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Abstract

We study a non-parametric regression model where the explanatory variable is a non-
stationary dependent functional data and the response variable is scalar. Supposing that
the explanatory variable is a non-stationary mixture of stationary processes and general
conditions of dependence of the observations (implied in particular by weakly dependence),
we obtain the asymptotic normality of the Nadaraya-Watson estimator. Under some ad-
ditional regularity assumptions on the regression function, it can be obtained asymptotic
confidence intervals for the regression function. We apply this result to the estimation of the
quality of service on the Internet where the cross traffic is non-stationary.
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1 Introduction

We study the problem of estimating a non-parametric regression function φ when the explana-
tory variable is functional and may be non-stationary and dependent. We observe {X,Y } =
{(Xi, Yi) : i = 0, . . . , n− 1} such that

Yi = φ(Xi) + εi, i = 0, . . . , n− 1, (1)

where φ is a function φ : D → R, Xi ∈ D, Yi ∈ R, the εi’s are centered and independent of the
Xi’s and D is a semi-normed linear space with semi-norm ‖ · ‖.
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Our aim is to find the asymptotic distribution of the estimator

φ̂n(x) =

∑n−1
i=1 YiK

(
||x−Xi||

hn

)

∑n−1
i=1 K

(
||x−Xi||

hn

) (2)

for x ∈ D where the kernel K is a positive function and the sequence hn > 0 is the bandwidth.
We use the convention 0/0 = 0.

The estimator (2) is a generalization of the Nadaraya-Watson estimator (cf. [1]). The
asymptotic normality of the Nadaraya-Watson estimator is proved in [2] when the observations
(Xi, Yi) are independent, and for dependent observations, in [3].

Ferraty, Goia and Vieu ([4], [5]) proposed the estimator (2) to estimate the regression function
when the explanatory variable is functional. For weakly dependent and stationary observations,
they proved the complete convergence of (2) and obtained rates of convergence when the func-
tion φ satisfies some regularity conditions. Aspirot et al. (2005) ([6]) have generalized the result
of complete convergence for the estimator (2) to a non-stationary case. Masry (2005) ([7]) has
proved the asymptotic normality of φ̂n for stationary weakly dependent random variables. Fer-
raty, Mas and Vieu (2007) ([8]) consider asymptotic normality of the estimator φ̂n in the case of
independence from theoretical and practical point of view. Related work on density estimation
with functional data can be found in [9] and [10] for mode estimation and in [11] for asymptotic
normality of kernel estimators. Surveys on functional data analysis can be found in Ramsay and
Silverman (2005) ([12]) and in Ferraty and Vieu (2006) ([13]) for the non-parametric case.

Our goal in this article is to generalize the result of [7] to the case when X is a non-
stationary mixture of stationary processes. More precisely, we suppose that there exist two
random processes ξ = {ξn : n ∈ N}, Z = {Zn : n ∈ N} and a function ϕ : D × R → D such that
ξ is stationary with values in D, ξ is independent of Z, Z takes values in a finite set {z1, . . . , zm}
of R and X satisfies

Xi = ϕ(ξi, Zi), i = 0, . . . , n− 1. (3)

We suppose general conditions of dependence (cf. assumptions in Subsection 3.1), implied
in particular by weakly dependence of the observations and of the process ξ, but the process Z
may be non-stationary and non-weakly dependent. In Theorem 1, under these conditions and
a set of technical assumptions, we obtain the asymptotic normality of the estimator (2). This
result is based on central limit theorems for fields indexed in N or Z

d. In Proposition 1 and 2,
we prove results of central limit theorems for triangular arrays of a R

m -valued centered station-
ary random field indexed in N or Z

d. For these fields the existence of a central limit theorem
depends strongly on the geometry of the subset of Z

d where the observations are indexed. We
apply these results to our model, in which we have a mixture of stationary fields X = ϕ(ξ, Z)
where Z is non-stationary but X = ϕ(ξ, Z) conditioned to Z is stationary. We consider here our
observations indexed in the level sets of Z. Some assumptions about the field Z should be made
in order to ensure properties of the level sets and to have a central limit theorem in this case.
In theorem 2, supposing additionally some regularity assumptions on the regression function φ
and on the bandwidth hn, we obtain the asymptotic normality of φ̂n(x)−φ(x) for x ∈ D, which
allows us to construct asymptotic confidence interval for φ(x).
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The non-stationary assumption for the data appears naturally when modelling the Internet
traffic (cf. [14], [15], [16]). In this paper, we are interested in estimating the quality of service for
voice and video applications. We call quality of service parameters some network characteristics
like delay, packet loss, etc.. The interest in voice or video applications is based in the fact that
these network traffic (the same as many real time applications) have high quality of service
requirements (very low delay and losses, etc.). In Section 4, we use the model (3) to estimate
quality of service parameters for traffic over the Internet. We assume that these parameters
are a function of the Internet traffic, represented by X = ϕ(ξ, Z). In the literature, it is usual
to assume that the traffic is piecewise stationary, in this model Z is a non-stationary random
process that selects between different stationary behaviors. The process Z indicates for example
if the network is very much loaded or not and it could describe seasonal or periodic behaviors.
The process ξ is related with obtained measurements variations. We give simulations of the
estimator (2) and confidence interval, for simulated and real traffic on the Internet.

