
An enhanced FPGA-based Low-Cost Tester Platform
exploiting effective Test Data Compression for SoCs*)

L. Ciganda
Universidad de la Republica Uruguay

Montevideo, Uruguay

F. Abate, P. Bernardi, M. Bruno, M. Sonza Reorda
Politecnico di Torino

Torino, Italy

Abstract— Reducing the cost of test (in particular by reducing its
duration and the cost of the required ATE) is a common goal
which has largely been pursued in the past, mainly by
introducing suitable on chip Design for Testability (DfT)
circuitry. Today, the increasing popularity of sophisticated DfT
architectures and the parallel emergence of new ATE families
allow the identification of innovative solutions effectively facing
that goal. In this paper we face the increasingly common
situation of SoCs adopting the IEEE 1149.1 and 1500 standards
for the test of the internal cores, and explore the idea of storing
the test program on the tester in a compressed form, and
decompressing it on-the-fly during test application.

This paper proposes an improved version of an data
compression/decompression technique which is well suited for
reducing the size of test programs stored on the tester; this
technique is particularly effective for very long sequential test
vectors generated to test SoCs by means of low-cost test
procedures; thus, the paper outlines the characteristics of an
FPGA-based low-cost tester platform that takes advantage of the
described compression schema.

The effectiveness of the proposed methodology was demonstrated
by practically testing some SoCs equipped with suitable DfT for
supporting low-cost testing resorting to a low-cost tester
implementing the proposed architecture and the
compression/decompression technique.

Keywords; FPGA based tester, test compression/decompression

I. INTRODUCTION

Nowadays, one of the major concerns in Systems-on-Chip
(SoCs) testing is the application of test stimuli. This final step
in the SoC production flow follows the test design phase,
which includes the selection of Design-for-Testability (DfT)
features to be added on-chip and the test pattern generation
process. The generated test vectors are applied to the device-
under-test (DUT) using suitable testers, and its responses
observed for discriminating between good and faulty chips.
The emergence of the SoC design paradigm, where several
(possibly complex) cores are integrated in a single design
coming from different sources, is pushing designers to move
towards test paradigms where each core is tested by sending to
it commands (instead of vectors), which activate suitable
Built-In Self-Test (BIST) circuitry on it, and gather the
corresponding results. These commands are often moved from
the ATE to the DUT through an IEEE 1149 compliant
interface at the device level, and an IEEE 1500 compliant
interface at the core level. Even if in this flow the test length
minimization may appear as a problem solely tackled during

the test design steps, the elapsed time in the test stimuli
application is a variable dependent on the test application
phase characteristics, too. This dependency is due to:

1. the vector application rate of the tester
2. the memory space available on the tester.

The vector application rate is the number of vectors applied
by the tester to the DUT in a time unit. Other than the
maximum reachable tester-DUT communication frequency,
this parameter may depend on the tester structure (e.g., the
time required to prepare a vector for application may vary or
be conditioned by the tester organization).

The tester memory space may impact on the time required
to apply a test procedure as well. More in particular, the reader
should distinguish between the fast memory in the tester in
charge of directly feeding the DUT, and the large memory
(normally composed of disks) that exists in the tester host unit.
In case of very long test sequences, if not enough fast memory
is available, the vector set has to be divided in many subsets to
be sequentially uploaded from the much slower host memory.
This means that for every tested chip, the application process
is suspended many times to upload the fast memory from the
host memory, with a consequent efficiency loss.

The basic idea proposed in this paper lies in complementing
the fast memory of the tester with a suitable circuitry (mainly
based on programmable devices) which is able to decompress
on the fly the test set to be applied to the DUT, thus allowing
to reduce the required amount of fast memory. A preliminary
version of the automated data compression and decompression
technique was introduced in [6]. The method we propose
performs off-line compression and suits well for the very long
sequential test vectors generated to test SoCs with low-cost
test procedures such as Software-based Self-Test (SBST) and
Built-In Self-Test (BIST). Moreover, our technique benefits of
the specific structure of the typical test set for these circuits,
which is composed of commands instead of vectors. Then, on-
the-fly decompression is operated by an FPGA-based low-cost

tester platform. The contributions introduced in the paper are:
• an automatic pattern compression methodology based on

maximal-length repeated sequences search and ranking
• a suitable two-layer tester memory organization that takes

advantage of the compression method to reduce the cost
of the tester while enhancing its performance.

