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Abstract—Current data network scenario makes Traffic Engi-
neering (TE) a very challenging task. The ever growing access
rates and new applications running on end-hosts result in more
variable and unpredictable traffic patterns. By providing origin-
destination pairs with several possible paths, load-balancing
has proved itself an excellent tool to face this uncertainty. In
particular, mechanisms where routers greedily minimize a path
cost function (thus requiring minimum coordination) have been
studied from a game-theoretic perspective in what is known as
a Routing Game (RG). The contribution of this paper is twofold.
We first propose a new RG specifically designed for elastic traffic,
where we maximize the total utility through load-balancing
only. Secondly, we consider several important RGs from a TE
perspective and, using several real topologies and traffic demands,
present a thorough comparison of their performance. This paper
brings insight into several RGs, which will help one in choosing an
adequate dynamic load-balancing mechanism. The comparison
shows that the performance gain of the proposed game can be
important.

Index Terms—Traffic Engineering, Routing Games, Wardrop
Equilibrium, Load balancing.

I. INTRODUCTION

As network services and Internet applications evolve, the
traffic is becoming increasingly complex and dynamic. The
convergence of data, telephony and television services on an
all-IP network as well as user-mobility (which implies service-
mobility) directly translates into a much higher variability and
complexity of the traffic injected into the network. Moreover,
the ever increasing access rates have seriously questioned
overprovisioning as an economically viable solution. To cope
with both the traffic increasing dynamism and the need for
cost-effective solutions, a self-managing network architecture
is required.

Dynamic load-balancing is emerging as a possible answer to
the above issues [1]–[3]. In particular, mechanisms where each
router greedily minimizes a certain cost function of its paths
(thus requiring minimum coordination) have been intensively
studied. This context constitutes an ideal case study for game
theory, and is known as Routing Game in its lingo [4]. Dif-
ferent routing games have been defined, each with its specific
path cost, and their equilibrium has been characterized. This
characterization includes existence, uniqueness and optimality.
With respect to the last aspect, different social cost functions
(i.e. the cost of a given situation to all players as a whole)
have been considered, and possible modifications to the path
cost so that the greedy equilibrium and the social optimum
coincide have been studied.

The first contribution of this paper is to propose a routing
game specifically designed for elastic traffic. In this propo-
sition, we aim at maximizing the total utility obtained by
flows without changing their congestion control mechanism.
This maximization is achieved instead by changing the amount
of traffic routed through each path, thus changing the flows’
mean rate. We also present a possible way of achieving the
corresponding social optimum.

As a second contribution we provide a thorough comparison
of three routing games (including our proposition), using two
real topologies and several real traffic demands. The consi-
dered routing games are variants of the two most important
ones: Congestion [4] and Bottleneck Games [5]. In particular,
we analyze the social optimum of the three games, achieved
by greedy users minimizing a modified path cost, measuring
several important performance indicators for the three cases.
This is an important study which will help network operators
at the moment of choosing a possible dynamic load-balancing
mechanism. As we shall see, our proposition is the one that
obtains the best results.

The rest of the paper is organized as follows. In the
following section we make the necessary definitions. In section
III we describe the two other considered games. Our proposal
is presented in section IV. The comparison between the games
is left for section V. Finally, we conclude the paper in section
VI.

II. DEFINITIONS

A. Network Model

The network is defined as a graph G = (V, E). In the
network there are a number of so-called commodities, indexed
by s = 1, .., S, specified in terms of the triplet os, qs and ds;
i.e. origin node, destination node and a certain fixed demand
of traffic from the former to the latter. Each commodity s
can use ns paths connecting os to qs (each noted as Psi for
i = 1, .., ns), and can distribute its total demand arbitrarily
among them. Commodity s sends an amount dsi of its traffic
through path Psi, where dsi ≥ 0 and

∑
dsi = ds. This

distribution of traffic induces the demand vector d = (dsi).
Given the demand vector, the total load on link l is then

ρl =
∑

s

∑
i:l∈Psi

dsi. The presence of this traffic on the link
induces a certain “delay” given by the non-decreasing function
fl(ρl). The total delay of path P (or its cost) is defined as
fP = g ({fl(ρl)}l∈P ). The choice of g defines what kind of
routing game we are considering. The case of g(A) =

∑
a∈A a
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is called a Congestion Game, while g(A) = maxa∈A a results
in a Bottleneck Game.

