
MONTE: An Implementation of an MPLS Online Traffic
Engineering Tool

Isabel Amigo
iamigo@fing.edu.uy

Bernardo Cabrera
cabrera.b@gmail.com

Juan Schandy
j schandy@yahoo.com

Pablo Belzarena
belza@fing.edu.uy

Gabriel Gomez
∗

ggomez@fing.edu.uy

ABSTRACT

Multiservice networks require careful mapping of traffic in
order to provide quality of service. Applying offline Traffic
Engineering techniques leads to a better usage of resources
and allows to assure some degree of quality of service. Even
with those techniques applied, as network and traffic con-
ditions change dynamically, the initial quality could be re-
duced. When addressing this problem, online Traffic Engi-
neering has a major role. In MONTE project a solution for
addressing this problem in Multiprotocol Label Switching
networks was proposed and implemented in software. Such
solution involves network discovering and monitoring, con-
gestion detection, a corrective algorithm, and a mechanism
for signalling changes in the network. The entire solution
was conceived to work in real time and vendor independent.
This paper explains the details of the solution and its im-
plementation. Results validating the correct operation of
the tool are also shown. This results were obtained through
tests in a live network.

Categories and Subject Descriptors

C.2.3 [Computer-communication networks]: Network
Operations—management, monitoring, traffic engineering

General Terms

Management, Performance, Algorithms

Keywords

Multiprotocol Label Switching, Online Traffic Engineering,
Load balance, Performance monitoring, Management

∗All the authors are from Instituto de Ingenieŕıa Eléctrica,
Facultad de Ingenieŕıa, Universidad de la República, Mon-
tevideo, Uruguay.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LANC’09, September 24-25, 2009 Pelotas, Brazil
Copyright 2009 ACM 978-1-60558-775-2/09/09 ...$10.00.

1. INTRODUCTION
The steady growth of telecommunication networks and the

emergence of new services has led operators to think about
convergence. Some years ago, an operator had its fixed tele-
phone network, designed to carry voice conversations. Then,
the need came for providing value added services such as
internet access and other data services as well telephony
turned to mobile. Consequently, operators began to install
new networks with different characteristics according to the
service they carried. This resulted in a huge disadvantage
for operators, meaning that they have to manage many tech-
nologies and networks at the same time. In this conditions
they could not take advantage of statistically multiplexing
the whole traffic.

Meanwhile, IP technology started playing a major role in
telecommunications world, mainly due to its simplicity and
the economy of scale it achieved. Nevertheless, IP networks
were designed to operate in a best effort way, i.e. there is an
effort made in order to deliver the message to its destination,
but there is no guarantee.

Afterwards, MPLS technology appeared and revealed great
advantages for efficient traffic mapping on a multiservice
network. This helps to ensure certain quality parameters,
as demanded by the traffic, and leads to a better usage of
the resources. Consequently, when using MPLS, networks
can be designed efficiently according to the different types
of traffic they are expected to support.

Although the aforementioned advantages are true, con-
gestion could yet take place if, for instance, traffic condi-
tions change unexpectedly. This congestion leads to reduc-
ing quality of service. As a solution to this problem, this
project explored ways of monitoring a network, detecting
congestion situations and eliminating them by remapping
the traffic. Addressing all these points together, on a live
network and in real time, is one way of doing Online Traffic
Engineering. A software application was developed in order
to achieve an automatic and vendor independent solution.
A real network was used throughout the project to test an
validate the results.

The remainder of this paper is organized as follows. Sec-
tion 2 focuses in related work and problem statement, in
section 3 the solution proposal is presented and explained,
in section 4 the results that validate the implementation are
shown. Finally, conclusions are drawn in section 5.

2. RELATEDWORK AND PROBLEM

STATEMENT
Several work has been done regarding the topic of this pa-

per. First, in [1] the author states the problem of computing
paths efficiently, taking into account a great number of con-
straints and online demands. This leads to very demanding
calculating tasks which, in order to fulfill the timing require-
ments, are proposed to be solved by dedicated equipment
outside the network devices. The proposed model covers a
complete architecture called RMA (Routing and Manage-
ment Agent), which consists of an hybrid solution between
control and management plane. The main purpose of this
agent is to make dynamic provisioning of connectivity ser-
vices in MPLS networks. Figure 1 shows the RMA architec-
ture in which this project is strongly based.

