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Abstract: Kuramoto model of coupled oscillators represents situations where several individual
agents interact and reach a collective behavior. The interaction is naturally described by a
interconnection graph. Frequently, the desired performance is the synchronization of all the
agents. Almost global synchronization means that the desire objective is reached for every
initial conditions, with the possible exception of a zero Lebesgue measure set. This is a useful
concept, specially when global synchronization can not be stated, due, for example, to the
existence of multiple equilibria. In this survey article, we give an analysis of the influence of
the interconnection graph on this dynamical property. We present in a ordered way several
known and new results that help on the characterization of what we have called synchronizing
topologies.
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1. INTRODUCTION

The Kuramoto model of coupled oscillators represents sev-
eral physical phenomena in which synchronization plays a
crucial role. The mathematical model consists of a number
of oscillators that influence each other in a way such that
a collective behavior emerges. This mathematical model,
derived in the middle 1970’s, applies to several biolog-
ical examples like circadian or cardiac pacemaker cells,
brain cells’synchronization, fireflies flashing synchronously,
physical phenomena like the Josephson junction for su-
perconduction and laser arrays, and engineering problems
like microwave antenna arrays, robots, etc. (see Kuramoto
[1975], Strogatz [1994], Acebrón et al. [2005], Li [2008], Lin
and Lin [2009]) and references there in.

In the last decade, the control community have studied
synchronization problems in many different contexts. See,
for example, the survey article of Olfati-Saber et al. [2007].
Other works describe different contexts and approaches
that show the relevance of the underlying interconnection
graph (Jadbabaie et al. [2004], Marshall et al. [2004],
Rogge and Aeyels [2004], Verwoerd and Mason [2007],
Wang and Ghosh [2007], Smet and Aeyels [2008], Aeyels
and Smet [2008], Carareto et al. [2009], Chopra and Spong
[2009]). For the Kuramoto model, when all the oscilla-
tors are identical, the dynamical properties of the system
relay totally on the algebraic and topological properties
of this graph. In (Monzón and Paganini [2005], Canale
and Monzón [2007, 2008]), this fact and its properties
were analyzed. It has motivated us to use the expression
synchronizing graph for describing an interconnection that
ensures synchronization for almost every initial condi-
tion, in a sense that we will explain later. In this work,
we present a set of results on the road to characterize

synchronizing graphs. We show some general dynamical
and algebraic properties that evidence the complexity of
the characterization problem. We introduce a reduction
method and find some synchronizing families. Several re-
sults included here have been presented before in different
conferences from control theory and graph theory. We
collect them in a unified presentation, together with new
results. We emphasize that most of the proofs make use
of classical arguments of both theories. Nevertheless, since
standard graph operations do not preserve the synchro-
nization property, we have derived new theory in order to
step forward towards a characterization of synchronizing
graphs families.

In Section 2, we describe the Kuramoto model, we state the
necessary graph notations and properties and we introduce
the idea of synchronizing graphs. In Section 3, we present
several results that will help us to advance towards the
characterization of synchronizing graphs. In Section 4, we
derive a reduction method for graph analysis. In Section 6,
we present several synchronizing families. Finally, we state
some conclusions and some directions of future research.

2. THE KURAMOTO MODEL

In 1975, Kuramoto introduced a nice mathematical model
for describing synchronization phenomena in nature, fol-
lowing the works of A. Winfree on biological clocks (see
Kuramoto [1975, 1984], Winfree [1980]). When several
agents work together, they influence each other and new
behaviors may emerge. At the mathematical model level,
each agent is represented by an oscillator and it is de-
scribed by a phase, an angle θ ∈ [0, 2π) (a particle run-
ning at the natural angular velocity). Interactions between
agents enter the model as perturbations of the natural
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angular velocity of a given agent. The standard Kuramoto
model is (Kuramoto [1975])

