a 
huge savings in code space and amount of transmitted information can be obtained 
when an interpreted language like Java is used. Moreover, following technology 
scaling, it is very likely that future applications will be able to use complex 
processors, and saving energy during the transmission of information or code will be 
the most effective optimization procedure. 

Currently we are developing complex dynamic applications to validate the 
approach here proposed. 
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