Guidelines introduced in the paper enable effective
reduction of tester cost in terms of channel memory size while
guaranteeing high frequency in the stimuli application.

The paper is structured as follows. Section 2 provides some
background on the state of the art of data compression and low-
cost test procedures for SoCs. Section 3 illustrates the proposed
approach. Section 4 shows the results obtained on a sample
SoC, and section 5 draws some conclusions.

II. BACKGROUNDS

A. Data compression

Recently, data compression techniques [1][2][10] have been
effectively used to tackle the tester memory issue. The
compression process is performed by suitable software tools
and consists in encoding the generated test vectors using as
few bits as possible. Compressed data are then reconstructed,
or decompressed, by ad-hoc hardware
decoders/decompressors placed on-chip or on-tester.

If on-chip decompression modules are used, other than test
data volume reduction, a speed up in the test stimuli
application may be achieved [1][2] by possibly leveraging on
internal high frequency clock sources. Such a gain is obtained
at the expense of additional silicon area overhead and
demands for suitable tester-DUT communication schemas; in
fact, even if the tester is demanded to send data to the DUT
without performing any vector manipulation, it can be asked
to manage synchronization [1] or implement handshake
communication protocols [2].

On the contrary, if the decompression process is performed
on-tester, no test time gain is obtained - the complete
uncompressed vector set is sent to the DUT at the tester
frequency - but the overall testing scenario is simplified:
• the tester communicates with the DUT without the need

of synchronization or handshake schemas
• no modification is performed on the chip structure
• data compression is applicable to any manufactured chip

and intellectual properties are protected, since from the
tester point of view no information are required about the
type of on-chip embedded structure.

On-chip and on-tester solutions for decompression are not
mutually exclusive. In fact, a compressed set to be expanded
on-chip can be further compressed to be expanded on-tester.

B. Application aspects of low-cost test procedures

With the advent of Systems-on-Chip, the Low-Cost concept
is become a common denominator among test generation and
test application. In fact, in the SoC terminology, the term
Low-Cost is commonly used to classify a set of strategies [4]
and equipments [6] that exploit Design-for-Testability features
included on-chip for reducing test costs without impacting its
effectiveness; the costs of SoC test procedure involve many
factors, that are primarily test pins count and required
application frequency.

The adoption of test access protocols to transport
information inside the SoC architecture mainly addresses pin
count reduction, often at the expense of the bandwidth.
Indeed, autonomous test procedure execution addresses
frequency requirements mitigation, since it normally exploits
internal or independent clock supply resources that do not
request any external intervention.

Concerning test data volume of procedures usually
classified as Low-Cost, the overall number of test vectors to
be applied to the DUT depends on the number of initialization
and management operations required to activate the SoC test
functionalities. Consequently, patterns describing such
procedures finally reside on the tester memory and potentially
impact on the test applicability.

With respect to other techniques, such as scan-based or
combinational testing, for the considered procedures the
pattern order cannot be modified. This constraint does not
permit to optimize the pattern compression process as shown
in many works [1][2].

III. THE PROPOSED APPROACH

The work presented herein aims at tackling two problematic
issues related to the application of low-cost test procedures
such as those described in section 2.2.

A primary effort is devised to reduce the memory space
required to apply the vector set. In general terms, this issue is
pursued by automatically identifying repetitive test vector
segments and pruning them from the pattern set to be
reproduced autonomously by the tester itself. In [6] the
authors showed how an important gain could be obtained by
leveraging on the identification of intensively repeated test
segment parts. Anyway, the method in [6] was based on the
test access protocol knowledge, while a new strategy is
illustrated here, which is suitable to be applied to any chip
without doing any assumption on the SoC test protocol.

Test Set

Compressed
Test set

Decompression
logic

FPGA

R
A
M

μP
Automatic SW

tool

tester

DUT

HOST PC

B
R

A
M

Figure 1. Working principle and HW/SW resource partitioning
employed in the proposed approach.

