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Abstract—This paper studies the problem of allocating
network capacity through periodic auctions. Motivated
primarily by a service overlay architecture, we impose
the following conditions: fully distributed solutions over
an arbitrary network topology, and the requirement that
resources allocated in a given auction are reserved for the
entire duration of the connection, not subject to future
contention. Under these conditions, we study the problem
of selling capacity to optimize revenue for the operator.

We first study optimal revenue for a single distributed
auction in a general network, writing it as an integer
program and studying its convex relaxation. Next, the
periodic auctions case is considered for a single link,
modeling the optimal revenue problem as a Markov De-
cision Process (MDP); we develop a sequence of receding
horizon approximations to its solution. Combining the two
approaches we formulate a receding horizon optimization
of revenue over a general network topology, leading to a
convex program that yields a distributed implementation.
The proposal is demonstrated through simulations.

I. INTRODUCTION

The possibility of auctioning bandwidth in real time

has been considered by many authors [12], [8], [14],

[18], [6], [19], with a variety of applications: diffserv,

access control, 3G cellular access, VPNs, etc. Much of

this work has focused on game-theoretic considerations,

in particular on providing incentives for bidders to reveal

their true utilities. The standard theory of auctions [11]

provides these mechanisms for the auctioning of a single

resource, but it is far more challenging to extend them to

a general network topology. Most proposals in this regard

require the user (or a broker entity acting on his/her

behalf), to place separate bids for internal resources

of the network. In particular, the Progressive Second

Price (PSP) mechanism of [12] requires each player to

coordinate bids at the different nodes on its route, so

that each node may run an auction with the allocation

and pricing rules of the single resource case. PSP has a

long convergence phase, which is improved by a multibid

method in [14]; however, the latter mechanism only ap-

plies to tree topologies. Another approach to bandwidth

auctioning for multicast trees or VPNs is proposed in [6],

based on Dutch auctions. The mechanism assumes that

users interested in a path would try to reserve bandwidth

by placing bids simultaneously for all constituent links.

In this paper we are primarily motivated by the Service

Overlay Network (SON) architecture [9], proposed to

facilitate the deployment of value-added Internet services

with end-to-end quality of service (QoS). An overlay

consists of service gateways located in the domain

boundaries, and a set of leased tunnels from the under-

lying operators. Through this infrastructure, the overlay

operator can sell for instance video-on-demand with high

QoS from a distributed set of servers to clients in all

these domains. We are interested in a decentralized and

scalable auction mechanism in which each user interacts

with the overlay network in the simplest way, with a

single bid for the entire end-to-end service, oblivious to

the internal topology. Furthermore, we focus on the ob-

jective of revenue maximization for the overlay operator

who invests in the overlay infrastructure. This leads us

to consider in Section II a first-price auction that can be

formulated as an integer program, and studied through

its convex relaxation, leading to distributed approximate

solutions. In Section II-B we argue why this approach,

which does not give incentives to truth-revealing bids, is

natural for our objective.

Another important aspect of our problem that has not

been satisfactorily addressed in previous work are inter-

temporal considerations. Most references cover a one-

shot auction where bids for the entire duration are known

initially. References for multi-period auctions (e.g. [18])

allow future bidders to compete with incumbent ones,

albeit given the latter some advantage. This is not an at-

tractive condition for our intended applications. Consider

for example selling video-on-demand content about 100

minutes long, in auctions every 5 minutes. A consumer

will not purchase the service if he/she faces the risk of

losing the connection close to the end of the movie. In

this paper we impose the condition that once bandwidth

has been allocated in an auction, the successful bidder

has a reservation for the duration of his/her connection.

This means that the operator must assume the risk of

future auctions. Optimizing revenue with this risk be-

comes then a stochastic dynamic optimization problem,

that we formulate in Section III as a Markov decision

process (MDP) [1], [17], for the single resource case.

We introduce a receding horizon approximation that is

able to capture the dynamic aspect of the problem in a

tractable way, and validate it by simulation.
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In Section IV we study multi-period auctions for

the general network case, incorporating the reservation

requirement. We find an extension of the optimization

in Section II that incorporates a receding horizon term,

and can lead to distributed computation. In Section V

we discuss implementation issues and study the features

of the proposed mechanism by simulation.

Conclusions are given in Section VI. A preliminary,

abbreviated version of this work was presented in [2].

II. OPTIMAL BANDWIDTH ALLOCATION OVER A

NETWORK

In this section we consider a set of users who bid

for end-to-end bandwidth in fixed amounts, and the

network must make a one-time decision as to how to

allocate capacity among them to maximize its revenue.

By considering this one-shot decision we postpone any

temporal considerations; for the moment the focus is the

network topology, and the requirement for a distributed

resource allocation method.

