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Abstract—Despite a large body of literature and methods
devoted to the Traffic Matrix estimation problem, the inference
of traffic flows volume from aggregated data represents a key
subject facing the evolution of next generation networks. This
is a particular problem in large-scale carrier networks, for
which efficient, accurate and stable methods for Traffic Matrix
modeling and estimation are vital and challenging to conceive.
In the short-term, estimation methods must be efficient and
stable to allow crucial real-time tasks such as on-line traffic
monitoring. In the long-term, methods must provide an accurate
picture of the traffic matrix to tackle problems such as network
planning, design, and dimensioning. In this paper we present and
compare two efficient methods for on-line traffic matrix estima-
tion. Based on an original parsimonious linear model for traffic
flows in large-scale networks, we present a simple approach to
compute an accurate traffic matrix from easily available link
traffic measurements. We further extend the validation of this

parsimonious model to three operational backbone networks. We
analyze in depth a method to recursively estimate the traffic
matrix, studying the drawbacks and omissions of the former
algorithm and proposing new extensions to solve these problems.
We finally perform a comparative analysis of the performance of
both methods in two operational backbone networks, taking into
account significant aspects such as accuracy, stability, scalability,
and on-line applicability.

Index Terms—Network Traffic Measurements, Modeling and
Statistical Characterization, Traffic Matrix Estimation, Kalman
Filtering.

I. INTRODUCTION

Knowing and understanding the traffic that flows through a

large-scale network represents a key issue in the design and

engineering of the future Internet. A network-wide view of

traffic flows is typically described by a traffic matrix (TM); a

TM represents the volume of traffic transmitted between every

pair of ingress and egress nodes of a network, also referred as

the origin-destination (OD) traffic flows. The measurement of

the TM is a subject of continuous debate between researchers,

network operators, and technology vendors. Some of them

claim that the overheads incurred in the direct measurement of

the TM will become too costly and prohibitive in the future,

justifying the use of aggregated data to gather its value as

it has been done during the last years. This is quite a valid

argument if we consider that the evolution of future access

technologies and the development of optical access networks

(Fiber To The Home technology) will dramatically increase the

bandwidth for each end-user, triggering a brutal augmentation

of the traffic to measure. Some authors forecast a value of

bandwidth demand per user as high as 50 Gb/sec in 2030. On

the other hand, the progress in monitoring and measurement

technology of the past years make some others believe that

the challenge of directly measuring the TM can be solved

by improving equipment measurement capabilities and that

the problem of inferring the TM from aggregated data will

become obsolete. Whatever the result of this bid between

increase of traffic and progress in measurement capabilities,

network analysis requires efficient TM estimation methods that

make use of both aggregated data and direct measurements to

improve results.

Let us formally introduce the TM estimation problem.

Throughout the paper, the vector Xt = [xt(1), .., xt(m)]T

represents the value of the traffic matrix at time t, where xt(k)
stands for the traffic volume of each OD flow k = 1..m at

time t. In a similar way, the vector Yt = [yt(1), .., yt(r)]
T

represents the value of the links aggregated traffic volume,

where yt(i) represents the total traffic volume in link i = 1..r

at time t. This aggregated data is available through the standard

and well-known SNMP protocol, so it will be usually referred

as the SNMP measurements. Given a routing matrix R, we

define the traditional SNMP-TM measurement relation as:

Yt = R Xt (1)

where Rij is equal to 1 if OD flow j traverses link i

and 0 otherwise. The computation of Xt from Yt represents

a massively under constrained problem, as the number of

unknown OD flows is much larger than the number of links

[1]. This equation is the basis of the TM estimation problem.

A. Related Work

The problem of inferring the traffic matrix from link ag-

gregated traffic data has been extensively studied over the

past 10 years. The first approach to tackle the problem was

to search for direct solutions to the ill-posed problem, intro-

ducing additional information to create additional constraints.

This was achieved by TM modeling assumptions in [1], [3],

deriving higher order statistics of the traffic OD flows as the

additional constraints. For instance, Vardi adopted a Poisson

model in [1] and Cao et al. a Gaussian model in [3]. Tebaldi

et al. considered in [2] a Bayesian approach to the problem,

assuming a Poisson a-priori distribution for the OD flows.

A couple of years later, Medina et al. [4] showed that the

basic assumptions underlying these statistical models were not



justified, and that these methods performed badly when the

underlying assumptions were violated.

Additional spatial information about the TM was included

into the problem, taking into account the network topology

and the routing process. This encouraged the application of

gravity models [5] to the estimation issue. In 2003, Zhang et

al [6] made a breakthrough in the TM estimation problem,

combining network tomography methods [1] with gravity

models to highly improve accuracy and reduce computational

complexity. This method is the well-known tomogravity esti-

mation approach. As we will show in the obtained results, the

estimation performance of the tomogravity approach can be

highly improved.

