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Abstract. The performance analysis of a link is a well studied problem. However, for a service provider

the most interesting issue is the end-to-end quality of service (QoS) evaluation. The focus of this work

is to go from the link to the network analysis. This can be done in a complete but complex way or using

an approximation to speedup the calculations. We analyse and compare both methods.
Large Deviations Theory applications to Data Networks are mainly based on the many sources as-

ymptotic. This asymptotic is adequate for networks like Internet backbones, where the assumption that

the network is fed by a large number of sources is reasonable.

Recently, Ozturk et al. have proposed a slightly different model called many sources and small buffer

asymptotic. They give a formula to calculate the link overflow probability and the end-to-end Loss Ratio

of traffic streams in a virtual path feed forward network of general topology. They also define the fictitious

network concept. The fictitious network has the same topology than the real one, but each traffic stream
goes across a link on its path without being affected by the upstream links until that one. So, in the
fictitious network each internal link can be analysed as an external one. Therefore, the fictitious network
usage simplifies dramatically the network performance analysis.

Our main motivation to simplify this task is to allow on-line performance analysis and traffic engi-
neering algorithms in virtual path networks as MPLS or ATM.

Ozturk et al. show that the fictitious network overestimates the overflow probability and the end to
end Loss Ratio. Therefore, decisions based on the fictitious network analysis are safe. However, this

overestimation leads to network resources under-utilization.
Under certain conditions the real and the fictitious network analysis give the same results (there is

no overestimation). In this work we establish sufficient conditions to assure that this coincidence arises.
Those conditions are not necessary, and we give an easy way to check if exact results may be obtained

even though sufficient conditions are not met. When the real and fictitious networks analysis give different
results, we find a method to bound the overestimation.

Finally, we show some numerical examples to compare the performance analysis in the real vs. the
fictitious network, and to validate our main results.

1. Introduction

MPLS (MultiProtocol Label Swiching)[10] is an architecture that enables to perform traffic engineering
in IP networks. MPLS introduces the notion of Forwarding Equivalence Class (FEC), giving the network
operator the possibility to split the traffic in aggregated flows according to the service model adopted by
the Internet Service Provider (ISP).

The edge routers in an MPLS network (or LER for Label Edge Router) are responsible for establishing
MPLS tunnels named LSPs (Label Switched Path) between the endpoints of the MPLS domain, and to
send each arriving packet to the corresponding LSP.

Explicit Routing (ER), a typical MPLS feature, is the main function that enables Traffic Engineering
(TE). Using ER the network operator can establish for each FEC one or more LSPs.

In order to satisfy end to end QoS guarantees in a MPLS network, a performance model is required.
This model provides methods to analyse the end to end QoS performance parameters.

We are interested in a performance evaluation model simple enough to be used in on line algorithms. In
this work we will analyse the model called the “fictitious network model” in the context of many sources
and small buffer asymptotic.
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Ozturk et al.[9] find a useful way to analyse the overflow probability in a network interior link, in the
many sources and small buffer asymptotic. Applying their model, the end-to-end Loss Ratio can also be
evaluated. This model can be used for off-line performance evaluation and traffic engineering. They also
introduce the fictitious network model and show that this latter overestimates the link overflow probability.
The fictitious network is a simplified network model that can be used for on-line performance evaluation
and traffic engineering. In this work we study in detail the fictitious network model and we find conditions
to assure that the fictitious network analysis in an interior link gives the same overflow probability than
the real network analysis, being much simpler. We also find a method to bound the overestimation when
these conditions are not met.

In section (2) we summarise some related works in order to give a brief description of the problem´s
context.

In section (3) we explain the model introduced by Ozturk et al. and we summarise their main results.
In section (4) we introduce our main results.
In section (5) we show some numerical examples, comparing the real and the fictitious network based

performance analysis and evaluate our results.
Finally, in section (6) we summarise and comment the main results.

2. Related works

Network designers and operators need a model to evaluate the end to end network performance in an
Internet core backbone. Since losses are “rare” events, some researchers have proposed the use of Large
Deviations methods for network performance evaluation.

In this context, the effective bandwidth notion was introduced some years ago. The notion of equivalent
bandwidth was formerly used to study the access control problem for some networks, as ATM. Many
contributions following this approach were done during the 90’s to analyse the access control in some
networks based on the IntServ model or others. In that situation, the access node receives a connection
request and has to estimate the resources it requires, in order to allow or deny the new connection. Kelly’s
Effective Bandwidth (EB) [7] may be used in such situations as the “equivalent capacity” needed by the
new connection. In this context, the flow to be statistically characterized is an individual flow, and may
be directly related with the data source (for instance, voice or video codecs). This situation was studied
using the so called large buffer asymptotic, in which the link buffer grows to infinity, and its filling above
some threshold is analysed. This approach cannot be used in backbone links, where buffers are not devised
to store bursts but to resolve simultaneous packet arrival, being consequently small. The application of
Large Deviations Theory to the analysis of the MPLS backbone must be performed on the basis of the
many sources asymptotic. In this regime we take buffer size B = Nb (whit N the number of sources),
output capacity C = Nc and make N go to infinity. Results about loss probability in this regime can be
found in [13], [2], [11], [5].