The organization of the paper is as follows. In Section 2, we give some preliminaries on
the notions of asymptotically measurable sets and fields and state a central limit theorem for
triangular arrays of R

m-valued centered stationary random fields. In Section 3, we give our
result on the asymptotic normality of the estimator φ̂n and we make the assumptions under
which we obtain this result. Section 4 describes the application of our result to the problem of
estimating the quality of service on the Internet. Section 5 is devoted to the proofs.

2 Preliminaries

In this section we present some preliminary results. In subsection 2.1 we define the notion
of asymptotically measurable subsets that allows, in subsection 2.2, to give a central limit
theorem for triangular arrays of R

m-valued centered stationary random fields. In subsection
2.3 we present the notion of asymptotically measurable field that allows to state a central limit
theorem for a field described by equation (3). In this section, we consider both the case when
the field is indexed in N and in Z

d and in the following, L stands for N or Z
d.

When we have L = N, we denote `(n) = n and for a set A ⊂ N, An = A ∩ {0, 1, . . . , n− 1}
and Ac

n = A ∩ {0, 1, . . . , n− 1}.
When we have L = Z

d, we denote `(n) = (2n + 1)d and for a set A ⊂ Z
d, An = A ∩

{−n, . . . , n}d and Ac
n = Ac ∩ {−n, . . . , n}d.

2.1 Notion of asymptotically measurable subsets

In what follows card(A) indicates the cardinal of subset A.

Definition 1. A subset A ⊂ L is said to be an asymptotically measurable subset if, for all k ∈ L,
the following limit exists

F (k,A) = lim
n→∞

card{Ac
n ∩ (An − k)}

`(n)
.

The function F (., A) is called the border function of the subset A.

Definition 2. The subset family
{
Ai : i = 1, . . . ,m

}
in L is an asymptotically measurable family

if, for all i ∈ {1, . . . ,m}, the subsets Ai are asymptotically measurable and, for all k ∈ L and
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i, j ∈ {1, . . . ,m}, the following limit exists

F
(
k,Ai, Aj

)
= lim

n→∞

card{Ai
n ∩ (Aj

n − k)}

`(n)
.

2.2 Central limit theorem for triangular arrays of R
m-valued centered sta-

tionary random field

In the following, the notation
w

=⇒ means convergence in law and Nd(0,Σ) represents a zero mean
normal distribution in dimension d with covariance matrix Σ. Moreover, for Xn = (Xn

k )k∈L

a R
m-valued centered stationary random field, we denote the components of Xn by Xn =

(X1,n, . . . , Xm,n) and Xn
k = (X1,n

k , . . . , Xm,n
k ) for k ∈ L.

Definition 3. We define the class B(L) as the class of R
m- valued centered stationary random

fields Xn = (Xn
k )k∈L that satisfies the following conditions:

(H1) For all i, j ∈ {1, . . . ,m} and n ∈ N, we have

∑

k∈L

∣∣∣E
{
Xi,n

0 Xj,n
k

}∣∣∣ <∞.

(H2) Let Xn,J = (X1,n,J , . . . , Xm,n,J) be the truncation by J of Xn, defined for k ∈ L and J > 0
by

Xn,J
k = Xn

k 1{‖Xn
k
‖≤J} − E

[
Xn

k 1{‖Xn
k
‖≤J}

]
,

where ‖ · ‖ represents the euclidian norm on R
m.

(i) There exists a sequence γ(k) ≥ 0 such that
∑

k∈L
γ(k) < ∞ and such that for all

k ∈ L, n ∈ N, i, j ∈ {1, . . . ,m} and J > 0 we have

∣∣∣E
{
Xi,n,J

0 Xj,n,J
k

}∣∣∣ ≤ γ(k).

(ii) There exists a sequence b(J) such that limJ→∞ b(J) = 0 and for all set B ⊂ L,
i ∈ {1, . . . ,m}, n ∈ N and J > 0

E
[(
Sn

(
B,Xi,n

)
− Sn

(
B,Xi,n,J

))2]
≤
b(J)card(Bn)

`(n)
,

where

Sn(B,Xi,n) =
1

(`(n))1/2

∑

k∈Bn

Xi,n
k .

(H3) There exists a sequence of reals numbers C(J) such that for all B ⊂ L, n ∈ N, J > 0 and
i ∈ {1, . . . ,m} we have

E
[
Sn

(
B,Xi,n,J

)4]
≤ C(J)

(
card(Bn)

`(n)

)2

.
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(H4) There exist a function h : R+ → R+, such that limx→+∞ h(x) = 0 and a function g : R+×
R

m → R+, with g(J, t) <∞ for all fixed J > 0 and supt∈Rm g(J, t) = gJ <∞, such that

∣∣∣E
[
eiSn(B∪C,〈t,Xn,J 〉)

]
− E

[
eiSn(B,〈t,Xn,J 〉)

]
E
[
eiSn(C,〈t,Xn,J 〉)

]∣∣∣ ≤ g(J, t)h(d(B,C)),

for all disjoint sets B,C ⊂ L, all n ∈ N, J > 0 and t ∈ R
m. Here 〈·, ·〉 represents the

scalar product on R
m.