θ̇i = ωi +
∑

j∈Ni

sin (θj − θi) , i = 1, 2, . . . , n (1)

where Ni denotes the set of agents that interact with
agent i; we call them the neighbors of i. Define the phase
vector θ = [θ1, . . . , θn]T and the angular velocity vector
ω = [ω1, . . . , ωn]T . The natural state space is the n-
dimensional torus T

n. As was shown in (Jadbabaie et al.
[2004]), equation (1) may be re-written as

θ̇ = ω − B. sin
(

BT θ
)

(2)

where B is an incidence matrix of the graph G -with an
arbitrary orientation- that describes the way the different
agents influence each other 1 . This notation makes explicit
the relevance of the underlying graph. As was remarked
by Kuramoto, we can conceive the system as a bunch of
particles running on a unit circumference; the interactions
are like nonlinear forces that speed up or slow down the
particles. In this model, synchronization, or consensus,
means that all the agents move keeping constant their
phase differences. At the circumference, all the particles
are running, keeping constant their distances. From the
dynamical point of view, questions like convergence to
the synchronized state and its stability become natural.
Almost global synchronization (a.g.s.) denotes the situ-
ation where almost every trajectory, with the possible
exception of a zero Lebesgue measure set, converges to a
synchronized state. This concept is based on the works of
(Rantzer [2001]) and is particularly useful when the system
have multiple equilibria and global convergence can not
be achieved. When all the agents have the same angular
velocity, we may perform a change of variables and get the
general expression

θ̇ = −B. sin
(

BT θ
)

(3)

This is the equation we will work with. As can be seen, syn-
chronization depends only on the underlying interconec-
tion graph. When the system has the (a.g.s.) property,
we say the graph synchronizes or is synchronizing. The
main objective of our research is the characterization of
the synchronizing graphs.

We just recall that an incidence matrix Bn×m of a graph
G = (V, E) (with vertices set V and edges set E) is
constructed as follows: bij = 1 if edge j reaches node
i, −1 if edge j leaves vertex i and 0 otherwise. Given a
non directed graph G, if we endow it with an arbitrary
orientation and construct an incidence matrix B, it follows
that the laplacian of G is L = BBT .

3. MAIN PROPERTIES

In this Section, we will focus on the general properties
of equation (3), its equilibria and its relationships with
the underlying interconnection graph. Each oscillator may
be represented by a phasor Vi = ejθi , i = 1, . . . , n. For
each agent i, we introduce the complex numbers αi =
1
Vi

∑

k∈Ni
Vk. It is straightforward to see that system (3)

is a gradient system (see Jadbabaie et al. [2004], Lin

1 We will make use of several standard graph theory concepts,

results and techniques. For an introduction to this field or for more

details,see (Biggs [1993], Godsil and Royle [2001]).

and Lin [2009]). We assume we have an underlying graph
G = (V, E). We have the potential function

U(θ) = U0 − 1
T
m. cos(BT θ) (4)

with U0 a real number. Observe that U(θ) = U(θ + k.1n)
for every real k. A direct calculation gives

U̇(θ) = −‖θ̇‖2 (5)

So, U decreases along the trajectories of system (3). For
U0 = m, U is non negative and generalizes in some sense
the square of the order parameter defined by Kuramoto
(Kuramoto [1984], Jadbabaie et al. [2004]). Since, in this
case, U(c1n) = 0 for every c ∈ [0, 2π), we may see
U as a local Lyapunov function that proves the local
stability of the consensus (see Khalil [1996], Jadbabaie
et al. [2004]). Moving towards global properties, we wonder
what happens when we start far from the consensus curve.
Equation (5) says that the potential is non increasing along
the trajectories of the system. Since we are working on
a compact state space, we may apply LaSalle result and
conclude that every trajectory converge to an equilibrium
point of (3) (see Khalil [1996]). Moreover, the only at-
tractors of the system are the equilibria. So, in order to
have the a.g.s. property, the consensus must be the only
attractor of the state space or, equivalently, every non
consensus equilibria must be unstable. Our main tool for
classifying the equilibria is Jacobian linearization. At an
equilibrium point θ̄, the Jacobian matrix Mn×n of system
(3) is symmetric and takes the explicit form















mii = −
∑

k∈Ni

cos(θ̄k − θ̄i) = −αi

mhi =

{

cos(θ̄h − θ̄i) , h ∈ Ni

0 , h /∈ Ni

(6)

or, in a compact notation: M = −B.diag
[

cos(BT θ̄)
]