Using Large Deviations, Wischik [13] proves the following formula (called inf sup formula) for the
overflow probability:

log P(QN > B) ≈ − inf
t≥0

sup
s≥0

((B + Ct)s − Nstα(s, t))

where QN represents the stationary amount of work in the queue, C is the link capacity, B is the buffer
size and N is the number of incoming multiplexed sources of effective bandwidth α(s, t).

Wischik also shows in [12] that in the many sources asymptotic regime the aggregation of independent
copies of a traffic source at the link output and the aggregation of similar characteristics at the link
input, have the same effective bandwidth in the limit when the number of sources goes to infinity. This
result allows to evaluate the end to end performance of some kind of networks like “in-tree” networks.
Unfortunately this analysis can not be extended to networks like a MPLS backbone.

Eun y Shroff [6], have recently shown that in the many sources asymptotic regime, the probability of
the buffer size to be grater than zero goes to zero when the number of sources goes to infinity. This result
is valid for a discrete time queue and is valid for a continuous time queue if the source is bounded or can
be expressed as an integral of a stationary stochastic process.

Recently, a slightly different asymptotic with many sources and small buffer characteristics was proposed
by Ozturk, Mazumdar and Likhanov in [9]. They consider an asymptotic regime defined by N traffic

sources, link capacity increasing proportionally with N but buffer size such lim B(N)
N

→ 0. In their work
they calculate the rate function for the buffer overflow probability and also for the end to end Loss Ratio.
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This last result can be used to evaluate the end to end QoS performance in a MPLS backbone in contrast
with the Wischick result explained before, where it is necessary to aggregate at each link N i.i.d. copies
of the previous output link.

Ozturk et al. also introduce the “fictitious network” model. The fictitious network is a network with
the same topology than the real one, but where each flow aggregate goes to a link on its path without
being affected by the upstream links until that link. The fictitious network analysis is simpler and so, more
adequate to on-line performance evaluation and traffic engineering. Ozturk et al. show that the fictitious
network analysis overestimates the overflow probability. In this work we analyse when, for an interior
network link, the overflow probability calculated using the fictitious network is equal to the overflow
probability of the real network. Ramon Casellas [1] has also studied the overestimation problem in the
fictitious network. He found a condition to assure that there is no overestimation. This condition is a
particular case of the sufficient condition proven in this work.

In the next section we introduce some concepts of the Large Deviations Theory and summarize Ozturk
et al. work.

3. Many sources and small buffer asymptotic performance model

3.1. Large Deviations Principle. [4]

Definition 3.1. (1) I : χ → [0,∞), with (χ,B) a measure space is a rate function (R.F) if it is a
lower semicontinous function.

(2) I : χ → [0,∞), with (χ,B) a measure space is a good rate function (G.R.F) if all the level set of
I (Ψα(I) = {x : I(x) 6 α}) are compact sets.

Definition 3.2. A probability measure family µn in (χ,B) satisfies a large deviation principle(LDP) with
rate function I if

(1) − inf
x∈Γo

I(x) ≤ lim inf
n→∞

1

n
log µn(Γ) ≤ lim sup

n→∞

1

n
log µn(Γ) ≤ − inf

x∈Γ
I(x)

∀ Γ ∈ B with interior Γo and closure Γ.

3.2. Ozturk, Mazumdar and Likhanov work. Consider a network of L links which is accessed by M
types of independent traffic. Consider a discrete time fluid FIFO model where traffic arrives at time t ∈ Z
and is served immediately if buffer is empty and is buffered otherwise. Each link k has capacity NCk and
buffer size Bk(N) where Bk(N)/N → 0 with N → ∞. Input traffic of type m=1,...,M, denoted Xm,N is

stationary and ergodic and has rate Xm,N
t at time t (workload at time t of N sources of type m).

Let µN
m = E(Xm,N

0 )/N and Xm,N (t1, t2) =
t2∑

t=t1

Xm,N
t . We assume that µN

m →
N→∞

µm and Xm,N (0, t)/N

satisfies the following Large Deviation Principle (LDP) with good rate function IXm

t (x):

− inf
x∈Γo

IXm

t (x) ≤ lim inf
N→∞

1

N
log P

(
Xm,N (0, t)

N
∈ Γ

)
(2)

≤ lim sup
N→∞

1

N
log P

(
Xm,N (0, t)

N
∈ Γ

)
≤ − inf

x∈Γ
IXm

t (x)(3)

where Γ ⊂ R is a Borel set with interior Γo and closure Γ and IXm

t (x) : R → [0,∞) is a continuous
mapping with compact level sets. We also assume the following technical condition: ∀ m and a > µm,

lim inf
t→∞

IXm

t (at)

log t
> 0

Type m traffic has a fixed route without loops (as in MPLS and ATM networks) and its path is
represented by the vector km = (km