(H5) There exist sequences γJ(i, j, k) and γ(i, j, k), i, j ∈ {1, . . . ,m}, k ∈ L such that for all
J > 0 we have

lim
n→∞

E
{
Xi,n,J

0 Xj,n,J
k

}
= γJ(i, j, k),

and
lim

J→∞
γJ(i, j, k) = γ(i, j, k) (4)

for i, j ∈ {1, . . . ,m} and k ∈ L.

We have the two following propositions proved in Section 5.

Proposition 1. If Xn = (Xn
k )k∈N belongs to B(N) , then for any asymptotically measurable

family
{
Ai : i = 1, . . . ,m

}
in N, we have as n tends to ∞

(Sn(A1, X1,n), . . . , Sn(Am, Xm,n))
w

=⇒ Nm(0,Σ),

where for i, j ∈ {1, . . . ,m}

Σ(i, j) = γ(i, j, 0)F (i, j, 0) +
∑

k≥1

{γ(i, j, k)F (i, j, k) + γ(j, i, k)F (j, i, k)}

and

F (i, j, k) = lim
n→∞

card{Ai
n ∩ (Aj

n − k)}

n
.

Proposition 2. If Xn = (Xn
k )k∈Zd belongs to B(Zd), then for any asymptotically measurable

family
{
Ai : i = 1, . . . ,m

}
in Z

d, we have as n tends to ∞

(Sn(A1, X1,n), . . . , Sn(Am, Xm,n))
w

=⇒ Nm(0,Σ),

where for i, j ∈ {1, . . . ,m}

Σ(i, j) =
∑

k∈L

γ(i, j, k)F (i, j, k)

and

F (i, j, k) = lim
n→∞

card{Ai
n ∩ (Aj

n − k)}

(2n+ 1)d
.
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2.3 Notion of asymptotically measurable field

In what follows
a.s.
−→

n
means almost sure convergence as n tends to ∞ and 1A is the indicator

function of a set A. In the case L = N, we set D(n) = {0, . . . , n − 1} and if L = Z
d, we set

D(n) = {−n, . . . , n}d.

Definition 4. The R
m-valued random field Z = (Zn)n∈L is an asymptotically measurable field

in L if there exists a random probability measure R0 in B, where B is the Borel σ-algebra in R
m,

such that
1

`(n)

∑

m∈D(n)

1{Zm∈B}
a.s.
−→

n
R0(B)

and for all k ∈ L−{0} there exists a random measure Rk in B2, where B2 is the Borel σ-algebra
in R

2m, such that for all B,C ∈ B

1

`(n)

∑

m∈D(n)

1{Zm∈B}1{Zm−k∈C}
a.s.
−→

n
Rk(B × C).

If the limit measure is non-random Z is called a regular field in L.

The following proposition (cf. Proof in [17]) relates asymptotically measurable and regular
fields with asymptotically measurable subsets.

Proposition 3. If Z = (Zn)n∈L is an asymptotically measurable field, B1, B2, . . . , Bm are
disjoint subsets of B and Ai = {n ∈ L : Zn ∈ Bi} for i = 1, . . . ,m, then, conditionally to Z the
family {A1, . . . , Am} is an asymptotically measurable family with F (k,Ai, Aj) = Rk(B

i, Bj) and
F (0, Ai, Aj) = R0(B

i)δij, where δij is the Kronecker delta.

Remarks: In the next sections we will assume further hypotheses on Z for the field described
in (3) in order to prove the results, but the previous proposition is the tool for conditioning on
level sets of the field Z and applying the results for stationary fields to the non-stationary case
(3).

3 Results

In the following, we consider a fixed x ∈ D and we will study the asymptotic normality of φ̂n(x)
given by (2). Proofs of the results are in Section 5.

The estimator φ̂n can be also written

φ̂n(x) =
gn(x)

fn(x)
,

where

gn(x) =
1

nψ(hn)

n−1∑

i=0

YiKn(Xi),

fn(x) =
1

nψ(hn)

n−1∑

i=0

Kn(Xi) (5)
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with

Kn(u) = K

(
‖u− x‖

hn

)
, u ∈ D. (6)

and ψ(hn) is given in assumption (A1). We recall that we use the convention 0/0 = 0.

In Subsection 3.1, we give the assumptions under which the asymptotic normality of φ̂n(x)
is obtained and in Subsection 3.2 we give our results.

3.1 Assumptions

We make the following assumptions on the distribution of (X,Y ).

