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ABSTRACT
Hierarchies are a powerful tool for image segmentation, they
produce a multiscale representation which allows to design robust
algorithms and can be stored in tree-like structures which pro-
vide an efficient implementation. These hierarchies are usually
constructed explicitly or implicitly by means of region merging
algorithms. These algorithms obtain the segmentation from the
hierarchy by either using a greedy merging order or by cutting
the hierarchy at a fixed scale.

Our main contribution is to enlarge the search space of these
algorithms to the set of all possible partitions spanned by a certain
hierarchy, and to cast the segmentation as a selection problem
within this space. The importance of this is two-fold. First, we are
enlarging the search space of classic greedy algorithms and thus
potentially improving the segmentation results. Second, this space
is considerably smaller than the space of all possible partitions,
thus we are reducing the complexity.

In addition, we embed the selection process on a statistical a
contrario framework which allows us to reduce the number of
free parameters of our algorithm to only one.

Index Terms— Image segmentation, Hierarchical systems,
Statistics

I. INTRODUCTION
Image segmentation is one of the oldest and most challenging

problems in image processing. Given an image, even for a human
observer, it is hard to determine an unique partition of the
image, and it is even harder to find consensus between different
observers.

A usual approach taken to overcome this difficulty is to find a
hierarchy of segmentations rather than an unique partition. These
hierarchies are usually constructed in a bottom-up fashion, by
using region merging algorithms.

The first merging algorithms presented in the literature (see
[1]) aimed to consecutively merge adjacent regions until a stop-
ping criterion was met, thus yielding a single partition. All these
algorithms have three basic ingredients: a region model, which
tells us how to describe regions; a merging criterion, which tells
us if two regions are to be merged or not; and a merging order,
which tells us at each step which couple of regions should be
merged first. Many of the existing approaches present similar
problems: they use only region information (no boundaries are
taken into account), they have a considerable number of manually
tuned parameters, they use very simple region models, or they use
a very simple merging order. Most of the recent work in this area
has been directed to improve the merging criterion and the region
model, but little effort was carried towards the merging order and
the reduction of the number of parameters.

Regarding the merging order, Calderero et al. [2] presented an
improved merging algorithm which uses a non-parametric region
model and a merging order depending on the scale. However, this
work still has some free parameters and only one feature (color)
is taken into account in the merging criterion.

On the other hand, Burrus et al. [3] introduced an a contrario
model to remove the free parameters and a criterion combining
different region descriptors. However, they require a training
process which is offline but very slow, and has to be done for
each image size and for each combination of the parameters of
the initialization algorithm. In addition, segmentation results are
dependent on those initialization parameters.

Instead of working at a single scale, a more robust approach
is to use the intermediate process of merging to build a hierarchy
of partitions, which is often represented as a binary tree. After
the hierarchy is built, the tree is pruned according to some scale
parameter ([4]). However, most algorithms ignore the fact that this
hierarchy spans a subset of all the possible partitions of the image,
and the segmentation problem then could be cast as the selection
of an optimal partition on this subset. In this work we use this
approach to overcome some of the usual problems of merging
algorithms. In addition, our algorithm uses both boundary and
region information within a statistical framework which allows
us to select the optimal partition with only one free parameter.

The rest of the paper is organized as follows. Our algorithm is
described in section II. Section III shows the experimental results.
Finally, in section IV we give some conclusions and future work.

II. OUR ALGORITHM
A hierarchy of partitions H is a multi-scale representation

of many possible segmentations of the image. For our purpose,
it is a tree structure where each node represents a region, and
the edges represent inclusion between regions. This tree is often
constructed by means of a bottom-up merging algorithm. We start
with an initial set of regions, often called seeds, which conform
the finest possible partition. Then we iteratively merge two or
more adjacent regions and represent the resulting region on the
graph as a new node which is the father of the merged regions.
One of the most popular ways to merge regions is to minimize
the well-known Mumford-Shah (M-S) functional [5]. The binary
tree resulting of this merging procedure is often called binary
partition tree.

A contrario models where introduced by Desolneux et al. in
[6], within the framework of the so-called Computational Gestalt
Theory (CGT). Given a set of objects the aim is to find the
meaningful ones, according to the so-called Helmholtz principle,
which states that: “we immediately perceive whatever could not
happen by chance”. To apply this principle, CGT algorithms rely
on a background or noise model, and then define the interesting



objects as large deviations from this model. To measure this
deviation they compute the so-called Number of False Alarms
(NFA), which is an upper bound on the expected number of
occurrences of a certain event under the background model. If
this expectation is low, it means that the considered event is
meaningful and could not arise by chance. Given an event O,
NFAs are computed as NFA(O) = NtestsP (O), where Ntests

is the number of possible events in the set. Defined in this way,
it can be proven that if NFA(O) < ε, then the expected number
of detections in an image of noise generated by the background
model is lower than ε.