A final step was achieved by considering the strong diurnal

patterns found in the TM [7] into the estimation problem,

together with a new strong assumption not considered before:

the TM can be directly measured during short periods of time.

Different works were proposed in 2004 and 2005 that exploited

these assumptions [8], [9], [11]. In [8] the authors proposed

a pure data-driven method to estimate the TM based on the

stability of the node fanouts. [7] proposed another data-driven

approach to analyze OD flows, using a Principal Component

Analysis (PCA) method to capture both temporal and spatial

correlations. The problem with data-driven approaches is that

they are highly dependent on the data they use as input and

thus results can not be generalized. The last contribution was

proposed in [9], [10], where a dynamic model was adopted to

capture the temporal correlation of the TM, using a Kalman

Filtering approach to recursively estimate the TM. These meth-

ods make use of 24hs periods of direct OD flow measurements

for calibration purposes, which can be too restrictive in a future

network scenario and which limits their application to many

networks that currently lack measurement technology. Even

more, although they seem quite accurate and they improve

previous proposals, results presented in [9], [11] showed that

they can be unstable and several recalibration steps should be

conducted in order to provide reliable results.

B. Contributions of the Paper

In this paper we analyze two different approaches to esti-

mate the TM from aggregated link data. The first approach

considers a spatial model for OD flows previously introduced

in [13] to perform an accurate TM estimation from link data.

The principal virtue of this method is that it does not require

direct OD flow measurements neither to perform the estimation

nor to calibrate the model. We present more evidence of

the relevance and applicability of this OD flow model by

extending its validation to three different operational networks:

the Abilene network, the GEANT network, and a Tier-2 ISP

network. The second method consists of a recursive estimation

of the TM, using a Kalman filtering approach as in [9].

This method makes use of direct OD flow measurements to

calibrate the subjacent flow model, using then the link data

to estimate the TM value. The Kalman filtering approach is

quite appealing, but the original works [9], [10] present some

important drawbacks and omissions we treat in this work.

By introducing new simple dynamic models we enhance the

performance of the approach thus improving its applicability.

Both estimation algorithms are compared in terms of relevant

performance indexes namely accuracy, stability, scalability,

complexity, and on-line applicability among others.

The remainder of this paper is organized as follows. In

section II we recall the main aspects of the linear parsimonious

OD flow model, showing how it can be applied to the traffic

matrix estimation problem. Section III presents and analyses

different state space OD flow models for recursive estimation

of the TM, analyzing the drawbacks and omissions of previous

proposals. Section IV presents the evaluation of the parsimo-

nious model for the TM estimation problem, extending its

validation to three operational backbone networks. The perfor-

mance of the recursive TM estimation algorithm for different

OD flow models is also evaluated, both in the Abilene and

GEANT backbone networks. Finally, a comparative analysis

between both estimation methods and previous proposals is

presented. Section IV concludes this work.

II. PARSIMONIOUS TM MODELING AND TM ESTIMATION

In this section we recall the parsimonious linear model we

have previously introduced in [13], explaining how this model

can be applied to tackle the TM estimation problem. The basic

idea of this model is that traffic flows Xt, sorted by OD flow

volume can be decomposed at each time t over a known family

of q basis functions S = {s(1), s(2), . . . , s(q)}, with the great

virtue that q << m (several orders of magnitude smaller).

Therefore, we assume that Xt can be expressed as:

Xt = Sµ
t
+ ξ

t
(2)

where ξt is a white Gaussian noise with covariance matrix

Σ = diag(σ2
1 , . . . , σ2

m) that models the natural variability of

the OD TM together with the modeling errors. The vector

µt = {µt(1) . . . µt(q)}
T
is the unknown time varying param-

eter vector which describes the OD flow intensity distribution

with respect to the set of vectors s(i). We found in [13] that the

order of increasing OD flows w.r.t. their traffic volume remains

stable in time for several days. Figure 1 shows the OD flows

traffic for (a) the Abilene network, (b) the GEANT network,

and (c) a Tier-2 ISP network, sorted in the increasing order

of their volume of traffic and for different time instants t. The

sorted volumes of OD flows can be interpreted as a discrete

non-decreasing signal with certain smoothness. The curve

obtained by interpolating this discrete signal is parameterized

by using a polynomial approximation. Given the shape of this

curve, a cubic splines approximation is applied. A discrete

spline basis is finally built, discretizing the continuous splines

according to m points uniformly chosen in the interval [1; m]
and rearranging them according to the OD flows sorting order.