Figure 1 shows the software and hardware resources
required to support the illustrated compression process.
Recurrent segments in the test set are first identified, and then
mapped into hardware resources, so that they can be re-
generated on the fly by the decompression logic. In particular,
this corresponds to some ad hoc generated finite state
machines (FSMs) implemented by the programmable devices
existing on the tester and interacting with the tester software
application tools [5]. The efficiency in the process of
activating the FSMs is fundamental for guaranteeing the
highest possible pattern set reconstruction frequency.

The second effort was therefore devoted to design a suitable
FPGA-based low-cost tester platform implementing a two-
layer tester memory organization including:
• a secondary, large and slow general purpose memory,

which stores the complete compressed test transmitted by
the host computer controlling the tester

*) This work was supported by the European Community in the Alpha-
NICRON Framework.

• a primary, small and fast memory that receives at run-
time the compressed test set to be decompressed by the
FSM-based test head design.

This tester configuration perfectly combines with the
proposed compression/decompression schema, which often
asks the decompression logic to run autonomously, thus
leaving time for even slower data transfer within the two
memory layers.

A. Proposed algorithm for Low-Cost test procedure data
compression

Differently from other approaches tackling test pattern
compression, such as Run-length, Golomb and Huffman
compression codes [2][3] or based on pattern value reuse [1],
the proposed methodology does not encode separately each
single signal to be provided to the DUT. On the contrary, in
the explained approach a set of signals is jointly considered.,
taking also into account the considered test sets are mainly
composed of commands, instead of vectors. This choice
derives from two factors.

Firstly, access mechanisms to embedded test resources
normally included in SoCs are based on a set of control signals
that are opportunely sequenced to move data inside the device.
Control signal waveforms are heavily recurrent, since they
implement a translation of high level commands defined by
the selected access protocol.

Secondly, test data for embedded test execution may be
strongly repetitive; for instance, if an SBST test program is
transmitted to an internal memory space to be later executed,
the same instruction can be sent many times to different data
locations. Similarly, if many commands are sent to internal
decoding circuitries (e.g., for diagnostic BIST), not only
control, but also data signals will show repeated occurrences.

The proposed algorithm is aimed at identifying two kinds of
occurrences:
1. Vertical occurrences, a timing diagram slice that is

repeated for many times in the vector set.
2. Horizontal occurrences, a timing diagram slice (longer

than 1 clock cycle) during which one or more signal
values are maintained stable at a certain value.

In a previous work [6], we showed that:
1. the identified vertical and horizontal pattern segments can

effectively be translated into proper FSMs
2. the activation order for FSMs can be stored in a Test

Segments Occurrence table (or TSO) file
3. the part of the test set that was not selected for

compression can be stored in a Reduced Test Set
description (or RTS) file.

For a meaningful stimuli reconstruction, vertical and
horizontal occurrences have to be not overlapping. The
memory gain obtained by adopting such codification method
is maximized when many long vertical occurrences and few
but extensively repeated cases of horizontal occurrences are
identified. This hypothesis is pursued in the automatic
identification algorithms detailed in next paragraphs.

Figure 2 exemplifies the vertical and horizontal occurrences
concept; the shown example underlines the presence of two
vertical and two horizontal occurrences.

Figure 2. An example of vertical and horizontal occurrences.

In the proposed flow, firstly vertical occurrences are
searched, then horizontal ones.

1) Identification and selection of vertical occurrences
The developed method for automatically identifying vertical

occurrence is composed of three iteratively performed steps:
1. pattern discovery, aimed at identifying repeating

occurrences in the pattern set
2. occurrence ranking, for populating the vertical

occurrences set
3. pruning from the string of the selected vertical

occurrence.

In a preliminary phase, for every time slice the signal values
are firstly codified using a symbol as shown in figure 4; in our
methodology, both input and output signals are considered.

Pattern
Discovery

RankingString

Pruning
Vertical

occurrence

1 to 128

Figure 3. Vertical occurrence selection flow.

