
RECONFIGURABLE ARCHITECTURE FOR BINARY IMAGES INV ARIANT MOMENTS

EXTRACTION

Guilherme H R. Jorge, Valentin O. Roda
Departamento de Engenharia Elétrica/ EESC

Universidade de Sao Paulo, Sao Carlos, Brazil
email: guijorge@hotmail.com,

valentin@sel.eesc.usp.br

ABSTRACT

Moments of the intensity function of a group of pixels have
been used for the representation and recognition of objects in
two dimensional images. Due to the high computational cost
of evaluating the moments, the search for faster computing
architectures is very important. This work presents a soft
core architecture for the extraction of invariant moments
from binary images, using high density logic programmable
devices.

l. INTRODUCTION

Computers can distinguish shapes in their environment using
images from video cameras and can take decisions based on
pattem classes [1]. The complete recognition process
requires the following steps: image acquisition, pre
processing, attributes extraction and classification. In this
work we will <leal only with the image attributes extraction.
The image attribute stage searches for image relevant
features (characteristics) that can be used to characterize the
objects present in the images. The image features used to
characterize the objects in the scene can be numerical such
as distances, area and volume or symbolic such as color or
textures. The choice of the attributes set must take into
account sorne properties such as: processing speed, class
discrimination, small variations for each class and
description completeness [2]. Transformation invariant
moments are often used as attributes of objects because they
are robust and capable of representing image properties
invariant to rotation, translation and scale. In this work we
present a novel approach to a co-processor architecture,
dedicated to the extraction of invariant characteristics from
binary images.

2. HU INVARIANT MOMENTS

The representation of objects using attributes unchangeable
to geometric transformations is an important issue for pattem
recognition. The choice of the best attributes, most of
the

Juan Pablo O/iverf, Julio Perez Aclef,
Sebastian Fernándezf

tUniversidad de la Republica
Inst. de Ingeniería Eléctrica, Montevideo, Uruguay

email: jpo[jpaipai][sebfer]@fing.edu.uy

time, is related with the performance of the pattem
recognition system using the invariant attribute space [3].
Image moments are numerical values of the image pixel
intensities considering the distances to a reference point or
axis. Image moments are used to characterize a binary or
gray leve) image considering it as a bi-dimensional density
function distribution [4] [5].

The representation of all image information would use an
infinite number of moment values. Therefore for the
practica) implementation of recognition systems using
moments it is necessary to determine the order of the
moments that can bring relevant information that
characterize the images. The definition of regular geometric
moments has the form of a projection of the f(x,y) function
which represents the image to a polynomial function of the
type xpyq. The (p, q) moment is defined according to
equation (1). +oo+oo

mp,q = f fxPy".f(x,y).dxdy
, (1)

for (p,q = 0,1,2,) were mo,o is the area of the region and
m0,1 e m1,0 are the coordinates of the center of mass of the
region. Central moments are moments centralized in regions
and for digital images can be expressed as equation (2).

µpq = ¿¿(x-xY(y-y)q f(x,y), (2)

- m10 and - moi th d' t fwere x = -- y = -- , are e coor ma es o
moo moo

the center of mass normalized by the área.
The first to third order central moments, invariant to

translation and scale, are obtained from equation (2) for
values ofp and q between O and 3.

1st order
Ao =µ01 =0

2nd order
µ20 = m20 - xm,o

µ02 = mo2 -ymo1

µ11 =m11 -ym10

3rd order

µ12 = m12 - 2jim11 -xm02 + 2ji 2m10
µ21 = m21 - 2xmll - jim20 + 2x 2m01

µ30 = m30 -3'im20 + 2x 2ml0

µ03 = mo3 -3jimo2 + 2ji 2m01

The combination of the 2nd and 3rd order moments results
in attributes that are invariable to the image rotation. The
central moments normalized by the area are determined by
equation (3).

' (3)

Were: r= p +q +1 for (
p +q=2,3,4,)

2

A set of seven moments, invariant to translation, rotation
and scale was determined by Hu [6]. Those moments, named

�1 to �7• are commonly referenced in the literature as Hu

invariant moments.

'P1 =7720+ 7702 <P2 =(1720+ 1lo2)
2

+ 4r¡1
2
1

<p3 = (1730 + 31712)
2

+ (31121 + 1103)
2

<p4 = (1730 +1112 >
2

+ (1121 + 1103)
2

'Ps =(1730 + 31712)(1730 + r¡12)[(r¡30 + 1712)
2

-3(1721 + 1703)
2

]
+ 3(1721 + r¡03)

(1721 + r¡03)[3(r¡30 + 1712)
2

-(1721 + 1703)
2

]

'P6 = (7720 + 77oJ[(7730 + 7712)
2

-(772 1 + 7703)
2

]
+ 47711(7730 + 7712)(772 1 + 7703)

'P1 = (772 1 + 7703)(7730 + 7712)[(7730 + 7712 /-3(772 1 + 7703)
2

]
+ 3(772 1 + 7703)(772 1 + 7703)[3(7730 + 771J

2
-(772 1 + 7703)

2

]

3. DEVELOPED ARCHITECTURE

The determination of the invariant moments comprises the
following steps: area and perimeter calculation of the
selected object in the image, central moments calculation and
finally the determination of the invariant moments
themselves. A novel hardware dedicated architecture,
implemented in VHDL, for the determination of invariant
moments was developed, a block diagram of this architecture
is shown in figure 1.

