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ABSTRACT

In this paper we focus on multi-resolution spectral anal-
ysis algorithms for music signals based on the FFT. Two
previously devised efficient algorithms (efficient constant-
Q transform [1] and multiresolution FFT [2]) are reviewed
and compared with a new proposal based on the IIR fil-
tering of the FFT. Apart from its simplicity, the proposed
method shows to be a good compromise between design
flexibility and reduced computational effort. Additionally,
it was used as a part of an effective melody extraction al-
gorithm.

1. INTRODUCTION

Many automatic music analysis algorithms, such as those
intended for melody extraction or multiple pitch estima-
tion, rely on a spectral representation of the audio sig-
nal, typically the discrete Short Time Fourier Transform
(STFT). A key issue that arises is the compromise between
time and frequency resolution. The frequency components
of a Discrete Fourier Transform (DFT) are equally spaced
and have a constant resolution. However, in polyphonic
music a higher frequency resolution is needed in the low
and mid frequencies where there is a higher density of har-
monics. On the other hand, frequency modulation gets
stronger as the number of harmonic is increased, requir-
ing shorter windows for improved time resolution. Thus,
a multi resolution spectral representation is highly desired
for the analysis of music signals. In addition, computa-
tional cost is a critical issue in real time or demanding ap-
plications so efficient algorithms are often needed.

In this context several proposals have been made to cir-
cumvent the conventional linear frequency and constant
resolution of the DFT. The constant-Q transform (CQT) [3]
is based on a direct evaluation of the DFT but the chan-
nel bandwidth∆fk varies proportionally to its center fre-
quencyfk, in order to keep constant its quality factorQ =
fk/∆fk (as in Wavelets). Center frequencies are distributed
geometrically, to follow the equal tempered scale used in
Western music, in such a way that there are two frequency
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components for each musical note (although higher values
of Q provide a resolution beyond the semitone). Direct
evaluation of the CQT is very time consuming, but fortu-
nately an approximation can be computed efficiently tak-
ing advantage of the Fast Fourier Transform (FFT) [1].

Various approximations to a constant-Q spectral repre-
sentation have also been proposed. The bounded-Q trans-
form (BQT) [4] combines the FFT with a multirate filter-
bank. Octaves are distributed geometrically, but within
each octave, channels are equally spaced, hence the log
representation is approximated but with a different num-
ber of channels per octave. Note that the quartertone fre-
quency distribution, in spite of being in accordance with
Western tuning, can be too scattered if instruments are not
perfectly tuned, exhibit inharmonicity or are able to vary
their pitch continuously (e.g. glissando or vibrato). Re-
cently a new version of the BQT with improved channel
selectivity was proposed in [5] by applying the FFT struc-
ture but with longer kernel filters, a technique called Fast
Filter Bank. An approach similar to the BQT is followed
in [6] as a front-end to detect melody and bass line in real
recordings. Also in the context of extracting the melody
of polyphonic audio, different time-frequency resolutions
are obtained in [2] by calculating the FFT with different
window lengths. This is implemented by a very efficient
algorithm, named the Multi-Resolution FFT (MR FFT),
that combines elementary transforms into a hierarchical
scheme.

In this paper we focus on multi-resolution spectral anal-
ysis algorithms for music signals based on the FFT. Two
previously devised efficient algorithms that exhibit differ-
ent characteristics are reviewed, namely, the efficient CQT
[1] and the MR FFT [2]. The former is more flexible re-
garding Q design criteria and frequency channel distribu-
tion while the latter is more efficient at the expense of de-
sign constrains. These algorithms are compared with a new
proposal based on the Infinite Impulse Response (IIR) fil-
tering of the FFT (IIR CQT), that in addition to its simplic-
ity shows to be a good compromise between design flexi-
bility and reduced computational effort.