We establish some notation. The network is composed

of a set of links indexed by l, and a set of end-to-

end routes indexed by r. R denotes the routing matrix,

Rlr = 1 iff route r includes link l, otherwise Rlr = 0.
c = (cl) is the vector of link capacities. Associated

with each route r is a class of service defined by a

fixed bandwidth σr : users bid for this well-defined rate

allocation. There could be different classes of service

offered over the same topological path; however in that

case we use a different index r for each class, so the

above formulation involves no loss of generality. For

each r, the network receives a set of Nr bids b
(i)
r , ordered

as

b(1)
r ≥ b(2)

r ≥ · · · ≥ b(Nr)
r .

The resource allocation decision is to find which of

these bids to accept, within the capacity constraints of

the network, to maximize revenue. We will assume a

first-price auction, users will pay their bid; later on we

discuss strategic implications. Defining the variable ξr,i

by ξr,i = 1 if bid b
(i)
r is accepted, ξr,i = 0 otherwise,

the optimal revenue problem is the integer program

max
∑

r

Nr
∑

i=1

b(i)
r ξr,i (1a)

s.t.
∑

r

Nr
∑

i=1

Rrlσrξr,i ≤ cl ∀l, (1b)

ξr,i ∈ {0, 1}. (1c)

We will also use an alternative form. Noting that for fixed

r, all bids b
(i)
r are for the same amount of bandwidth, the

optimal solution will involve the highest bids per route,

Nr
∑

i=1

b(i)
r ξr,i =

mr
∑

i=1

b(i)
r ,

where the integer variable mr is the number of bids

accepted in each route. Also denote by ar the allocated

rate in route r, ar = σrmr. Now define

Ubr
(ar) :=

ar/σr
∑

i=1

b(i)
r . (2)

This function is defined above for discrete values of

ar (the multiples of σr). It is convenient to extend it

to a function of ar ∈ R, by linear interpolation. This

piecewise linear function is increasing and concave in

ar, since bids are decreasing. With this notation, we can

alternatively rewrite (1) as follows.

Problem 1 (Optimal instantaneous allocation):

max
∑

r

Ubr
(ar) (3a)

s.t.
∑

r

Rrlar ≤ cl ∀l, (3b)

ar/σr ∈ Z. (3c)

A. Convex relaxation and distributed solution

Let us ignore for the moment the integer constraint

in (3c); the optimization in (3a-3b) has the same form

as the network utility maximization problem in the con-

gestion control literature [10], [13], [20], but now the

utility represents the network revenue. Through the use

of duality one can seek decentralized solutions to this

convex relaxation. We summarize the method briefly.

Let α = (αl) be a vector of Lagrange multipliers

(prices) associated with the constraints (3b), and let

qr =
∑

l Rrlαl be the accumulated prices per route.

Denote yl =
∑

r Rrlar, [·]
+ = max{·, 0} and let γl > 0.

Then the optimum of (3a-3b) can be found dynamically

through the gradient projection algorithm

ar := argmax
ar

[Ubr
(ar) − qrar], (4a)

αl := [αl + γl (yl − cl)]
+. (4b)

Here (4a) uses current route prices to fix a rate allocation

with maximum “surplus” (utility minus a linear cost).

(4b) compares the proposed allocation to link capacity

and updates prices (up or down) accordingly. An equilib-

rium point of (4a-4b) is a saddle point of the Lagrangian

L(a, α) =
∑

r

Ubr
(ar) + αT (c − Ra)

which corresponds to an optimizing a. In congestion

control, the preceding equations are interpreted as de-

scribing the data plane, in which elastic sources adapt

their packet rate and links generate prices based on their

instantaneous congestion. They are known to asymptot-

ically reach optimality for strictly concave utilities [20].

In our situation, we think of the above equations as an

iteration in the control plane, which is run to settle an

auction prior to any allocation of resources. In Section

V we describe an implementation mechanism.
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One issue is that Ubr
is not strictly concave, it is

piecewise linear, changing slope at the multiples of σr.

So (4a) might have multiple optima; we could use this

freedom to select select a solution that satisfies the

integer constraint in (3b), but it is not obvious that the

algorithm would converge with this choice. If it always

did, we would conclude that the convex relaxation is

exact. Unfortunately, this is not the case.

Example 1: Consider 4 links with capacity cl = 2,
and 5 paths (each with bandwidth requirement σr = 1),
with routing matrix

R =









1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1









.