1 , ...., km
lm

), where km
i ∈ (1, .., L). The set Mk = {m : km

i = k, 1 ≤ i ≤
lm} denotes the types of traffic that goes through link k. To guarantee system stability it is assumed that

(4)
∑

m∈Mk

µm < Ck

The main result of Ozturk et al. work is the following theorem.
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Theorem 3.3. Let Xm,N
k,t be the rate of type m traffic at link k at time t. There exist a continuous function

gm
k : R

M → R relating the instantaneous input rate at link k for traffic m to all of the instantaneous external
input traffic rates such that:

(5)
Xm,N

k,0

N
= gm

k

(
X1,N

0

N
, ...,

XM,N
0

N

)
+ o(1)

The buffer overflow probabilities are given by:

lim
N→∞

1

N
log P (overflow in link k) = −Ik =

− inf

{
M∑

m=1

IXm

1 (xm) : x = (xm) ∈ R
M ,

M∑

m=1

gm
k (x) > Ck

}
(6)

In (5), o(1) verifies that lim
N→∞

o(1) = 0 since Bk(N)
N

→
N→∞

0. The function gm
k (x) is constructed in the

proof of the theorem. Ozturk et al. prove that the continuous function relating the instantaneous input
rate at link i for traffic m to all of the instantaneous external input traffic rates is the same function
relating these variables in a no buffers network. The function relating the instantaneous output rate at
link i for traffic m to all of the instantaneous input traffic rates at this link is:

(7) fm
i (x,Ci) =

xmCi

max(
∑

j∈Mi

xj , Ci)

In a feed-forward network the function gm
k (x) can be written as composition of the functions of type (7)

in a recursive way. Using equation (7) the buffer overflow probability can be calculated for any network
link, by solving the optimisation problem of equation (6). We need to know the network topology, the
link’s capacities and, for each arrival traffic type m, the rate functions IXm

1 .
Ozturk et al. define also the total (end to end) Loss Ratio as the ratio between the expected value of

lost bits at all links along a route and the mean of input traffic in bits, for stream m identified by Xm.
With the previous definition they find the following asymptotic for the Loss Ratio Lm,N :

(8) lim
N→∞

1

N
log Lm,N = − min

k∈km
Ik

However, in a big network, the optimisation problem of equation (6) could be very hard to solve. The
calculation of the function gm

k (x) is recursive and so, when there are many links it becomes complex.
In addition, the virtual paths can change during the network operation. Therefore, it is necessary to
recalculate on-line the function gm

k (x). To solve equation (6), it is also necessary to optimise a nonlinear
function under nonlinear constraints. In order to simplify this problem, Ozturk et al. introduce the
“fictitious network” concept, that is simpler and gives conservative results.

In the next section we find conditions to assure that there is no overestimation in the calculus of the link
overflow probability in the fictitious network analysis. We also find a bound for the error (overestimation)
in those cases where the previous condition is not satisfied.

4. Fictitious network analysis

We analyse an interior network link k the same assumptions that in Ozturk et al. work. M is the set of
traffic types that access the network and Mi is the set of traffic types that go through link i. We suppose
that the network is feed-forward, this means that each traffic type has a fixed route without loops. In the
real network, the link k overflow probability large deviation function (or rate function) is given by:

(9) IR
k = inf

{
∑

i∈M

IXi

1 (xi) : x = (xi)i∈M,
∑

i∈M

gi
k(x) > Ck

}
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In the fictitious network this function is given by

(10) IF
k = inf

{
∑

i∈Mk

IXi

1 (xi) : x = (xi)i∈Mk
,
∑

i∈Mk

xi > Ck

}

In the following it is assumed that each traffic type is an aggregate of N i.i.d sources. This implies that

each rate function IXi

1 is convex and IXi

1 (µi) = 0 for all i. Then, (9) and (10) are convex optimisation
problems under constraints. The second one has the advantage that the constraints are linear and there

are well known fast methods to solve it. The functions IXi

1 are continuous, so we solve the following
problems corresponding to the real and fictitious network respectively.

PR





min
∑

i∈M

IXi

1 (xi)

∑
i∈M

gi
k(x) ≥ Ck

PF





min
∑

i∈Mk

IXi

1 (xi)

∑
i∈Mk

xi ≥ Ck

Definition 4.1. Consider two optimisation problems

P1

{
min f1(x)
x ∈ D1

and P2

{
min f2(x)
x ∈ D2

P2 is called a relaxation of P1 if D1 ⊆ D2 and f2(x) ≤ f1(x), ∀x ∈ D1.

Proposition 4.2. If P2 is a relaxation of P1 and x2 is optimum for P2 such x2 ∈ D1 and f2(x2) = f1(x2),
then x2 is optimum for P1.