I1: 000100101001110100110000101
I2: 001000010010000011101101001
O1: 101011010010110101010101010

S: 103411434034550523652303416

Figure 4. Example of symbol codification during pattern discovery
on 3 signals.

By leveraging on this codification schema, the pattern
discovery analysis consists in identifying repeated sequences
in the string S, basing on the following definitions.

A pair of substrings R=((i1,j1),(i2,j2)) is a repeated
pair if and only if (i1,j1)!=(i2,j2) and
S[i1...j1]=S[i2...j2]. Therefore, the length L of R is
j1−i1+1 and its frequency F is the number of times that it
occurs in the string. A repeated pair ((i1,j1),(i2,j2)) is
called left maximal if S[i1-1]!=S[i2-1] and right
maximal if S[j1+1]!=S[j2+1]. Finally, a repeated pair is

called maximal if it is both left and right maximal and a
substring Ȧ of S is a maximal repeat if there is a maximal pair
((i1,j1),(i2,j2)) such that Ȧ=S[i1...j1].

During the pattern discovery phase, an Enhanced Suffix
Array (ESA) is built [9]. ESA is obtained by using a
commonly employed algorithm (such as SeqAn [5]) and is a
fundamental indexing data structure using auxiliary tables to
find all the maximal repeats in the string S.

Based on an existing ESA, the ranking phase aims at
selecting the maximal repeat that provides the better reduction
ratio with respect to the current string S. In this process, a
trade off between vertical occurrence length and repetition
frequency has to be considered, taking also into account the
number of bits available for encoding [5].

S: 103411434034550523652303416 Coverage
--
R1: 034 034 034 33,3 %
R2: 523 523 22,2 %
R3: 0341 0341 29,6 %

Figure 5. Trade off between vertical occurrence length and repetition
frequency

Locally, a longer sequence provides a higher gain ratio than
a shorter one because it codifies more time slices with only
one occurrence. But globally, as exemplified in figure 5, the
shorter sequence R1, repeating more times than R3, can permit
a higher coverage with a resulting higher gain.

By these considerations, the ranking process selects the
longer maximal repeat whose length is larger than a minimal
threshold and whose frequency is greater than a parameter α,

¦
=

=

=
mrnj

j
j

mr

F
n 1

1α (1)

In equation (1) Fj is the frequency of the jth maximal
repeat and nmr is the number of identified maximal repeats.

The selected maximal repeat is extracted from S during the
pruning phase and the corresponding entry is added to the
TSO file. The heuristic used to obtain vertical compression is
described in the pseudo-code reported in figure 6.

Initially, (1) the test data volume is equal to the length of
the string S multiplied by the number of signals nS it is
composed of. A first loop (2) is controlled by the value of a
parameter KV, which is the minimum admitted length for a
vertical occurrence and ranges between Lmax and Lmin. Any
time this loop is iterated, the pattern discovery phase is
restarted by reducing the length threshold KV. A second loop
(6) is iterated until no maximal repeats are found larger than
Lmin or a maximum number of vertical occurrences imax is
obtained. In this nested loop, (7) pattern discovery resulting in
ESA is operated on SK limited to a threshold M, which was
initially set equal to KV (3), and ESA is submitted to ranking
(8). If this sequence does not select any vertical occurrence, the
threshold M is decreased by 1 (9), and SKv re-analyzed under
less stringent parameters. Otherwise, (11) SKvi is pruned from
the identified Vi. When exiting the internal loop, the obtained
reduction ratio (RTDV) is evaluated, and if improved, the
sequences configuration saved (14, 15).

Figure 6. Vertical occurrence set determination algorithm.

2) Identification and selection of Horizontal occurrences

The process for identification of horizontal occurrences is
executed on the string SV pruned of the vertical occurrences.
Similarly to figure 3, the method proposed for automatically
identifying horizontal occurrences is composed of three
iteratively performed steps:
1. statistical report, identifying for each signal how many

times SV show a constant value for an entire substring
2. statistical analysis, for populating the horizontal

occurrence set
3. pruning from SV of the selected horizontal occurrences.