(A1) There exist positive functions ψ,ψ1, . . . , ψm defined on R+×D, functions c1, . . . , ck defined
on D and a subset ∆ of {1, . . . ,m} such that for all h > 0

P [‖ϕ(ξ1, zk) − x‖ ≤ h] = ck(x)ψk(h, x),

where limh→0
ψk(h, x)

ψ(h, x)
= 1 if k ∈ ∆, and limh→0

ψk(h, x)

ψ(h, x)
= 0 if k ∈ ∆C .

In the following, to simplify the notation, we replace ψ(hn, x) by ψ(hn), but the quantity
ψ(hn) still depends of x.

(A2) The functions u 7→ ψk(u, x) are differentiable on R+, with differential function denoted
ψ′

k(u, x) and satisfy

lim
h→0

h

ψk(h, x)

∫ 1

0
K(u)ψ′

k(uh, x)du = dk(x),

where the dk’s are functions defined on D.

(A3) The process Z is regular and satisfies for k ∈ {1, . . . ,m} as n tends to ∞ that

√
nψ(hn)

(
1

n

n−1∑

i=0

1{Zi=zk} −
1

n

n−1∑

i=0

P (Zi = zk)

)
P

=⇒ 0, (7)

where
P

=⇒ means convergence in probability. For k ∈ {1, . . . ,m}, denote by pk the limit

pk = lim
n→∞

1

n

n−1∑

i=0

P (Zi = zk).

Let the R
2m-value random process X̃n = (X̃1,n, . . . , X̃2m,n) defined for i ∈ N as follows:

• for l ∈ {1, . . . ,m}

X̃ l,n
i =

1√
ψ(hn)

Kn (ϕ(ξi, zl)) (φ(ϕ(ξi, zl)) + εi)

−
1√
ψ(hn)

E [Kn (ϕ(ξi, zl))φ(ϕ(ξi, zl))] ,
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• for l ∈ {m+ 1, . . . , 2m}

X̃ l,n
i =

1√
ψ(hn)

Kn (ϕ(ξi, zl)) −
1√
ψ(hn)

E [Kn (ϕ(ξi, zl))] ,

where Kn is defined by (6).

Moreover we assume the following hypotheses.

(A4) The R
2m-value random process X̃n belongs to B(N).

(A5) The function φ is continuous.

(A6) The estimator fn(x) defined by (5) converges in probability to f(x) > 0 where the function
f is defined by

f(u) =
∑

k∈∆

pkdk(u)ck(u), u ∈ D.

We suppose the following hypothesis on the estimator φ̂n.

(A7) The function K is a positive function with support [0, 1].

(A8) The bandwidth hn satisfies
lim

n→∞
hn = 0

and
lim

n→∞
nψ(hn) = ∞.

Remarks on the assumptions:

• The conditions (A1) and (A2) mean that, conditionally on Z, the distance between the
observation Xi and the estimation point x has a density. The quantity ψk(h, x) plays a
role analogous to hd for multidimensional estimation.

• The hypothesis (A3) means that the variable Z does not behave too irregularly. It is
assumed that the process has some kind of ”stationarity in mean”. However this is not a
strong assumption, and for example (A3) could be satisfied by periodic or semi-periodic
random variables. The relation (7) is satisfied for example if the variables 1Zi=zk

satisfy a
central limit theorem for each k = 1, . . . ,m.

• The hypothesis (A4) can be replaced by various sets of hypothesis doing a trade-off between
conditions on the moments of Y and conditions of mixing. Perera (1997) ([18]) describes
several sets of conditions that imply the previous hypotheses.

• In the hypothesis (A6), f(x) > 0 means roughly that there is a positive probability of
finding observations Xi near (in the sense of the semi-norm on D) the point x where we
want to compute the estimator.” The function f play the role of the density of the whole
process X = ϕ(ξ, Z). Moreover the convergence in probability can be obtained under the
conditions (A1) y (A2), conditions on the moments of Yi and conditions of mixing (cf.
Proof in [6]).

• The hypothesis (A5), (A7) and (A8) are classical for obtaining asymptotic normality.
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3.2 Asymptotic normality of φ̂n(x)

The asymptotic normality of φ̂n(x) is obtained in three stages: asymptotic normality of the
field X̃n in Proposition 4, of (gn(x) −E(gn(x)), fn(x) −E(fn(x))) in Proposition 5 and then of
φ̂n(x) in Theorem 1. Theorem 2 gives the asymptotic normality of φ̂n(x) − φ(x) which allows
to construct asymptotic confidence interval for φ(x).

Proposition 4. For l ∈ {1, . . . ,m}, denote Al = {k ∈ N, Zk = zl} and Al+m = Al. If Z
is asymptotically measurable, then under Assumption (A4), conditionally on Z, we have, as n
tends to ∞

(Sn(A1, X̃1,n), . . . , Sn(A2m, X̃2m,n))
w

=⇒ N2m(0,Σ),

where for i, j ∈ {1, . . . , 2m}

Σ(i, j) = γ(i, j, 0)F (i, j, 0) +
∑

k∈N

{γ(i, j, k)F (i, j, k) + γ(j, i, k)F (j, i, k)} ,

with γ(i, j, k), k ∈ N, defined by (4) for the field X̃n and

F (i, j, k) = lim
n→∞

card{Ai
n ∩ (Aj

n − k)}

n
.