.BT ,
which can be thought as a weighted laplacian. Observe
that always M.1n = 0 and M has a null eigenvalue. This
is related to the existence of equilibrium curves (actually,
we are trying to prove transversal stability of these curves).
If M has a positive eigenvalue, then θ̄ is unstable; if M has
n−1 negative eigenvalues, θ̄ is stable. If the null eigenvalue
is not simple, then Jacobian linearization is not enough
for proving stability of θ̄. Without looking directly to the
eigenvalues, we can work with the quadratic form induced
by M . Let x ∈ R

n and denote by ik the link between nodes
i and k, when it exists. Then,

xT Mx = −
∑

ik∈E

(xk − xi)
2 cos(θk − θi) (7)

We have the following general results.

Lemma 3.1. θ̄ ∈ T
n is an equilibrium point if and only if

αi is real, for i = 1, . . . , n.

Proof: From its definition, the imaginary part of αi

is
∑

k∈Ni
sin (θk − θi). So, at an equilibrium point, the

imaginary part vanishes and the numbers αi are all real.
�

Lemma 3.2. Let θ̄ ∈ T
n is an equilibrium point.

i) If cos(θ̄i − θ̄j) > 0 for every connected pair of nodes
i, j, then θ̄ is stable.

1st IFAC NECSYS (NECSYS'09)
Venice, Italy, September 24-26, 2009

43



ii) If for some i, the number αi(θ̄) is negative, then θ̄ is
unstable.

iii) If for some i, the number αi(θ̄) is null, then θ̄ is
unstable.

iv) If for a suitable reference, some θ̄i ∈ (−π
4 , π

4 ) and the

rest of the agents’ phases are in (− 3π
4 , 5π

4 ), then θ̄ is
unstable.

v) If all the agents’ phases are located inside a semi
circumference, then θ̄ is a consensus equilibria.

vi) If θ̄ is a partial synchronized equilibrium point, then
θ̄ is unstable.

Proof: The first assertion comes from the direct obser-
vation of the Jacobian matrix M in (6). It is a weighted
laplacian, with a positive definite weight. Since the lapla-
cian has n−1 non zero and positive eigenvalues, we obtain
the stability of θ̄.

Now, let us consider the case where there is a negative
αi. Since this number appears at the diagonal of the
symmetric matrix M , it implies that M has a positive
eigenvalue.

We have a different situation when there is a null αk, since
the matrix M may have a multiple null eigenvalue. Looking
carefully at equation (4), we observe that we can re write
U as follows

U(θ) = U0−
1

2

n
∑

i=1

∑

k∈Ni

cos(θk−θi) = m−
1

2

n
∑

i=1

αi(θ) (8)

Consider the k-th element of the canonical base ek, a
small positive number δ and a perturbation θ̃ = θ̄ +
δ.ek. Then U(θ̃) = U0 −

1
2

∑n

i = 1

i 6= k

∑

h∈Ni
cos

(

θ̄h − θ̄i

)

−

1
2

∑

h∈Nk
cos

(

θ̄h − θ̄k − δ
)

. After some calculations, we
may write

U(θ̃) = U0 −
1

2

n
∑

i = 1

i 6= k

∑

h ∈ Ni

h 6= k

cos
(

θ̄h − θ̄i

)

−
∑

h∈Nk

[

cos
(

θ̄k + δ − θ̄h

)]

Using the identity: cos(a+b) = cos(a) cos(b)−sin(a) sin(b),
we have that cos

(

θ̄k + δ − θ̄h

)

= cos(δ)ℜe [αk]+sin(δ)Im [αk] =

0. Then, it turns out that U(θ̃) = U(θ̄) for all δ. We
have proved that arbitrarily close to θ̄, we can find non
equilibrium points with the same potential value. This
implies that, arbitrarily close to θ̄, there are points with
more or less potential value. So, θ̄ must be unstable 2 .