Each signal is analyzed singularly, counting how many
times it remains constant to 0 or 1 for an entire substring. The
horizontal occurrences are then identified combining the nH
signal values that fully covers more segments, as described in
the pseudo-code reported in figure 7.

horizontal_compression(){
(1)for(KH = LHmin Æ LHmax){
(2) I=1;
(3) SKH = SV;
(4) nH = ns -1;
(5) while(I < imax && nH > 0){
(6) Stat=report(S KH

i,KH);
(7) Hi=NULL;
(8) while(Hi == NULL && nH >0){
(9) Hi =analysis(Stat);
(10) if(Hi == NULL)
(11) nH--;
(12) else{
(13) SKH

i+1 = pruning(SKH
i, Hi);

(14) i++;
(15) Hi=NULL;

 }
 }
 }

(16) if (RTDVKH < RTDVmin){
(17) RTDVmin = RTDVKH;
(18) save(HKH);

 }
 }

}

Figure 7. Horizontal occurrence set determination algorithm.

The horizontal compression depends on the parameter KH
that ranges between LHmin and LHmax (1) and represents the
admitted length range for a horizontal occurrence. At any
iteration, the process is restarted by increasing the length

vertical_compression(){
(1)RTDVmin = length(S)*nS;
(2)for (Kv = LVmax Æ Lvmin){
(3) M = Kv;
(4) i=1;
(5) SKv = S;
(6) while (M != Lvmin || i!=ivmax){
(7) ESA=pattern_discovery(S Kv

i,M);
(8) Vi = ranking(ESA)
(9) if (Vi == NULL) M--;
(10) else{
(11) SKv

i+1 = pruning(SKv
i, Vi);

(12) i++;
}

 }
(13) if (RTDVKv < RTDVmin){
(14) RTDVmin = RTDVKv;
(15) save(VKv);
 }
 }
}

threshold KH. An inner loop (5) goes on until no more
repetitions are found, or the maximum number of horizontal
occurrences imax is obtained. In this loop, statistical analysis is
performed on SKH based on parameter KH (6), and results are
analyzed to select horizontal occurrence (10). If no horizontal
occurrence exists (10), the number of signals on which
occurrences are looked for is decreased by 1 (11), and
statistical analysis is performed under less stringent
parameters. Otherwise, (13) SKHi is pruned from the identified
Hi. When exiting the internal loop (5), the obtained reduction
ratio is evaluated, and if improved, the horizontal sequences
configuration saved (17,18).

B. Low-Cost Tester organization

A suitable Low-Cost tester organization designed to
efficiently support the decompression process is shown in
figure 8. This schema shows both HW and SW resources
required to decompress and apply the vector set to the DUT:
- HW resources: they include the components needed both

to manage and perform decompression
o A FPGA device

� storing FSMs capable of autonomously
reproducing the recurrent test segment parts
pruned from the vector set [6]

� including small and fast dual-port BRAMs
o A μprocessor in charge of managing the overall

decompression procedure
o A large stand-alone RAM
o A DMA controller for system bus management
o Some communication and mass storage peripherals

required to transfer data internally
- SW resources: they include the compressed vector set, the

tester Operative System, and the SW application run by
the processor to manage the decompression process.

The architecture of the stimuli generation block was already
discussed in [6]. Such a tester architecture enables a very
effective method for data management that exploits a two-
layer memory organization. In principle,
• the compressed pattern set is completely stored on a

secondary, large and slow memory belonging to the
Stimuli Controller block

• from the secondary memory the compressed information
is moved block-by-block, by means of the DMA
controller, to smaller and faster primary RAMs, that in
our schema correspond to the FPGA dual-port BRAM
blocks [7] in the Stimuli Generator block.

In terms of tester costs versus capabilities, the benefit
stemming from the usage of this particular memory
organization and from the compression method explained in
the previous sections is twofold. A former advantage is that a
large and fast, and therefore expensive, primary memory is not
required, since data are transmitted block-by-block to be
decompressed. A second benefit stems from the fact that the
decompression logic mapped on the FPGA can usually run
autonomously for many clock cycles without interactions with
the rest of the tester. This decompression schema
characteristic implies that the frequency required to move

compressed data from the secondary to the primary memory
may be substantially lower than the decompression frequency.