The vectors s(i) in S correspond to the rearranged discrete

splines, which form a set of basis vectors that describe the

spatial distribution of the traffic. It should be clear to the reader

that this model can not be generalized to all network topologies

and scenarios, but that it holds for networks with a high level

of traffic aggregation (e.g., a backbone network or a large
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Fig. 1. Approximation of OD flows (dashed lines) by the spline-based model (full lines) in 3 operational networks. x̂
SML
t

(k) stands for the estimated OD

flow k using the spline-based model, defined in equation (6). x
TG
t

(k) is the estimated OD flow k using the tomogravity estimation method, introduced in [6].

international VPN). The dashed lines in figure 1 depict the

value of each sorted OD flow xt(k), k = 1 . . .m, the full lines

represent the polynomial approximation of the sorted flows.

In order to appreciate the time stability of this approximation,

the curves are plotted for various consecutive days (at different

moments of the day). Considering the SNMP-TM relation (1),

the model for the link traffic is given by:

Yt = Gµ
t
+ υt, (3)

where G = RS and υt ∼ N (0, Φ), with Φ = RΣRT . Since

the number of columns in G is very small, the product RS and

its rank can be computed very fast; therefore, we assume that

G is full column rank. To simplify notation and computations,

we use the whitened measurements vector Zt:

Zt = Φ− 1

2 Yt = Hµ
t
+ γt, (4)

where H = Φ− 1

2 G, γt ∼ N (0, I) and I is the identity matrix

of correct dimensions. The purpose of this transformation is

simply to whiten the Gaussian noise. Finally, the covariance

matrix Σ is unknown. The solution consists of computing an

estimate Σ̂ from a few measurements; in section IV-B we show

that using just 1 hour of SNMP measurements is enough to

provide proper results. Results on the estimation of Σ̂ can

be found in [15]. This linear parsimonious model allows to

estimate the OD flows volume Xt from easily available SNMP

measurements Yt. We propose to use a Maximum Likelihood

(ML) estimation approach to compute an estimated traffic

matrix. The ML estimate presents well established statistical

properties [15]: it is asymptotically optimal, which means that

it is asymptotically unbiased and efficient. Since the traffic

linear model (4) is a Gaussian model, the ML estimate of µt,

namely µ̂
ML
t corresponds to the least mean squares estimate:

µ̂
ML

t = (HT
H)−1

H
T

Zt (5)

This finally leads to the Maximum Likelihood estimate of the

traffic matrix, which we will refer as the Splines-based ML

(SML) estimate X̂SML
t , defined by:

X̂
SML

t = S µ̂
ML

t
=

(
S(HT

H)−1
H

T Φ− 1

2

)
Yt (6)

III. RECURSIVE TM ESTIMATION

The estimate X̂SML
t presented in section II represents an

estimation of Xt given the current value of SNMP mea-

surements Yt. In this section we present a method that not

only uses Yt to estimate Xt, but also takes advantage of

the TM temporal correlation, using a set of past SNMP

measurements {Yt−1, Yt−2, . . . , Y1} to compute the estimate

X̂t|t = E(Xt|Yt, Yt−1, . . . , Y1). In [9], [10], the authors use

the standard Kalman filtering method [14] to recursively com-

pute X̂t|t. We draw on the ideas of [9] as a point of departure,

then analyze the weaknesses of the proposed approach, and

finally extend the method to achieve more accurate and stable

results.

A. A Simple State-Space Model for the Traffic Matrix

Let us consider the model that is assumed in [9], [10]. In

this paper, the authors consider the traffic matrix OD flows as

the hidden states of a dynamic system. A linear state space

model is adopted to capture the temporal evolution of the

traffic matrix, and the SNMP-TM relation (1) is used as the

observation process:
{

Xt+1 = A Xt + Wt+1

Yt = R Xt + Vt

(7)

The first equation in (7) characterizes the evolution of the OD

flows Xt. A is the transition matrix that captures the dynamic

behavior of the system, and Wt is an uncorrelated zero-mean

Gaussian white noise that accounts both for modeling errors

and randomness in the traffic flows. The second equation in

(7) relates the observed links traffic Yt to the unobserved state

Xt through the routing matrix R. The measurement noise

Vt is also an uncorrelated zero-mean Gaussian white noise

process that models possible inconsistencies in the SNMP-

TM relation. [9], [10] also assume a stationary situation where

A, R, and the noise covariance matrices Qw and Qv are

constant in time. Given this model it is possible to recursively

derive the least mean squares linear estimate of Xt given

{Yt, Yt−1, . . . , Y1}, X̂t|t = E(Xt|Yt, Yt−1, . . . , Y1) by using

the standard Kalman filter (K-F) method. The Kalman filter

is an efficient recursive filter that estimates the state Xt of a



linear dynamic system from a series of noisy measurements

{Yt, Yt−1, . . . , Y1}. It consists of two distinct phases, itera-

tively applied: the Prediction Phase uses the state estimate

from the previous time-step X̂t|t to produce an estimate of

the state at the current time-step t + 1, usually known as the

“predicted” state X̂t+1|t = E(Xt+1|Yt, Yt−1, . . . , Y1),
{

X̂t+1|t = A X̂t|t

Pt+1|t = A Pt|t AT + Qw

(8)

where Pt|t and Pt+1|t are the covariance matrices of the

estimation error et|t = Xt − X̂t|t, and the prediction error

et+1|t = Xt+1 − X̂t+1|t respectively. In the Update Phase,

measurement at the current time-step Yt+1 is used to refine the

prediction X̂t+1|t, computing a more accurate state estimate

for the current time-step t + 1,





X̂t+1|t+1 = X̂t+1|t + Kt+1 (Yt+1 − R X̂t+1|t)