The function fl(ρl) does not necessarily represent the delay
incurred by ρl. It could for instance give the cost for the
network operator to route this amount of traffic through link l,
or represent any other link-level performance measurement. It
should be clear that the choice of fl(ρl) and what it represents
almost dictates the choice of g.

Note that no explicit constraint on ρl was made. This is
assumed to be implicitly present in the delay function. For
instance, fl(ρl) goes to infinity as ρl reaches cl (the link’s
capacity) and remains at infinity after this point.

B. Wardrop Equilibrium

The concept of the Wardrop Equilibrium was introduced
in the context of transportation [6]. In it, commodities are
assumed to be constituted by infinitely many agents, each
controlling an infinitesimal amount of the demand. Each of
these agents (or players) decides through which path to send its
traffic. In this context the division dsi/ds represents the portion
of agents of commodity s that have Psi as their choice. If every
agent acts selfishly, then the system will be at equilibrium
when no agent can improve its delay by changing its path
choice. Formally, a Wardrop Equilibrium is defined as follows.

Definition 1: A demand vector is a Wardrop Equilibrium if
for each commodity s = 1 . . . S and for each path Psi with
dsi > 0 it holds that fPsi ≤ fPsj for all Psj with j = 1, .., ns.

Once the functions fl(ρl) and g are defined, a Social Cost
function (SC(d)) has to be chosen. This function measures
the dissatisfaction of the commodities as a whole, and an
optimum demand vector is one that minimizes it over all valid
demands. The most typical example is the mean delay, defined
as

∑
si dsifPsi . However, as we shall discuss, the optimum

of the social cost function and the Wardrop Equilibrium are
generally not the same.

III. RELATED WORK

A. Congestion Games

If each commodity generates packets of exponentially dis-
tributed size (with mean size equal to 1) as a Poisson process
of intensity ds, the network can be analyzed as a Jackson
Network. The delay in each link can easily be calculated as
fl(ρl) = 1/(cl−ρl) [7]. This delay function, generally referred
to as the M/M/1 delay function, has been used and studied in
the past, both from a game theory perspective [8], as well as
a Traffic Engineering one [1]. The social cost function in this
kind of games is generally the mean delay:

SC(d) =
S∑

s=1

ns∑

i=1

dsifPsi =
L∑

l=1

ρlfl(ρl) =
L∑

l=1

ρl

cl − ρl

If each agent acts selfishly and seeks to minimize the delay
he experiences, the resulting Wardrop Equilibrium will not
minimize the mean delay, but will result in a local minimum
of the so-called potential function [4]:

Φ(d) =
L∑

l=1

∫ ρl

0

fl(x)dx (1)

This means that, given a social cost function, we may
modify the delay function so that the resulting Wardrop
Equilibrium is the optimum demand vector. In this case, let
us consider the following alternative delay function:

f̂l(ρl) =
cl

(cl − ρl)2
(2)

In view of (1) the Wardrop Equilibrium of this new game
(which we shall note as CG in the sequel) is a local minimum
of:

Φ(d) =
L∑

l=1

∫ ρl

0

cl

(cl − x)2
dx =

L∑

l=1

ρl

cl − ρl
= SC(d)

which corresponds to the social optimum.

B. Bottleneck Games

In traffic engineering, a very important link-level perfor-
mance indicator is the link utilization, defined as ul = ρl/cl. A
link with a ul close to one is a congested link with significant
losses and queueing delays. A network-wide performance
indicator is the maximum link utilization, which is arguably
the most popular TE objective function ( [2], [3] to name a
few).

This is a natural context for a bottleneck game. The link
and path delay are then defined as follows (we shall note the
resulting game as BG):

fl(ρl) = ul =
ρl

cl
and fP = max

l∈P

{
ρl

cl

}

And the social cost function is simply the largest utilization:

SC(d) = max
P∈P

{fP } = max
l∈E

{
ρl

cl

}

The authors of [5] studied general bottleneck games where
the social cost function is the worst delay in the network, and
showed that conditions exist under which the Wardrop Equi-
librium is socially optimum. From a pure traffic engineering
point of view, [2] previously proposed a greedy algorithm that
converges to the social optimum.