Proof. f1(x2) = f2(x2) ≤ f2(x) ≤ f1(x) ∀x ∈ D1 ⊆ D2, so x2 is optimum for P1 because it minimizes f1

and belongs to D1. �

Proposition 4.3. PF is a relaxation of PR.

Proof. Since the functions IXi

1 are non negatives, it is clear that
∑

i∈Mk

IXi

1 (xi) ≤
∑

i∈M

IXi

1 (xi) ∀x = (xi)i∈M.

Then, we have to prove that
{

x :
∑

i∈M

gi
k(x) ≥ Ck

}
⊆

{
x :

∑

i∈Mk

xi ≥ Ck

}

By definition, gi
k(x) = 0 ∀ i /∈ Mk and gi

k(x) ≤ xi ∀ i ∈ Mk (since gi
k can be written as composition of

functions of type (7)) then ∑

i∈M

gi
k(x) =

∑

i∈Mk

gi
k(x) ≤

∑

i∈Mk

xi

and therefore
∑

i∈Mk

gi
k(x) ≥ Ck, implies

∑
i∈Mk

xi ≥ Ck. �

Remark 4.4. If an optimum of the fictitious problem PF verifies the real problem PR constraints and the
objective functions take the same value at this point, then it is an optimum of the real problem too. In the
next remark we find the optimality conditions for PF .

Remark 4.5. The optimality conditions (KKT 1) for the fictitious problem

PF





min
∑

i∈Mk

IXi

1 (xi)

∑
i∈Mk

xi ≥ Ck

are the following:

1Karush-Khum-Tucker [8]
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(1) ∇

(
∑

i∈Mk

IXi

1 (xi) + λ(Ck −
∑

i∈Mk

xi)

)
= 0, with λ Lagrange multiplier.

(2) λ ≥ 0.

(3)
∑

i∈Mk

xi ≥ Ck.

(4) λ

(
Ck −

∑
i∈Mk

xi

)
= 0.

The first condition implies that

∂IXi

1

∂xi

(xi) = λ ∀ i ∈ Mk

and by the second one,

∂IXi

1

∂xi

(xi) = λ ≥ 0

If λ = 0, xi = µi ∀i. In this case
∑

i∈Mk

IXi

1 (µi) = 0 and it is not considered. Then we supposed that

∂IXi

1

∂xi

(xi) > 0, which implies xi > µi. Finally, since λ 6= 0, the last condition implies that

Ck −
∑

i∈Mk

xi = 0

Then, x̃ = (x̃i)i∈Mk
optimum for PF verifies:

(11)





x̃i > µi ∀ i ∈ Mk

∑
i∈Mk

x̃i = Ck

The following theorem gives conditions over the network to assure that the link k overflow probability
rate function for the real and for the fictitious network are equal (E = IR

k − IF
k = 0). Since the network

is feed forward, it is possible to establish an order between the links. We say that link i is “previous to”
or “less than” link j if for one path, link i is found before than link j in the flow direction.

Theorem 4.6. If x̃ = (x̃i)i∈Mk
is optimum for PF , and the following condition is verified for all links i

less than k:

(12) Ck −
∑

j∈Mk\Mi

µj ≤ Ci −
∑

j∈Mi\Mk

µj ∀ i < k

then x∗ defined by:

(x∗)i =

{
x̃i if i ∈ Mk

µi if i /∈ Mk

is optimum for PR.

Proof. The objective functions of the optimisation problems (9) and (10) take the same values at x∗

because IXi

1 (µi) = 0 ∀i:

∑

i∈M

IXi

1 (x∗
i ) =

∑

i∈Mk

IXi

1 (x̃i) +
∑

i∈M\Mk

IXi

1 (µi) =
∑

i∈Mk

IXi

1 (x̃i)

Considering proposition (4.3), it is enough to prove that x∗ satisfy the real problem constraints:
∑

i∈M

gi
k(x∗

i ) ≥ Ck

By definition gi
k(x∗) = 0 ∀ i /∈ Mk. Moreover the function gi

k can be written as composition of function
of type (7), so if

∑
j∈Mi

(x∗
j ) ≤ Ci ∀ i, then gi

k(x∗) = (x∗)i ∀ i ∈ Mk and
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∑

i∈M

gi
k(x∗) =

∑

i∈Mk

(x∗)i =
∑

i∈Mk

x̃i = Ck

proving the theorem. In the last equality we use that x̃ verifies (11), since it is optimum for PF . Then, it
is sufficient to prove that

∑
j∈Mi

(x∗)j ≤ Ci ∀ i < k. Separating the sum,

(13)
∑

j∈Mi

(x∗)j =
∑

j∈Mi∩Mk

x̃j +
∑

j∈Mi\Mk

µj ≤ Ci ∀ i < k

and then we have to guarantee that

∑

j∈Mi∩Mk

x̃j ≤ Ci −
∑

j∈Mi\Mk

µj ∀ i < k

Since x̃ is optimum for PF , it satisfy Ck =
∑

j∈Mk

x̃j , and therefore

∑

j∈Mk∩Mi

x̃j = Ck −
∑

j∈Mk\Mi

x̃j

Also, x̃j > µj ∀ j ∈ Mk ∑

j∈Mk∩Mi

x̃j ≤ Ck −
∑

j∈Mk\Mi

µj

Using the hypothesis, we have that:

∑

j∈Mk∩Mi

x̃j = Ck −
∑

j∈Mk\Mi

µj ≤ Ci −
∑

j∈Mi\Mk

µj ∀ i < k

which proves (13) and the theorem.
�

Example 4.7. Consider a network like in figure 1. We analise the overflow probability at link k.

