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Abstract— Reducing the cost of test (in particular by reducing its 
duration  and  the  cost  of  the  required  ATE)  is  a  common  goal 
which has largely been pursued in the past, mainly by 
introducing suitable on chip Design for Testability (DfT) 
circuitry.  Today,  the  increasing  popularity  of  sophisticated  DfT 
architectures  and  the  parallel  emergence  of  new  ATE  families 
allow  the  identification  of  innovative  solutions  effectively  facing 
that goal. In this paper we face the increasingly common 
situation of SoCs adopting the IEEE 1149.1 and 1500 standards 
for the test of the internal cores, and explore the idea of storing 
the test program on the tester in a compressed form, and 
decompressing it on-the-fly during test application.  

This paper proposes an improved version of an data 
compression/decompression  technique  which  is  well  suited  for 
reducing  the  size  of  test  programs  stored  on  the  tester;  this 
technique  is  particularly  effective  for  very  long  sequential  test 
vectors generated to test SoCs by means of low-cost test 
procedures;  thus,  the  paper  outlines  the  characteristics  of  an 
FPGA-based low-cost tester platform that takes advantage of the 
described compression schema.  

The effectiveness of the proposed methodology was demonstrated 
by practically testing some SoCs equipped with suitable DfT for 
supporting low-cost testing resorting to a low-cost tester 
implementing the proposed architecture and the 
compression/decompression technique. 
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I.  INTRODUCTION 

Nowadays,  one  of  the  major  concerns  in  Systems-on-Chip 
(SoCs) testing is the application of test stimuli. This final step 
in  the  SoC  production  flow  follows  the  test  design  phase, 
which  includes  the  selection  of  Design-for-Testability  (DfT) 
features  to  be  added  on-chip  and  the  test  pattern  generation 
process. The generated test vectors are applied to the device-
under-test (DUT) using suitable testers, and its responses 
observed  for  discriminating  between  good  and  faulty  chips. 
The  emergence  of  the  SoC  design  paradigm,  where  several 
(possibly  complex)  cores  are  integrated  in  a  single  design 
coming from different sources, is pushing designers to move 
towards test paradigms where each core is tested by sending to 
it commands (instead of vectors), which activate suitable 
Built-In Self-Test (BIST) circuitry on it, and gather the 
corresponding results. These commands are often moved from 
the ATE to the DUT through an IEEE 1149 compliant 
interface  at  the  device  level,  and  an  IEEE  1500  compliant 
interface at the core level. Even if in this flow the test length 
minimization may appear as a problem solely tackled during 

the  test  design  steps,  the  elapsed  time  in  the  test  stimuli 
application  is  a  variable  dependent  on  the  test  application 
phase characteristics, too. This dependency is due to: 

1. the vector application rate of the tester  
2. the memory space available on the tester. 

The vector application rate is the number of vectors applied 
by  the  tester  to  the  DUT  in  a  time  unit.  Other  than  the 
maximum  reachable tester-DUT communication frequency, 
this  parameter  may  depend  on  the  tester  structure  (e.g.,  the 
time required to prepare a vector for application may vary or 
be conditioned by the tester organization).  

The tester memory space may impact on the time required 
to apply a test procedure as well. More in particular, the reader 
should  distinguish  between  the  fast  memory  in  the  tester  in 
charge  of  directly  feeding  the  DUT,  and  the  large  memory 
(normally composed of disks) that exists in the tester host unit. 
In case of very long test sequences, if not enough fast memory 
is available, the vector set has to be divided in many subsets to 
be sequentially uploaded from the much slower host memory. 
This means that for every tested chip, the application process 
is suspended many times to upload the fast memory from the 
host memory, with a consequent efficiency loss.  

The basic idea proposed in this paper lies in complementing 
the fast memory of the tester with a suitable circuitry (mainly 
based on programmable devices) which is able to decompress 
on the fly the test set to be applied to the DUT, thus allowing 
to reduce the required amount of fast memory. A preliminary 
version of the automated data compression and decompression 
technique  was  introduced  in  [6].  The  method  we  propose 
performs off-line compression and suits well for the very long 
sequential  test  vectors  generated  to  test  SoCs  with  low-cost 
test procedures such as Software-based Self-Test (SBST) and 
Built-In Self-Test (BIST). Moreover, our technique benefits of 
the specific structure of the typical test set for these circuits, 
which is composed of commands instead of vectors. Then, on-
the-fly decompression is operated by an FPGA-based low-cost 

tester platform. The contributions introduced in the paper are: 
• an automatic pattern compression methodology based on 

maximal-length repeated sequences search and ranking 
• a suitable two-layer tester memory organization that takes 

advantage of the compression method to reduce the cost 
of the tester while enhancing its performance. 