D
U

T

HOST PC

μP

FPGA

TSO

Secondary RAM

Low-Cost Tester

RTSDATA
log

OS
SW
app

BRAM
(TSO)

BRAM
(RTS)

S
y

s
te

m
 b

u
s

DMA

bridge

Ethernet
CTRL

Peripheral bus

Decomp
CTRL

Decomp
Logic

NVM
CTRL

Mass
Memory

FSM

Stimuli GenerationStimuli Controller

Figure 8. Low-Cost tester architecture.

As an example, let us consider an explanatory scenario
where the primary RAM storing TSO words has only one 8 bit
location; if this location currently contains a word describing a
vertical occurrence, an FSM is activated that reproduces a n
clock cycles long sequence at the f frequency. That means the
transfer data frequency can be reduced to f/n. Similarly, if a
primary RAM storing RTS data has only one 8 bits location,
and if 2 bits per fast clock cycle are used to complete an
horizontal occurrence, then the requested secondary to
primary memory transfer frequency is a quarter of the
generation frequency.

More in general, the required average transfer frequency
Ftrans is function of R (compression ratio), Bv (number of bits
used to codify a vertical occurrence), Rv (compression ratio
obtained only by vertical occurrence pruning), L v (average
length of the vertical occurrences), Bh (number of bits used to
codify a horizontal occurrence), L h (average length of the
horizontal occurrences), B (number of bits transmitted from
secondary to primary memory per transfer clock cycle), Fapp
(vector application frequency to DUT) and S (number of input
and output signal to and from the DUT).

() »¼
º

«¬
ª −++−=

h

Vh

v

Vvapp
trans L

RB
L

RBRS
B

F
F)1(1 (2)

The obtained reduction in the required transfer frequency
permits to physically separate the stimuli generator from its
controller; this aspect fits the case of probe cards that actually
can include FPGA cores. Our technique enables augmenting
their ability in terms of stimuli application frequency while
mitigating the test driver to probe card communication
frequency. Moreover, it allows many stimuli generator blocks
to be managed by a single controller.

IV. EXPERIMENTAL RESULTS

The illustrated architectural principles for the FPGA-based
low-cost tester were experimentally proved by mapping them
on a Digilent XUP development board [8]. This commercial
product is equipped with two PowerPC processors connected
to a 256MB std-alone DRAM (secondary RAM); the board
also includes a FPGA containing about 30k logic cells and
2Mb BRAM blocks (primary RAM) [7]. The system bus
available for connecting processors, DRAM and FPGA

resources permits transferring 64 data bits per system clock
cycle. The DMA controller was included in the system as a
soft-core mapped in the FPGA.

We used the Linux kernel 2.6 as operative system and wrote
an assembly procedure to manage/monitor the compressed
data to be transferred from the host PC to the secondary RAM
via Ethernet connection. The length of this program is about
200 code lines.

Table I: compression ratio

Test program Original size
Compression

ratio
test_01 525 K 77.5%
test_02 551 K 74.2%
test_03 610 K 74.6%
test_04 620 K 73.7%
test_05 634 K 73.9%
test_06 8.1 M 66.5%
test_07 122 K 80.0%
test_08 2.4 M 64.0%
test_09 5.9 M 67.6%
test_10 112 K 82.2%
test_11 133 K 79.1%
test_12 200 K 74.6%
test_13 146 K 78.4%
test_14 419 K 79.6%
test_15 190 K 74.1%
test_16 171 K 76.4%
test_17 236 K 75.2%
test_18 184 K 93.5%
test_complete 20,75 M 69.8%

The SoC considered as a case study contains several cores,
including a processor core, some memory cores equipped with
programmable BIST circuitry, and several peripherals. The
considered test set, devised to cover stuck-at and transition
faults in the processor and peripherals via SBST procedures
and exploiting BIST to test memories, consists in 18 test
programs managed through an IEEE 1500 driven through
JTAG; moreover, the test procedures are additionally
supported by a free-running clock. Table I shows the
compression ratio [1] obtained on the 18 tests, plus another
obtained by collapsing all the test programs into a single one,
which finally accounts for 3MVectors, or 20.75 MB.