Figure 1: The RMA architecture proposed in [1]

Then, in [8], the aforementioned RMA architecture is taken
as a theoretical basis to address the control plane aspect. A
solution is proposed and implemented.

MONTE project also has an important aspect related to
management in MPLS networks. Little work was found
about these aspects and even fewer related to management
of multivendor networks.

On the other hand, regarding Traffic Engineering, a lot of
work has been done and can be found. Some algorithms
had already been proposed by the time this project was
starting. Overall, these proposals focus on the algorithm
statement and simulations, but little could be found about
implementations in real networks. The Traffic Engineering
algorithm that this project implemented is proposed in [6]
and improvements to it in [7]. Different simulating scenarios
and algorithms are addressed in [3], as a complete toolbox

for Traffic Engineering.
The problem of Online Traffic Engineering can be stated

as a closed-loop control system, as shown in figure 2. The
network is at a certain state while it is being monitored.
This state is modeled and, according to some administra-
tion requirements, a Traffic Engineering algorithm runs and
determines if changes are needed in the network in order to
keep it, or return it, to a stable optimal state. These changes
are applied to the network throughout configuration. The
loop is closed when the resulting state is monitored again.

Following sections describe and show results from the main
contribution of this work, a software that understands and
controls the whole system.

Figure 2: Problem statement

3. THE DEVELOPED SYSTEM

3.1 Software Architecture
This project took the aforementioned RMA architecture

as a working basis. After some modifications, the final archi-
tecture can be represented by the diagram shown in figure 3.
The main contribution to the original resides in the inclusion
of the TE module which performs Online Traffic Engineering
tasks.

The architecture consists of several modules which are to-
tally independent and interact among each other through
clearly defined interfaces and protocols. This characteristic
makes the architecture very versatile, allowing independent
implementation of each module. In addition, it facilitates
the comparison of different approaches to the same mod-
ule and moreover, it encourages continuous improvement of
each one separately.

The following subsections focus on the objectives and im-
plementation issues of each module.

3.2 Information handling
Information within the architecture is handled by defining

and implementing:

• Traffic Engineering Database (TED): for persisting the
information

• Communication protocol: to communicate between mod-
ules, including only the necessary messages.

• Information model: defined in XML in order to al-
low the total independence among modules and at

Figure 3: Software architecture

the same time a comprehensive communication among
them.

The way information is managed in this project guaran-
tees that the system can work distributed.

3.3 Topology Module
The topology module is responsible for discovering the

network topology. It automatically discovers routers and
links in the network. It considers the network at layer 3, the
network layer. Therefore, all information related to MPLS
and MPLS’s paths are beyond the scope of this module.

The developed algorithm for the network discovery pur-
pose consists in iteratively querying nodes for their OSPF
neighbours, resulting in the discovery of the entire network.
The process addresses the first query to an IP address which
is set through a configuration file.

The main assumptions of this module are that all nodes
in the network are running OSPF and that they can be
queried through SNMP. Also, one IP address of the network
must be known in advance, as well as the SNMP community.
Though the assumption that the network is running OSPF
protocol is a strong one, the solution could be easily adapted
to work within a network running another link state routing
protocol.

The whole information involved in the process is obtained
from MIB-II and its extensions [10] and especially the por-
tion of OSPF version 2 [11].

The algorithm can be represented by the block diagram
shown in figure 4.

3.4 Monitoring Module
The monitoring module is responsible for discovering the

virtual topology and for obtaining performance parameters.
Therefore, two different routines were developed, in order to
achieve both objectives. The implementation of this module
assumes that the physical topology is known and is available
through a query to the database.

3.4.1 Discovering the virtual topology

Figure 4: Topology discovery algorithm.