Guidelines introduced in the paper enable effective 
reduction of tester cost in terms of channel memory size while 
guaranteeing high frequency in the stimuli application. 



The paper is structured as follows. Section 2 provides some 
background on the state of the art of data compression and low-
cost test procedures for SoCs. Section 3 illustrates the proposed 
approach.  Section  4  shows  the  results  obtained  on  a  sample 
SoC, and section 5 draws some conclusions. 

II. BACKGROUNDS 

A. Data compression 

Recently, data compression techniques [1][2][10] have been 
effectively used to tackle the tester memory issue. The 
compression  process  is  performed  by  suitable  software  tools 
and  consists  in  encoding  the  generated  test  vectors  using  as 
few bits as possible. Compressed data are then reconstructed, 
or decompressed, by ad-hoc hardware 
decoders/decompressors placed on-chip or on-tester.  

If on-chip decompression modules are used, other than test 
data volume reduction, a speed up in the test stimuli 
application may be achieved [1][2] by possibly leveraging on 
internal high frequency clock sources. Such a gain is obtained 
at the expense of additional silicon area overhead and 
demands for suitable tester-DUT communication schemas; in 
fact, even if the tester is demanded to send data to the DUT 
without  performing  any  vector  manipulation,  it  can be  asked 
to manage synchronization [1] or implement handshake 
communication protocols [2].  

On the contrary, if the decompression process is performed 
on-tester, no test time gain is obtained - the complete 
uncompressed  vector  set  is  sent  to  the  DUT  at  the  tester 
frequency - but the overall testing scenario is simplified: 
• the  tester  communicates  with  the  DUT  without  the need 

of synchronization or handshake schemas 
• no modification is performed on the chip structure 
• data compression is applicable to any manufactured chip 

and  intellectual  properties  are  protected,  since  from  the 
tester point of view no information are required about the 
type of on-chip embedded structure. 

On-chip and on-tester solutions for decompression are not 
mutually  exclusive.  In  fact,  a  compressed  set  to  be  expanded 
on-chip can be further compressed to be expanded on-tester. 

B. Application aspects of low-cost test procedures 

With the advent of Systems-on-Chip, the Low-Cost concept 
is become a common denominator among test generation and 
test  application.  In  fact,  in  the  SoC  terminology,  the  term 
Low-Cost is commonly used to classify a set of strategies [4]  
and  equipments [6] that exploit Design-for-Testability features 
included on-chip for reducing test costs without impacting its 
effectiveness;  the  costs  of  SoC  test  procedure  involve  many 
factors, that are primarily test pins count and required 
application frequency.  

The adoption of test access protocols to transport 
information inside the SoC architecture mainly addresses pin 
count reduction, often at the expense of the bandwidth. 
Indeed, autonomous test procedure execution addresses 
frequency requirements mitigation, since it normally exploits 
internal  or  independent  clock  supply  resources  that  do  not 
request any external intervention. 

Concerning test data volume of procedures usually 
classified  as  Low-Cost,  the  overall  number  of  test  vectors  to 
be applied to the DUT depends on the number of initialization 
and management operations required to activate the SoC test 
functionalities. Consequently, patterns describing such 
procedures finally reside on the tester memory and potentially 
impact on the test applicability. 

With  respect  to  other  techniques,  such  as  scan-based  or 
combinational testing, for the considered procedures the 
pattern  order  cannot  be  modified.  This  constraint  does  not 
permit to optimize the pattern compression process as shown 
in many works [1][2]. 

III. THE PROPOSED APPROACH 

The work presented herein aims at tackling two problematic 
issues  related  to  the  application  of  low-cost  test  procedures 
such as those described in section 2.2.  