Pt+1|t+1 = (I − Kt+1 R)Pt+1|t (I − Kt+1 R)T

+Kt+1 Qv KT
t+1 = (I − Kt+1 R)Pt+1|t

(9)

where Kt+1 is the optimal Kalman gain which minimizes the

mean-square error E(||et+1|t+1||
2):

Kt+1 = Pt+1|t RT (R Pt+1|t RT + Qv)
−1 (10)

In order to begin the Kalman filter recursion, initial conditions

X̂0|0 and P0|0 are defined. Since the value of the initial state

is unknown, the initial estimate is chosen to be X̂0|0 = E(X0)
and its corresponding estimation error covariance matrix

P0|0 = E(||e0|0||
2). The calibration of matrices A, Qw, and

Qv requires direct OD flow measurements; in [9] the authors

use a 24hs period of OD flow measurements for this purpose.

In [9], the authors adopt a non-diagonal structure to the

transition matrix A, while in [10] they consider a diagonal

structure to A. Both choices have major impacts when using

a model like (7). If we take the expected values of the right

and left hand side terms in the first equation of (7) we obtain

that mX = A mX , where mX = E(Xt) denotes the average

traffic matrix value. This implies that (I − A)mX = 0, that
is to say that mX should be in the kernel of I − A. Let us

consider the case where A is a diagonal matrix. In this case,

the only solution to the system (I − A)mX = 0 is mX = 0
and obviously this condition is not satisfied by the average

traffic matrix. So particularly, the first equation in (7) is false

in [10], and in this context it is only valid for centered data, i.e.,

mX = 0. Even more, our following analysis shows that using

(7) without centering the data has convergence implications.

On the contrary, if we consider that A is non-diagonal, it must

be calibrated in such a way that (I − A)mX = 0. This is

essential in the model (7) as presented in [9]. In this work the

authors claim that the Kalman filter must be re-calibrated every

few days, when the underlying model changes, using once

again direct OD flow measurements for a new 24hs period.

This seems reasonable for such a particular calibration of A.

As we will show in the results, this need of recalibration can

be reduced with some simple corrections to the model. Let us

modify the first equation in (7) in order to have a correct state

space model for the case of a diagonal state transition matrix

A. If we consider the variations of the OD traffic matrix Xt

around its average value mX , i.e., Xc
t = Xt−mX , the system

(7) becomes:
{

Xc
t+1 = A Xc

t + Wt+1

Yt = R Xc
t + Vt + R mX

(11)

The first equation in (11) is now correct for A diagonal,

which corresponds to the case of modeling the centered OD

flows as spatially independent AR(1) processes; even more,

the equality of expected values of the left and right hand

side terms holds whatever the choice of A. In this setting

the model is not as sensitive to the definition of the state

transition matrix A as in (7), where the only solution is

to choose A non-diagonal and such that (I − A)mX = 0.
However, the deterministic term that appears in the observation

process violates the Kalman filter assumptions; particularly,

the “measurement noise” Vt + R mX is not a zero-mean

Gaussian process. The appropriate way of treating this problem

would be to center the observation process before applying the

Kalman filter, using the centered observation measurements

vector Y c
t = Yt − E(Yt) = Yt − R mX . Nevertheless, we

apply the Kalman filter equations to system (11) in order to

appreciate the impact of using non-centered observation data

when A is diagonal. Let us define X̃t|t as the estimate that one

would obtain if the Kalman equations (8) and (9) were applied

with the non-centered SNMP measurements Yt as input. Using

the Kalman filter equations, we can express both the evolution

of the estimate X̂c
t|t = E(Xc

t |Y
c
t , . . . , Y c

1 ) and the evolution

of X̃t|t as:

(∗) X̂c
t+1|t+1 = A X̂c

t|t + Kt+1 (Y c
t+1 − RA X̂c

t|t)

(∗∗) X̃t+1|t+1 = A X̃t|t + Kt+1 (Yt+1 − RA X̃t|t)
(12)

where we have assumed the same Kalman gain in both

equations as its value does not depend on the observations. If

we define the error ηt = X̃t|t − X̂c
t|t, the difference between

(∗∗) and (∗) can be written as:

ηt+1 = (I − Kt+1 R)A ηt + Kt+1 R mX (13)

Let us assume that the Kalman filter converges; in that case,

we can substitute the Kalman gain in (14) by its limit value

K = limt→∞ Kt:

ηt+1 = (I − KR)A ηt + KR mX (14)

Without loss of generality, let us suppose that η0 = 0. We

are going to prove that an error term is propagated and that

the error either diverges to infinity or converges to a constant

non-null value. As η0 = 0, we can express ηt as:

ηt =

t−1∑

k=0

((I − KR)A)k
KR mX , ∀t > 0 (15)

If the spectral radius of (I − KR)A is greater than 1, then

the error term ηt diverges to infinity. On the contrary, if the

spectral radius of (I − KR)A is lower than 1, then the error

term ηt converges to a constant value:

η∞ = lim
t→∞

ηt = (I − (I − KR)A)−1
KR mX (16)



This shows that, when considering a diagonal structure for

the state transition matrix A in (7), not only the state space

model is false but even after centering the data and explicitly

introducing the mean value mX , the Kalman filter does not

converge to the real value of the traffic matrix if non-centered

data Yt is used in the filter. On the contrary, there is a gap

between the real an the estimated value that is proportional to

mX (this is verified in the results in section IV-C).

B. State-Space model for centered TM variations: static mean

This problem can be easily solved in different ways. As we

said, the most obvious solution would be to consider a centered

observation process Y c
t . However, we will consider a more

standard approach: a deterministic term in the observation

process can always be removed by adding a new deterministic

state to the state model. Let us define a new state variable

Ut = [Xc
t mX ]T . In this case, (11) becomes:






Ut+1 =

[
A O
O I

]
Ut +

[
Wt+1

O

]
= C Ut + Ψt+1

Yt =
[

R R
]

Ut + Vt = B Ut + Vt

(17)

where O is the null matrix of accurate size. This new model

has twice the number of states, augmenting the computation

time and complexity of the Kalman filter. However, it presents

several advantages: (i) it is not necessary to center the observa-

tions Yt; (ii) the matrix A can be chosen as a diagonal matrix,

which corresponds to the case of modeling the centered OD

flows as AR(1) processes. Autoregressive models have been

widely applied in the traffic matrix literature [12]; as we show

in the results, obtained results with a simple AR(1) model and

the K-F technique are accurate compared to the target error

for standard traffic matrix estimation tools (about 10% [9],

[11]) and this is clearly much easier and more stable than

calibrating a non-diagonal matrix such that (I − A)mX = 0;
in fact, authors in [10] observe that re-calibrations are often

not needed when using a diagonal transition matrix, and the

results we obtain are stable during the whole evaluation period

of 1 week, which is not the case in [9]; (iii) the Kalman

filter estimates the mean value of the OD flows mX , assumed

constant in (17), and finally (iv) this model allows to impose a

dynamic behavior to mX , improving the estimation properties

of the filter. This is exactly the step we take next.

C. Extending the model: dynamic mean

Using model (17) with the Kalman filtering technique

produces quite good estimation results as we show in section

IV-C. However, this model presents a major drawback: it

assumes that the mean value of the OD flows mX is constant

in time. We improve (17) by adopting a simple dynamic model

for mX , in order to allow small variations of the OD flows

mean value:

mX(t + 1) = mX(t) + ζt+1 (18)

where mX(t) represents the dynamic mean value of Xt

and ζt is a zero-mean white Gaussian noise process with

covariance matrix Qζ . This model corresponds to a random

walk process, which is commonly applied to describe several

dynamic models in economics, physics, etc. In this context,

(17) becomes:





Ut+1 =

[
A O
O I

]
Ut +

[
Wt+1

ζ
t+1

]
= C Ut + Θt+1

Yt =
[

R R
]

Ut + Vt = B Ut + Vt

(19)

As we see in the results in section IV-C, such a simple

model provides more accurate and more stable results.

IV. EVALUATION AND DISCUSSION

In this section we present the evaluation of the estimation

algorithms using real measurements from different operational

backbone networks. We first describe the datasets used in

the evaluation, then evaluate the SML estimation method

and extend the validation of the splines-based model, then

we evaluate the recursive Kalman filter estimation technique

for the different proposed state-space models, and finally we

present a comparative analysis of both algorithms.

A. The Datasets

Network no nodes - links no ODFlows Data Sampling

Abilene 12 - 54 132 OD flows traffic 5’

GEANT 23 - 74 506 OD flows traffic 15’

Tier-2 ISP 50 - 168 2450 links traffic 10’

TABLE I
NETWORK TOPOLOGIES FOR THE DATASETS.

The evaluation of the estimation algorithms is conducted

using real data from two operational networks: the Abilene

network, an Internet2 backbone network, and the GEANT

network, a European research network. For the validation of

the splines-model, we also include data from a private Tier-2

ISP network. Table I presents the topology of each network.