2. FIR Q TRANSFORM IMPLEMENTATIONS

2.1 Efficient constant Q transform

As stated in [3] a CQT can be calculated straightforwardly
based on the evaluation of the DFT for the desired compo-
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nents. Consider thekth spectral component of the DFT:

X[k] =
N−1
∑

n=0

w[n]x[n]e−j2πkn/N

wherew[n] is the temporal window function andx[n] is
the discrete time signal. In this case the quality factor for
a certain frequencyfk equalsk, sinceQk = fk/∆f =
fkN/fs = k. This corresponds to the number of peri-
ods in the time frame for that frequency. The digital fre-
quency is2πk/N and the period in samples isN/k. In the
CQT the length of the window function varies inversely
with frequency (but the shape remains the same), so thatN
becomesN [k] andw[n] becomesw[n, k]. For a given fre-
quencyfk, N [k] = fs/∆fk = fsQk/fk. The digital fre-
quency of thekth component is then given by2πQ/N [k],
the period in samples isN [k]/Q and alwaysQ cycles for
each frequency are analyzed. The expression for thekth
spectral component of the CQT is then1 ,

Xcq[k] =
1

N [k]

N [k]−1
∑

n=0

w[n, k]x[n]e−j2πQn/N [k]. (1)

Direct evaluation of equation (1) is time consuming, so
an efficient algorithm for its computation has been pro-
posed in [1]. The CQT can be expressed as a matrix multi-
plication,Xcq = x ·T ∗, wherex is the signal row vector of
lengthN (N ≥ N [k] ∀k) andT ∗ is the complex conjugate
of the temporal kernel matrixT whose elementsT [n, k]
are,

T [n, k] =

{ 1
N [k]w[n, k]e−j2πQn/N [k] if n < N [k]

0 otherwise

Computational effort can be improved if the matrix multi-
plication is carried out in the spectral domain. Using Par-
seval’s relation for the DFT, the CQT can be expressed as,

Xcq[k] =
N−1
∑

n=0

x[n]T ∗[n, k] =
1

N

N−1
∑

k′=0

X[k′]K∗[k′, k] (2)

whereX[k′] andK[k′, ·] are the DFT ofx[n] andT [n, ·]
respectively. Spectral kernels are computed only once tak-
ing full advantage of the FFT. In the case of conjugate
symmetric temporal kernels, the spectral kernels are real
and near zero over most of the spectrum. For this rea-
son, if only the spectral kernel values greater than a certain
threshold are retained, there are few products involved in
the evaluation of the CQT (almost negligible compared to
the computation of the FFT ofx[n]).

It is important to notice that although the original deriva-
tion of the CQT implies a geometrical distribution of fre-
quency bins, it can be formulated using other spacing, for
instance a constant separation. In the following, linear
spacing is used to put all the compared algorithms under
an unified framework.

1 A normalization factor1/N [k] must be introduced since the number
of terms varies withk.

2.2 Multi-resolution FFT

A simple way to obtain multiple time-frequency resolu-
tions is through the explicit calculation of the DFT us-
ing different frame lengths. In [2], an efficient technique
is proposed where the DFT using several frame lengths
is computed by means of the combination of the DFT of
small number of samples, called elementary transforms.
The idea arises from the observation that a transform of
frame lengthN can be split into partial sums ofL terms
(assumingN/L ∈ N),

X[k] =

N−1
∑

n=0

x[n]e−
j2πkn

N =

N
L
−1

∑

c=0

(c+1)L−1
∑

n=cL

x[n]e−
j2πkn

N . (3)

Each inner sum in equation 3 corresponds to the DFT of
lengthN of a sequencexc[n], wherexc[n] is anL samples
chunk ofx[n], time-shifted and zero padded,

xc[n] =

{

x[n], cL ≤ n < (c + 1)L
0, otherwise.

So, it is possible to obtain a DFT of a frame of sizeN from
N/L elementary transforms of frame sizeL, defined as

Xl[k] =

L−1
∑

n=0

x[n + lL]e−j2πkn/N , l = 0, ...,
N

L
− 1.

To that end, it is enough to add the elementary transforms
modified with a linear phase shift to include the time shift
of xc[n], as stated by the shifting theorem of the DFT,

X[k] =

N
L
−1

∑

l=0

Xl[k]e−j2πkl/N . (4)

This procedure can be generalized to compute the DFT of
any frame of lengthM = rL by addingr elementary trans-
forms (r = 1, ..., N/L) in the equation 4, which results in
N/L possibles spectral representations with frequency res-
olutions offs/(rL).