A  primary  effort  is  devised  to  reduce  the  memory  space 
required to apply the vector set. In general terms, this issue is 
pursued by automatically identifying repetitive test vector 
segments and pruning them from the pattern set to be 
reproduced autonomously by the tester itself. In [6] the 
authors showed how an important gain could be obtained by 
leveraging  on  the  identification  of  intensively  repeated  test 
segment  parts.  Anyway,  the method  in  [6]  was  based  on the 
test access protocol knowledge, while a new strategy is 
illustrated  here,  which  is  suitable  to  be  applied  to  any  chip 
without doing any assumption on the SoC test protocol.  
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Figure 1. Working principle and HW/SW resource partitioning 
employed in the proposed approach. 

Figure 1 shows the software and hardware resources 
required to support the illustrated compression process. 
Recurrent segments in the test set are first identified, and then 
mapped into hardware resources, so that they can  be  re-
generated on the fly by the decompression logic. In particular, 
this corresponds to some ad hoc generated finite state 
machines (FSMs) implemented by the programmable devices 
existing on the tester and interacting with the tester software 
application tools [5]. The efficiency in the process of 
activating the FSMs is fundamental for guaranteeing the 
highest possible pattern set reconstruction frequency. 

The second effort was therefore devoted to design a suitable 
FPGA-based  low-cost  tester  platform  implementing  a  two-
layer tester memory organization including: 
• a  secondary,  large  and  slow  general  purpose  memory, 

which  stores the complete compressed test transmitted by 
the host computer controlling the tester 

*) This work was supported by the European Community in the Alpha-
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• a  primary,  small  and  fast  memory  that  receives  at  run-
time  the  compressed  test  set  to  be  decompressed  by  the 
FSM-based test head design. 

This tester configuration perfectly combines with the 
proposed compression/decompression schema, which often 
asks the decompression logic to run autonomously, thus 
leaving  time  for  even  slower  data  transfer  within  the  two 
memory layers. 

A. Proposed algorithm for Low-Cost test procedure data 
compression 

Differently from other approaches tackling test pattern 
compression, such as Run-length, Golomb and Huffman 
compression codes [2][3] or based on pattern value reuse [1], 
the  proposed  methodology  does  not  encode  separately  each 
single signal to be provided to the DUT. On the contrary, in 
the explained approach a set of signals is jointly considered., 
taking  also  into  account  the  considered  test  sets  are  mainly 
composed of commands, instead of vectors. This choice 
derives from two factors. 

Firstly, access mechanisms to embedded test resources 
normally included in SoCs are based on a set of control signals 
that are opportunely sequenced to move data inside the device. 
Control  signal  waveforms  are  heavily  recurrent,  since  they 
implement  a  translation  of  high  level  commands  defined  by 
the selected access protocol. 

Secondly,  test  data  for  embedded  test  execution  may  be 
strongly  repetitive;  for  instance,  if  an  SBST  test  program  is 
transmitted to an internal memory space to be later executed, 
the same instruction can be sent many times to different data 
locations.  Similarly,  if  many  commands  are  sent  to  internal 
decoding circuitries (e.g., for diagnostic BIST), not only 
control, but also data signals will show repeated occurrences.  

The proposed algorithm is aimed at identifying two kinds of 
occurrences:  
1. Vertical occurrences, a timing diagram slice  that is 

repeated for many times in the vector set. 
2. Horizontal  occurrences,  a  timing  diagram  slice  (longer 

than  1  clock  cycle)  during  which  one  or  more  signal 
values are maintained stable at a certain value. 

In a previous work [6], we showed that: 
1. the identified vertical and horizontal pattern segments can 

effectively be translated into proper FSMs 
2. the  activation  order  for  FSMs  can  be  stored  in  a Test 

Segments Occurrence table (or TSO) file 
3. the part of the test set that was not selected for 

compression can be stored in a Reduced Test Set 
description (or RTS) file. 

For a meaningful stimuli reconstruction, vertical and 
horizontal occurrences have to be not overlapping. The 
memory gain obtained by adopting such codification method 
is  maximized  when  many  long  vertical  occurrences  and  few 
but  extensively  repeated  cases  of  horizontal  occurrences  are 
identified. This hypothesis is pursued in the automatic 
identification algorithms detailed in next paragraphs. 

Figure 2 exemplifies the vertical and horizontal occurrences 
concept;  the  shown  example  underlines  the  presence  of  two 
vertical and two horizontal occurrences. 

Figure 2. An example of vertical and horizontal occurrences.  