Virtual topology refers to the MPLS paths established
in the network (LSPs) as well as to their characteristics.
Among those characteristics we can find mapped traffic to
LSPs through FECs, resources associated to them and in-
formation about load balancing.

Information needed to discover the LSPs configured on
the network and the hops they traverse is obtained through
SNMP queries to a portion of MIB, MPLS-TE-STD (RFC
3812) and its extensions.

Further information about LSPs, such as load balance in-
formation and mapped traffic details, were not available to
date on any MIB. Since that was essential information for
the algorithm implemented within the Traffic Engineering

module, we decided to get them through parsing the config-
uration file of the nodes. The chosen approach for retriev-
ing the configuration files was using TFTP and SNMP. This
approach is faster than other approaches, like TELNET or
SSH, and does not oblige the software to know each routers
password, but only the SNMP community.

In order to achieve better performance regarding time,
the virtual topology discovery algorithm was implemented
in several threads. In consequence SNMP queries are con-
ducted simultaneously to all nodes in the network.

An iteration of the algorithm can be represented by the
block diagram shown in figure 5.

During the execution of the algorithm the virtual topology
can suffer changes, either because of a failure in the network

Figure 5: LSPs discovery algorithm.

or because of an administrative change. When any of these
occur the module behaves in a robust way and restarts the
discovery of the virtual topology. The reaction can be due
to the arrival of an SNMP notification or due to an incon-
sistency in the information obtained from the network. The
notifications that are taken into account by this module are
the tunnel up, and tunnel down ones, which are defined in
the MPLS-TE-MIB.

3.4.2 Collecting performance parameters

The ultimate goal of this sub-module is to have infor-
mation about how traffic is being handled by the network.
Consequently, collecting local parameters which represent
the performance of individual network components is within
its scope, as well as collecting end-to-end parameters, which
represent the comprehensive performance of all nodes and
links through which an LSP traverses.

The general approach of the implemented solution was to
obtain parameters which accurately represent the network
performance and that were available via SNMP queries to
standard MIBs. In exceptional cases other methods were
used to obtain other important parameters, which were not
available via SNMP. It is important to mention that it was
not within the scope of this module to undertake measure-
ments. Parameters should be obtained from queries to other
actors.

Among the gathered information there are some param-

eters collected from queries to the MIB-II such as packets
forwarded by an interface, in the in and out direction, pack-
ets dropped by an interface, also in both directions.

Performance parameters related to LSPs are gathered from
MPLS-LSR-MIB, such as values of packets forwarded by
an MPLS tunnel interface. Finally CPU usage values are
collected from each node. Since CPU usage is strongly
hardware-dependant there is no standard MIB that stores
this information. In consequence, a vendor-specific MIB is
queried, according to the testbed’s equipment.

In order to accurately calculate the bandwidth of each log-
ical and physical interface from the packets counters, a care-
ful handle of timestamps was included in the performance
parameters recollection routine. By having timestamps into
account, counter restarts and system restarts are safely man-
aged.

End-to-end performance parameters are also collected by
this tool. For this purpose an interface was defined in order
to communicate with the already implemented measurement
tool Metronet [4]. This interface consists of a MIB which
allows to schedule experiments and to read results. Conse-
quently, values of delay, jitter and throughput of each MPLS
path are obtained through Metronet’s experiments and fol-
lowing SNMP queries.

Figures 6 and 7 show block diagrams of the local param-
eters and end-to-end parameters routines, respectively.

Figure 6: Routine for obtaining local performance parameters.

3.5 Traffic Engineering module
The Traffic Engineering module (TE) aims to identify

anomalies in the network’s behavior and to correct them. In
order to achieve the aforesaid objectives, it performs some
algorithms based on the network’s state information, which
is stored at the TED. If anomalies are detected, it makes
changes in the network’s configuration in order to correct
them.

The TE module is divided into two sub-modules: one for
detecting unbalanced situations and the other one to correct

Figure 7: Routine for obtaining end-to-end performance parame-
ters.

those situations. The action of both sub-modules allows
the complete module to work in an autonomous way. A
schematic representation of the TE module is shown in figure
8.