Abilene traffic data consists of 5’ sampled TMs collected via

Netflow from the Abilene Observatory [17] and available at

[18]. GEANT traffic data consists of 15’ sampled TMs, built

from IGP and BGP routing information and Netflow data in

[19], available on the TOTEM website [20]. The Tier-2 ISP

network is a private network and data is not public. Direct OD

flow measurements are not available for this network. Instead,

link traffic volumes are gathered each 10’ via SNMP. Using

this data and a rich description of the topology, we perform a

tomogravity estimation [6] of the real OD flows volume. The

tomogravity method is a widely accepted method to estimate

OD flow volumes from link traffic measurements and topology

information with confident results. In the numerical validation

of our splines model for the Tier-2 ISP network, we show

that the obtained estimation results are very close to those

obtained with the tomogravity estimate for this network. In

the following evaluations, we assume that traffic flows Xt

are just known during the calibration of the recursive Kalman

algorithm and consider the SNMP measurements Yt as the

input known data. In order to verify the stability properties

of the proposed models, two sets of measurements are used



for each network topology: the “learning” dataset, used for

calibration purposes, and the “testing” dataset, used to evaluate

the performance of the algorithms. Let Tlearn and Ttest be the

sets of time indexes associated with measurements from the

learning and testing datasets respectively.

B. Validation of the Splines Model and SML TM Estimation

In this case, both the learning and testing datasets consists

of SNMP measurements. The learning dataset is composed

of one hour of SNMP measurements and it is used to con-

struct the splines basis S; the testing dataset is composed

of 672 SNMP measurements. The splines-based model is

computed for each network using each learning dataset, fol-

lowing these steps: (i) the tomogravity (TG) estimate x̂ TG
t (k)

is computed for all OD flows k and all t ∈ Tlearn; (ii)

the mean flow values x̄ TG(k) = 1
#(Tlearn)

∑
t∈Tlearn

x̂ TG
t (k) are

computed, where # (Tlearn) is the number of time indexes in

the learning dataset; (iii) finally, the obtained mean values

x̄ TG(k) are sorted in ascending order to obtain a rough

estimate of the OD flows traffic volume. The spline-based

model is designed with cubic splines and 2 knots, representing

small, medium-size, and large OD flows. The mean value

x̄ TG(k) of each OD flow is used to compute an estimate

σ̂2
k of σ2

k, which leads to an estimate Φ̂ of Φ, quite efficient

and sufficient in practice.

As a global indication of the accuracy of the SML estimate

and to test the performance of the short learning step, we apply

the relative root mean squared error (RRMSE) for each time

t in the testing dataset:

RRMSE(t) =

√∑
m

k=1
(xt(k) − x̂SML

t
(k))

2

√∑
m

k=1
xt(k)2

, ∀t ∈ Ttest (20)

where xt(k) is the true traffic volume of OD flow k at

time t and x̂SML
t (k) denotes the corresponding SML estimate

previously defined in (6). The RRMSE provides at each time t

a summary of the relative estimation error for all m OD flows.

In the validation of the model for the Tier-2 ISP network, we

compare the value of the SML estimate x̂SML
t (k) against the

tomogravity estimate x̂TG
t (k), using the relative root mean

squared difference (RRMSD) between both estimates:

RRMSD(t) =

√∑
k∈topTG-Th

(x̂TG
t (k) − x̂SML

t (k))
2

√∑
k∈topTG-Th

(x̂TG
t (k))

2

, ∀t ∈ Ttest

(21)

Comparing all flows in (20) is not a reasonable approach.

The tomogravity estimate provides quite accurate results for

relatively high-volume flows, but poor for small flows [6];

we define the topTG-Th flows as those estimated flows by

the tomogravity method that are reasonably stable in time

and which mean value exceeds a threshold Th. In this sense

we only keep the most accurately estimated flows, removing

the noisy or erratic estimates which seems to be wrongly

estimated. Figure 2.(a) presents the temporal evolution of the

RRMSE for the 672 measurements in the testing datasets

for Abilene and GEANT. In both cases, the relative error

remains stable in time, reinforcing the observations about time-

stability of the model we drew from figure 1. Figure 2.(b)
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Fig. 2. (a) RRMSE(t) and (b) Cumulative RRMSE(t) for 672 measurements
in Abilene and GEANT

shows that more than 70% of the time, estimation relative

errors are below 10%. A deeper study of the RRMSE shows

that in most cases, large RRMSE values correspond to large

relative errors in the lowest-volume OD flows, which are well

known to be hard to estimate [6], [11]. Note however that

small OD flows have little impact on traffic engineering tasks

and so are generally less important to estimate. The mean

values of the RRMSE for the evaluation period are 8.14%
for Abilene and 7.04% for GEANT. Methods proposed in

