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ABSTRACT 

Moments of the intensity function of a group of pixels have 
been used for the representation and recognition of objects in 
two dimensional images. Due to the high computational cost 
of evaluating the moments, the search for faster computing 
architectures is very important. This work presents a soft 
core architecture for the extraction of invariant moments 
from binary images, using high density logic programmable 
devices. 

l. INTRODUCTION

Computers can distinguish shapes in their environment using 
images from video cameras and can take decisions based on 
pattem classes [1]. The complete recognition process 
requires the following steps: image acquisition, pre 
processing, attributes extraction and classification. In this 
work we will <leal only with the image attributes extraction. 
The image attribute stage searches for image relevant 
features (characteristics) that can be used to characterize the 
objects present in the images. The image features used to 
characterize the objects in the scene can be numerical such 
as distances, area and volume or symbolic such as color or 
textures. The choice of the attributes set must take into 
account sorne properties such as: processing speed, class 
discrimination, small variations for each class and 
description completeness [2]. Transformation invariant 
moments are often used as attributes of objects because they 
are robust and capable of representing image properties 
invariant to rotation, translation and scale. In this work we 
present a novel approach to a co-processor architecture, 
dedicated to the extraction of invariant characteristics from 
binary images. 

2. HU INVARIANT MOMENTS

The representation of objects using attributes unchangeable 
to geometric transformations is an important issue for pattem 
recognition. The choice of the best attributes, most of 
the 
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time, is related with the performance of the pattem 
recognition system using the invariant attribute space [3]. 
Image moments are numerical values of the image pixel 
intensities considering the distances to a reference point or 
axis. Image moments are used to characterize a binary or 
gray leve) image considering it as a bi-dimensional density 
function distribution [4] [5]. 

The representation of all image information would use an 
infinite number of moment values. Therefore for the 
practica) implementation of recognition systems using 
moments it is necessary to determine the order of the 
moments that can bring relevant information that 
characterize the images. The definition of regular geometric 
moments has the form of a projection of the f(x,y) function 
which represents the image to a polynomial function of the 
type xpyq. The (p, q) moment is defined according to 
equation (1). +oo+oo 

mp,q = f fxPy".f(x,y).dxdy 
, (1) 

for (p,q = 0,1,2, .... ) were mo,o is the area of the region and 
m0,1 e m1,0 are the coordinates of the center of mass of the 
region. Central moments are moments centralized in regions 
and for digital images can be expressed as equation (2). 

µpq = ¿¿(x-xY(y-y)q f(x,y), (2)

- m10 and - moi th d' t fwere x = -- y = -- , are e coor ma es o 
moo moo 

the center of mass normalized by the área. 
The first to third order central moments, invariant to 

translation and scale, are obtained from equation (2) for 
values ofp and q between O and 3. 

1st order 
Ao =µ01 =0 

2nd order 
µ20 = m20 - xm,o 

µ02 = mo2 -ymo1 

µ11 =m11 -ym10 



3rd order

µ12 = m12 - 2jim11 -xm02 + 2ji 2m10 
µ21 = m21 - 2xmll - jim20 + 2x 2m01 

µ30 = m30 -3'im20 + 2x 2ml0 

µ03 = mo3 -3jimo2 + 2ji 2m01 

The combination of the 2nd and 3rd order moments results
in attributes that are invariable to the image rotation. The 
central moments normalized by the area are determined by 
equation (3). 

' (3) 

Were: r= p +q +1 for (
p +q=2,3,4, .... )

2 

A set of seven moments, invariant to translation, rotation 
and scale was determined by Hu [6]. Those moments, named 

�1 to �7• are commonly referenced in the literature as Hu

invariant moments. 
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3. DEVELOPED ARCHITECTURE

The determination of the invariant moments comprises the 
following steps: area and perimeter calculation of the 
selected object in the image, central moments calculation and 
finally the determination of the invariant moments 
themselves. A novel hardware dedicated architecture, 
implemented in VHDL, for the determination of invariant 
moments was developed, a block diagram of this architecture 
is shown in figure 1. 

The developed architecture comprises an image 
acquisition subsystem were an image acquired by a video 

camera is stored in a memory. The image acquisition system 
was constructed based on the system, previously developed 
by Pedrino [9]. 

The calculation methodology uses the vertical and 
horizontal projections ofthe object in the image. Initially the 
area and the perimeter of the object are calculated and those 

values are used for the central moments calculation. Once 
the central moments were determined, the invariant moments 
are calculated in a parallel form speeding up considerably 
the calculations in relation to traditional architectures. 
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Fig.l. Block diagram of the architecture for 
invariant moments calculation 

The interface to a PCI core is done through a wishbone 
interface, this Wishbone interface was created according to 
the wishbone standards, following the implementation 
available by Femandez et al [10]. 

The system is distributed in nine modules, four of them 
used for floating point variables, three for the moment 
calculations and two for the Wishbone interface. A floating 
point synthesis package for VHDL based on the IEEE 754 
standard was used for the calculations [ 11]. 

3.1. Area and X and Y average calculations. 

To calculate the area of the object (in pixels), a valid 

pixel counter that generates a value of the amount of valid 
pixels is used. To calculate the central moments, the average 
of pixels in the X and Y directions are used as initial values. 
The procedure which calculates the area and the average of 

pixels in the X and Y directions is called ARE. The ar 

variable receives a new value at each clock cycle, updating 
the pixel sum coming from the memories with the actual 
pixel value. Simultaneously mtpx and mtpy are also 
calculated and updated at each clock cycle. mtpx stores the 
pixel values multiplied by the image column index, for an 
image of 512x512 pixels, while mtpy stores the pixel values 
multiplied by the image line index. When the procedure 
finds the end of the frame, by the contlin variable, it is closed 



and the final values of ar, mtpx and mtpy are retumed to the 
program. The final value of mtpx and mtpy correspond to the 
average values in the x and y directions respectively. A 
block diagram of the procedure to determine the area and the 
X and Y average values is illustrated in figure 2. 
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Fig. 2. Block diagram of the module for the area 
and the X and Y average calculations. 