In the proposed flow, firstly vertical occurrences are 
searched, then horizontal ones. 

1) Identification and selection of vertical occurrences 
The developed method for automatically identifying vertical 

occurrence is composed of three iteratively performed steps: 
1. pattern discovery, aimed at identifying repeating 

occurrences in the pattern set 
2. occurrence ranking, for populating the vertical 

occurrences set 
3. pruning from the string of the selected vertical 

occurrence. 

In a preliminary phase, for every time slice the signal values 
are firstly codified using a symbol as shown in figure 4; in our 
methodology, both input and output signals are considered. 
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Figure 3. Vertical occurrence selection flow.  

I1:   000100101001110100110000101
I2:   001000010010000011101101001
O1:   101011010010110101010101010
---------------------------------
S:   103411434034550523652303416

 
Figure  4. Example of symbol codification during pattern discovery 
on 3 signals.  

By leveraging on this codification schema, the pattern 
discovery  analysis  consists  in  identifying  repeated  sequences 
in the string S, basing on the following definitions.  

A pair of substrings R=((i1,j1),(i2,j2)) is a repeated 
pair if and only if (i1,j1)!=(i2,j2) and 
S[i1...j1]=S[i2...j2].  Therefore, the length L of R is 
j1−i1+1 and  its  frequency F  is  the  number  of  times  that  it 
occurs in the string.  A repeated pair ((i1,j1),(i2,j2)) is 
called left maximal if S[i1-1]!=S[i2-1] and right 
maximal if S[j1+1]!=S[j2+1]. Finally, a repeated pair is 

called maximal  if  it  is  both  left  and  right  maximal  and  a 
substring Ȧ of S is a maximal repeat if there is a maximal pair 
((i1,j1),(i2,j2)) such that Ȧ=S[i1...j1].  



During  the  pattern  discovery  phase,  an  Enhanced  Suffix 
Array (ESA) is built [9]. ESA is obtained by using a 
commonly employed algorithm (such as SeqAn [5]) and is a 
fundamental  indexing  data  structure  using  auxiliary  tables  to 
find all the maximal repeats in the string S.  

Based on an existing ESA, the ranking phase aims at 
selecting the maximal repeat that provides the better reduction 
ratio  with  respect  to  the  current  string S.  In  this  process,  a 
trade  off  between  vertical  occurrence  length  and  repetition 
frequency  has  to  be  considered,  taking  also  into  account  the 
number of bits available for encoding [5]. 

S:   103411434034550523652303416    Coverage
--------------------------------------------------
R1:    034         034                   034 33,3 % 
R2:                               523 523          22,2 %
R3:    0341                                0341          29,6 %

 
Figure 5. Trade off between vertical occurrence length and repetition 
frequency 

Locally, a longer sequence provides a higher gain ratio than 
a  shorter  one  because  it  codifies  more  time  slices  with  only 
one occurrence. But globally, as exemplified in figure 5,  the 
shorter sequence R1, repeating more times than R3, can permit 
a higher coverage with a resulting higher gain.  

By  these  considerations,  the  ranking  process  selects  the 
longer maximal repeat whose length is larger than a minimal 
threshold and whose frequency is greater than a parameter α,  

¦
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In  equation  (1) Fj  is  the  frequency  of  the jth  maximal 
repeat and nmr is the number of identified maximal repeats. 

The selected maximal repeat is extracted from S during the 
pruning  phase  and  the  corresponding  entry  is  added  to  the 
TSO file. The heuristic used to obtain vertical compression is 
described in the pseudo-code reported in figure 6.  

Initially, (1) the test data volume is equal to the length of 
the  string S  multiplied  by  the  number  of  signals nS  it  is 
composed  of.  A  first  loop  (2)  is  controlled  by  the  value  of  a 
parameter KV, which  is  the  minimum  admitted  length  for  a 
vertical  occurrence  and  ranges  between Lmax  and Lmin.  Any 
time this loop is iterated, the pattern discovery phase is 
restarted  by  reducing  the  length  threshold KV.  A  second  loop 
(6)  is  iterated  until  no  maximal  repeats  are  found  larger  than 
Lmin  or  a  maximum  number  of  vertical  occurrences imax  is 
obtained. In this nested loop, (7) pattern discovery resulting in 
ESA  is  operated  on SK  limited  to  a  threshold M,  which  was 
initially  set  equal to KV (3),  and ESA  is  submitted  to ranking 
(8). If this sequence does not select any vertical occurrence, the 
threshold M  is  decreased  by  1  (9),  and SKv  re-analyzed  under 
less stringent parameters.  Otherwise, (11) SKvi is pruned from 
the identified Vi. When exiting the internal loop, the obtained 
reduction ratio (RTDV) is evaluated, and if improved, the 
sequences configuration saved (14, 15). 