Figure 8: Schematic representation of the TE module.

It is worth clarifying that the TE module is not responsible
for the computation of new LSPs based on restrictions. This
feature in the architecture lies within the CBR Module.

3.5.1 The MATE algorithm

The architecture does not put any limit on which is the
algorithm implemented in the TE module. The TED holds
information of the network’s state, consequently any traffic
engineering algorithm can be implemented, provided that
the information it needs to perform is retrieved by the Mon-
itoring Module, and thus persisted in the TED.

As a concrete example, we implemented the Multipath
Adaptive Traffic Engineering algorithm (MATE) presented
in [6] and improved in [7].

The MATE algorithm allows, by balancing the load, to
minimize the total delay of a MPLS network.

The basic idea is to periodically measure the delay suffered
by each LSP, estimate its derivative with respect to the load,

and calculate a new load distribution among LSPs. On each
step the new load distribution is calculated from the afore-
mentioned LSPs’ delay derivatives. The following is a more
formal formulation.

Consider a network compound of L unidirectional links.
The network is shared by a group S of ingress-egress nodes.
Each s ∈ S pair has a set of Ps LSPs available for load
balancing the ingress traffic. We call rs to the ingress data
rate of an ingress node, rs is distributed in a fraction of xps

into the LSP p, so:

rs =
X

p∈Ps

xsp, ∀ s ∈ S (1)

Let xs = (xsp, p ∈ Ps) be the data rate vector of s, and
x = (xsp, p ∈ Ps, s ∈ S) the vector of all the data rates.

The data rate in a link l ∈ L is the sum of all the sources
whose LSPs traverse the link l:

x
l =

X

s∈S

X

l∈L,p∈Ps

xsp (2)

We associate to each link l a cost Cl(x
l) as a function of

the rate xl that traverses it.
The objective is to minimize the total cost defined as

C(x) =
P

l
Cl(x

l) with an optimal division of the traffic
rs among the LSPs:

min
x

C(x) =
X

l

Cl(x
l) (3)

subject to rs =
X

p∈Ps

xsp, ∀s ∈ S (4)

xsp ≥ 0, ∀p ∈ Ps, s ∈ S (5)

An approach for resolving the problem (3 - 5) is to use the
gradient projection method. In this method the x vector is
adjusted iteratively in the cost function gradient’s descent
direction. A detailed description of this method can be ob-
tained from [5].

In [7] and in [5] a modification to [6] is proposed to make
the iteration independent of the ingress data rate rs. At
the same time in [7] a way of obtaining an adaptive γ is
proposed. This avoids oscillations when the iteration gets
close to the optimal point and at the same time it avoids
undesired behaviors if the rate of a link gets close to its
capacity. According to these results we obtained iteration
(6).

ψs(t+ 1) =

"

ψs(t) −
ρ

f(
P

p∈Ps

∂C
∂xsp

)
▽Cs(t)

#+

(6)

where f(Z) = Z +
1

m(1 +mZ)

ψs(t) =
xs(t)

rs(t)

m ≈
0.1

Zmin

In [7] the link’s delay was assumed to be equal to that in
a M/M/1 Markov chain, since this hypothesis is not always
true we adjusted slightly to the more general case.

A proposal shown in [5] was adopted to project the results
in the feasible region. The method consists in calculating in

each iteration the LSP with the smallest derivative (pmin)
and exclude it from the iteration. Consequently, a modified
iteration is performed with all the LSPs but that one, finally
ψspmin

is defined in order to fulfill the constraints (4-5). The
final iteration is shown in (7).

3.5.2 The detection routine

Several parameters are available at the database for pro-
cessing and detecting anomalous situations. The one se-
lected for detecting congestion situations was the paths’ de-
lay, because it is associated with the minimization we want
to carry out by the action of the action sub-module.