The computation of the multi-resolution spectrum from
a combination of elementary transforms requires the win-
dowing process to be done by means of convolution prod-
uct in the frequency domain. Temporal windows of the
form

w[n] =

M
2

∑

m=0

(−1)mam cos

(

2π

M
mn

)

(5)

are suitable for this purpose because its spectrum has only
few non-zero samples. Due to the fact that windowing is
applied over zero-padded transforms, it is convenient to
consider a periodic time window of the same length of the
DFT to avoid the appearance of new non-zero samples of
the window spectrum. In this case, the spectrum of a win-
dow of the form of equation 5 results in

W [k] =

M
2

∑

m=0

(−1)m am

2

(

δ

[

k −m
N

M

]

+ δ

[

k + m
N

M

])
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Figure 1. Zero-Pole diagram and IIR filters responses for
three different input sinusoids of frequenciesf1 = 0.11,
f2 = 0.30 andf3 = 0.86 radians.

For example, in Hann and Hamming windows onlya0 and
a1 are not zero and so its DFT contains solely three non-
zero samples. As a counterpart, the restriction thatN/M =
N/(rL) ∈ N must be imposed, reducing the possible num-
ber of resolutions tolog2(N/L) + 1.

3. IIR Q TRANSFORM

3.1 FIR/IIR Filterbank

The proposed methods define a Finite Impulse Response
(FIR) filterbank with different impulse responses for differ-
ent frequencies. The result of applying one of these filters
can be regarded as multiplying the frame with a time win-
dow, which defines the time/frequency resolution. Variable
windowing in time can also be achieved applying an IIR
filterbank in the frequency domain. Let us define thekth

filter as a first order IIR filter with a polepk, and a zerozk,
as,

Yk[n] = X[n]− zkX[n− 1] + pkYk[n− 1] (6)

Its Z transform is given by,

Hfk
(z) =

z − zk

z − pk
.

Here,Hfk
(z) evaluated in the unit circlez = ejτ repre-

sents its time response, withτ ∈ (−π, π] being the nor-
malized time within the frame. A different time window
for each frequency bin is obtained by selecting the value of
thekth bin as the output of thekth filter.

The design of these filters involves finding the zero and
pole for eachk such thatwk(τ) = |Hfk

(ejτ )|, where
τ ∈ (−π, π] andwk(τ) is the desired window for the bink.
When a frame is analyzed, it is desirable to avoid disconti-
nuities at its ends. This can be achieved by placing the zero
in τ = π, that iszk = −1. If we are interested in a sym-
metric window,wk(τ) = wk(−τ), the pole must be real.
Considering a causal realization of the filter,pk must be
inside the unit circle to assure stability, thuspk ∈ (−1, 1).
Figure 1 shows the frequency and time responses for the
poles depicted in the zero-pole diagram.

This IIR filtering in frequency will also distort the phase,
so a forward-backward filtering should be used to obtain a

zero-phase filter response. Then, the set of possible win-
dows that can be represented with these values ofpk is,

wk(τ) =
(1−pk)2

4

[

A(τ)

B(τ)

]2

=
(1− pk)2(1 + cos τ)

2(1 + p2
k − 2pk cos τ)

(7)

whereA(τ) andB(τ) are the distances to the zero and the
pole, as shown in Figure 1, andgk = (1 − pk)2/4 is a
normalization factor2 to have 0 dB gain at timeτ = 0,
that is,wk(0) = 1.

While this filter is linear and time invariant (in fact fre-
quency invariant3 ) a different time window is desired for
each frequency component. Computing the response of the
whole bank of filters for the entire spectrum sequence and
then choosing the response for only one bin is computa-
tionally inefficient. For this reason, a Linear Time Variant
(LTV) system, that consists in a Time Varying (TV) IIR
filter, is proposed as a way to approximate the filterbank
response at the frequency bins of interest. It will no longer
be possible to define the filter impulse response, as this
could only be done if the filters were invariant to frequency
shifts.

3.2 LTV IIR System

Selecting a different filter response of the filterbank for
each frequency bin can be considered as applying an LTV
system to the DFT of a frame. The desired response of the
LTV for a given frequency bin is the impulse response of
the correspondent filter.