The main idea of our algorithm is to use region and boundary
information to select the optimal partition from the set of all
partitions spanned by the given hierarchy. This selection is
embedded into an a contrario model which states that a region
is meaningful if its gray level is homogeneous enough and its
boundary is contrasted enough.

II-A. Region term

To define this term, we first need to define what a meaningful
region is. As we are working with the Mumford-Shah model, we
will say that a region is meaningful when its error is small, in a
similar way to [7]. To start, lets us review the data term in the
M-S model for a single region:

ER =
∑
x∈R

(I(x)− µR)2 (1)

where µR is the mean gray value of region R. This can be seen as
the L2 error when we approximate each pixel of the region by µR.
We can also define the pixel-wise error as eR(x) = (I(x)−µR)2,
so with this notation the error becomes ER =

∑
x∈R

eR.
If we consider that ER is a random variable generated by the

background model and we define ÊR as the observed region error
we can define the number of false alarms of a region as

NFAr(R) = N.P (ER < ÊR) (2)

where N is the number of regions to consider. This NFA measures
the goodness of fit of the region pixels to the model given by the
M-S mean µR. If the probability P is very low, it means that the
error is extraordinarily small and could not arise by chance. Thus,
the NFA is small and the region will be marked as meaningful.

In order to complete the definition of (2) we need to compute
the probability P (.) of the error in each region. We do this in two
steps, first we estimate the density function p(e) of the pixel-wise
error e(x). After that, we compute the probability that region R
has error less or equal than ÊR.

Note that the error êR(x) depends on µR which in turn de-
pends on the region the pixel belongs to. Before the segmentation
starts, we don’t know to which region the pixel will be assigned,
so we can’t compute this quantity. To overcome this, we can
compute the error with respect to all the possible regions the
pixel x could possibly be assigned to. In this way, we are not
computing the error with respect to a single partition, but to all
the possible partitions spanned by H.

To compute P (ER < ÊR) we make the assumption of
independence between pixels. Thus, looking at equation (2), the
random variable ER is a sum of n independent and identically
distributed random variables eR. The probability can be then
approximated (for large n values) by a normally distributed
random variable, using the Central Limit Theorem (CLT). In
practice, with n > 20 the gaussian approximation of the CLT
is very accurate.

II-B. Meaningful regions vs meaningful mergings
From our definition of meaningful region, it can be seen that

the NFA associated with each region depends on the given initial
partition. Given a certain tree, it is a common practice to remove
the leaves with small area, to reduce the computational burden of
the algorithm. Usually, leaves have small errors, so removing one
of them will decrease the probability of observing a small error. If
we remove a big number of small leaves we will make the small
errors less probable, thus making all nodes more meaningful.
This is not a desirable behavior, because we want the result of
our algorithm to be independent of the pre-processing performed.

Up to this point, our definition of meaningful region is abso-
lute, which makes it strongly dependent on the histogram of the
error. To overcome this problem we introduce a similar concept
but applied to mergings. We will say that a certain merging is
meaningful if it improves the previous representation. That is, if
the meaningfulness of the merged region is greater than the one
of the two separate regions.

To compute the meaningfulness of a merging we will need
to compute two quantities: the NFA of the union of two regions,
and the NFA of the separate existence of the two original regions.
To compute the first quantity, we can apply the definition of the
previous sections. However, we need to adjust the number of
tests, because now we are not testing all possible regions, but
only those created as a result of a union. Let R1 and R2 be the
regions to be merged and Ru = R1 ∪R2. Thus, the NFA of the
union is:

NFAr(R1 ∪R2) = Nu.P (ERu < ÊRu) (3)

where Nu is the number of possible unions in the tree, which is
exactly N

2
. Here, as we modeled the union as a single region, the

error ÊRu is computed using the mean µu of the union.
Now we need to consider the existence of two separate and

independent regions R1 and R2. As they are different regions,
we have a different model for each region, which are the means
µ1 and µ2, and the corresponding errors ÊR1 and ÊR2 . As the
M-S error is additive, we can consider that the total error of
approximating both regions by their means is ÊR1;R2 = ÊR1 +
ÊR2 . Thus we can define the NFA as