In the detection algorithm groups of LSPs are defined con-
sidering the LSPs that balance load among them. For each
of these groups the difference among the values of the de-
lay derivatives of its LSPs is monitored. When such differ-
ence exceeds a threshold, the detection module triggers the
action module. The information for calculating the delays
derivatives is obtained from querying the database, which
has stored updated information due to the action of the
previously described monitoring module.

The congestion detection process is shown in figure 9

Figure 9: Congestion detection process.

The developed module allows to run several instances of
the detection and action mechanisms simultaneously, one
per group of LSPs which make load balancing among them.
Regarding the detection mechanism, this allows to make a
continuous monitoring while the action is occurring. On the
other hand this forces this routine to have more intelligence
because it has to know the state of each group in order not
to trigger two consecutive corrective algorithms for the same
group.

Such implementation was achieved by using several threads.
It takes advantage of the interesting characteristic of the
MATE algorithm of converging when optimization is car-

ried out asynchronously in each group.

3.6 Management Module
The main objective of this module is to present a graphical

view of the network’s state and to provide the administrator
with an easy tool for configuring and tearing down LSPs.

The management module also shows to the user the links
and nodes in a graphical way and also shows graphics with
CPU usage for each node, an estimation of the bandwidth
traversing each link and each LSP. These values are calcu-
lated from the packets counters taken from the database.

The implementation of this module is strongly based on
the software NET-TE, developed by [15]. In order to add
value to the whole tool results of other projects were in-
cluded, such as Offline Traffic Engineering (part of [15] im-
plementation) and Multicast components [16]. These com-
ponents, though not included in the original RMA architec-
ture, are pertinent to the objectives of the tool.

Figure 10 shows a screen shot of the main window of the
program.

Figure 10: Net-TE’s graphic interface.

3.7 Signaling Interface
This module is the one in charge of configuring the net-

work, by answering to the requests of the manager. It is able
to change network’s configuration regarding LSPs establish-
ment (establishing them and tearing them down), changing
theirs parameters, and associate traffic to them (configure
FECs). The management interface and the Traffic Engineer-
ing module interact with this module.

As the whole tool this module had the requirement to be
the more vendor independent as possible. We studied all
the state-of-the-art mechanisms for signalling MPLS net-
works and found that at the moment not totally indepen-
dent methods exist. Although the standard MPLS MIBs
include a way to do these things by writing on them, the
ones implemented in real life by the different equipments do
not allow writing on them. The approach taken was to make
an Element Manager that interacts with the network and is
vendor specific. We also defined and implemented the inter-
face with the RMA in order to cover the vendor dependant
part and making it transparent to the rest of the tool.

The module works as follows: it receives a request mes-
sage either from the TE module or from the management
module. This message contains the specifications of the re-
quest according to an XML pre-defined schema. The module

∼

ψsp(t+ 1) = ψsp(t) −
ρ

f

X

p∈Ps

∂C

∂xsp

!

„

∂C

∂xsp

−
∂C

∂xspmin

«

∀ p 6= pmin

ψsp(t+ 1) = max

„

0,
∼

ψsp(t+ 1)

«

∀ p 6= pmin (7)

ψspmin
(t+ 1) = 1 −

X

p∈Ps,p 6=pmin

ψsp(t+ 1)

sends an SNMP message telling the node to leave its con-
figuration file in a TFTP server. Then the module fetches
the configuration file, changes it and leaves it again in the
server. Finally the module sends another message, through
SNMP, telling the node to get its new configuration file from
the TFTP server. Figure 11 explains the method in a simple
way.

Figure 11: Messages flow of the configuration of an LSP.

Several Element Managers can coexist within the module
in order to perform changes in equipments from different
vendors. The information of which Element Manager has to
be used is taken from the XML request.

4. RESULTS AND VALIDATION
For validating the whole tool, several tests were made in

a testbed. The testbed consists of five routers with MPLS
capacity and links among them, as shown in figure 12.

4.1 Topology Module
We ran the application several times verifying that the

correct network was discovered. This included the topology
i.e. nodes and links, the IP addresses, nodes’ names and
physical interfaces’ speed.