Ci Cj Ck

X1

X2 X3 X4

Figure 1

If condition (12) is attained for link k, then E = IR
k − IF

k = 0. This condition is:





Ck − µ4 ≤ Ci − µ2

Ck − µ4 ≤ Cj − µ3

4.1. Theorem 4.6 in terms of available bandwith.

Definition 4.8. For a traffic type m in a link j, it is defined the available bandwidth ABWm
j as the

difference between the link j capacity and the mean value of the transmission rate of the other traffic types
in j.

In terms of the previous definition, the theorem condition (12) assures that the overflow probability
rate function at link k on real and fictitious network are the same if for all link j < k, and for all m traffic
type in Mj ∩Mk, ABWm

j > ABWm
k . This condition is represented in figure 2 for a simple network with

two links.
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X1

X2

X3

Cj

Cj

Ck

Ck

Link j Link k

µ2
µ3

ABW1

j ABW1

k

Figure 2

4.2. Sufficient but not necessary condition. The theorem condition (12) is sufficient to assure that
the overflow probability rate function at link k on real and fictitious networks are the same, but it is not
a necessary condition. In fact, if x̃ is optimum for the fictitious problem, and if x∗ defined as:

(14) (x∗)i =

{
x̃i si i ∈ Mk

µi si i /∈ Mk

satisfies the real problem constraints, then x∗ is optimum for the real problem. If x∗ verifies the following
condition

(15)
∑

j∈Mi

(x∗)j ≤ Ci ∀ i < k

it also verifies the real problem constraints and therefore is optimum for the real problem.
Therefore, in the case that the theorem condition is not fulfilled, if we found x̃ optimum for the fictitious

problem, then is easy to check if the rate functions are equal or no. It is enough to check (15), where x∗

is defined in (14).

4.3. Error bound. Since the functions IXi

1 are non negatives, it is clear that the rate function for the real
problem is always greater than the fictitious one. Then the error E = IR

k −IF
k is always non negative. This

implies that the fictitious network overestimates the overflow probability. We are interested in finding an
error bound for the overestimation of the fictitious analysis when conditions (12) and (15) are not satisfied.
A simple way to get this bound is to find a point x which verifies the real problem constraints. In this
case, we have that:

E = IR
k − IF

k ≤
∑

i∈M

IXi

1 (xi) −
∑

i∈Mk

IXi

1 (x̃i)

To assure that x verifies the real problem constraints, we have already seen that it is enough to show that





∑
j∈Mi

xj ≤ Ci ∀ i < k

∑
j∈Mk

xj ≥ Ck

Therefore, we have to solve this inequalities system. From remark (4.5), it can be seen that the optimum
of the fictitious problem is in the boundary of the feasible region (

∑
i∈Mk

x̃i = Ck). Since we are looking

for a point near the optimum of the fictitious problem in the sense that the error bound be as small as
possible, we solve the following system:

P56/8



(16)





∑
j∈Mi

xj ≤ Ci ∀ i < k

∑
j∈Mk

xj = Ck

For the interesting cases, where there are losses at link k, this system always has a solution. In the
following an algorithm to find a solution of this system is defined. We define the following point:

(x∗)j =

{
x̃j if j ∈ Mk

0 if j /∈ Mk

If x∗ verifies the conditions (16), we find a point that verifies the real problem constraints. In some cases

this is not useful because IXj

1 (0) = ∞ and we have that the error bound is infinite. If P (Xj,N
1 ≤ 0) 6= 0,

the function IXj

1 (0) < ∞ and a finite error bound is obtained. If x∗ is not solution for system (16), then
we redefine (by some small value) the coordinates where

∑
j∈Mi

xj > Ci in such a way that
∑

j∈Mi

xj = Ci.

The second equation must be verified too and, since some coordinates were reduced, others coordinates
have to increase to get the total sum equal to Ck. Since the system is compatible, following this method,
a solution is always found. There is no guarantee that the solution given by this method minimises the
error bound. However, this method has a very simple implementation and gives reasonable error bounds
as we can see in the numerical examples of the last section.

4.4. Error bound in a particular case. We analyse a particular case in which the following conditions
are verified:

(1) Mi\Mk 6= ∅ ∀ i < k this means that for all link i less than k, there exists at least one traffic type
going through link i and not arriving at link k.

(2) Ci −

(
Ck −

∑
j∈Mk\Mi

µj

)
≥ 0 ∀ i.