Bids for the same route are all equal, with the following

distribution among routes: b1 = b2 = b3 = b4 = 1,
and 1 < b5 < 4

3 . Then, the relaxed convex program

(3a-3b) has solution a∗ = (2
3 , 2

3 , 2
3 , 2

3 , 0)T , with opti-

mum revenue U∗ = 8
3 . To see this, note first that a∗

satisfies (3b) with equality. Now consider the prices

α∗
l = 1

3 , l = 1, 2, 3, 4, with aggregate route prices

q∗ = (1, 1, 1, 1, 4
3 )T . Since b5 < q∗5 , we must have

a5 = 0, but the remaining coordinates are indeterminate

in [0, 1]. So the proposed point (a∗, α∗) is a saddle, but

this would not happen with integer coordinates in a.
In fact, here the integer program can be solved by

observing that at most two connections can be active

over all routes, so the best solution is to give them to

the highest bidders in route five, ã = (0, 0, 0, 0, 2)T .

This gives an optimal integer revenue Ũ = 2b5 < 8
3 . So

the optimal relaxed solution is better than any integer

solution. Moreover, the optimal integer solution is not

obtained by roundoff of the relaxed solution, it is a

radically different allocation.

The above example shows that optimal revenue is

not an easy integer program, its convex relaxation is

not exact. Since integer programming is NP hard, we

have strong indication of a fundamental difficulty in

this problem, not easy to overcome even allowing for

centralized computation. In practice, this forces us to

accept sub-optimal allocations.

Remark 1: Our problem shares similarities with an

optimal resource allocation problem studied in [16],

under opposite conditions: fixed input demand, mini-

mization of a convex cost subject to integer constraints.

Again, except for special cases this integer program does

not allow for a convex relaxation.

B. Strategic and game considerations

A large focus of the auction literature has been strate-

gic bidding, and the design of mechanisms in which

bidding true-utilities is a dominant strategy. Vickrey’s

second-price auction [21], where the winning user is

charged the second highest bid, is of this kind. More gen-

erally, VCG mechanisms (for Vickrey-Clarke-Groves,

see e.g. [5]) have built-in “incentive compatibility”, a

condition sought in many auction designs for networks

[12], [14], [6]. In contrast, we have proposed a first-price

auction with incoming bids, ignoring strategic considera-

tions. Are we missing an important point? In this section

we argue that the proposed auction is indeed natural for

our intended application, and it would not be preferable

to replace it by VCG-type allocation mechanism.

A first point is that VCG mechanisms are motivated

by welfare economics: allocating resources to the set

of users that achieves the highest utility. This does not

necessarily produce more revenue for the seller: indeed,

truth-revelation is subsidized by the seller, possibly at

the expense of profit. A fundamental result of the theory

of auctions, the Revenue Equivalence Theorem, see [5],

states that under under certain assumptions (mainly, risk

neutrality of participants) all auctions have the same

expected revenue for the seller. However, under other

conditions (e.g., risk-averse buyers) first-price auctions

are known to improve revenue [5].

To illustrate these issues for a one-shot auction as

considered in this section, consider a simple example,

auctioning a single link of capacity C, and assume in a

specific auction there are are fewer than C competitors

(for a unit each). The generalized Vickrey auction would

charge a price equal to the highest bid left out, in this

case, zero, hence the network receives zero revenue.

If, instead, we charge users what they bid, how would

strategic bidders behave? If they knew that capacity is

not scarce, the rational thing would be to submit a bid

close to zero; this would confirm revenue equivalence.

However, in practice they would not have this informa-

tion, so there is no clear answer as to what is rational to

bid, between zero and their true utility. If they wish to

have a good likelihood of securing a circuit, they will be

compelled to bid a non-negligible amount. So the seller

is better off with a first-price auction.

A second consideration, already brought up in [15],

is the complexity of truth revealing mechanisms when

implemented over a network. Suppose we are allocating

bandwidth as discussed above, and accepted that our

objective is not revenue but social welfare. A VCG

mechanism would be roughly as follows:

1) For the current bids, the optimal (maximum wel-

fare) allocation is computed.

2) To compute the charge for a certain user: remove

its bid, and re-compute the optimal allocation. The

difference in welfare the user imposes on others

through its presence determines the charge.

Now, each of the allocation problems is equivalent to

the integer program discussed in the previous section,

which we have seen is hard. Solving a number of such

problems of the order of the number of users is not an

attractive proposition by any means.
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Furthermore, to put such a complex mechanism in

place in response to strategic bidders implies that we

believe they themselves are capable of such complex

evaluations, otherwise they will not be able to “game”

this system. Such “unbounded rationality” is highly

questionable; and, the complexity grows even more when

we consider inter-temporal issues. Also, the information

requirements are clearly unreasonable: users would have

to know the entire network, etc. So, we have serious

doubts about the practical value of game theoretic studies

at this scale, and will not pursue them further.