To validate the operation in abnormal situations, we sim-
ulated faults in connections and routers. We disabled OSPF
in some nodes, simulating those faults and noting that the
nodes were removed from the retrieved topology. The same
was done in some interfaces to simulate links down, we dis-
abled some interfaces and found that they were not discov-
ered by the algorithm, as expected.

Since the tool aimed to work online, an important aspect
was to evaluate the time it consumes when discovering the
network. That was why we repeated the test and measure
the time it consumes. We obtained a result of near 2 and a
half seconds for discovering the testbed’s network. Although
it would be really interesting to extrapolate this result to
other networks it is really complex because it not only de-

Figure 12: MPLS testbed.

pends on the number of routers and links in the network,
but it also depends strongly in the network’s topology.

4.2 Monitoring Module

4.2.1 LSPs discovery

For validating the correct operation of the LSP discovery
algorithm we configured in the network several LSPs and
compare the result of one iteration of the algorithm with our
configuration. We also configured LSPs improperly. In both
cases we verified that the result was the correct one, discov-
ering all the correct LSPs and none of the miss-configured
ones.

By making the tests we also verified that the application
obtains correctly the following parameters that are associ-
ated with the tunnels:

• Load balance coefficient

• Resource reservation

• FEC

We also made some tests in order to verify the advantages
of having implemented the discovery algorithm in threads.
This method makes the time taken to discover the LSPs
depend mainly on the number of hops of the largest tunnel
and on the number of tunnels traversing the node with the
most tunnels traversing it.

For instance, when testing in the testbed and with twenty
tunnels evenly distributed among the nodes, the total time
consumed is approximately of 60 seconds when made in par-
allel and of 140 seconds when made without threads.

4.2.2 Performance parameters gathering

For validating the performance parameters that the tool
collects, we generated some traffic and made it traverse the
network. This way we could control the traffic traversing an
interface and could compare this with the values gotten by
the tool from the counters. We also verified that the end to
end parameters the tool collected were coherent. Though we
verified that path’s delays increases when traffic increases.

To inject traffic into the network we used traffic genera-
tors. We generated in first place constant traffic and in sec-
ond place Poisson’s traffic. Several tests were made changing
the parameters of the statistical distribution in order to con-
template different random scenarios that can be considered
approximated to real cases.

4.3 Signaling Module
For validating this module we considered and tested the

following features:

• LSPs configuration

– Explicit path

– Associated traffic (FEC)

– Bandwidth

– Load balancing coefficient

– Preemption priority

• Tearing down LSPs

• Changing LSPs parameters

– Associated Traffic

– Reserved bandwidth

– Load balance coefficient

– Preemption priority

Test yielded to conclude that this module performs all its
objectives in a proper way in different scenarios.

Regarding time involving the signaling operations, they
were negligible during the tests made. The main period
of time involved is the one concerning the transfer of the
router’s configuration file, which is fast. Even though it
is true that this time will be increased in more complex
networks or in routers with more complex configurations, it
will still be lower compared to the time consumed by the
others steps of the Traffic Engineering process involved in
the complete tool.

4.4 TE Module
To validate this module we had to show that the detection

sub-module reacts when an unbalanced situation occurs and
that the action sub-module makes the necessary steps to lead
the network to an stable, not-unbalanced, situation.

The task of validating the detection sub-module was an
easy one, it consisted on running the module in an unbal-
anced situation an verifying it does react. And also verifying
it does not react when network is balanced.

For validating the action sub-module we had to be more
careful because we had to guarantee that the algorithm hy-
pothesis were true.

Figure 13 shows a schematic representation of the test
made for this purpose. This test was made several times
in order to note, not only the algorithm robustness, but
also the convergence’s point repetitiveness. Previously we
verified that the MATE algorithm’s hypothesis were true.

Figure 13: Test performed in the testbed.

4.4.1 Verifying MATE’s hypothesis

We verified that the function delay of load in the LSPs of
the network shown in figure 13, is a convex one. To show
such property we measured the delay suffered by packets un-
der different load in the LSPs. We used Poisson’s traffic and
we changed the mean of the interval between packets. For
each load we measured the delay using the command MPLS

PING, with different packets size: 1000 and 100 bytes, as
shown in figure 14.