Proposition 5. Under Assumptions (A3) and (A4), we have, as n tends to ∞, that

√
nψ(hn)

(
gn(x) − E(gn(x)), fn(x) − E(fn(x))

)
w

=⇒ N2(0, A),

where

A =

(
a1(x) a2(x)
a2(x) a3(x)

)

with

a1(x) =
m∑

i,j=1

Σ(i, j), a2(x) =
m∑

i=1

2m∑

j=m+1

Σ(i, j), a3(x) =
2m∑

i,j=m+1

Σ(i, j).

Theorem 1. Under Assumptions (A1)–(A8), we have as n tends to ∞

√
nψ(hn)

(
φ̂n(x) −

E(gn(x))

E(fn(x))

)
w

=⇒ N1(0, σ
2(x)),

where

σ2(x) =
a1(x) − 2a2(x)φ(x) + a3(x)φ

2(x)

f2(x)
. (8)

Theorem 2. We suppose that

(B1) the function φ satisfies
|φ(u) − φ(v)| ≤ L‖u− v‖β ,

with β > 0 and L a positive constant,
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(B2) there exist M > 0 and a function α such that for each k ∈ {1, . . . ,m} and h > 0, we have

∣∣∣∣
P [‖ϕ(ξ1, zk) − x‖ ≤ h]

ψk(h, x)
− ck(x)

∣∣∣∣ ≤Mα(h) ∀α > 0.

(B3) the bandwidth hn satisfies
lim

n→∞
α(hn)

√
nψ(hn) = 0

and
lim

n→∞
hβ

n

√
nψ(hn) = 0

(B4) for each k ∈ {1, . . . ,m}, we have

lim
n→∞

√
nψ(hn)

(
1

n

n−1∑

i=0

P (Zi = zk) − pk

)
= 0.

Then under Assumptions (A1)–(A8), (B1)–(B4), we have as n tends to ∞,

√
nψ(hn)

(
φ̂n(x) − φ(x)

)
w

=⇒ N1(0, σ
2(x)),

where σ2(x) is defined by (8).

4 Application to end-to-end quality of service estimation

4.1 Motivation and model

Nowadays new services are offered over the Internet like voice and video. For these new applica-
tions the need to measure the network performance has increased. Multimedia applications have
several requirements in terms of delay, losses and other quality of service parameters. These
constraints are stronger than the ones for usual data transfer applications (mail, etc.). Measure-
ments of the Internet performance are necessary for different reasons, for example to advance
in understanding the behavior of the Internet or to verify the quality of service assured to the
new services.

There are several measuring techniques, most of them with software implementations, that
can be classified in active (sending controlled traffic called probe packets) and passive measures
(generally measures at the routers). The aim of these techniques is to detect different charac-
teristics of the network that can be the topology or some performance parameters (delay, losses,
available bandwidth, etc.). There are also several problems to measure the performance param-
eters, for example the route of the packets can change, the traffic bit rate is not constant and
normally is in bursts, the probe packets can be filtered or altered by one ISP (Internet Service
Provider) in the path, there is not clock synchronization between routers and end equipments,
etc.. Normally the internal routers in the path between two points of interest are not under the
control of only one user or one ISP. Therefore, it is not very useful to have measuring procedures
that depend on the information of the internal routers. For this reason end-to-end measures is
one of the most developed methodologies during the last years (cf. [19], [20],[21]).

We consider a single link and a voice or video traffic that we want to monitor, that is we
want to know the quality of service parameters when this traffic goes between two points over
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the network. The link is shared by this multimedia traffic and many other traffics in the network
that are unknown and that is called cross traffic and could be modelled as a stochastic process.
The performance parameter for packets of a multimedia traffic could be delay, packets losses,
delay variation (or all of them together) and we will consider it as a random variable Y . This
performance parameter could be modeled as a function of the cross traffic stochastic process,
the video or voice stochastic process, the link capacity and the buffer size. We want to estimate
Y without sending video or voice traffic during long time periods. Active measurements, that
send traffic, are useful if they do not charge the network, so they consist on small probe packets
sent during short time periods.

The link capacity and the buffer size are not known but it is assumed that they are constants
during the monitoring process. The multimedia traffic is also known therefore we can suppose
that Y = φ(X) where X is a characterization of the cross traffic stochastic process. We can
not measure the cross traffic process but we can obtain data closely related with this process.
This data is described in the following subsection. The cross traffic process on the Internet
is a dependent non-stationary process (c.f [14] or [15]). To take into account non-stationary
behaviors we will suppose that X satisfies the relation (3).