III. PERIODIC AUCTIONS FOR ONE LINK

In this section we include the time dimension in

the allocation process. Auctions are held periodically,

based on bids collected for a period of length T . Once

allocated, resources are reserved for a service duration

that typically exceeds T , and reservations are in place,

so that future bids are not allowed to displace incumbent

users. We seek an allocation policy that maximizes

revenue over time. In this section we study the auction

of a single link of capacity C, with a single class of

service of bandwidth σ = 1.
The discrete time index k defines the auction at time

kT , involving the ordered bids bk,(i). If ak represents

the admitted rate (in this case equal to the number

of admitted connections mk), the associated revenue is

Ubk(ak) :=
∑ak

i=1 bk,(i), as in (2). As before, Ubk(·)
can be interpolated to define an increasing, piecewise

linear and concave function over the real numbers. This

extension can be achieved defining U constant for rates

greater than ak.

A. Optimal allocation as a Markov Decision Process

The long-term optimal revenue problem is posed in

terms of a stochastic model for the bidding and duration

processes. We assume bids are drawn from a certain

continuous probability distribution, and service durations

are modeled as independent exponential random vari-

ables, of mean 1/µ; therefore at the end of the period T
each connection has probability p := e−µT of remaining

active for the following period.

Remark 2: We assume in this section that the dis-

tribution of bids is known to the auctioneer. Also, the

number of bids per auction is tentatively assuumed fixed

at N ≥ C. In Section V we will consider learning

the bids distribution from past observations, and the

possibility of bids arriving as a random process.

Remark 3: The most questionable assumption is that

of an exponential service duration. Duration is a char-

acteristic of the service being auctioned, and could be

considered deterministic. The only natural randomness

is that a user might give up before the allotted time (e.g.,

the end of the movie). Clearly, an exponential distribu-

tion does not capture this well, but has been adopted to

allow for a Markovian analysis. The duration parameter

µ is associated with the service being auctioned, thus in

this section it is common to all users; see Section IV for

generalizations.

Given the distribution of bids b, we define the ex-

pected revenue function U(a) = E[Ub(a)], where we

replace the current bids in (2) by their expectation (the

order statistics for the known distribution). This is also

increasing, piecewise linear and concave.

Let xk denote the number of connections active at

t = kT−, i.e. before the k-th auction. The system admits

ak new connections, 0 ≤ ak ≤ C − xk, taking the total

to xk + ak. By the next auction period, t = (k + 1)T−,

the number of active connections xk+1 follows then a

binomial distribution with parameters xk + ak and p:

P [xk+1 = i|xk, ak] =
(

xk+ak

i

)

pi(1 − p)xk+ak−i. (5)

Problem 2 (Optimal mean revenue, single link):

Maximize lim
n

1

n

n−1
∑

k=0

E[Ubk(ak)].

Here the expectation is over two sources of randomness:

the vector of bids bk and the departure process. The

constraints are 0 ≤ ak ≤ C − xk where xk follows the

binomial transition dynamics (5). We can also consider

the discounted version:

Maximize

∞
∑

k=0

ρkE[Ubk(ak)], where 0 < ρ < 1.

Both are Markov Decision Processes (MDPs) [3],

[17]. The state at time k is given by sk = (xk, bk), i.e.
the current occupation and the incoming bids. Based on

this state, the action ak = a(sk) decides on how many

bids to accept. A solution to the MDP is a policy a(s)
that results in a minimum cost. In the discounted case

ρ < 1, this policy satisfies the Bellman equation

V ∗(x0, b) = max
a∈As

{

Ub(a) + ρE[V ∗(x1, b′)]
}

, (6)

where V ∗ is the value function and the expectation is

taken over the binomial distribution of x1|(x0, a) and

the distribution of the next bid b′. The state-dependent

constraints are As = {0 ≤ a ≤ C − x0}. For ρ = 1, V ∗

satisfying (6) is no longer the optimal cost, but (6) still

characterizes the optimal action a(s).

It is in general difficult to solve the Bellman equation;

a commonly used strategy is the value iteration

Vm+1(x
0, b) := max

a∈As

{

Ub(a) + ρE[Vm(x1, b′)]
}

;

starting with an arbitrary V0(s), Vm(s) converges to

V ∗(s), and the corresponding maximizing action con-

verges to the optimal action [3].
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B. Receding horizon approximation.

We use initial steps of the value iteration to approxi-

mate the optimal policy. Starting from V0 ≡ 0, we have

V1(x
0, b) = max

a≤C−x0
Ub(a) = Ub(C − x0).

This first step gives the “myopic” policy a = C−x0, that

sells all available capacity without regard to the future. In

certain parametric scenarios this may be a good policy.