Knowing the curves of delay in function of the load, we
could assess the load balance that makes the network’s de-
lay reach its minimum. In our topology, with a traffic of
1.5Mbps this proportion is 66 % of the traffic down the
LSP2, as shown in figure 15.

4.5 Results of our implementation of MATE
We repeated several times the same kind of test and saved

the values obtained. We analyzed the repetition of the
convergence point with 20 tests, obtaining the distribution
shown in figure 16. It is worth noting that the convergence
point is similar to the one obtained by manual optimization,
shown the later one in figure 15.

The convergence occurred, in an average of 3 to 5 itera-
tions, which means, in time, about 10 minutes for balancing
two tunnels. The major portion of this time is consumed
by the end-to-end measurements. These measurements are
done for all the LSPs in the network, and constitute the
bottleneck of all the monitoring process.

As further evidence of the convergence, we made tests
starting from a point of operation of strong imbalance in

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
e
la

y
(m

s
)

Load(Mbps)

delay=f(load) LSP 1

Probe packets 1000bytes
Probe packets 100bytes

(a) LSP1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
e
la

y
(m

s
)

Carga(Mbps)

Curva delay=f(carga) LSP 2

Paquetes de prueba 1000bytes
Paquetes de prueba 100bytes

(b) LSP2

Figure 14: Delay of load survey.

 60

 80

 100

 120

 140

 160

 180

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

D
e
la

y
(m

s
)

%LSP2 Load(Mbps)

Delay Total=f(% LSP 2 load)

Figure 15: Optimum load balance coefficients search.

the distribution of the load, which means more traffic to
the LSP with the smallest bandwidth. The result, as shown
in Figure 17(a), was also the convergence of the algorithm.
The optimum was different in this case because the input
traffic was decreased, in order not to overfill the smallest
LSP. Figure 17 shows how the algorithm actually makes the
total delay to decrease.

Even though it would have been very interesting to be
able to compare our results with the ones shown in MATE
[6], this would have been meaningless because in [6] they
present results of a simulation, and our results are from a

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 m

u
e
s
tr

a
s

load balance coefficient

Histogram: results of the probes of MATE algorithm

LSP 1
LSP 2

Figure 16: Histogram. MATE algorithm’s convergence points.

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 1 1.5 2 2.5 3

%
 b

a
la

n
c
e
 d

e
 c

a
rg

a

n° of iteration

Iterations of a MATE algorithm run

LSP 1
LSP 2

(a) Load balance

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 1.5 2 2.5 3

D
e
la

y
 (

m
s
)

n° of iteration

Delay evolution in a run of MATE algorithm

LSP 1
LSP 2

total

(b) Delays

Figure 17: Load balance coefficients and delays, during the per-
formance of the algorithm.

real network. Then, it would not have been reasonable to
compare, for instance, the execution time since in our im-
plementation’s bottleneck is the live monitoring.

5. CONCLUSION
In first place we conclude that we have successfully de-

veloped a complete Traffic Engineering tool, that works on-
line and in MPLS networks. Such tool automatically per-
forms all tasks involved in the process, including the topol-
ogy discovery (virtual and physical), the recollection of per-

formance parameters, a congestion detection algorithm, an-
other algorithm for congestion correction and the network
reconfiguration.

The study and research made before and during the de-
velopment of this tool unveiled that having a none vendor
dependant tool that performs the whole cycle of Traffic En-
gineering is not a resolved aspect nowadays. This made us
conclude that our work is a promising step in the integration
of the different tools that attack specific problems within the
whole problem of Traffic Engineering in Telecommunication
networks.

Another important contribution of this project is to have
planned, both in the design and in the implementation of
each module, the expansion of the tool and the long-term
evolution. The information collected in terms of perfor-
mance parameters can be considered as an example of this
approach. Such information is not limited to the one nec-
essary for the Traffic Engineering algorithm that is imple-
mented today, but a sufficient amount to represent the full
performance of the network is collected. This meant, in turn,
that during the final selection process of the algorithm the
input parameters were not a limitation. Therefore, is con-
sidered highly likely that this limitation will not be present
at the time of implementing another version of the Traffic
Engineering module.