IV. A NEW ROUTING GAME FOR ELASTIC TRAFFIC

A. Definition

Assume, for now, that demands are constituted of a fixed
number of elastic or TCP flows (Ns flows for commodity s). If
there are Nsi flows in path Psi, the congestion control problem
can be written as follows [9]:

maximize
x

S∑
s=1

ns∑

i=1

NsiUsi (xsi) (3)

subject to
∑

s

∑

i:l∈Psi

Nsixsi ≤ cl
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Where xsi is the rate obtained by each of the Nsi flows
and Usi(x) is a non-decreasing, concave and continuous
function. The above problem optimizes in the obtained rate,
considering the Nsi’s (i.e. routing) as given. However, to
improve performance, we could jointly maximize in both N
and x (adding the constraints

∑
Nsi = Ns and Nsi ≥ 0).

To implement such maximization, a first idea is that end-
users decide their path. However, network operators generally
do not share routing information with the end-users. On the
other hand, path diversity is commonly used within a routing
domain, where an ingress router can split traffic on a set of
equal cost paths or disjoint MPLS tunnels. We thus propose
to keep the separation between end-to-end congestion control
(maximizing on x done by end-users) and routing (maximizing
on N ) but still try to solve (3). Some important aspects
should be considered which we shall discuss in the following
paragraphs.

The first obvious aspect is that routers do not know Usi(x),
and even if they knew it, we as network operators may not
“like” it1. For this reason, we shall use an arbitrary U(x)
function which we believe convenient to operate the network
(in our simulations U(x) = log(x)).

The second aspect has to do with time-scales. Congestion
control acts at the RTT timescale (generally in the order of
ms) while routing does it at the seconds or minutes timescale.
This means that we cannot consider the instantaneous values
of xsi, but its temporal mean. Moreover, TCP flows have a
certain finite life-time, thus Ns cannot be considered as static
or given and a substitute should be used. We will first introduce
the dynamic traffic model we use for this context, and then
we will discuss how to address these issues.

We will suppose that each origin node os generates flows
as a Poisson process of intensity λs. Each of these elastic
flows have a random arbitrarily distributed workload (with
mean ωs) it has to transfer. After the transmission is finished,
the flow disappears. Each flow is routed through path Psi with
probability psi, and it uses it throughout his lifetime. Under
these conditions, the demand of the corresponding commodity
can be written as ds = λsωs, and the demand vector as
d = (dspsi).

The above described system has been thoroughly studied in
the past. The mean throughput obtained by the flows traversing
path P can be roughly approximated by the path’s Available
Bandwidth [10], [11]: ABWPsi = min

l∈Psi

{cl − ρl} ≈ xsi. We

shall then approximate xsi by ABWPsi in (3). The natural
substitute of Nsi is dsi, who plays the role of the amount
of traffic using path Psi. This routing approximation to (3)
results:

maximize
d

S∑
s=1

ns∑

i=1

dsiU

(
min
l∈Psi

{cl − ρl}
)

1For instance, we may consider that the bias against RTT of TCP Reno
should not be re-enforced by routing.

Which is equivalent to:

minimize
d

S∑
s=1

ns∑

i=1

dsimax
l∈Psi

{−U (cl − ρl)}

subject to dsi ≥ 0
ns∑

i=1

dsi = ds

This last problem may be seen as the following bottleneck
game:

fl(ρl) = −U(cl − ρl) fP = max
l∈P

{fl(ρl)}

SC(d) =
S∑

s=1

ns∑

i=1

dsifPsi (4)

However, as we mentioned in the last subsection, the
Wardrop Equilibrium of this routing game will not necessarily
coincide with the social optimum. In the following subsection
we define an alternative game to achieve this optimum (as in
subsection III-A).