Consider x̃ = (x̃i)i∈Mk
optimum for (PF ) and x∗ defined by:

(17) (x∗)j =

{
x̃j if j ∈ Mk

x∗
j if j /∈ Mk

If x∗ verify the real problem constraints, the following error bound is obtained:

E ≤
∑

i∈M

IXi

1 ((x∗)i) −
∑

i∈Mk

IXi

1 (x̃i)(18)

=
∑

i∈Mk

IXi

1 (x̃i) +
∑

iM\Mk

IXi

1 (x∗
i ) −

∑

i∈Mk

IXi

1 (x̃i)(19)

=
∑

i∈M\Mk

IXi

1 (x∗
i )(20)

By definition of x∗ and the optimality conditions for the fictitious problem, it follows that:
∑

j∈Mk

(x∗)j =
∑

j∈Mk

(x̃)j = Ck

Therefore, to prove that x∗ verify the real problem constraints (16), it is enough to show that x∗, verify:

(21)
∑

j∈Mi

(x∗)j =
∑

j∈Mi∩Mk

x̃j +
∑

j∈Mi\Mk

x∗
j ≤ Ci ∀ i

In this particular case, by the second condition, it is possible to define x∗
j for j ∈ Mi\Mk such that

∑

j∈Mi\Mk

x∗
j ≤ Ci −


Ck −

∑

j∈Mk\Mi

µj


 ∀ i

P56/9



and therefore ∑

j∈Mi

(x∗)j ≤
∑

j∈Mi∩Mk

x̃j + Ci − Ck +
∑

j∈Mk\Mi

µj

On the other hand, since x̃ is optimum for PF ,
∑

j∈Mk

x̃j = Ck and

∑

j∈Mi∩Mk

x̃j = Ck −
∑

j∈Mk\Mi

x̃j

Replacing in the previous equation results

∑

j∈Mi

(x∗)j ≤ Ck −
∑

j∈Mk\Mi

x̃j + Ci − Ck +
∑

j∈Mk\Mi

µj

= Ci +
∑

j∈Mk\Mi

(−x̃j + µj) < Ci

since from (11), x̃j > µj ∀ j ∈ Mk.
Then x∗ verifies (16) and therefore is optimum for the real problem. The error bound obtained is (20).

We can found (x∗)j∈M\Mk
such that, the error bound (20) be minimum in the set of (x∗)j∈M defined in

(17) that verifies the real problem constraints. It is necessary to solve the following convex optimisation
problem: 




min
∑

i∈M\Mk

IXi

1 (xi)

∑
j∈Mi\Mk

xj ≥ Ci −
∑

j∈Mi∩Mk

x̃j ∀ i = 1, · · · , L

Once again it is sufficient to find (x∗)j∈M that verifies the KKT optimality conditions:

(1) ∂
∂xj

IXj

1 (xj) +
∑

i∈kj

λi = 0 ∀ j ∈ M\Mk.

(2) λi ≥ 0 ∀ i.
(3)

∑
j∈Mi\Mk

xj ≥ Ci −
∑

j∈Mi∩Mk

x̃j ∀ i.

(4) λi

(
∑

j∈Mi\Mk

xj −

(
Ci −

∑
j∈Mi∩Mk

x̃j

))
= 0 ∀ i.

We will define an algorithm to find such point. If for j ∈ M\Mk, there is a link i ∈ kj that verifies

Ci −
∑

h∈Mi∩Mk

x̃h ≤
∑

h∈Mi\Mk

µh

we define x∗ as follows: ∑

h∈Mi\Mk

xh = Ci −
∑

j∈Mi∩Mk

x̃j

This determines a linear equations system that always has a solution, but it can be undetermined. The
choice in that case it is not important because the optimum obtained is global. For the coordinates
j ∈ M\Mk, that are not determined with the previous equations, we define xj = µj . It is easy to check
that (x∗)j∈M\Mk

defined by this algorithm verifies the KKT optimality conditions. Then we have defined
an algorithm that gives the minimum error bound for this particular case.

5. Numerical examples

Example 5.1. Consider a network like in figure 3. We analise the overflow probability at link k, assuming
that Ci > Ck.

If condition (12) is attained for link k, then E = IR
k − IF

k = 0. This condition is:

Ck ≤ Ci − µ2
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X2
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If this condition is not satisfied, since x̃ = Ck is optimum for PF , we first verify if x∗ = (Ck, µ2) is optimum
for (PR). It is sufficient to show that x∗ verifies the real problem constraints, i.e:

{
Ck + µ2 ≤ Ci

Ck = Ck

If Ck + µ2 > Ci, we look for x∗ = (x∗
1, x

∗
2) that verifies

{
x∗

1 + x∗
2 ≤ Ci

x∗
1 = Ck

It is possible to choose x∗
1 = Ck and x∗

2 = Ci − Ck > 0 resulting in the following error bound:

(22) E ≤ I1(Ck) + I2(Ci − Ck) − I1(x̃1) = I2(Ci − Ck)

For the following numerical example, we calculate the overflow probability rate function for the real and
fictitious network. Let Ci = 16kb/s per source and Ck growing from 4 to 15.5kb/s per source. All traffic
sources are on-off Markov processes. For X1, the bit rate in the on state is 16kb/s, and average times
are 0.5s in the on state and 1.5s in the off state. For X2, the bit rate in the on state is 16kb/s, and
average times are 1s in the on state and 1s in the off state. Since µ1 = 4kb/s the stability condition is
Ck > µ1 = 4kb/s. Using these values, the sufficient condition (12) is, Ck ≤ 8kb/s. Figures 4 and 5 shows
that while this condition is satisfied both functions match, but after Ck ≥ 8kb/s they separate. Figure
5 also shows the overestimation error (E = IR

k − IF
k ) and the error bound (22) described before. In this

case, the error bound is exactly the error.
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Example 5.2. Consider a network like in figure 6. We analise the overflow probability at link k.

Ci Cj Ck

X1

X2 X3

Figure 6

If condition (12) is attained for link k, then E = IR
k − IF

k = 0. This condition is:

{
Ck − µ3 ≤ Ci − µ2

Ck − µ3 ≤ Cj

If this condition is not satisfied, and x̃ = (x̃1, x̃3) is optimum for PF , we first verify if x∗ = (x̃1, µ2, x̃3) is
optimum for PR. It is sufficient to show that x∗ verifies the real problem, i.e:





x̃1 + µ2 ≤ Ci

x̃1 ≤ Cj

x̃1 + x̃3 = Ck

If these conditions are not satisfied, we look for x∗ = (x∗
1, x

∗
2, x

∗
3) that satisfies:





x∗
1 + x∗

2 ≤ Ci

x∗
1 ≤ Cj

x∗
1 + x∗

3 = Ck

We choose x∗
1 = min(x̃1, Ci, Cj). Three different cases are identified. For the first case x∗

1 = x̃1, we choose:

(23)





x∗
1 = x̃1

x∗
2 = Ci − x̃1

x∗
3 = Ck − x̃1

In this case the error bound is:

E ≤ I1(x̃1) + I2(Ci − x̃1) + I3(Ck − x̃1) − I1(x̃1) − I3(x̃3)

= I2(Ci − x̃1) + I3(Ck − x̃1) − I3(x̃3)(24)
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Using that x̃1 + x̃3 = Ck, we have another possibility for determining an error bound. We can rewrite the
first equation as Ck − x̃3 + x∗

2 ≤ Ci. And, since x̃3 > µ3 we can choose x∗
2 = Ci − (Ck − µ3) (or any lower

value). In this case the error bound is:

E ≤ I1(x̃1) + I2(Ci − (Ck − µ3)) + I3(Ck − x̃1) − I1(x̃1) − I3(x̃3)

= I2(Ci − (Ck − µ3)) + I3(Ck − x̃1) − I3(x̃3)(25)

The best error bound depends on the relative position of the points Ci − (Ck − µ3) and Ci − x̃1. Since
Ci − x̃1 ≤ Ci − (Ck − µ3), if both are less than µ2 then the best error bound is (24).

For the second case x∗
1 = Ci (Ci ≤ Cj), we choose:

(26)





x∗
1 = Ci

x∗
2 = 0

x∗
3 = Ck − Ci

In this case the error bound is:

(27) E ≤ I1(Ci) + I2(0) + I3(Ck − Ci) − I1(x̃1) − I3(x̃3)

For the last case x∗
1 = Cj (Cj ≤ Ci), we choose:

(28)





x∗
1 = Cj

x∗
2 = Ci − Cj

x∗
3 = Ck − Cj

In this case the error bound is:

(29) E ≤ I1(Cj) + I2(Ci − Cj) + I3(Ck − Cj) − I1(x̃1) − I3(x̃3)

For the following numerical example, we calculate the overflow probability rate function for the real and
the fictitious network. Let Ci = 5.5kb/s, Cj = 7kb/s per source and Ck ranging from 7 to 25kb/s per
source. All traffic sources are on-off Markov processes. For X1, the bit rate in the on state is 8kb/s. For
X2, the bit rate in the on state is 10kb/s. For X3 the bit rate in the on state is 20kb/s. The average time
for all traffic types are 0.5s on the on state and 1.5s in the off state. Since µ1 = 2kb/s and µ3 = 5kb/s
the stability condition is Ck > µ1 + µ3 = 7kb/s. Using these values, the sufficient conditions (12) are:

{
Ck ≤ Ci − µ2 + µ3 = 8kb/s
Ck ≤ Cj + µ3 = 12kb/s

The condition are satisfied for values of Ck less than 8kb/s. Figure 7 shows that both functions match
even after the condition is not satisfied and up to Ck ' 15kb/s. The reason is that x∗ = (x̃1, µ2, x̃3) is
optimum for PR. From this point the functions begin to separate. Figures 7 and 8 also shows the functions
IR
k , IF

k and IF
k + E′, where E′ is the error bound. Until Ck = 24kb/s, E′ is calculated using (23), and

then using (26). It is important to note that when Ck > 14kb/s per source, the link utilization falls to less

than 50% and therefore, as it can be seen in figure 8 the rate function IXk

1 takes values bigger than 0.5. If
for example the number of sources feeding the network is N = 100, the losses are near 10−22. Finally, we
have seen that the estimated error bound is tight and when the error is big, the link overflow probability
is small and, therefore, these links are not relevant for the QoS evaluation.
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Example 5.3. Consider a network like in figure 9. We analyse the overflow probability at link k, assuming
that Ci + Cj > Ck.

If condition (12) is attained for link k, then E = IR
k − IF

k = 0. This condition is:

{
Ck − µ3 ≤ Ci − µ1

Ck − µ2 ≤ Cj − µ4
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If this condition is not satisfied, since x̃ = (x̃2, x̃3) is optimum for PF , we first verify if x∗ = (µ1, x̃2, x̃3, µ4)
is optimum for PR. It sufficient to show that x∗ verifies the real problem constraints, i.e:

(30)





x̃2 + µ1 ≤ Ci

x̃3 + µ4 ≤ Cj

x̃2 + x̃3 = Ck

If these conditions are not satisfied, we look at first for x∗ = (x∗
1, x̃2, x̃3, x

∗
4) that satisfies





x̃2 + x∗
1 ≤ Ci

x̃3 + x∗
4 ≤ Cj

x̃2 + x̃3 = Ck

If x̃2 > Ci or x̃3 > Cj then it is not possible to choose such point. So, we look for x∗ = (x∗
1, x

∗
2, x

∗
3, x

∗
4)

that verifies 



x∗
1 + x∗

2 = Ci

x∗
3 + x∗

4 = Cj

x∗
1 + x∗

3 = Ck

One possible choice is:

(31)





x∗
1 = Ci

x∗
2 = 0

x∗
3 = Ck − Ci

x∗
4 = Cj − (Ck − Ci)

For the following numerical example, we calculate the overflow probability rate function for the real and
fictitious network. Let Ci = 12kb/s, Cj = 14kb/s per source and Ck growing from 8 to 25.5kb/s per
source. All traffic sources are on-off Markov processes. For X1, the bit rate in the on state is 20kb/s. For
X2, the bit rate in the on state is 16kb/s. For X3, the bit rate in the on state is 16kb/s. For X4, the bit
rate in the on state is 12kb/s. The average times for all traffic types are 0.5s in the on state and 1.5s in
the off state. Since µ2 = 4kb/s and µ3 = 4kb/s the stability condition is Ck > µ1 + µ3 = 8kb/s. Using
these values, the sufficient condition (12) are:

{
Ck < Ci − µ1 + µ3 = 11kb/s
Ck < Cj − µ4 + µ2 = 15kb/s

Figures 10 and 11 shows that both functions match even after the condition is not satisfied and up to
Ck ' 15kb/s. The reason is that x∗ = (µ1, x̃2, x̃3, µ4) is optimum for the real problem. From this point
the functions begin to separate.

Figure 11 also shows the functions IR
k , IF

k and IF
k +E′, where E′ is the error bound. Until Ck = 24kb/s,

E′ is calculated using (30), and then using (31). As in the previous example, when Ck > 16kb/s, the link
utilisation is less than 50% and that the error bound is tight for the relevant cases in the QoS evaluation.

All calculations of overflow probability rate functions were done with a software package developed by
our group available in the web [3].
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6. Conclusions

In this paper we have explained the fictitious network analysis. We have seen that the calculus of the
overflow probability rate function of an interior network link is simpler and faster than the equivalent task
in the real network. For this reason, on-line performance analysis and on-line traffic engineering will be
easier (or even feasible instead of impossible) using the fictitious network analysis.

Generally, the fictitious network analysis overestimates the overflow probability and the end-to-end
Loss Ratio. Therefore, this approach is safe but network resources can be under-utilized. To solve this
problem we have found a condition that depends only on link´s capacities and mean traffic rates. If this
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condition is satisfied, the overflow probability calculated using the fictitious network has the same value
that the one calculated in the real one. When this condition is not satisfied, the rate function of the
link overflow probability calculated in the fictitious network can be smaller or equal than the same rate
function calculated in the real network. We have shown that once the fictitious rate function is calculated,
it is very simple to verify if both rate functions are equal or not. If they are not equal, we have found a
simple algorithm to find an error bound.

In the numerical examples we have found that the error bound is tight. In these examples, it can be
seen that when the error is big, the link overflow probability is very small and, therefore, these links are
not relevant for the QoS evaluation. In spite of this, we can affirm that when the overflow probability at
link k in the fictitious network is very small, even if the error is big, these link is not considered for the
QoS evaluation.
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