The system was successfully implemented and tested in a
live network. We worked in the validation of the complete
tool and in the validation of processes’ dynamic, which allow
us to conclude that the tool works according to what is ex-
pected: automatically detecting and correcting congestion.

It is worth saying that the issue in question is very broad
and, as it was mentioned in section validation, the results do
not yet have information to determine whether implemen-
tation is scalable to networks with larger and more compli-
cated topologies than our testbed. This leads an interesting
work to perform in the future.

6. REFERENCES

[1] Cooperation of Control and Management Plane for the
Dynamic Provisioning of Connectivity Services on MPLS
Networks. Eduardo Grampin Castro. A thesis submitted
for the degree of Doctor per la Universitat Politécnica de
Catalunya.

[2] Ingenieŕıa de Tráfico en Ĺınea en Redes MPLS
Aplicando la Teoŕıa de Grandes Desviaciones. Pablo
Belzarena. Tesis de Maestŕıa en Ingenieŕıa Eléctrica,
Universidad de la República, IIE, 2003.

[3] Totem project: TOolbox for Traffic Engineering
Methods. http://totem.info.ucl.ac.be. Last visit:
5/2009.

[4] Metronet: Software para medición de calidad de
servicio en voz y video. Pablo Belzarena, Vı́ctor González
Barbone, Federico Larroca, Pedro Casas. CITA 2006.

[5] Data Networks. Dimitri P. Bertsekas y Gallager.
Longman Higher Education, 1986. ISBN:
978-0131968257.

[6] MATE: Multipath Adaptive Traffic Engineering. Anwar
Elwalid, Cheng Jin, Steven Low y Indra Widjaja.
Computer Networks, Vol. 40, No. 6, 2002, pp. 695-709.

[7] Analysis and improvements to MATE algorithm.
Miguel Griot, Gabriel Tucci, Pablo Belzarena y Santiago
Remersaro. 23rd IEEE International Performance,

Computing and Communications Conference, Phoenix,
Arizona, page 247–251 - 04/2004.

[8] Aprovisionamiento de Conectividad en redes MPLS:
Interfaz de Control. Alberto Castro y Mart́ın Germán.
Documentación de Proyecto de Grado, 2007.
Universidad de la República, Instituto de Computación.

[9] Ingenieŕıa de Tráfico en Redes MPLS. Adrián Delfino,
Sebastián Rivero , Marcelo San Mart́ın. Proyecto Final
de Carrera, 08/2005. Universidad de la República, IIE.

[10] Management Information Base for Network
Management of TCP/IP-based internets: MIB-II. RFC
1213. Internet Engineering Task Force.

[11] OSPF Version 2 Management Information Base. RFC
1850. Internet Engineering Task Force.

[12] Multiprotocol Label Switching (MPLS) Traffic
Engineering (TE) Management Information Base (MIB).
RFC 3812. Internet Engineering Task Force.

[13] Multiprotocol Label Switching (MPLS) Label
Switching Router (LSR) Management Information Base
(MIB). RFC 3813. Internet Engineering Task Force.

[14] Multiprotocol Label Switching (MPLS) Forwarding
Equivalence Class To Next Hop Label Forwarding Entry
(FEC-To-NHLFE) Management Information Base
(MIB). RFC 3814. Internet Engineering Task Force.

[15] Ingenieŕıa de Tráfico en Redes MPLS. Adrián Delfino,
Sebastián Rivero , Marcelo San Mart́ın. Proyecto Final
de Carrera, 08/2005. Universidad de la República, IIE.

[16] Ingenieŕıa de tráfico para tráfico multicast con MPLS.
A. Lombide, I. Hernández, J. Sanguinetti. Proyecto Final
de Carrera, 12/2006. Universidad de la República, IIE.