3.2. Central moments calculations 

Once the area and the X and Y average calculations are 
completed, a new memory reading is performed in order to 
obtain the value of the image pixels in a procedure called 
TMPS. The values generated by the TMPS procedure are 
intermediate values that will be normalized by the area. The 
normalized values are obtained multiplying the sum of the 
image pixels by the pixel average values of the X and Y 
averages and the line and column indexes. When the 
procedure finds again the end of an image frame through the 
line counting variable contlin, the tpl, tp2, tp3 e tp4 values 
are retumed to the program to be used as inputs for the 
calculation of the central moments using the functions n20, 

n02, nl 1, n30, n12, n21 and n03 present in the module called 
INTERMED. 

3.3. Invariant moment calculations 

Once the intermediate moments are calculated, the 
invariant moments determination is performed using sum 
and multiplications of the central moments. The invariant 
moments determination in performed in parallel, speeding 
the processing. 

4.RESULTS

In order to validarle the developed architecture, its results 
were compared with a Matlab implementation for the 
invariant moments calculation. The seven Hu invariant 
moments were determined using the MATLAB program for 
the objects shown in figure 3. 

Allen Plier Wrench Screwdriver 
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Fig. 3. Object images used to determine the Hu 
invariant moments. 

Table 1 shows the Hu invariant moments calculated using 
the MA TLAB program. lt can be observed that using values 
with 4 decimal places it is possible to distinguish the objects. 
The invariant moments value could be fed to a classifier 
program to distinguish the objects. 

Table 1. Hu invariant moments calculated using the 
MA TLAB program. 

Moment Allen Plier Wrench Screwdriver 

\Ob_ject 

1st 4.2600 4.6538 4.6270 

moment 0.0007 to to to 

4.2623 4.6580 4.6312 

2nd 8.5201 9.3076 9.2540 

moment 0.0000 to to to 

8.5245 9.3159 9.2625 

3 rd 32.7408 15.9496 6.1502 16.0871 

moment to to to to 

34.3106 15.9558 6.1608 16.0977 

4 th 32.9791 15.9496 16.1502 16.0871 

moment to to to to 

33.3870 15.9558 16.1608 16.0977 

5 th 31.8834 32.2771 32.1535 

moment 36.0437 to to to 

31.8957 32.2976 32.1742 

6 th 16.8002 20.2096 20.8040 20.7141 

moment to to to to 

16.9562 20.2181 20.8187 20.7289 

7 th 32.0694 32.4768 32.3481 

moment 36.0437 to to to 

32.0820 32.4982 32.3697 

Previous results in order to validate the operation of the 
architecture were obtained using Altera' s Quartus 11 
simulator software. Intermediate moment values were 



inserted in the second software module and the result values 
were compared with the ones obtained by the Matlab's 
moments determination program resulting in identical 
values. 

An hardware implementation of the system was tested 
using a Stratix FPGA from Altera, the EPISIOF780C6. The 
FPGA device used has about 10.5K logic blocks and the 
NIOS board has expansion connectors which were used to 
read the output data trough a logic analyzer. The signals 
correspondent to the seven invariant moments calculations 
were collected by the logic analyzer in a bitwise form and 
converted to the floating point format to be compared with 
the results of the software simulation, resulting also in 
identical values. 
Another interesting data obtained by the Quartus II software 
was the logical mapping of the chosen FPGA and a time 
estimative for the calculation, taking in account that the 
maximum time supported by the FPGA is 250Mhz. 

It was possible to observe that the maximum estimated 
time between a pixel input and its output is 2771.546ns. 
Comparing the processing time for the invariant moments 
calculation in Matlab with the FPGA processing time there is 
a 33000% speed improvement which demonstrated that the 
dedicated hardware implementation is much more efficient. 
The improvement in processing time of the dedicated 
architecture over the Matlab's implementation is because of 
the efficiency of the hardware versus software processing, 
the parallel computation of the invariant moments and the 
non optimized processing of Matlab, even considering that 
the dedicated hardware used is much simpler that the one 
used in the microcomputer that runs Matlab. 

5. CONCLUSIONS

The calculation of invariant moments in reconfigurable logic 
is a challenge. W orking with floating point routines in 
VHDL is something that has not been quite exploited, 
because VHDL has not support for floating point operations. 
The development of specific floating point libraries for 
VHDL widens the number of applications and opens the 
door for future developments. Although the development 
tools used for the reconfigurable devices were updated and 
the microcomputers used were of recent generation, system 
compilation and testing was slow and sorne times did not 
work properly because of its complexity. Nevertheless, the 
results obtained were good, considering the intrinsic 
difficulties. The speed improvement of the developed 
architecture in relation with a traditional microcomputer was 
a surprise. Even considering the large clock differences 
between the compared systems, the developed architecture 

was extremely faster for the dedicated calculations than the 
microcomputer. The speed increase validates the initial 
proposal that was one of the motivations to develop the 
work. Finally, we can consider that the work presented good 
results in face of the initial challenges, exploiting the new 
horizon of the use of complex mathematics in hardware in a 
new and functional manner. 
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