Now, we prove iv). It follows by taking, in equation (7), xi

to be zero if θi ∈ (−π/4, π/4) and to be one otherwise.
With this choice, xT Mx > 0 and M has a positive
eigenvalue.

In order to prove v), suppose, by contradiction that exists
unsynchronized agents. Then mini{θ̄i} < maxi{θ̄i}. Let m
and M be such that θ̄m = mini{θ̄i} and θ̄M = maxi{θ̄i. We
claim there should exist an index k achieving the minimum

2 Actually, function U is in the hypothesis of Cetaev’s instability

theorem (see Khalil [1996]).

but unsynchronized with at leas one of its neighbors. In-
deed, it suffices to consider a walk vm = v0, v1, . . . , vl = vM

from vertex vm to vertex vM , with respective phases θ̄m =
θ̄0, θ̄1, . . . , θ̄l = θ̄M . Let k = max{i | θ̄0 = θ̄1 = . . . = θ̄i}.
Then k < l; otherwise, it would be θ̄m = θ̄M . Besides,
θ̄k 6= θ̄k+1. Since the angles θ̄i are all in a semi circumfer-
ence, sin(θ̄i − θ̄k) have the same sign of (θ̄i − θ̄k) for all i
and then

∑

i∈Nk
sin(θ̄i − θ̄k) > 0. But it contradicts the

equilibrium condition of θ̄.

Finally, we prove the last affirmation. We observe that
at a partially synchronized equilibrium point, we may
recognize two sets of agents, located at opposite sides on
the circumference, and we can color the graph. We define
a vector x ∈ Rn as follows: we assign 1 to the elements of x
related with one set and 0 to the other components. Then,
in equation (7), xT Mx is positive and then, θ̄ is unstable.
�

Result in item v) is a particular case of Theorem 2 in
(Jadbabaie et al. [2004]). The proof we present here is
more intuitive and only involves graph theory elements.
Property iii) is quite relevant, because a situation when
a null α appears could be when the phase differences of
angles at an equilibrium point are ±π

2 . In this case, the
multiplicity of the null eigenvalue of the Jacobian M may
be more than one and so, linearization does not allow to
establish transversal stability and we need more complex
tools.

Now, we focus again on function U as defined in (4). The
following results will be useful. The proofs follow the lines
of Lyapunov and Cetaev Theorems (Khalil [1996]).

Lemma 3.3. Consider a stable equilibrium point θ̄ of (3).
Then, if we choose U0 such that U(θ̄) = 0, the function U
is positive in a neighborhood of θ̄ transversal 3 to direction
1 and U is a Lyapunov function for this equilibrium point.

Lemma 3.4. Consider an unstable equilibrium point θ̄ of
(3) and an arbitrary number ǫ > 0. Then, if we choose U0

such that U(θ̄) = 0, the function U must take negative
values in Bθ̄(ǫ).

v

Fig. 1. A graph with a cut vertex v.

4. INTERCONNECTING SYSTEMS

In this Section we focus on how the synchronizing proper-
ties are affected when we interconnect systems. The main
result we derive here can be thought also as a reduction
procedure for analyze graph topologies.