The developed architecture comprises an image
acquisition subsystem were an image acquired by a video

camera is stored in a memory. The image acquisition system
was constructed based on the system, previously developed
by Pedrino [9].

The calculation methodology uses the vertical and
horizontal projections ofthe object in the image. Initially the
area and the perimeter of the object are calculated and those

values are used for the central moments calculation. Once
the central moments were determined, the invariant moments
are calculated in a parallel form speeding up considerably
the calculations in relation to traditional architectures.

lum�r

an1ubi1io11

Al'tll llllll

ptdllll'l('I'

rnkul:11io11

Ct·ntrnl

momt·nh

t·ukulution

c+JcfüP@@@$:::.:::::::::�n,kul11rlou

Wi!'hl .. ,nr inlt·ríurt•

Fig.l. Block diagram of the architecture for
invariant moments calculation

The interface to a PCI core is done through a wishbone
interface, this Wishbone interface was created according to
the wishbone standards, following the implementation
available by Femandez et al [10].

The system is distributed in nine modules, four of them
used for floating point variables, three for the moment
calculations and two for the Wishbone interface. A floating
point synthesis package for VHDL based on the IEEE 754
standard was used for the calculations [11].

3.1. Area and X and Y average calculations.

To calculate the area of the object (in pixels), a valid

pixel counter that generates a value of the amount of valid
pixels is used. To calculate the central moments, the average
of pixels in the X and Y directions are used as initial values.
The procedure which calculates the area and the average of

pixels in the X and Y directions is called ARE. The ar

variable receives a new value at each clock cycle, updating
the pixel sum coming from the memories with the actual
pixel value. Simultaneously mtpx and mtpy are also
calculated and updated at each clock cycle. mtpx stores the
pixel values multiplied by the image column index, for an
image of 512x512 pixels, while mtpy stores the pixel values
multiplied by the image line index. When the procedure
finds the end of the frame, by the contlin variable, it is closed

and the final values of ar, mtpx and mtpy are retumed to the
program. The final value of mtpx and mtpy correspond to the
average values in the x and y directions respectively. A
block diagram of the procedure to determine the area and the
X and Y average values is illustrated in figure 2.

CALCU\I0\1ENTOS.\'fl0

l�ml
�

G::l CJ8.

� �

[=J.

Fig. 2. Block diagram of the module for the area
and the X and Y average calculations.

3.2. Central moments calculations

Once the area and the X and Y average calculations are
completed, a new memory reading is performed in order to
obtain the value of the image pixels in a procedure called
TMPS. The values generated by the TMPS procedure are
intermediate values that will be normalized by the area. The
normalized values are obtained multiplying the sum of the
image pixels by the pixel average values of the X and Y
averages and the line and column indexes. When the
procedure finds again the end of an image frame through the
line counting variable contlin, the tpl, tp2, tp3 e tp4 values
are retumed to the program to be used as inputs for the
calculation of the central moments using the functions n20,

n02, nl 1, n30, n12, n21 and n03 present in the module called
INTERMED.

3.3. Invariant moment calculations

Once the intermediate moments are calculated, the
invariant moments determination is performed using sum
and multiplications of the central moments. The invariant
moments determination in performed in parallel, speeding
the processing.

4.RESULTS

In order to validarle the developed architecture, its results
were compared with a Matlab implementation for the
invariant moments calculation. The seven Hu invariant
moments were determined using the MATLAB program for
the objects shown in figure 3.

Allen Plier Wrench Screwdriver

1 1 j

/ / /
Fig. 3. Object images used to determine the Hu
invariant moments.

Table 1 shows the Hu invariant moments calculated using
the MA TLAB program. lt can be observed that using values
with 4 decimal places it is possible to distinguish the objects.
The invariant moments value could be fed to a classifier
program to distinguish the objects.

Table 1. Hu invariant moments calculated using the
MA TLAB program.

Moment Allen Plier Wrench Screwdriver

\Ob_ject

1st 4.2600 4.6538 4.6270

moment 0.0007 to to to

4.2623 4.6580 4.6312

2nd 8.5201 9.3076 9.2540

moment 0.0000 to to to

8.5245 9.3159 9.2625

3 rd 32.7408 15.9496 6.1502 16.0871

moment to to to to

34.3106 15.9558 6.1608 16.0977

4 th 32.9791 15.9496 16.1502 16.0871

moment to to to to

33.3870 15.9558 16.1608 16.0977

5 th 31.8834 32.2771 32.1535

moment 36.0437 to to to

31.8957 32.2976 32.1742

6 th 16.8002 20.2096 20.8040 20.7141

moment to to to to

16.9562 20.2181 20.8187 20.7289

7 th 32.0694 32.4768 32.3481

moment 36.0437 to to to

32.0820 32.4982 32.3697

Previous results in order to validate the operation of the
architecture were obtained using Altera' s Quartus 11
simulator software. Intermediate moment values were

inserted in the second software module and the result values
were compared with the ones obtained by the Matlab's
moments determination program resulting in identical
values.