the literature as “accurate” estimates present relative errors

that vary between 5% and 15% [9], [11], so obtained results

are satisfactory. Figure 3 depicts the temporal evolution
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Fig. 3. RRMSD(t) for 1500 flows in a Tier-2 ISP network

of the RRMSD between the TG and SML estimates, for a

Tier-2 ISP network. In this evaluation, we tune Th such that

60% of the total flows are compared in the RRMSD index,

which represents approximately 95% of the total traffic. The

relative difference between the TG and the SML estimates

is stable in time and has a mean value of 0.57%. Based on

our previous observations about the tomogravity estimate, we

conclude that the splines model is also accurate for this Tier-2

ISP network. As a final validation of the splines-model, we

verify the Gaussian assumption for Abilene and GEANT. The

“residuals” of measurements are analyzed, i.e., the obtained

traffic after filtering the mean part Hµt. The residuals are
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Fig. 4. QQ-plots for 2 residual processes from (a) Abilene and (b) GEANT.

obtained by projection of the whitened measurements vector

Zt onto the left null space of H . Quantile-Quantile plots for

two of these residual processes are plotted in figure 4, both

for Abilene and GEANT. These residual processes clearly



follow a Gaussian distribution. We also verify the Gaussian

assumption by applying a Kolmogorov-Smirnov goodness-of-

fit hypothesis test to the residual processes. The acceptance

rate of this test at the level 5% is 98.5% for Abilene and 97.7%
for GEANT, which also confirms the Gaussian assumption.

C. Recursive TM Estimation

0 100 200 300 400 500 600
0  

50

100

150

Time (measurements)

N
o
rm

a
liz

e
d
 T

ra
ff
ic

 V
o
lu

m
e
 (

%
) real ODFlow

estimated ODFlow (1)

estimated ODFlow (2)

Fig. 5. Estimated OD flows using K-F for (1) model 7 and (2) model 17

The first evaluation consists of evidencing the convergence

problem of the recursive TM estimation when using a model

like (7) with A diagonal, as it is done in [10]. In this sense, we

compare the performance of the Kalman filter using models (7)

and (17). In both cases we adopt a diagonal structure for the

state transition matrix A, namely an AR(1) model for each

OD flow. In this evaluation and through the rest of section

IV-C, the learning dataset is composed of 24hs of direct OD

flow measurements Xt, as it is the case in [9]. The testing

dataset consists of 1 week of SNMP measurements from the

GEANT dataset, which represents 672 measurements. We also

assume that the relation between Xt and Yt is exact, that is

to say Vt = 0, ∀t. The learning dataset is used to calibrate

both models (7) and (17), namely estimate the corresponding

transitions matrices and noise covariance matrices (the AR(1)

parameters). We use the Yule-Walker method to compute these

matrices. This method solves the Yule-Walker equations for

the AR processes by means of the Levinson-Durbin recursion,

see [16] for details. Figure 5 depicts the estimation of one

sample OD flow with both Kalman filters; the full black curve

represents the real OD flow; the dashed black curve depicts the

estimated OD flow using model (7); the full gray curve depicts

the estimated OD flow using model (17). In both cases, the

Kalman filter properly tracks the real traffic pattern, as both

curves shape are similar to the real one. However, there is a

clear error-gap when using model (7), which comes from our

previous analysis. Figure 6 shows the evolution of the relative
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Fig. 6. RRMSE(t) for (1) model 7 and (2) model 17

estimation error RRMSD(t) for all OD flows of the TM. The

mean relative error is 53.4% for model (7) and 6.2% for model

(17); in both cases the error evolution is quite stable around its

mean value during the whole evaluation week, giving a first

evidence of the stability advantages of a diagonal transition

matrix.

We now compare the estimation performance of the Kalman

filter for models (17) and (19), namely assuming a constant

mean value for OD flows or a random walk process, and a

diagonal transition matrix in both cases. For this purpose, we

consider a week of traffic in Abilene and GEANT. We consider

the same assumptions adopted in the previous evaluation and

calibrate the different matrices in the same way. In order

to estimate the covariance matrix Qζ of the random walk

noise process ζt, we take the following steps: using a sliding

window averaging filter we first remove the fast temporal

variations from the direct OD flow measurements of the

learning dataset. For each OD flow time-series, we consider

the approximate derivative time-series (i.e., the difference

of consecutive measurements) and compute its variance. We

finally use this variance as an estimate of each diagonal

element in Qζ . Figure 7 depicts the relative estimation error
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Fig. 7. RRMSE(t) and Cumulative RRMSE(t) for 1 week of traffic in
GEANT and Abilene, using (1) model 17 and (2) model 19