Any LTV system can be expressed in the matrix form,
Y = K.X whereK is the linear transformation matrix
(also referred as Greens matrix) and, in this case,X is the
DFT of the signal frame. A straightforward way to con-
structK for any LTV system is to set itsith column as the
response to a shifted deltaδ[n− i], which is named Steady
State Response (SSR).

The approach followed in this work consists in approxi-
mating the LTV system by a single TV IIR filter, assuming
that the LTV system has a slow time varying behavior and
that its SSR can be implemented by an IIR filterbank. Then
it is verified that the approximation is sufficiently good for
our purposes. In the case of variable windowing to ob-
tain a constant Q, these assumptions hold, as time windows
for two consecutive frequency bins are intended to be very
similar, and the LTV system can be implemented by an IIR
filterbank as seen before.

A direct way of approximating the IIR filterbank is by
a first order IIR of the form of equation 6, but in which the
pole varies with frequency (p = p[n]),

Y [n] = X[n] + X[n− 1] + p[n]Y [n− 1]. (8)

With an appropriate design, it reasonably matches the de-
sired LTV IIR filterbank response, and its implementation
has low computational complexity.

2 This normalization factor can be calculated from the impulse re-
sponse evaluated atn = 0, or by the integral of the time window function.

3 Note that we will use the usual time domain filtering terminologyin
spite of the fact that filtering is performed in the frequency domain.
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3.3 Time Varying IIR filter design

A question that arises is how to design the TV IIR filter
in order to have a close response to that of the LTV IIR
filterbank. Several design criteria have been proposed in
the literature [7], that may depend on the problem itself.

The TV IIR can also be represented by a matrixKv in
a similar way as the LTV filterbank, so the design can be
done as in [7], by minimizing the normalized mean square
error,E = ||K − Kv||2/||K||2. In this work, the adopted
design criteria is to impose the windows behavior in time
in order to obtain the desired constant Q. Then, the error is
regarded as the difference between the desired Q and the
effective obtained value. It becomes necessary to define
an objective measure of Q. Usually the quality factor of a
passband filter is defined as the ratio between the center
frequency and the bandwidth at 3 dB gain drop. In our
case the filtering is done in the frequency domain, so it is
reasonable to measure Q in the time domain. Given that Q
represents the number of cycles of an analyzed frequency
component in the frame, it makes sense to define Q as the
number of cycles within the window width at a certain gain
drop, for example 3 dB. Ifτ ′k is the time at this drop for
frequencyfk, wk(τ ′k) = 10−

3

20 w(0) , w′

k, thenτ ′k =
Q/(2fk). This definition allows the comparison of Q for
methods with different window shapes. Note however, that
a similar measure of Q can be formulated in the frequency
domain.

In the proposed approach the first step is to design an
IIR filterbank that accomplishes the constant Q behavior.
Then, a TV IIR filter is devised based on the poles of the
filterbank. Finally a fine tuning is performed to improve
the steadiness of the Q value for the TV IIR filter. In the
following section, this procedure is described in detail.

3.3.1 Proposed design

Following the definition of Q in time, the poles of the IIR
filterbank can be calculated from equation 7 as the solution
of a second order polynomial:(2w′

k − cos(τ ′k)− 1)p2
k+

(2+2 cos(τ ′k)−4w′

k cos(τ ′k))pk +2w′

k−cos(τ ′k)−1 = 0.
Then, a simple and effective design of the TV IIR fil-

ter consists in choosing for each frequency bin the corre-
sponding pole of the IIR filterbank, that isp[n] = pk, with
k = n. The Q factors obtained with this approach are close
to the desired constant value but with a slight linear drift.
This result shows that the slow variation of the LTV system
allows an approximation by a single TV IIR with a little de-
viation that can be easily compensated by adding the same
slope to the desired Q value at each bin. Figure 3 shows
the Q curve for the original and compensated designs.

Another design consideration is that for low frequencies
a constant Q would imply a longer window support than
the frame time. It becomes necessary to limit the timeτ ′k to
a maximum timeτmax, such that2 τmax is smaller than the
frame time. This limitation ofτ ′k to a maximum value must
be done in a smooth way. Let̄τ ′k be a new variable that
represents the result of saturatingτ ′k. The transition can
be implemented with a hyperbola whose asymptotes are
τ̄ ′k = τ ′k andτ̄ ′k = τmax, so that(τ̄ ′k− τmax)(τ̄ ′k− τ ′k) = δ,
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Figure 2. Detail of poles design. Pole locations for the
ideal and saturated design. Impulse responses at low fre-
quencies for the TV IIR and the Steady State, along with
corresponding TV IIR time windows.

whereδ is a constant that determines the smoothness of the
transition.