B. Achieving the Social Optimum

In this section we present a mechanism to achieve the social
optimum of the bottleneck game specified in (4). Minimization
of the social cost function can be formulated by introducing
the auxiliary variable tsi (which at optimality will be equal to
fPsi and thus may be seen as a continuous function of d):

minimize
d,t

S∑
s=1

ns∑

i=1

dsitsi (5)

subject to dsi ≥ 0
ns∑

i=1

dsi = ds

tsi ≥ −U(cl − ρl) ∀s, i ∀l : l ∈ Psi

Necessary conditions on a local minimum can be obtained
from the KKT conditions [12]. The Lagrangian function
associated to problem (5) may be written as:

L(d, t, ν, λ, θ) =
S∑

s=1

ns∑

i=1

dsitsi +
S∑

s=1

νs

(
ns∑

i=1

dsi − ds

)

−
S∑

s=1

ns∑

i=1

λsidsi −
S∑

s=1

ns∑

i=1

∑

l:l∈Psi

θsil (tsi + U(cl − ρl))

Let d∗ be a local optimum of problem (5). The KKT
conditions state that there exist unique Lagrange multiplier
vectors ν∗, λ∗ ≥ 0 and θ∗ ≥ 0 such that:

t∗si + ν∗s − λ∗si +
∑

l:l∈Psi

θ̂l = 0 (6)

d∗si −
∑

l:l∈Psi

θ∗sil = 0 (7)

λ∗sid
∗
si = 0 (8)

θ∗sil(t
∗
si + U(cl − ρ∗l )) = 0 (9)
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where

θ̂l =
S∑

s=1

∑

i:l∈Psi

θ∗silU
′(cl − ρ∗l ) (10)

Putting equation (6) and (8) together yields:

f̂∗Psi
= f∗Psi

+
∑

l:l∈Psi

θ̂l =

{
−ν∗s if d∗si > 0.
−ν∗s + λ∗si if d∗si = 0

Then, for a given commodity s, all paths that are used at
optimality have the same modified delay f̂Psi

(−νs does not
change over paths), which is smaller or equal than that of
paths that are not used (remember that λsi ≥ 0). This means
that a necessary condition for a demand vector to be a local
minimum of (5) is to constitute a Wardrop Equilibrium of a
routing game with path delay f̂P = fP +

∑
l:l∈P θ̂l.

Equation (9) indicates that θ∗sil is zero for all links that are
not the bottleneck of path Psi. If we assume that paths have
only one bottleneck, and using equation (7), θsil is simply dsi

in Psi’s bottleneck link and 0 elsewhere. We shall note UM
(as in Utility Maximization) the routing game that uses f̂P as
its path delay.

As we mentioned, the optimal value of tsi is a continuous
function of d. So, problem (5) may be seen as minimizing
a continuous function over a compact set. Its minimum,
which given the previous observation is always achieved, is
necessarily a Wardrop Equilibrium of the modified game,
guaranteeing the existence of the latter. However, a Wardrop
Equilibrium is not necessarily a minimum. For this last aspect,
sufficient conditions may be derived that although difficult to
prove in the general case, are verified in all the examples we
evaluated (see Proposition 3.3.2 in [12]).

V. EVALUATION

In this section we present a comparative study between
the three routing games, where each agent greedily chooses
the path with the smallest modified delay function, so that
the Wardrop Equilibrium results in the social optimum. The
equilibrium was obtained through the greedy load-balancing
algorithm described in [3]. The comparison will be made in
two real networks, with several real demands, calculating for
each of these demands two performance indicators: ABWP

and link utilization (ul), whose importance we have already
discussed. We could consider other performance indicators,
such as queueing delay or path’s propagation delay. However,
calculation of the former depends heavily on the assumed
traffic model, and we shall suppose that the latter has already
been taken into account by the operator in the paths’ choice.

Before presenting the performance analysis, we will
overview three examples that illustrate the differences between
the three games and help us gain some insight and intuition.