The compression process applied to this large test set
reduced the test data volume to 6.3 MB (2.4 MB for the TSO
and 3,9 MB for the RTS file), which corresponds to a
compression ratio of 69.8%. In particular, the process
identified 128 vertical occurrences (covering 48.5% of the
original test set) and 7 horizontal occurrences completing the
compression process. Parameter values adopted in the vertical
occurrences search are KV in the 32 to 5 range and 64 for the
maximal length of a single vertical segment. For the horizontal
occurrences, instead, KH ranges from 10 to 1.

For the sake of completeness, we compared this result with
that obtained by using a Golomb code compression
mechanism [2] (using groups of size 16); through this
experiment we obtained a compression ratio of 66.5% that is
slightly less than the result obtained with our technique.
However, it is worth noting that the Golomb code based
compression can not be supported by the low-cost tester
architecture described above.

The decompression logic obtained automatically at the end
of the compression phase was synthesized using Xilinx ISE
v.9.0 and mapped on the FPGA of the development board. Its
final occupation is 7,079 LUTs and 4,815 FFs and the
achieved frequency is 220 MHz. Because of device
specifications and FPGA to DUT communication constraints
(mainly due to connection within developed tester and
daughter board) a final communication frequency of 50MHz
was used. With this communication frequency, the average
secondary to primary RAM transfer frequency required is 4.4
MHz (19.4 MHz for a 220MHz communication frequency).

This case study thus shows how the size of a large test
procedure (∼17MB) was significantly reduced (∼5MB). The
procedure is therefore applied at 50 MHz without any
interruption for pattern reloading on a low-cost tester with
reduced fast channel memory space (∼2MB).

V. CONCLUSIONS

In this paper we proposed an automated data
compression/decompression technique suitable for very long
sequential test vectors generated to test SoCs composed of
cores supporting a BIST-based test by means of low-cost test
procedures. The described method performs compression off-
line and on-the-fly decompression on an FPGA-based low-
cost tester platform. Based on the illustrated compression
schema, the characteristics of an FPGA-based low-cost tester
platform were detailed.

Feasibility and effectiveness of the described methodology
was demonstrated by applying it to a SoC tested by means of
SBST and BIST procedures and using a commercial
development board including processors, RAM and FPGA
resources to implement the tester.

REFERENCES
[1] F. Karimi, et al., “Using data compression in automatic test equipment

for system-on-chip testing”, IEEE Transactions on Instrumentation and
Measurement, Volume 53, Issue 2, April 2004 Page(s):308 – 317

[2] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data
compression and decompression architectures based on Golomb codes,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 20, No. 3, pp. 355-368, March 2001.

[3] P. T. Gonciari, et al., “Variable-Length Input Huffman Coding for
System-on-a-Chip Test,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 22, No. 6, pp. 783-796, June 2003.

[4] M. Psarakis, et al., “Systematic software-based self-test for pipelined
processors”, ACM/IEEE Design Automation Conference, 2006, pp.
393 – 398

[5] A. Döring, D. Weese, T. Rausch, K. Reinert, “SeqAn – An efficient,
generic C++ library for sequence analysis”, BMC Bioinformatics 2008

[6] P. Bernardi, M. Sonza Reorda, “A novel Methodology for Reducing
SoC Test Data Volume on FPGA-based Testers”, Design, Automation
and Test in Europe, 2008. DATE '08, 2008, pp. 194 - 199

[7] Virtex II Pro Platform FPGAs Complete Datasheet. Available:
http://www.xilinx.com

[8] XUP Virtex II Pro Development System HW Reference Manual.
Available: http://digilentinc.com

[9] M. I. Abouelhoda, S. Kurtz, E. Ohlebusch, “The Enhanced Suffix Array
and its application to Genome Analysis”, WABI September 17-21, 2002,
pp. 449-463

[10] N.A. Touba, “Survey of Test Vector Compression Techniques”, IEEE
Design & Test of Computers, July-August 2008, pp. 294-30

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6