The selection ofτmax, affects the behavior of the trans-
form in low frequencies. Choosing a smallτmax compared
to the frame time gives poor frequency resolution. On the
contrary, ifτmax is set to a value close to the frame time, a
better resolution is expected, but some distortion appears.
This is because the time windows get close to a rectan-
gular window for low frequencies. The spectrum of these
windows has big side lobes, introducing Gibbs oscillations
in the representation. Additionally, as a time window for
low frequency approaches to a rectangular shape, its re-
sponse to an impulse vanishes more slowly, so it becomes
necessary to calculate the response for some negative fre-
quency bins, adding extra complexity. In practice it is
reasonable to choose an intermediate value ofτmax, e.g.
τmax ≈ 0.7π, such that only for very low frequencies the
transform exhibits non constant Q. Figure 2 shows details
of the described poles design.

3.3.2 TV IIR filtering and zero-padding in time

It is common practice to work with a higher sampling fre-
quency of the spectrum, typically obtained by zero-padding
in time. In this case the TV IIR filter design changes, as the
signal support becomes(−τ1, τ1] with 0 < τ1 < π. Then,
the discontinuity to be avoided at the ends of the frame ap-
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p = design_poles (NFFT, Q) ;
X = f f t ( f f t s h i f t (s ) ) ;
Y ' ( 1 ) = X( 1 ) ;
f o r i = 2 :NFFT/ 2

Y ' ( n ) = X(n−1) + X(n ) + p (n )Y ' ( n−1) ;
end
Y(n ) = Y ' ( NFFT/ 2 ) ;
f o r i = NFFT/2−1:−1:1

Y(n ) = Y ' ( n +1) + Y ' ( n ) + p (n )Y(n +1) ;
end

Table 1. Pseudocode of the TV IIR filter. First, the poles
and normalization factor are designed given the number of
bins (NFFT) and the Q value. Then the FFT of the signal
frames is computed after centering the signal at time 0. Fi-
nally the forward-backward TV IIR filtering is performed
for that frame.

pears at±τ1, so a couple of zeros at±τ1 have to be placed
instead of the zero atπ. Window properties outside this
support are irrelevant, as windowed data values are zero.
The design of poles has to take into account the new zeroes
and the time re-scaling, but windows with similar proper-
ties are obtained.

3.3.3 Implementation

The method implementation4 is rather simple, as can be
seen in the pseudocode of Table 1. A function to design the
poles is called only once and then the forward-backward
TV IIR filtering is applied to the DFT of each signal frame.
The proposed IIR filtering applies a window centered at
time 0, so the signal frame has to be centered before the
transform. To avoid transients at the ends, the filtering
should be done circularly using a few extra values of the
spectrum as prefix and postfix. Their lengths can be cho-
sen so as truncation error lies below a certain threshold, for
instance 60 dB.

4. METHODS COMPARISON

4.1 Frequency scale

Depending on the context of the music analysis application
different frequency grids may be preferred. To this respect,
the efficient CQT method can be designed for any arbitrary
frequency spacing. On the contrary, the MR FFT and the
IIR CQT are constrained to a linear frequency scale be-
cause they rely on the DFT. This spacing typically implies
an oversampling at high frequencies to conform with the
minimum spacing at low frequencies.

4.2 Effective quality factor

The analyzed methods have different flexibility to define
an arbitrary Q at each frequency. The efficient CQT offers
the freedom to set any possible Q for every bin. The MR
FFT allows choosing the resolution for every bin from a
reduced set not enabling an arbitrary Q. On the other hand,

4 The complete code is available athttp://iie.fing.edu.uy/
˜ pcancela/iir-cqt .

Figure 3. Comparison of the effective Q for a target value
of 12.9 given the definition of 3.3. This value gives 34
cycles within the window, as commonly used in the CQT.