A. Illustrative Examples

The first example we will consider is the simplest: a single
commodity with two paths of the same capacity. However,
one of the paths is constituted of two links, while the other

1 2 3 4 5
0.4

0.6

0.8

1

d

p

 

 

UM
CG
MaxU

(a) Optimum probability

1 2 3 4 5

0.2

0.4

0.6

0.8

1

d

M
ax

im
um

 U
til

iz
at

io
n

 

 

UM
CG
MaxU
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Fig. 1. The single-commodity two-paths case (a longer path subcase).
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(b) Maximum link utilization

Fig. 2. The single-commodity two-paths case (a narrower path subcase).

of only one. In particular, link capacities will be 3.0. In Fig.
1(a) we can see p (the optimum traffic portion routed through
the shortest path) as a function of d (the demand generated
by the commodity) for the three different games: CG, BG
and UM. Naturally, for both UM and BG the optimum is
always 0.5. However, in light loads CG uses the shortest path
almost exclusively, and as load increases it will need to use
the longest one to avoid congesting links. This behavior results
in a significantly bigger maximum link utilization, as can be
seen in Fig. 1(b).

The next example is the same as the previous one, except
that both paths have the same length and a capacity of 3.0 and
4.0. In Fig. 2(a) we show p (the optimum traffic portion routed
through the narrowest path) as a function of d for the three
different games. Clearly p is always 3/7 for BG. However,
p changes with d for both the other two games this time. If
the total demand d is small enough, the narrowest path is left
unused since the obtained performance is inferior. As it can
be seen in Fig. 2(b) the difference in the maximum utilization
is not as significant as before.

The third example illustrates some fairness issues that are
important to highlight. In Fig. 3(a) we can see the considered
network. In it, all link capacities are equal and all commodities
have the same demand d0, except for commodity 1 that
generates d and is the only one to have more than one path
to choose from. We will consider cl = 5.0 ∀l, d0 = 2 and
we will study the optimum p as we vary d. It is relatively
simple to verify that the optimum for CG and BG is p = 0.5
independently of d. On the other hand, UM enforces fairness at
a path level. This means that commodity 1 takes into account
that the upper path “disturbs” two other paths while the lower
one disturbs only one, resulting in more traffic being sent
through the latter (see Fig. 3(b)). So, while d is relatively
small and the ABW is enough, commodity 1 uses only the
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Fig. 3. An example illustrating the fairness issue.
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Fig. 4. ABWP for UM, CG and BG in the Abilene network

lower path. If any of these conditions is not true, p will rapidly
go to 0.5, but always privileging better conditions on the upper
path.

B. Abilene Network

In this section we present the performance analysis for the
Abilene [13] network, a well-known academic network which
consists of 12 nodes and 15 bidirectional links all with the
same capacity. The topology comes as an example in the
TOTEM toolbox [14] and we used 388 demands (spanning
a complete week) from dataset X11 of [15]. The paths we
used in this case were constructed by hand, trying to give
commodities as much path diversity as possible, but limiting
the hop count.

We will first present the path’s ABW (ABWP ) results. For
each demand we calculated the weighted mean ABWP , where
the weight of path Psi is dsi. This average provides us with
a rough idea of the performance as perceived by traffic. A
good value of this average indicator could however hide some
pathological cases where some portions of traffic obtain a bad
performance. That is why we also measured the 10% quantile
and the minimum ABWP . The comparison will be made by
dividing the value obtained by UM by the one obtained by the
other games.

In Fig. 4 we can see the boxplots of the ABWP indicators.
We first note that the weighted mean of ABWP is always
bigger in UM than in CG and BG, being generally between
1-2% and at most 5%. No conclusive results can be obtained
from the quantile ABWP . In the minimum ABWP the results
are clearer. UM achieves a minimum ABWP that is generally
between 6-13% (and can be as big as 18%) bigger than CG.
As expected, the best results in this aspect are obtained by
BG, although its gain over UM is not so important.
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Fig. 5. ul for BG, UM and CG in the Abilene network

We now turn our attention to the link utilization (ul) results.
For each demand we calculated the mean, 90% quantile and
maximum utilization on the network for each of the considered
games. The comparison will be made by making the difference
between the indicator obtained by BG and the other two
games. Fig. 5 shows these results. Both the mean and the
quantile do not present any substantial difference between the
three games. It is in the maximum utilization that we can
see a clearer distinction between them, where as expected BG
always obtains the best results. However, and in concordance
with the ABWP indicators, its gain over UM is smaller than
over CG, the former being generally 1-2% and the latter
between 3-7%. This results are related with the first example
considered in section V-A, where the maximum link utilization
was bigger for CG due to its reluctance to use longer paths.