To improve on it, we take a second step in the value

iteration:

V2(x
0, b) = max

a≤C−x0
{Ub(a) + ρE[V1(x

1, b′)]}

= max
a≤C−x0

{Ub(a) + ρE[Ub′(C − x1)]}

= max
a≤C−x0

{Ub(a) + ρEx1U(C − x1)]}. (7)

In (7), we have taken expectation with respect to the

bid b′, using U defined above; what remains is the

expectation with respect to x1 ∼ Bin(x0 + a, p). The
policy that solves (7) can be given a receding horizon

interpretation: the decision optimizes over the current

revenue plus the expected revenue of looking one step

ahead, assuming all available capacity will be sold off

at that time. This decision is applied recursively; thus

the future is taken into account, but at a limited level of

complexity.

The first term in (7) increases with a. To character-

ize the second, we rewrite it as follows. Consider the

function W (i) = U(C) − U(C − i), piecewise linear,

increasing and convex in i. Indeed, the increments

w(i) := W (i + 1) − W (i) = E[b(C−i)], i = 1, . . . , C

are non-negative and increasing in i (since bids are

decreasing). We now study the expectation with respect

to the binomial distribution.

Proposition 1: Define W (x) = E[W (Ix)], where

Ix ∼ Bin(x, p) for integer x, and extend by linear

interpolation. Then W (x) is increasing and convex.

Proof: Given Ix ∼ Bin(x, p), integer x, we can

generate a Bin(x+1, p) random variable of the form Ix+
ξ, where ξ is Bernoulli(p), independent of Ix. Writing

W (Ix + ξ) − W (Ix) = w(Ix + 1)ξ

and taking expectations, using independence we obtain
increments

w(x + 1) := W (x + 1) − W (x) = pE[w(Ix + 1)]. (8)

It remains to show the last term is increasing in x.
Noting that w(i) is increasing, the inequality w(Ix +ξ+
1) ≥ w(Ix +1) holds almost surely; taking expectations,

E[w(I(x+1) + 1)] = E[w(Ix + ξ + 1)] ≥ E[w(Ix + 1)].

The one-step ahead optimization (7) can now be

rewritten as

max
a≤C−x0

Ub(a) − ρW (x0 + a) + ρU(C). (9)

Implicit in (7) and (9) is that a is an integer. In this

case, however, the condition can be relaxed without

loss of generality, treating (9) as a convex optimization

problem. To solve it amounts to looking for a crossing

point between the derivatives of Ub(a) and ρW (x0 + a)
(marginal utilities and costs), as depicted in Fig. 1.

0 1 2 3 4 5 6
0

10

20

30

Circuits

 

 

Marginal cost

Marginal utility

Fig. 1. Marginal utility versus marginal cost

The marginal utilities are just the current bids in de-

creasing order. The marginal costs represent the value of

leaving one more free circuit for the next auction, and

have the form ρw(i), with w(·) defined in (8); as noted

they are increasing in i. Since the bids b are random, the

curves of Figure 1 will almost surely cross at a single,

integer point. So the convex relaxation is innocuous.

The optimal acceptance policy is the value a such that

b(1) ≥ · · · ≥ b(a) ≥ ρw(i) > b(a+1), for i = x0 + a.

The values ρw(i); act as successive thresholds: to accept

a bids, the lowest one must exceed ρw(x0 + a). To

accept one more, we require a more demanding threshold

ρw(x0 + a + 1) on this (smaller) bid.

A concrete formula for the thresholds as a function of

the bid distribution is given (see the Appendix) by

w(i) = p

i−1
∑

l=0

E(b(C−l))
(

i−1
l

)

pl(1 − p)i−1−l. (10)

Based on knowledge of ρ, p, and the distribution of bids,

this expression could be calculated offline and used for

carrying out auctions with the policy (7).

We now compare by simulations our receding horizon

policy with the optimal infinite-horizon MDP, in the case

of one circuit (C = 1). In this simple case, the latter

is also a threshold policy on the bids, but the optimal

threshold does not have a simple formula; we computed

it numerically through the value iteration algorithm from

[7]. The left graph in Fig. 2 shows the acceptance

thresholds for both policies: we see the infinite horizon

threshold is more demanding. On the right we show

the average utility obtained by simulation of these two

policies. Results are very similar. Therefore, in this case

we have managed to extract almost the optimal utility

just by looking one-step ahead with the policy. On the

other hand, if we apply the myopic policy that always

fills the link, the second plot shows there is a clear loss

in utility.



6

Fig. 2. Comparison between policies, C = 1, p = 0.1.

C. A fluid approximation

Our ultimate goal is to generalize this allocation policy

to a general network topology as studied in Section II.

The stochastic calculations involved in (10) appear diffi-

cult to generalize, so we adopt a second approximation,

replacing the function W (x) in (9) by something easier

to compute. Namely, define

φ(x) = W (E[Ix]) for Ix ∼ Bin(x, p).