NFAr(R1;R2) = Nc.P (ER1;R2 < ÊR1;R2) (4)

where Nc is the number of possible couples (R1, R2) which is
also N

2
. As the involved quantities are probabilities which could

take very small values, it is usual to work with the logarithm of
the NFAs. Thus, we will say that a merging is meaningful if

Sr = logNFAr(R1 ∪R2)− logNFAr(R1;R2) < 0 (5)

II-C. Boundary term
Regarding region boundaries, we propose to merge two regions

when the boundary between them is not contrasted enough. In
addition, we want to obtain the regularizing effect of the boundary
term in the M-S functional, which favors short curves. For this
reason, we use a definition similar to the one by Cao et al.
[8], in the sense that we say a curve is meaningful if it has
an extraordinarily high contrast. However, we also penalize long
curves by using the accumulated contrast along the curve instead
of the minimum as in Cao’s model. Thus, we define meaningful
regions as those having a short and contrasted boundary. To
measure the length of the curves we use the geodesic curve length

L(Γ) =

∫
Γ

l(x(s))ds (6)

where l(x) = g (|∇I(x)|) is a pixel-wise contrast detection
function. Here g(x) yields small (near 0) values in well contrasted



pixels and values near 1 in the low contrasted regions. For the
background model, we use the histogram of the gradient as
proposed in [8]. From the image, we can obtain the empirical
distribution of the gradient norm, or the distribution of l(x)
which is a function of |∇I|. However, we need to compute the
distribution of the sum over all the pixels of the curve, so our new
random variable will be L =

∑
x∈Γ

l(x). As we did in section
II-A we can compute the probability by means of the CLT from
the distribution of l, and define the NFA of a curve Γ as

NFAb(Γ) = Ncurves.P (L < L̂) (7)

where Ncurves is the number of curves tested.

II-D. Combination of terms
Using the two previous definitions of meaningful regions, we

would like to develop an unified notion which is able to take
into account both definitions at the same time. To achieve this
we propose to compute the following quantity:

NFAj(R) = N.P
(
ER < ÊR;L∂R < L̂∂R

)
(8)

where N is the number of tested regions and P is the joint
probability of the region having a small error and a contrasted
boundary at the same time. A way to make this model computable
is to make the (strong) assumption of independence between
boundary and region terms. This allows us to factorize P and
write the new NFA as

NFAj(R) = N.P (ER < ÊR).P (L∂R < L̂∂R) (9)

Taking this into account, we can define a meaningful merging,
using region and boundary information, as

Sj = logNFAj(R1 ∪R2)− logNFAj(R1;R2) < 0 (10)

Definition (10) allows us to construct a parameterless algorithm;
however, in practice we verified that our algorithm tends to
oversegment images. The explanation of this phenomenon relies
on our estimation of the number of tests. This estimation is very
hard to compute analytically, so we used a very rough estimate
(Nu ≈ Nc). To overcome this problem, we consider an alternate
formulation based on the following observation:

Sj = logNu + logP (R1∪R2)− logNc− logP (R1;R2) (11)

where we expanded equation (10) to explicitly show the number
of tests. If we do not want to estimate both numbers of tests, we
can merge them into a single variable called α. From this point
of view, our definition of meaningful merging becomes:

Sj = logP (R1∪R2)− logP (R1;R2) < logα(R1;R2) (12)

where α(R1;R2) = log( Nc
Nu

). For the sake of simplicity, we
assume that α is a constant value for every couple of regions
(R1, R2). At the moment this parameter is set manually, but it
could be estimated as in [3].

II-E. Implementation
The computational cost of the algorithm can be roughly

divided in two parts: computing the tree and selecting the
meaningful regions on it. A usual way to construct the tree is to
use all pixels as the initial partition. So, for a N pixel image, the
tree will have 2N nodes. The computational cost of the second
part is proportional to the number of nodes on the tree, so we can
reduce the computational cost by pruning the tree. In practice we
rarely segment regions of small area, thus we remove the lower
nodes of the tree corresponding to the smaller regions. This is
performed by pruning the tree with a fixed (and small) value of
λ which ensures that no important regions are lost.

(a) Our alg.: log(α)=80. (b) Our alg.: log(α)=200.

(c) Burrus: k=150, σ=0.8. (d) Cao: log(ε) = −3.

Fig. 1. Comparison of results over the Ram image. (a), (b) results
of our algorithm with different parameter values. (c) Burrus et
al. [3]. (d) Cao et. al [8].

For example, in the Ram image (fig. 1) the total number of
pixels is 200901, but using λ=50 we have to process only 22397
regions, which results on a 90% reduction on the computational
cost. In spite of this pruning, the resulting image still retains
enough level of detail and no important objects are lost.