 

Figure 6. Vertical occurrence set determination algorithm.  

2) Identification and selection of Horizontal occurrences 

The  process  for  identification  of  horizontal  occurrences  is 
executed on the string SV pruned of the vertical occurrences. 
Similarly  to  figure  3,  the  method  proposed  for  automatically 
identifying horizontal occurrences is composed of three 
iteratively performed steps: 
1. statistical  report,  identifying  for  each  signal  how  many 

times SV show a constant value for an entire  substring  
2. statistical analysis, for populating the horizontal 

occurrence set 
3. pruning from SV of the selected horizontal occurrences. 

Each  signal  is  analyzed  singularly,  counting  how  many 
times it remains constant to 0 or 1 for an entire substring. The 
horizontal  occurrences  are  then  identified  combining  the nH 
signal values that fully covers more segments, as described in 
the pseudo-code reported in figure 7. 

horizontal_compression(){ 
(1)for( KH = LHmin Æ LHmax){  
(2) I=1; 
(3) SKH = SV; 
(4) nH = ns -1; 
(5) while(I < imax && nH > 0){ 
(6)       Stat=report(S KH

i,KH); 
(7)       Hi=NULL; 
(8)       while(Hi == NULL && nH >0){ 
(9)  Hi =analysis(Stat); 
(10)   if(Hi == NULL)  
(11)               nH--; 
(12)  else{ 
(13)   SKH

i+1 = pruning(SKH
i, Hi); 

(14)          i++; 
(15)   Hi=NULL; 

            } 
        }     
 } 

(16)  if (RTDVKH < RTDVmin){ 
(17)   RTDVmin = RTDVKH; 
(18)   save(HKH); 

     } 
  } 

} 

Figure 7. Horizontal occurrence set determination algorithm. 

The  horizontal  compression  depends  on  the  parameter KH 
that  ranges  between LHmin and LHmax (1)  and  represents  the 
admitted  length  range  for  a  horizontal  occurrence.  At  any 
iteration,  the  process  is  restarted  by  increasing  the  length 

vertical_compression(){ 
(1)RTDVmin = length(S)*nS; 
(2)for (Kv = LVmax Æ Lvmin){ 
(3) M = Kv; 
(4) i=1; 
(5) SKv = S; 
(6) while (M != Lvmin || i!=ivmax){ 
(7)  ESA=pattern_discovery(S Kv

i,M); 
(8)  Vi = ranking(ESA) 
(9)  if (Vi == NULL) M--; 
(10)  else{ 
(11)   SKv

i+1 = pruning(SKv
i, Vi); 

(12)   i++;  
} 

  } 
(13) if (RTDVKv < RTDVmin){ 
(14)  RTDVmin = RTDVKv; 
(15)  save(VKv); 
 } 
    } 
}



threshold KH. An inner loop (5) goes on until no more 
repetitions  are  found,  or  the  maximum  number  of  horizontal 
occurrences imax is obtained. In this loop, statistical analysis is 
performed on SKH based on parameter KH (6), and results are 
analyzed to select horizontal occurrence (10). If no horizontal 
occurrence exists (10), the number of signals on which 
occurrences are looked for is decreased by 1 (11), and 
statistical analysis is performed under less stringent 
parameters.  Otherwise, (13) SKHi is pruned from the identified 
Hi. When exiting the internal loop (5), the obtained reduction 
ratio  is  evaluated,  and  if  improved,  the  horizontal  sequences 
configuration saved (17,18). 