Since W (·) is convex, this underestimates the one-step

cost from before, φ(x) ≤ W (x). Nevertheless, if C
is large the binomial distribution will be concentrated

around its mean and the error is moderate. In return, we

have the simple expression

φ(x) = W (px) = U(C) − U(C − px). (11)

This is still piecewise linear and convex, but easier

to compute. The second approximation to the optimal

policy is given by

max
a≤C−x0

Ub(a) − ρφ(x0 + a) + ρU(C). (12)

Equivalently, by introducing a slack variable z we rewrite

the above as the convex program

maxUb(a) + ρU(z),

s.t. x0 + a ≤ C, p(x0 + a) + z ≤ C. (13)

This is a fluid approximation of (7). At the optimum, the

constraint in z is an equality, z = C − p(x0 + a); note
that z (expected future allocation) need not be an integer.

On the other hand, a should be an integer; one drawback

of the fluid version (12) is that the breakpoints of φ(x)
need not be integers; therefore its solutions might lead

to fractional allocations that in practice will have to be

approximated; we discuss this in the next section.

IV. PERIODIC AUCTIONS IN THE NETWORK CASE

In this section we consider the full problem of periodic

auctions carried out over a general network, with the

reservation requirement. In this context, the problem

studied in Section II corresponds to the myopic policy

of auctioning all bandwidth; we wish to incorporate the

consideration of future revenue, generalizing the material

of Section III. Given the complexity of this problem

we will only generalize the fluid approximation to the

receding horizon policy.

We describe the allocation decision at time k = 0, and
hence avoid inserting time indices in the bids and other

variables. Define column vectors x0, a, and z, whose
coordinates per route r denote respectively the rate x0

r

from previous occupation, the rate allocation ar at the

current auction, and the expected rate allocation zr in

the following auction (t = T ). Recall the definition (2)

of the piecewise linear utility Ubr
(ar) based on current

bids; analogously define U r(zr), replacing bids by their

expectation. Both are in terms of σr, the bandwidth

requirement of the class of service associated with r.
Another feature of the class of service is the model

for duration: let pr be the probability that a connection

active at t = 0 on route r will remain active at t = T 1.

Denoting by P = diag(pr) the corresponding diagonal

matrix, the expected input rate vector at time t = T−

will be given by P (a + x0).
Problem 3 (Network receding horizon allocation):

max
∑

r

Ubr
(ar) + ρUr(zr), (14a)

s.t.R(a + x0) ≤ c, RP (a + x0) + Rz ≤ c, (14b)

ar/σr ∈ Z. (14c)

To get some insight into the above optimization it is
useful to rewrite it in a similar manner to the single link
case. For a vector x of source rates, define

φ(x) := max
Rz≤c

X

r

U r(zr) − max
Rz≤c−RPx

X

r

U r(zr). (15)

This function plays a similar role as the one defined in

(11). For brevity we denote the first term (a constant) by

U
max

, it plays the role of U(C) in (11).2.

Note that (15) is equivalent to a convex program in z,
with x appearing linearly on the right-hand side of the

constraints. It follows from ([4], Exc. 5.32) that φ(x)
is convex. Furthermore, since the objective is piecewise

linear it can be shown that φ(x) is piece-wise linear; we
omit the details.

Through the function φ we can eliminate the variable

z from Problem 3, reducing to the following optimization

in a, together with the integer constraints (14c):

max
R(a+x0)≤c

[

∑

r

Ur(ar) − ρφ(a + x0) + ρU
max

]

(16)

Remark 4: One property φ(x) does not have is sepa-

rability over the components xr of the vector x. Hence,
the above optimization cannot be separated across dif-

ferent routes, it is inherently coupled.

Remark 5: Consider the situation where the con-

straints in (16) are inactive at the optimum. This means,

with the current bids it is advantageous to leave spare

1For an exponential duration, pr = e−µrT .
2This term is not essential, it merely gives φ ≥ 0 and φ(0) = 0.
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capacity for the following auction, the predictive term

is playing a non-trivial role. In that case, optimum can

be found by comparing the marginal utilities (the bids)

with the marginal costs, which take a finite number of

values due to piecewise linearity of φ. Generically, then,
these will cross at a single point, as in the scalar case.

However, as remarked in that case, here as well the point

need not satisfy the integer constraint in a.
The last remark implies that the convex relaxation

(14) is not exact; still, we can use it to obtain an

approximation. Consider the Lagrangian L(a, z, α, β)
given by

L =

(

∑

r

Ur(ar) + ρU r(zr)

)

+ αT (c − R(a + x0))

+ βT (c − Rz − RP (a + x0))

=
∑

r

[Ur(ar) − (qr + prvr)ar] + [ρU r(zr) − vrzr]

+ αT (c − Rx0) + βT (c − RPx0)

Here, α and β are the vectors of Lagrange multipliers

(prices) for each of the two constraints, and we have

defined the aggregate prices per route

q = RT α, v = RT β.