An hardware implementation of the system was tested
using a Stratix FPGA from Altera, the EPISIOF780C6. The
FPGA device used has about 10.5K logic blocks and the
NIOS board has expansion connectors which were used to
read the output data trough a logic analyzer. The signals
correspondent to the seven invariant moments calculations
were collected by the logic analyzer in a bitwise form and
converted to the floating point format to be compared with
the results of the software simulation, resulting also in
identical values.
Another interesting data obtained by the Quartus II software
was the logical mapping of the chosen FPGA and a time
estimative for the calculation, taking in account that the
maximum time supported by the FPGA is 250Mhz.

It was possible to observe that the maximum estimated
time between a pixel input and its output is 2771.546ns.
Comparing the processing time for the invariant moments
calculation in Matlab with the FPGA processing time there is
a 33000% speed improvement which demonstrated that the
dedicated hardware implementation is much more efficient.
The improvement in processing time of the dedicated
architecture over the Matlab's implementation is because of
the efficiency of the hardware versus software processing,
the parallel computation of the invariant moments and the
non optimized processing of Matlab, even considering that
the dedicated hardware used is much simpler that the one
used in the microcomputer that runs Matlab.

5. CONCLUSIONS

The calculation of invariant moments in reconfigurable logic
is a challenge. W orking with floating point routines in
VHDL is something that has not been quite exploited,
because VHDL has not support for floating point operations.
The development of specific floating point libraries for
VHDL widens the number of applications and opens the
door for future developments. Although the development
tools used for the reconfigurable devices were updated and
the microcomputers used were of recent generation, system
compilation and testing was slow and sorne times did not
work properly because of its complexity. Nevertheless, the
results obtained were good, considering the intrinsic
difficulties. The speed improvement of the developed
architecture in relation with a traditional microcomputer was
a surprise. Even considering the large clock differences
between the compared systems, the developed architecture

was extremely faster for the dedicated calculations than the
microcomputer. The speed increase validates the initial
proposal that was one of the motivations to develop the
work. Finally, we can consider that the work presented good
results in face of the initial challenges, exploiting the new
horizon of the use of complex mathematics in hardware in a
new and functional manner.

Acknowledgements: The authors are grateful to CAPES to
CNPQ and to DINACYT for the support throughout the
work. The authors would like also to acknowledge the
Electrical Engineering Department/EESC-USP and the
Facultad de Ingenieria/Universidad de la Republica.

6. REFERENCES

[1] A.K. Jain, R.P.W. Duin and J. Mao, "Recognition: A review".
IEEE Transactions on Pattem Analysis and Machine Intelligence
22, 1 (2000), 4-37.
[2] J.R. Parker (1994), Practica) Computer Vision Using C, John
Wiley & Sons, 1994.
[3] C. Yuceer and K. Otlazer, "A rotation, scaling and translation
invariant pattem classification system", Pattem Recognition, 1993;
26(5): 687-710
[4] R.J. Prokop and A.P. Reeves, "A survey of moment-base
techniques for unoccluded object representation and recognition",
CVGIP: Graphical Models and Image Processing, 1992, vol. 54, no.
5, pp. 438-460.
[5] W.H. Wong, W.C. Siu and K.M. Lam, "Generation ofmoment

invariants and their uses for character recognition.", Pattem
Recognition Letters, 1995, vol. 16, no. 2, pp. 115-123.
[6] M. Hu, "Visual pattem recognition by moment invariants.",
IEEE Transactions on Information Theory, 1962, vol. 8, no. 2, pp.
179-187.
[7] M. Brown and J. Rose, "FPGA and CPLD architectures: a
tutorial", IEEE design and test of computers, 1996; vol. 13, no. 2,
pp. 42-57.
[8] F.J. Bartos, "ASICs versus FPGAs", Control Engineering, 1995.

http://www.controleng.com/article/ CA607224.html, visited
09/03/2007.
[9] E.C. Pedrino "Morphological binary image real time pipeline
architecture using Complex Programmable Logic Devices (in
Portuguese)", MSc thesis in Electrical Engineering, University of
Sao Paulo, Brazil, 2003.
[10] S. Femandez, C. Mondueri and J.P. Oliver, "A platform for the
development of the PCI bus (in spanish)", website
http://mondueri.com/iiepci/, visited 07/03/2007.
[11] Floating-Point HDL Packages Home Page, website
http:/ /www.eda-stds.org/fphdl/, visited 07/03/2007.