III. RESULTS
The only free parameter to be set is the threshold α on the

significance. There is also the initial λ but for small values (<=
50) the results are independent of this parameter, so it is not
tuned at all.

In figure 2 we show the results in four examples1. The results
are quite good in general, but there are some exceptions that we
discuss in the following. In the Plane image the tail is slightly
oversegmented; and in the case of Bird, the objects are even more
oversegmented because of the non-uniform illumination in the
objects and the background. In the case of Spider, all objects are
correctly detected, but some regions are slightly oversegmented.
On the Peppers image, the segmentation is coarse with some
of the dark regions between the peppers missing. However, our
algorithm is able to perform quite well in all the examples without
changing the parameter.

To show the effect of the parameter α, we ran two examples
varying its value. As figures 1(a) and 1(b) show, α controls
the quantity of objects detected. A large value implies that the
algorithm will merge many objects, so it will tend to have
less false positives. When α is reduced we are able to detect
more objects but also more false positives appear. In general we
observed that our parameter presents less variability than the λ of
M-S. For instance, to obtain a good segmentation of the Church
image a λ ≈ 1000 is required, whereas to segment Plane a value
of λ ≥ 5000 is required. On the other hand, with our algorithm
the value is unchanged.

In figures 1 and 3 we compare our results with some related
approaches. In 3(a) we show the result of a region merging

1An extensive evaluation and quantitative results can be found at:
http://iie.fing.edu.uy/rosaluna/wiki/ImageSegmentationAlgorithms



(a) Plane: log(α) =, 60 ni = 744
nf =7.

(b) Bird: log(α) = 60, ni = 414
nf =18.

(c) Spider: log(α)=60, ni =5858
nf =31.

(d) Peppers: log(α) = 60,
ni =2737 nf =9.

Fig. 2. Results of our algorithm over some test images. ni and
nf are the initial and final number of regions.

(RM) algorithm with a M-S model. Here we can see that our
algorithm is able to work across scales giving in general a good
segmentation of objects present in different scales of the image.
In the RM approach, to detect the cross (on the dome) we need
to fix a small λ, which in turn oversegments the dome; but if we
increase λ to correct this, we miss both the dome and the cross.
In 1(c) we show the result of Burrus et. al [3]; in this case the
results are quite good but again restricted to one scale. Many of
the light objects are lost while some small dark spots are detected
inside the blobs. In addition, in figure 3(d) we show another result
of Burrus et al. where again, no objects are missing but many
are oversegmented.

In the case of Calderero et al. [2], shown in figure 3(c), as they
penalize out-of-scale objects, they tend to lose small structures
like the cross on top of the dome, and oversegment the dome.
The last approach shown (fig. 1(d)) is that by Cao et al. [8].
As they only use the minimum contrast along the boundaries,
many shapes which have low contrasted boundaries are lost. This
confirms the importance of using region based information.

Regarding the computational cost, our algorithm takes 3
seconds to compute the tree and 10 seconds to process the
Ram image (400x500) on a 2.0GHz Athlon 64 CPU with C
code and optimization flags turned on. However this could be
further improved with a careful implementation. To complete this
evaluation, we compared execution times on the Ram image with
the rest of the discussed approaches: Burrus takes 117 minutes
to train and 10 seconds to segment; Cao takes 2.5 seconds; and
the M-S region merging algorithm takes 6.5 seconds.

IV. CONCLUSION AND FUTURE WORK
In this work we presented a novel segmentation approach

based on a hierarchy of partitions of an image. We introduced an
a contrario statistical model based on the combination of region
and boundary based descriptors, which allows us to validate
the mergings present in the hierarchy. In this way we reduce
the number of free parameters and alleviate the problem of
local minima in greedy algorithms. The results obtained by our

(a) M-S Region growing λ=1700. (b) Our Algorithm log(α) = 60.

(c) Calderero: α = 0.15 nbin =
10.

(d) Burrus: k=150, σ=0.8.

Fig. 3. Comparison of results over the Church image.

algorithm are comparable to those presented in the literature.
In addition, our parameter has a clear meaning and reduces the
variability compared with the λ of the M-S functional.

However, our approach has two main drawbacks. First, it
suffers from some locality, due to the fact that we validate one
couple of regions at a time. This could be solved by validating
complete partitions instead of pairs of regions. Second, we still
have a free parameter coming from the difficulties of analytically
computing the number of tests. One possible way to remove this
parameter is to use a simulation procedure like the one presented
by Burrus et al. [3].
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