We can solve the convex program through a standard

dual, gradient projection algorithm which in this case

takes the form

ar := argmax
ar

[Ubr
(ar) − (qr + prvr)ar]; (17a)

zr := argmax
zr

[ρU r(zr) − vrzr]; (17b)

α := [α + γ
(

R(a + x0) − c
)

]+; (17c)

β := [β + γ
(

RP (a + x0) + Rz − c
)

]+. (17d)

The above algorithm is very similar to the one in Section

II, and suitable for distributed implementation in the con-

trol plane. Although there are additional price and rate

variables to pass, the message passing is fundamentally

the same. (17a) amounts to comparing the bids with the

threshold price qr + prvr; (17b) involves the expected

bids, and the price vr/ρ.
The computation still inherits some difficulties of

Section II: imposing integer constraints on ar/σr might

not yield an equilibrium, but a suboptimal allocation can

be found by rounding off ar in the decreasing direction.

V. IMPLEMENTATION AND SIMULATIONS

Implementing the described allocation algorithm in a

real network should be possible with variants of current

network protocols. For instance, reservation and price

signalling between network elements can be done with

the RSVP protocol, as we now briefly describe.

First, user bids are received by the brokers, where each

broker is associated with a service and a route from a

network access node to a server. These bids are collected

until auction time.

The auction allocation is then performed following the

decentralized design of (17), running in the network ele-

ments. The rate reservation variables (ar, zr) are sent by
brokers in RSVP Path messages; prices are accumulated

along a path with RSVP Resv messages in the reverse

direction. This is iterated until convergence, defined

through some tolerance, is reached, or alternatively after

a maximum number of iterations. To guarantee feasibility

of the final ar, which might be compromised due to the

gap with the integer program, these final values are sent

in a last round of RSVP reservations.

An important implementation issue is that the mean

user utility function may not be known to the broker.

In that case, we use an adaptive method that estimates

the function U from past bids, through an exponential

smoothing of the instantaneous utility function. Namely:

U
(k+1)

(z) = (1 − α)U
(k)

(z) + αUbk(z),

where U
(k)

is the current estimate. Note that this requires

updating only the values of U at multiples of the

circuit rate. Furthermore, the iteration applies even if the

number of received bids is randomly varying in time.

This procedure allows the allocation mechanism to

become independent of the bid distribution, and also

of the arrival process. For instance, if bids arrive as

a stationary random process (e.g. Poisson), U is well

defined, but difficult to write explicitly. However, the

system can estimate it through smoothing. In Fig. 3 we

show an estimation example. In this case, bids arrive

as a Poisson process with intensity λ = 10 bids per

auction, each bid having uniform distribution in [0, 1].
The averaging is taken over 100 auction periods with

α = 0.05. The real U(z) was calculated numerically.
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Real

Estimation

U
(
z
)

z

Fig. 3. Estimation of the U(z) for a Poisson process

In order to evaluate the proposed algorithm, we im-

plemented a discrete event simulator in JAVA which

runs the allocation algorithm in a configurable network

topology, with variable circuit demands, bid distributions

and arrival processes. The simulator also implements

the myopic policy and the average utility estimation

presented above. We present results for three different

scenarios.
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A. Scenario 1: single link auctions.

We first compare the results of the receding horizon

and myopic policies in a single link case, with 30
circuits. Auctions take place each T minutes, and bids

arrive periodically with intensity λ bids/min (assumed

fixed), totalling N = λT bids per auction.

Bids are assumed independent and uniformly dis-

tributed in [0, 1], and rejected bids are discarded after

each auction. Accepted jobs are assumed to stay in

the system an exponentially distributed time with mean

100 minutes. Hence, T is a critical system parameter:

enlarging T will allow more bids to participate in a

given auction and circuits to be freed in between, but a

very large T will decrease the auction rate, and therefore

decrease the revenue per time unit.
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Fig. 4. One link situation: 30 circuits, bid arrival rate λ = 0.5

In Fig 4 we show the results for λ = 0.5. In this figure

the myopic policy is compared with the one-step ahead

policy implemented with the known bids distribution and

with the learning version described above. We can see

that both one-step ahead policies attain more revenue per

time unit than the myopic policy, as expected.

B. Scenario 2: Linear network

We now simulate the linear network topology of Fig.