4.2 Measurement procedure

In what follows we describe the procedure to estimate the function φ. We divide the experiment
in two phases: first, we send a burst of small probe packets (pp) of fixed size spaced by a fixed
time. Immediately after the burst we send during a short time a video stream. We repeat the
previous procedure during some time lapse, sending a new burst and a video probe after a time
interval measured from the previous end of the video stream as it is shown in the scheme in
figure 1.

pp video

Figure 1: Measurement procedure scheme

With the probe packets burst we infer the cross traffic of the link. We measure at the output
of the link the interarrival time between consecutive probe packets. This time serie is strongly
correlated with the cross traffic process that shares the link with the probe traffic. We compute
the empirical distribution function of probe packets interarrival times because this distribution is
related with the queue behavior in the network. Using this cross traffic estimation and measuring
the delay Y over the video, we want to estimate the function φ.

From each probe packet burst and video sequence j we have a pair (Xj , Yj), where Xj is the
empirical distribution function of interarrival times and Yj is the performance metric of interest
measured from the video stream j.

Therefore, our estimation problem has been transformed into the problem of inferring a
function φ : D → R where D is the space of the probability distribution functions and R is the
real line such that the (Xj , Yj) satisfy (1).
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We did the estimations both with simulated and real traffic. Real data are obtained with
a software that do the active measures described before between a server and its users. For
simulated data, the variable Y is the one-way delay which is the delay between two points. For
real data, we measure round trip time (RTT) delay that is the delay in the whole trip between
two points in a path and in the reverse path.

For simulated traffic, we have 360 observations (Xj , Yj). For each j ∈ {1, . . . , 359}, we

calculate the estimator φ̂j defined by (2) using the observations (X1, Y1), . . . , (Xj , Yj) and we

represent on figures 2 and 3 the values of Yj+1 and of its prediction φ̂j(Xj+1). Moreover for each

j ∈ {1, . . . , 359}, we calculate a confidence interval around φ̂j(Xj+1) using a block-bootstrap.

The estimator φ̂j is calculated using the kernel K(x) = (x2 − 1)21[−1,1](x), the bandwidth that
minimizes the sum of the relative error in the estimation before the time j and the L1 norm.
The figure 4 represents the relative error of the estimation. The results are relatively accurate
for sample of size larger than 100.

For real data, we have 50 observations (Xj , Yj) and we realize the same type of estimation.
In figure 5, we represents for each j ∈ {1, . . . , 49}, the values of Yj+1 and of its prediction

φ̂j(Xj+1) and a confidence a confidence band around φ̂j(Xj+1) using a block-bootstrap. The
figure 6 represents the relative error of the estimation. The results are less accurate than in the
case of simulated data but the estimations are calculated with samples of small size.
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Figure 2: Estimated delays for all simulated data
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Figure 3: Estimated delays for simulated data observations between 230 and 270
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Figure 4: Relative error for simulated data
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Figure 5: Estimated RTT for real data
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5 Proof of the propositions and theorems

5.1 Proof of Propositions 1 and 2

This result is obtained by means of Bernshtein method (cf. [18], [22]) and it is a gener-
alization of the theorem 4.15 on triangular arrays for R-valued random fields obtained by
Tablar (2006) ([23], p 86) to R

m-valued random fields. To prove that the vectorial field
(Sn(A1, X1,n), . . . , Sn(Am, Xm,n))

w
=⇒ Nm(0,Σ), it is sufficient to prove that for all λ ∈ R

m

〈λ, Sn〉
w

=⇒ N(0, λtΣλ) where Sn = (Sn(A1, X1,n), . . . , Sn(Am, Xm,n)) and λt = (λ1, . . . , λm).
We have that

〈Sn, λ〉 =
m∑

i=1

λiSn(Ai, Xi,n) =
m∑

i=1

1

(`(n))1/2
λi

∑

k∈Ai
n

Xi,n
k

=
1

(`(n))1/2

∑

k∈D(n)

m∑

i=1

λiX
i,n
k 1{k∈Ai

n}

Let us consider a real valued field Xn(λ) where Xi,n
k (λ) = λiX

i,n
k if k ∈ Ai

n. Then 〈Sn, λ〉 =
Sn

(
D(n), Xn(λ)

)
. As the field Xn(λ) verifies the hypotheses in the work of [23] we can apply

the theorem for a real valued random field in order to obtain the result of propositions 1 and 2.

5.2 Proof of Proposition 4

Since Z is asymptotically measurable, conditionally to Z, the subset family (A1, . . . , A2m) is an
asymptotically measurable family in N. Then applying Proposition 1 to X̃ which belongs to
B(N), we deduce the result.

5.3 Proof of Proposition 5

Before proving Proposition 5, here we prove the following lema.

Lemma 1. Let k ∈ {1, . . . ,m}. Under the Assumptions (A1), (A2), (A3), (A5), (A7) and (A8),
we have

1) the following limit

lim
n→∞

1

ψ(hn)
E [Kn(ϕ(ξ1, zk))] = dk(x)ck(x)1{k∈∆},

2) for β > 0,

lim
n→∞

1

ψ(hn)
E

[∥∥∥∥
ϕ(ξ1, zk) − x

hn

∥∥∥∥
β

Kn(ϕ(ξ1, zk))

]
≤ dk(x)ck(x),

3) that the estimator fn(x) satisfies

lim
n→∞

E(fn(x)) = f(x),
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4) and the estimator gn(x) satisfies

lim
n→∞

E(gn(x)) = φ(x)f(x).