If a graph G can be split into two non trivial sub graphs
G1 and G2, such that: i) they only have one vertex v in
common and ii) there is no edge between elements of G1

3 Recall that U(θ) = U(θ + c.1).
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and G2, we say that v is a cut vertex or an articulation
point of G. Fig. 1 shows a graph with a cut vertex v. Cut
vertices help us to decompose a given graph G into a set
of blocks. Each block is either a single vertex, a bridge (an
edge whose removal disconnect the graph or a bi-connected
component (a subgraph which has always two distinct
paths between any pair of nodes). We have the following
result. A first proof based only on Jacobian linearization
was presented in (Canale and Monzón [2007]).

Theorem 4.1. Let G a graph, v a cut vertex and G1 and
G2 be the respective split of G, i.e., v is the only common
vertex of G1 and G2. G synchronizes if and only if G1 and
G2 do.

In order to prove this result, we introduce an auxiliary
system. Let us denote by f(θ) the field of system (3):
f(θ) = −B. sin(BT θ). Consider the new system,

θ̇ = f̃(θ) (9)

with field f̃(θ), such that f̃1 = 0 and f̃i = fi, i = 2, . . . , n,
whose dynamic develops on an horizontal hyperplane. If
we choose θ1(0) = 0, we have that the trajectories are in

Π = {θ ∈ T
n | θ1 = 0}. Vector field f̃ can be also seen as

the orthogonal projection of f onto Π. Let g : T
n → T

n

be the translation parallel to vector 1n up to hyperplane
Π: g(θ) = θ − θ1.1n ∈ Π. Due to the invariance property,
it follows that f(θ) = f(g(θ)). So, for a given state θ,
we will consider two dynamics: the one associated to the
field f acting on θ and the one associated to the vector
field f̃ at g(θ). We will analyze how this two dynamics
are related. First of all, consider an equilibrium point θ̄ of
(3). Since f(θ̄) = 0 = f(g(θ̄)), we have that f̃(g(θ̄)) = 0
and g(θ̄) is an equilibrium of (9). Conversely, consider an
equilibrium point θ̄ of (9). Then, since 1n.f(θ) = 0 for
every θ, f(θ̄ + c.1n) = 0 for every real c and we have a
whole line of equilibria of (3). The following result is the
key for Theorem 4.1. We do not include its proof here, for
space reasons.

Proposition 4.1. Let θ̄ ∈ T
n be an equilibrium point of (3)

and consider the respective equilibrium g(θ̄) of (9). Then,
θ̄ is stable (unstable) if and only if g(θ̄) is stable (unstable).

Proof of Theorem 4.1: Relabel the nodes of graph G
such that the cut vertex v be the first node v1. Then,
by Proposition 4.1, the dynamic of (3) with graph G is
related with the dynamic of (9) with the forced equation
for the first state. Since this first state is the cut vertex,
the dynamic of (9) consists actually in two uncoupled
dynamics defined by G1 and G2. A stable equilibrium point
of (3) can be split in two stable equilibrium for G1 and G2.
So, if G synchronizes, that is, if the only stable equilibria
for (3) is the consensus, G1 and G2 must be synchronizing
as well. On the other hand, if G1 and G2 are synchronizing
graphs, the only stable equilibrium point they have is the
consensus. When we move from system (9) to system (3),
we obtain either a partial consensus (unstable) or a full
consensus (stable) and then G synchronizes. �

This result is quite important since gives us a reduction
method for analyzing graphs topology: we only need to

focus on the blocks of the given graph. It also has several
direct corollaries, like the following.

Corollary 4.1. Consider a graph G with a bridge. Let us
denote by G1 and G2 the two subgraphs joined by the
bridge. Then, G synchronizes if and only if G1 and G2 do.

One of the most important result we have obtained so far
is the following.

Theorem 4.2. A graph synchronizes if and only if its blocks
do.

This result reduces the scope of our analysis. In order to
characterize synchronizing graphs families, we only need
to focus on bi-connected graphs.

5. TWIN VERTICES

In this Section we introduce the idea of twin vertices,
together with its main properties.