C. Géant Network

The second case scenario is Géant [16]. This academic
network connects 23 nodes using 74 unidirectional links, with
capacities that range from 155 Mbps to 10 Gbps. The topology
and demands (477 in total, covering a three week period)
were obtained from TOTEM’s webpage [14], [17]. In this case
paths were constructed by a shortest path algorithm, where we
used the inverse of the capacity as the link’s weight. For each
commodity we computed two paths. The first is simply the
shortest path, we then prune the network of the links this path
uses, and compute the second shortest path.

Results for the ABWP in this case can be seen in Fig. 6.
This time, the results of both UM and CG are more similar,
where the mean and quantile ABWP is somewhat bigger for
UM than CG, and the minimum is relatively bigger for CG
than UM. However, the results of the comparison between
UM and BG are clearly in favor of the former. The mean
ABWP is generally 6-7% bigger, going as high as 11%. Good
results are also obtained on the quantile. With respect to the
minimum ABWP , the results are logically better for BG, but
the difference is not significant.

Fig. 7 show that the results for the link utilization are also
very similar between UM and CG. The difference between the
two and BG is not very significant, specially in the mean and
quantile. With respect to the maximum utilization, BG obtains
only subtle improvements over the rest. As we illustrated in the
second example of section V-A, when capacities are different
and paths are similar in length (as is generally the case for
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Fig. 6. ABWP for UM, CG and BG in the Géant network
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Fig. 7. ul for BG, UM and CG in the Géant network

Géant) the difference in maximum utilization between the
games is small.

VI. CONCLUDING REMARKS

The contribution of this paper is twofold. We first proposed
and studied a routing bottleneck game, which defined the
link’s delay as a utility function of the available bandwidth.
Such routing game was designed with elastic flows in mind,
with the idea that TCP is in charge of the path’s resource
sharing, and routing continue to maximize utility by indirectly
changing flow’s obtained rate through their path choice. We
then compared three routing games (including ours) from a
traffic engineering perspective, a study that we believe will
be helpful for network operators at the time of choosing a
dynamic traffic engineering mechanism.

Along with our game (noted as UM), we considered a
classical congestion game where the link’s delay is a modified
M/M/1 delay function (CG), and a bottleneck game where
link’s delay is its utilization (BG). From our study, conducted
over two real networks along with several real traffic demands,
some conclusions can be drawn. Firstly, performance as per-
ceived by traffic (measured as the ABW ) is always better in
UM than both CG and BG. More specifically, the improvement
over CG is generally not very big in mean, but may be
important, specially in the worst ABWP . This difference is
originated in the implicit unfairness among commodities of the
social cost function of CG. With respect to BG, UM obtains
significantly better performance when link capacities are not
similar. Secondly, results on link utilization are very similar
between UM and BG games. CG obtains similar results in
the mean and quantile link utilization. However, due to its
reticence to use longer paths, maximum link utilization can
be significantly bigger in CG than the rest of the games.

All in all, it seems like UM is the most balanced game, in the
sense that it generally outperforms the rest, and when it does
not the difference is not important. Unfortunately, it comes
with a price. The modified routing game through which the
social optimum was obtained, requires to distinguish and mea-
sure the traffic generated by each commodity (remember that
in section IV-B we defined θsil as either dsi or 0). Moreover,
a mechanism so that a link can learn whether it constitutes a
path’s bottleneck has to be designed (θsil is not zero only if it
is the bottleneck of path Psi). Although such mechanisms may
be difficult to implement in a packet switched environment,
they are relatively easy in an MPLS network (where, for
instance, measuring dsi is straightforward).

We have shown that the Wardrop Equilibrium of the pro-
posed game coincides with the minimum of the social cost
for all the cases we considered. However, a proof in the
general case constitutes an interesting and necessary future
work. Another interesting question is what happens when
we are interested in queueing delays. CG has been proposed
as an answer, but it relies heavily on the assumed model.
We are currently investigating how to design a measurement-
based load balancing mechanism that converges to the social
optimum, but where the delay function is not assumed a priori.
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