5. In this case, users in the long route 1 are expected to

pay more in order to be allocated resources, since each

of its circuits traverses 2 links. In order to emulate a

real world situation, the bids arrive as a Poisson process

of intensity λ and the learning one-step-ahead policy is

used. In the first simulation, we compared the results

C1 = 50 C2 = 30

Route 1

Route 2 Route 3

Fig. 5. Linear network with varying bids.

of this policy with the myopic one by variying the bid

arrival rate λ in every link and keeping the time between

auctions T = 5 min. We fixed the mean bid of route 1

to be twice of shorter routes. Results are shown in Fig.

6, where the average income per unit time is displayed.
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Fig. 6. Linear network with varying bid arrival rate.

As we can see, also in this case the one step ahead

policy attains a significative gain over the myopic policy,

for a wide range of arrival rates.

Our second experiment deals with varying the mean

bid over the long route. In this case, T = 5 min. as before

and λ = 1. We assumed independent and uniform bids

with mean 1 for the short routes and varying mean for the

long route. Results are shown in Table I. As we can see,

TABLE I
EFFECT OF VARIYING THE MEAN BID IN THE ALLOCATION.

Avg. bid 1 R1 R2 R3 a1 a2 a3

0.5 0.003 0.643 0.428 0.3 47.5 28.4
1.0 0.051 0.627 0.401 2.8 45.0 25.9
1.5 0.252 0.558 0.312 9.5 38.4 19.2
2.0 0.583 0.469 0.191 17.3 30.7 11.5
2.5 0.918 0.397 0.115 22.1 25.9 6.7

· Rr: revenue per unit time generated by route r.
· ar : mean allocated rate in route r.

when the mean bid of broker 1 is twice as much as the

others, it gets a fair share of connections. Offering more

will cause most resources of link 2 to be allocated to

broker 1, with broker 2 retaining its share of 10 circuits,

and broker 3 will starve.

C. Scenario 3: Overlay network.

In this final scenario, we tested the feasibility of our

proposal in the more realistic situation depicted in Figure

7. In this case we have four interconnected servers and

several brokers, each one attempting to secure resources

of the overlay network. We have two types of demands:

each connection in the short routes 1 and 3 consumes

2 circuits representing premium traffic, and the rest

consume 1 circuit. The numbers over the links in Figure

7 indicate the number of available circuits. We assume

that premium demand is less frequent (20%) but its mean

bid is twice the bids of shorter routes.

The results are shown in Table II. We can see that

the premium users who only use one link receive a

substantial portion of the resources.
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Fig. 7. Overlay Network Example.

TABLE II
SIMULATION RESULTS FOR SCENARIO 3

Broker 1 2 3 4 5 6
Links 1 1-2 2 2-3 3-4 4-1

Rr 0.111 0.081 0.115 0.204 0.420 0.211
ar 30.8 4.5 30.6 11.9 25.3 11.8

· Rr : revenue per unit time generated by route r.
· ar : mean allocated rate in route r.

VI. CONCLUSIONS

In this work we proposed a mechanism for allocating

network capacity through periodic auctions. We formu-

lated the problem of maximizing operator revenue under

the following constraints: the solution must be fully

distributed, the network has an arbitrary topology, and

the resources allocated in a given auction are reserved

for the entire duration of the connection. We found

near-optimal policies that can be computed via convex

optimization. By simulations we see that the distributed

algorithm scales well in different network topologies,

that the on-line estimation of the bid distribution leads to

good approximations, and that the algorithm outperforms

the myopic policy of selling all capacity in each auction.

In future work we will study a number of natural

extensions: a different receding horizon approximation

that might regularize the integer program, multiple-step

extensions to the receding horizon, and the multi-path

case where each broker competes by placing bids in

multiple network paths.

APPENDIX

In this appendix we will get the expression for

the threshold w(x). From (8) we have that w(x) =
E(W (Ix)) − E(W (Ix−1)) with Ix ∼ Bin(x, p). From
the definition of W and U we can rewrite this as

w(x) = EIx−1

0

@

C−Ix−1
X

l=0

E(bl)

1

A − EIx

0

@

C−Ix
X

l=0

E(bl)

1

A

=

x−1
X

j=0

A(x − 1, j)

C−j
X

l=1

E(bl) −
x

X

j=0

A(x, j)

C−j
X

l=1

E(bl),

where A(x, j) :=
(

x
j

)

pj(1 − p)x−j , Operating we have

w(x) =
C

X

l=C−x+1

E(bl)(

C−l
X

j=0

A(x − 1, j) −

C−l
X

j=0

A(x, j))

=

x−1
X

l=0

E(bC−l)(
l

X

j=0

A(x − 1, j) −
l

X

j=0

A(x, j)). (18)

Now,
l

X

j=0

A(x − 1, j) −
l

X

j=0

A(x, j) = pA(x − 1, l). (19)

can be established by induction. The value of the

threshold in (10), follows then from (18) and (19).
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