Definition 5.1. Consider two nodes u and v of a graph G.
We say they are twins if the have the same set of neighbors:
Nu = Nv.

Slightly modifying previous definition, we also say that two
vertices are adjacent twins if they are adjacent and Nu \
{v} = Nv\{u}. Concerning synchronization, twins vertices
act as a team in order to get equilibrium in equation (3).
Our first result concerns the necessary behavior of twins.

Lemma 5.1. Consider the system (3) with graph G. Let θ̄
be an equilibrium point of the system and v a vertex of
G, with associated phasor Vv. Let T be the set of twins of
v and N the set of common neighbors. If the real number
αv = 1

Vv

∑

w∈N Vw is nonzero, the twins of v are partially
or fully coordinated with it, that is, the phasors Vh, with
h ∈ Nv are all parallel to Vv. Moreover, if θ̄ is stable, the
agents in T are fully coordinated.

Proof: Let u ∈ T and consider the real numbers αv =
1

Vv

∑

w∈N Vw and αu = 1
Vu

∑

w∈N Vw. Then, it follows
that αv.Vv = αu.Vu, for all u ∈ T . If there are u1, u2 ∈ T
linearly independent, their respective αu1

and αu2
must

be zero, and so are all numbers α in T . Then, if there is
some αu 6= 0, u ∈ T , all phasors in T are parallel. So, all
the nodes in T are partially or fully coordinated.

Now suppose that θ̄ is stable and that there are u1, u2 ∈ T
such that u1 = −u2. Then αu1

= 1
Vu1

∑

w∈N Vw =

− 1
Vu2

∑

w∈N Vw = −αu2
and we have at least one negative

number α and θ̄ should be unstable, by Lemma 3.2, item
iii). �

We may define an equivalence relationship in the node
set of a graph: two nodes are equivalent if they are
adjacent twins. So, we can obtain a quotient graph by
direct identification of equivalent nodes. The quotient
graph can be seen as an induced subgraph of the original
one. This leads us to the following results.

Theorem 5.1. The following two affirmations are true:
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(1) any graph is the induced subgraph of a synchronizing
one;

(2) any graph is homeomorphic to a non synchronizing.
one.

We do not include the complete proof due to space reasons,
but we hint it. The proof of the first assertion is based
on the following observation. Given an arbitrary graph,
we may start performing a twins addition operation. So,
the relevance of a given vertex is enhanced because of
the presence of its twins. If we do this carefully, we
force that the only stable equilibria is the synchronization
state. We say we can gain synchronizability by carefully
adding enough numbers of twins vertices. The second
statement is proved by taking an arbitrary edge and
splitting it, transforming this single edge into a long path
with the same terminal nodes. If we add enough number of
intermediate nodes, we can find a non synchronized stable
equilibrium point.

To conclude this Section, we mention that a relationship
can be established between the equilibria set of a graph
and its quotient. Moreover, since at an stable equilibrium
point the twins must be synchronized, we may relate the
stability properties of equilibrium points in the original
graph and in the quotient. This will be used in the next
Section.

6. FAMILIES OF SYNCHRONIZING GRAPHS

6.1 Trees and Complete Graphs

Next result gives us our first family of synchronizing
graphs.

Theorem 6.1. A tree always synchronizes.

Proof: Let us consider K2, the complete graph with two
nodes. The only equilibrium point θ̄ of the two dimensional
system given by (3) are the synchronization (θ̄1 = θ̄2)
and the partial synchronization (θ̄1 = θ̄2 + π) which are,
respectively, stable and unstable. So, K2 synchronizes.
Then, if we recursively apply Corollary 4.1, we conclude
that every tree synchronizes. �

This result has very important consequences and will let
us to classify more families.

Theorem 6.2. Consider a graph G and its quotient G̃ with
the twins equivalence relationship. then, if G̃ is a tree, then
G synchronizes.

The proof of this result is not included here because
of space reasons. We obtain now our second family of
synchronizing graphs.