Figure 4. Windows comparison at frequenciesf1, f2 and
f3 for the different methods. Atf1 andf3 the three meth-
ods have the same Q, while atf2 the MR FFT can not
achieve the desired Q. For this reason, the two nearest MR
FFT windows are considered atf2. CQT and MR FFT are
computed using a Hamming and Hann windows respec-
tively.

the TV IIR filter allows any Q value for any frequency but
with the constraint that it evolves slowly with frequency.
This holds particularly well in the case of a constant Q
transform, so the IIR CQT can give any constant Q with
a fairly simple design. Figure 3 shows the obtained Q with
the different methods. It can be observed that the MR FFT
has a bounded Q due to the resolution quantization.

4.3 Windows properties

The spectral and temporal characteristics of windows at
three different frequencies are shown in Figure 4 for each
method. At frequencyf1, IIR CQT time window behaves
like a Hann window. For lower frequencies it exhibits a
flatter shape to extend the range of constant Q (see Figure
2). For higher frequencies, the main lobe of the obtained
windows has a steeper drop up to -50 dB compared to a
conventional Hann or Hamming window. As a counter-
part, time resolution is slightly diminished. Note that the
selected drop value in the definition of Q sets the location
in this compromise.
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4.4 Computational complexity

The three algorithms are compared based on the number of
real floating point operations performed in mean for each
frequency bin. All of them compute the DFT of a non win-
dowed frame, so these operations are not considered.

The number of operations in the efficient CQT depends
on the length of the frequency kernels. This length varies
with Q and is different for different frequency bins. For
the Q and threshold values used in Figures 3 and 4 (QCQT

= 34, Q = 12.9, th = 0.0054),NFFT= 2048 and fs = 44100
Hz, the frequency kernel length varies from 1 to 57 coef-
ficients, which implies a mean number of 27 real multi-
plications and 27 real additions. This result depends on
the threshold and inversely on Q. The MR FFT takes ad-
vantage of the hierarchical implementation of the FFT to
compute the transform, so the windowing in the frequency
domain needs only 3 complex sums and 2 multiplications
for each bin. The total number of real floating point oper-
ations is then, 4 multiplications and 6 additions. The IIR
CQT involves a forward and backward IIR filtering with a
variable real pole and a zero, followed by a real normaliza-
tion (see Table 1 for a pseudocode). As the frequency com-
ponents are complex values, the necessary number of real
operations to compute each bin is 6 multiplications and 8
additions (plus a negligible number of extra operations due
to the circularly filtering approximation).

5. APPLICATIONS AND RESULTS

Finally, two different examples of the spectral analysis of
polyphonic music using the proposed IIR CQT method
are shown in Figure 5 together with conventional spectro-
grams. As it is expected in a constant Q transform, it can
be noticed that singing voice partials with high frequency
slope tend to blur in the spectrogram but are sharper in
the IIR CQT. This improved time resolution in high fre-
quencies also contributes to define more precisely the note
onsets, as can be seen in the second example (e.g. the
bass note at the beginning). Moreover, in the low fre-
quency band, where there is a higher density of compo-
nents, the IIR CQT achieves a better discrimination, due to
the fact that its time windows are flatter than typically used
windows. At the same time, frequency resolution for the
higher partials of notes with a steady pitch is deteriorated.

The proposed IIR CQT method was used as part of the
spectral analysis front-end of a melody extraction algo-
rithm submitted to the MIREX Audio Melody Extraction
Contest 2008, performing best on Overall Accuracy5 . Al-
though the constant Q behavior of the spectral representa-
tion is just a small component of the algorithm, the results
may indicate that the usage of the IIR CQT is appropriate.

6. CONCLUSIONS

In this work a novel method for computing a constant Q
spectral transform is proposed and compared with two ex-

5 The MIREX 2008 evaluation procedure and results are available
at http://www.music-ir.org/mirex/2008/index.php/
Audio_Melody_Extraction .

Figure 5. STFT and IIR CQT for two audio excerpts, one
with a leading singing voice and the other, instrumental
music.

isting techniques. It shows to be a good compromise be-
tween the flexibility of the efficient CQT and the low com-
putational cost of the MR FFT. Taking into account that it
was used in the spectral analysis of music with encourag-
ing results and that its implementation is rather simple, it
seems to be a good spectral representation tool for audio
signal analysis algorithms.
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