Proof. The results 1) and 2) of this lemma come from the fact that under Assumption (A1), the
density of ‖ϕ(ξ1, zk) − x‖ is the function u→ ck(x)ψ

′
k(u, x). Then under Assumption (A7)

E [Kn(ϕ(ξ1, zk))] = hnck(x)

∫ 1

0
K(u)ψ′

k(uhn, x)du

and

E

[∥∥∥∥
ϕ(ξ1, zk) − x

hn

∥∥∥∥
β

Kn(ϕ(ξ1, zk))

]
= hnck(x)

∫ 1

0
K(u)uβψ′

k(uhn, x)du

and it is sufficient to use Assumptions (A2) and (A8) to conclude.
Here we prove 3) and 4). We have for i ∈ {1, . . . , n},

E(Kn(Xi)) = E{E(Kn(Xi)|Zi)} =

m∑

k=1

E{Kn(ϕ(ξi, zk))}P (Zi = zk).

As (ϕ(ξi, zk))i=1,...,n is identically distributed, we obtain that,

E(fn(x)) =
m∑

k=1

(
1

ψ(hn)
E (Kn(ϕ(ξ1, zk)))

1

n

n−1∑

i=0

P (Zi = zk)

)
. (9)

Now applying (A3) and the assertion 1) of this lemma in (9), we obtain 3). Similar calculus give
that

E(gn(x)) =
m∑

k=1

(
1

ψ(hn)
E (φ (ϕ(ξ1, zk))Kn(ϕ(ξ1, zk)))

1

n

n−1∑

i=0

P (Zi = zk)

)
.

Then we have
E(gn(x)) = φ(x)E(fn(x)) +Rn,

where

Rn =
m∑

k=1

(
1

ψ(hn)
E ({φ (ϕ(ξ1, zk)) − φ(x)}Kn(ϕ(ξ1, zk)))

1

n

n−1∑

i=0

P (Zi = zk)

)

≤ sup
u:‖x−u‖≤hn

|φ(u) − φ(x)|E(fn(x))

and we obtain 4) using the continuity of function φ (Assumption (A5)) and using that limn→∞E(fn(x)) =
f(x).

Conditionally to Z, we have

√
nψ(hn)

(
gn(x)−E(gn(x)|Z), fn(x)−E(fn(x)|Z)

)
=




m∑

j=1

Sn(Aj , X̃n,j),
2m∑

j=m+1

Sn(Aj , X̃n,j)



 .
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Using Proposition 4, we obtain that, conditionally to Z,



m∑

j=1

Sn(Aj , X̃n,j),
2m∑

j=m+1

Sn(Aj , X̃n,j)



 w
=⇒ N2(0, A).

Since Z is regular, the matrix A is not random and then we have

√
nψ(hn)

(
gn(x) − E(gn(x)|Z), fn(x) − E(fn(x)|Z)

)
w

=⇒ N2(0, A).

Now

(gn(x) − E(gn(x)), fn(x) − E(fn(x))) = (gn(x) − E(gn(x)|Z), fn(x) − E(fn(x)|Z))

+ (E(gn(x)|Z) − E(gn(x)), E(fn(x)|Z) − E(fn(x))).

We have

E(fn(x)|Z) − E(fn(x)) =
2m∑

j=1

E(Kn(ξ1, zj))

ψ(hn)

(
card(Aj

n)

n
−

1

n

n−1∑

i=0

P [Zi = j]

)
.

Under Assumption (A3) and using assertion 1) of Lemma 1, we have that
√
nψ(hn) (E(fn(x)|Z) − E(fn(x)))

converges in probability to 0 as n tends to ∞. Using Assumption (A3),
√
nψ(hn) (E(gn(x)|Z) − E(gn(x)))

converges in probability to 0 as n tends to ∞. Using the lemma of Slutsky, we obtain the result
of the proposition.

5.4 Proof of Theorem 1

We have

φ̂n(x) −
E(gn(x))

E(fn(x))
=
Qn(x) −Bn(x)(fn(x) − E (fn(x)))

fn(x)
,

where

Bn(x) =
E(gn(x))

E(fn(x))
− φ(x)

and
Qn(x) = (gn(x) − E(gn(x))) − φ(x)(fn(x) − E(fn(x))).

Using 3) y 4) of Lemma 1, we deduce that

lim
n→∞

Bn(x) = 0.

Then using (A6), we have that fn(x) converges in probability to f(x) > 0 and then it implies
that

Bn(x)(fn(x) − E (fn(x)))

fn(x)
(10)

converges in probability to 0.
Finally, using (A6), (10) and Proposition 5, applying Slutsky Lemma, we deduce the result of
the proposition.
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5.5 Proof of Theorem 2

Theorem 2 is obtained using Theorem 1 and the following lemma.