evolution for all TM OD flows using both models and one

week of measurements in GEANT and Abilene. The cumu-

lative RRMSE is also depicted in these figures. The obtained

mean values of the relative errors are 6.20% and 4.23% in

GEANT and 6.87% and 4.48% in Abilene, for models (17)

and (19) respectively. We can draw two important conclusions

from both evaluations: in both cases, considering a variable

mean value mX(t) produces better results, both as regards

accuracy and stability, as the curve of cumulative RRMSE

shows a sharper growth. The second conclusion is about the

advantage of correctly using a diagonal transition matrix; in

all evaluations the stable evolution of the error shows that

the underlying model remains valid during several days when

considering such a transition matrix, a major advantage with

respect to the results obtained in the former work [9]. This

simple observation has a major impact on the applicability of

the method in a real scenario: if the underlying model remains

stable, it is not necessary to conduct periodical re-calibrations,

dramatically reducing measurement overheads.



D. Comparative Analysis and Discussion
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Fig. 8. (a) RRMSE(t) and (b) Cumulative RRMSE(t) for 672 measurements
in Abilene, for the SMLE, the RKFE, the TGE, and the SGE.

Figure 8 presents a comparative summary of the perfor-

mance of both presented methods in Abilene. The Splines-

Based Maximum Likelihood Estimate (SMLE) and the Recur-

sive Kalman Filter Estimate (RKFE) are compared against two

very well known traffic matrix estimation algorithms used as

baseline: the Simple Gravity Estimation method (SGE) and the

Tomo-Gravity Estimation method (TGE). The obtained mean

values of the relative error are 8.14%, 4.48%, 11.15%, and

39.08% for the SMLE, RKFE, TGE, and SGE respectively.

From figure 8.(b) we can see that the SMLE and the RKFE

produce estimation relative errors below 10% for approxi-

mately 75% and 92% of the TMs respectively, while this

result drops to nearly 40% for the TGE, and to 0% for the

SGE. These results allow to show the improvements of both

proposed algorithms w.r.t. previous highly respected work.

To conclude with the evaluation, we present in table II

a comparative analysis between the SMLE and the RKFE

methods. Let us discuss each of the compared items. As

regards accuracy, the RKFE presents better results, which is

quite evident given its use of past data to compute the current

estimate. The learning data used by the SMLE consists of

pure SNMP measurements, and the method uses a remarkably

short learning step. In this sense, the SMLE can be applied in

networks where direct OD flow monitoring technology is not

available. On the contrary, a 24hs period of direct OD flow

measurements is needed to calibrate the RKFE method. As

regards complexity, both algorithms are simple to implement

and calibrate, specially the RKFE after the modifications in-

troduced in this work. The considered assumptions in deriving

the SMLE are quite strong compared to those adopted by

the RKFE method. Nevertheless, the validation of the splines

model in three different networks shows that these assumptions

are correctly verified in these cases. Thanks to the underlying

parsimonious model adopted in the SMLE, the method is

completely scalable with the size of the network. The RKFE

method does not scale with the number of OD flows in terms

of computational time and memory issues, given its intrinsic

recurrent characteristic and the inversion of large matrices. The

scalability problem can be alleviated by implementing faster

pseudo-inversion algorithms, but the problem still remains.

Both algorithms can be directly applied for on-line tasks such

as traffic monitoring, but the RKFE presents an interesting

advantage, namely the ability to predict future values of the

TM, taking advantage of the strong temporal correlation of

OD flows traffic. The short learning step of the SMLE method

allows its use under dynamic routing conditions, provided that

the routing modifications occur at time intervals longer than

1 hour in order to allow a correct model recalibration.

Performance Index SMLE X̂SML
t

RKFE X̂t|t

Mean RRMSE (%) - Abilene 8.14 4.48
Mean RRMSE (%) - GEANT 7.04 4.23
Learning Data/Input Data SNMP/SNMP TM/SNMP

Learning Period Duration 1 hs. 24 hs.

Complexity simple simple

Assumptions strong relatively weak

Scalability yes partial

On-line Computation yes yes

Prediction Enable no yes

Supports Dynamic Routing partially no

TABLE II
COMPARATIVE PERFORMANCE OF THE SMLE AND THE RKFE.

V. CONCLUSIONS

In this paper we have revisited the TM estimation problem,

dealing with important issues such as accuracy, stability,

scalability, and on-line applicability among others. We have

extended the validation of a previously introduced spatial

model for OD flows in a large-scale network to three different

operational backbone networks and showed how this model

can be efficiently used in the TM estimation problem. We have

introduced a simple state space model for OD flows and use

it to recursively estimate the TM, using a Kalman filtering

approach. A deep analysis of the drawbacks of this method

as it was originally introduced allowed to better understand

the stability problems of the original approach and to propose

simple yet effective improvements. Both algorithms present

better results than the most accepted estimation methods in

the field.
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