Theorem 6.3. A complete graph synchronizes.

Proof: At a complete graph, all the nodes are twins. Then,
the quotient graph contains a single node. �

Another way to prove synchronization of trees and com-
plete graphs is by direct inspection of the equilibrium
points. For the trees, the equilibria set contains only par-
tially and fully synchronized points. For complete graphs,
the only equilibrium points are partially and fully synchro-
nized states and balanced states (where the agents’ phases
are symmetrically distributed on the circumference).

So far, we have proved that the most simple graphs, the
trees, and the most complex, all to all graphs, synchronize.
As we will see in the next Subsection, there are non
synchronizing graphs in the middle. The synchronization
property can not be directly related to the number of
nodes, the number of neighbors or the number of links.

6.2 Cycles

Cycles are very simple graphs, where every agent has
exactly two neighbors. They are the most simple bi-
connected graphs (for every two nodes, we have two
distinct joining paths). The following result completely
describes this family of graphs.

Theorem 6.4. A cycle synchronizes if and only if it has 5
or more nodes.

Fig. 2. A ring with four oscillators.

Proof: Let us denote by Cn the cycle with n elements. If
n = 3, Cn is also complete and it synchronizes. If n ≥ 5,
we may obtain a non synchronized equilibrium point as
follows. Define ϕ = 2π

n
and consider the state

θ̄ = [0, ϕ, 2ϕ, . . . , (n − 1)ϕ]T

Then, involved the phase differences are all ±ϕ. Since
n ≥ 5, we have cos(±ϕ) < 0 and by Lemma 3.2-i),
θ̄ is stable. The case n = 4 can not be analyzed by
Jacobian linearization, since there are equilibria with all
the phase differences equal to ±π

2 . The only equilibria of
this system are shown in Fig. 2. The first case is the stable
synchronized state. Except the quadrature case, the rest
of the cases may be classified as unstable by Jacobian
linearization. The quadrature case is also unstable, since
all the numbers αi(θ̄), i = 1, . . . , 4 are null and we apply
Lemma 3.2-iii). �

A direct application of this result is the finding of non
synchronizing topologies, by detecting attached cycles at
the interconnection graph.

6.3 Complete k-partite graphs

Consider a graph G, whose set of nodes can be split in k
non intersecting subsets G1, G2, . . . , Gk such that for each
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i, a particular element of Gi is connected to every other
element of the rest of the subsets. G is called a k-complete
graph. All the nodes of the same subset are non adjacent
twins and then, at an stable equilibrium point, they must
be synchronized, by Lemma 5.1. This result is the key
property in order to prove that complete k-partite graphs
synchronize.

We conclude this Section with a simple application, which
is shown in Fig. 3. The picture shows the trajectories
of a system which consists in two graphs (K5 and K3)
acting separately, reaching consensus. At a given time, the
two graphs are connected through a cut vertex, and they
become fully synchronized.

0 2 4 6 8 10 12 14
−2

−1

0

1

2

3

4

t (seconds)

θ

T=3 seconds 

Fig. 3. Two graphs glued at a cut vertex at time t = 3s.

7. CONCLUSIONS

In this article we have presented the idea of synchronizing
topologies for Kuramoto coupled oscillators. We think that
the concept has many interesting application both in the
analysis of existing interconnections and in the synthesis of
networks. We have introduced some tools for dealing with
algebraic graph theory and control theory elements. We
have presented some synchronizing families, but we know
we are far from a characterization of the large family of
synchronizing topologies. Closing this work, we say some
words on the class of regular graphs, in which all the nodes
have the same number of neighbors, and its sub class or
circulant graphs, which in addition have nice symmetry
properties. We conjecture that for this family of graphs,
synchronizability can be ensured through the presence
of a minimum number of neighbors or working with the
minimum size of induced cycles in the graph (the so called
the girth of the graph). Robustness of these results will be
addressed in further works.
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