Lemma 2. Under Assumptions (B1)− (B4) and Assumptions (A1), (A2), (A6), (A7) and (A8),
we have that

lim
n→∞

√
nψ(hn)

(
E(gn(x))

E(fn(x))
− φ(x)

)
= 0.

Proof. We have the following decomposition

E(gn(x))

E(fn(x))
− φ(x) =

1

E(fn(x))
[E(gn(x)) − f(x)φ(x)] +

φ(x)

E(fn(x))
[f(x) − E(fn(x))] . (11)

Here we study first the quantity E(fn(x)) − f(x). As in Lemma 1, we have

E(fn(x)) =

m∑

k=1

(
1

ψ(hn)
E (Kn(ϕ(ξ, zk)))

1

n

n−1∑

i=0

P (Zi = zk)

)

and then

E(fn(x)) − f(x) =
m∑

k=1

(
1

ψ(hn)
E (Kn(ϕ(ξ, zk))) − dk(x)ck(x)1{k∈∆}

)
1

n

n−1∑

i=0

P (Zi = zk)

+
m∑

k=1

dk(x)ck(x)1{k∈∆}

(
1

n

n−1∑

i=0

P (Zi = zk) − pk

)
.

Under the Assumptions (B2), (B3) and (B4) imply that

lim
n→∞

√
nψ(hn) (E(fn(x)) − f(x)) = 0. (12)

Here we study the term E(gn(x)) − f(x)φ(x). It satisfies

|E(gn(x)) − f(x)φ(x)| ≤ |φ(x)| |E(fn(x)) − f(x)| + |E(gn(x)) − E(fn(x))φ(x)|.

We have

|E(gn(x)) − E(fn(x))φ(x)| =

∣∣∣∣∣
1

ψ(hn)

m∑

k=1

E [Kn(ϕ(ξ, zk)) (φ(ϕ(ξ, zk)) − φ(x))]
1

n

n−1∑

i=0

P (Zi = zk)

∣∣∣∣∣

≤ Lhβ
n

m∑

k=1

1

ψ(hn)
E

[
Kn(ϕ(ξ, zk))

∥∥∥∥
ϕ(ξ, zk) − x

hn

∥∥∥∥
β
]

1

n

n−1∑

i=0

P (Zi = zk)

≤ L1h
β
n(1 + o(1)), (13)

where the second line comes from Assumption (B1) and the third is a consequence of assertion
2) of Lemma 1. From (12), (13) and Assumption (B3), we deduce that

lim
n→∞

√
nψ(hn) (E(gn(x)) − f(x)φ(x)) = 0. (14)

Assertion 1) of Lemma 1, (12) and (14) applying in (11) imply the proposition.
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Publicaçoes do Departamento de Matemática, Universidade de Coimbra, 05-09.

[12] Ramsay, J. O. and Silverman, B. W., 2005, Functional data analysis (2nd edn), Springer
Series in Statistics. New York: Springer.



Asymptotic normality of the Nadaraya-Watson estimator for non-stationary data 20

[13] Ferraty, F. and Vieu, P., 2006, Nonparametric Functional data analysis: Theory and Prac-
tice, Springer Series in Statistics. New York: Springer.

[14] Karagiannis, T., Molle, M., Faloutsos, M. and Broido, A., 2004, A nonstationary Poisson
view of Internet traffic. Proc. of INFOCOM 2004. Twenty-third Annual Joint Conference
of the IEEE Computer and Communications Societies, 3, 1558–1569.

[15] Zhang, Y., Paxson, V. and Shenker, S., 2000, The Stationarity of Internet Path Properties:
Routing, Loss, and Throughput. ACIRI Technical Report.

[16] Zhang, Y. and Duffield, N., 2001, On the constancy of internet path properties. IMW ’01:
Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement, 197–211.

[17] Perera, G., 2002, Irregular sets and central limit theorems. Bernoulli, 8, 627–642.

[18] Perera, G., 1997, Geometry of Z
d and the central limit theorem for weakly dependent

random fields. J. Theoret. Probab., 10, 581–603.

[19] Bolot, J., 1993, End-to-end packet delay and loss behavior in the internet. SIGCOMM
’93: Conference proceedings on Communications architectures, protocols and applications,
289–298.

[20] Jain, M. and Dovrolis, C., 2002, Pathload: A measurement tool for end-to-end available
bandwidth. Proc. of Passive and Active Measurements (PAM) Workshop, Mar. 2002.

[21] Corral, J., Texier, G. and Toutain, L., 2003, End-to-end Active Measurement Architecture
in IP Networks (SATURNE). PAM 2003, A workshop on Passive and Active Measurements.

[22] Perera, G., 1997, Applications of central limit theorems over asymptotically measurable
sets: regression models. C. R. Acad. Sci. Paris Sér. I Math., 324, 1275–1280.

[23] Tablar, A., Estad́ıstica de procesos estocásticos y Aplicaciones a Modelos Epidémicos, PhD
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