B. Low-Cost Tester organization  

A suitable Low-Cost tester organization designed to 
efficiently  support  the  decompression  process  is  shown  in 
figure  8.  This  schema  shows  both  HW  and  SW  resources 
required to decompress and apply the vector set to the DUT: 
- HW resources:  they include the components needed both 

to manage and perform decompression 
o A FPGA device  

� storing FSMs capable of autonomously 
reproducing the recurrent test segment parts 
pruned from the vector set [6] 

� including small and fast dual-port BRAMs 
o A μprocessor in charge of managing the overall 

decompression procedure 
o A large stand-alone RAM 
o A DMA controller for system bus management 
o Some  communication  and  mass  storage  peripherals 

required to transfer data internally 
- SW resources: they include the compressed vector set, the 

tester  Operative  System,  and  the SW  application  run  by 
the processor to manage the decompression process. 

The architecture of the stimuli generation block was already 
discussed  in  [6].  Such  a  tester  architecture  enables  a  very 
effective  method  for  data  management  that  exploits  a  two-
layer memory organization. In principle, 
• the compressed pattern set  is completely stored on a 

secondary, large and slow memory belonging to the 
Stimuli Controller block 

• from the secondary memory the compressed information 
is moved block-by-block, by means of the DMA 
controller,  to  smaller  and  faster  primary  RAMs,  that  in 
our  schema  correspond  to  the  FPGA  dual-port  BRAM 
blocks [7] in the Stimuli Generator block. 

In terms of tester costs versus capabilities, the benefit 
stemming from the usage of this particular memory 
organization  and  from  the  compression  method  explained  in 
the previous sections is twofold. A former advantage is that a 
large and fast, and therefore expensive, primary memory is not 
required, since data are transmitted block-by-block to be 
decompressed. A second benefit  stems from the fact that the 
decompression  logic  mapped  on  the  FPGA  can  usually  run 
autonomously for many clock cycles without interactions with 
the rest of the tester. This decompression schema 
characteristic  implies  that  the  frequency  required  to  move 

compressed  data  from  the  secondary  to  the  primary  memory 
may be substantially lower than the decompression frequency.  
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Figure 8. Low-Cost tester architecture.  

As  an  example,  let  us  consider  an  explanatory  scenario 
where the primary RAM storing TSO words has only one 8 bit 
location; if this location currently contains a word describing a 
vertical  occurrence,  an  FSM is  activated  that  reproduces  a n 
clock cycles long sequence at the f frequency. That means the 
transfer data frequency can be reduced to f/n. Similarly, if a 
primary RAM storing RTS data has only one 8 bits location, 
and  if  2  bits  per  fast  clock  cycle  are  used  to  complete  an 
horizontal occurrence, then the requested secondary to 
primary memory transfer frequency is a quarter of the 
generation frequency.  

More  in  general,  the  required  average  transfer  frequency 
Ftrans is function of R (compression ratio), Bv (number of bits 
used  to  codify  a  vertical  occurrence), Rv  (compression  ratio 
obtained  only  by  vertical  occurrence  pruning),  L v  (average 
length of the vertical occurrences), Bh (number of bits used to 
codify  a  horizontal  occurrence),  L h  (average  length  of  the 
horizontal  occurrences), B  (number  of  bits  transmitted  from 
secondary to primary memory per transfer clock cycle), Fapp 
(vector application frequency to DUT) and S (number of input 
and output signal to and from the DUT). 
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The  obtained  reduction  in  the  required  transfer  frequency 
permits  to  physically  separate  the  stimuli  generator  from  its 
controller; this aspect fits the case of probe cards that actually 
can  include  FPGA  cores.  Our  technique  enables  augmenting 
their  ability  in  terms  of  stimuli  application  frequency  while 
mitigating the test driver to probe card communication 
frequency. Moreover, it allows many stimuli generator blocks 
to be managed by a single controller. 

IV. EXPERIMENTAL RESULTS 

The illustrated architectural principles for the FPGA-based 
low-cost tester were experimentally proved by mapping them 
on  a  Digilent  XUP  development  board  [8].  This  commercial 
product is equipped with two PowerPC processors connected 
to  a  256MB  std-alone  DRAM  (secondary  RAM);  the  board 
also  includes  a  FPGA  containing  about  30k  logic  cells  and 
2Mb  BRAM  blocks  (primary  RAM)  [7].  The  system  bus 
available for connecting processors, DRAM and FPGA 



resources  permits  transferring  64  data  bits  per  system  clock 
cycle.  The  DMA  controller  was  included  in  the  system  as  a 
soft-core mapped in the FPGA. 

We used the Linux kernel 2.6 as operative system and wrote 
an  assembly  procedure  to  manage/monitor  the  compressed 
data to be transferred from the host PC to the secondary RAM 
via Ethernet connection. The length of this program is about 
200 code lines. 

Table I: compression ratio 

Test program Original size 
Compression 

ratio 
test_01 525 K 77.5% 
test_02 551 K 74.2% 
test_03 610 K 74.6% 
test_04 620 K 73.7% 
test_05 634 K 73.9% 
test_06 8.1 M 66.5% 
test_07 122 K 80.0% 
test_08 2.4 M 64.0% 
test_09 5.9 M 67.6% 
test_10 112 K 82.2% 
test_11 133 K 79.1% 
test_12 200 K 74.6% 
test_13 146 K 78.4% 
test_14 419 K 79.6% 
test_15 190 K 74.1% 
test_16 171 K 76.4% 
test_17 236 K 75.2% 
test_18 184 K 93.5% 
test_complete 20,75 M 69.8%

The SoC considered as a case study contains several cores, 
including a processor core, some memory cores equipped with 
programmable  BIST  circuitry,  and  several  peripherals.  The 
considered  test  set,  devised  to  cover  stuck-at  and  transition 
faults  in  the  processor  and  peripherals  via  SBST  procedures 
and  exploiting  BIST  to  test  memories,  consists  in  18  test 
programs  managed  through  an  IEEE  1500  driven  through 
JTAG; moreover, the test procedures are additionally 
supported by a free-running clock. Table I shows the 
compression  ratio  [1]  obtained  on  the  18  tests,  plus  another 
obtained by collapsing all the test programs into a single one, 
which finally accounts for 3MVectors, or 20.75 MB. 

The compression process applied to this large test set 
reduced the test data volume to 6.3 MB (2.4 MB for the TSO 
and 3,9 MB for the RTS file), which corresponds to a 
compression ratio of 69.8%. In particular, the process 
identified  128  vertical  occurrences  (covering  48.5%  of  the 
original test set) and 7 horizontal occurrences completing the 
compression process.  Parameter values adopted in the vertical 
occurrences search are KV in the 32 to 5 range and 64 for the 
maximal length of a single vertical segment. For the horizontal 
occurrences, instead, KH ranges from 10 to 1. 

For the sake of completeness, we compared this result with 
that obtained by using a Golomb code compression 
mechanism [2] (using groups of size 16); through this 
experiment we obtained a compression ratio of 66.5% that is 
slightly less than the result obtained with our technique. 
However,  it  is  worth  noting  that  the  Golomb  code  based 
compression can not be supported by the low-cost tester 
architecture described above. 

The decompression logic obtained automatically at the end 
of  the  compression  phase  was  synthesized  using  Xilinx  ISE 
v.9.0 and mapped on the FPGA of the development board. Its 
final occupation is 7,079 LUTs and 4,815 FFs and the 
achieved frequency is 220 MHz. Because of device 
specifications  and  FPGA  to  DUT  communication  constraints 
(mainly due to connection within developed tester and 
daughter board)  a  final  communication  frequency  of  50MHz 
was  used.  With  this  communication  frequency,  the  average 
secondary to primary RAM transfer frequency required is 4.4 
MHz (19.4 MHz for a 220MHz communication frequency). 

This  case  study  thus  shows  how  the  size  of  a  large  test 
procedure  (∼17MB)  was  significantly  reduced  (∼5MB).  The 
procedure is therefore applied at 50 MHz without any 
interruption  for  pattern  reloading  on  a  low-cost  tester  with 
reduced fast channel memory space (∼2MB). 

V. CONCLUSIONS  

In this paper we proposed an automated data 
compression/decompression  technique  suitable  for  very  long 
sequential  test  vectors  generated  to  test  SoCs  composed  of 
cores supporting a BIST-based test by means of low-cost test 
procedures. The described method performs compression off-
line  and  on-the-fly  decompression  on  an  FPGA-based  low-
cost tester platform. Based on the illustrated compression 
schema, the characteristics of an FPGA-based low-cost tester 
platform were detailed. 

Feasibility and effectiveness of the described methodology 
was demonstrated by applying it to a SoC tested by means of 
SBST and BIST procedures and using a commercial 
development  board  including  processors,  RAM  and  FPGA 
resources to implement the tester. 
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