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Abstract—This work analyzes the necessary and sufficient
conditions for the stability of the stochastic dynamic optimization
algorithm for the calculus of the water cost for one hydroelectrical
generation plant. We present the theory and different simulations
for parameters inside and outside the stability region. A partic-
ular relationship between the time integration step, the space
discretization step and the maximal incoming and outcoming
flows. In order to show some advantages and disadvantages of
the method, we show a simulation of the Uruguayan generation
system with four hydroelectrical generation plants. We show that
the stability conditions impose a small time simulation step, i.e.,
large total simulation time. As a future research direction, we
think that this time can be reduced using non linear integration
methods

Index terms: Stochastic optimization, Power generation dis-
patch, Hydrotermal scheduling.

I. INTRODUCTION

THE optimization of the operation of an hydrothermal system is
a complex problem. The complexity comes from the fact that

we are leading with system with reservoirs and then the problem of
how to use the stocked resources is not only how much to use of
each of the stocks but also when to use them.

The problem is formulated as an optimization with the objective of
minimize the cost of fuel consumption at the thermal plants and the
cost of fail in supply the demanded energy. The calculus is divided in
a set of consecutive stages or time steps. In each stage the production
costs of each thermal unit and of fail in supply the demanded energy,
is supposed known. The water in the reservoirs hasn’t an explicit
cost value so the production cost of the hydroelectric plants is not
defined. The use of stocked water today potentially increases the cost
of stages in the future. The preservation of water today for a later
use perhaps reduce the cost of some stages in the future but really
increases the cost today due to the additional thermal generation that
will be needed to substitute the avoided hydroelectric generation. That
is, the problem is to found a policy of use of the stocked resources
that result in a equilibrium between today and future costs.

Then, we face an optimization problem: minimize a cost function
subject to several constrains. The are at least two well known
strategies to face this problem. The more classical is called Stochastic
Dynamic Programming (SDP) and the other is the called Stochastic
Dual Dynamic Programming (SDDP).

The SDP computes the cost function the future back to the present.
To proceed with the calculus, a discretization, both in time and space,
is defined for each of the state variables of the system. This leads to
the well known Bellman’s ”curse of dimensionality” that turns the
SDP not applicable when the number of state variables increases [1],
[2].
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The SDDP leads with the dimension of the state space using Ben-
ders cuts to approximate the cost function. A very good explanation
of the method is given in [3]. The approximation is carried out in
successive sweeps of the stages forward, computing the cost of a
feasible solution and backward computing the cost of the relaxation.
If the cost function and the constrains are convex, we obtain the exact
solution. Without convexity, we have a gap. When the production
costs of the thermal units are considered constant, the resulting
cost functions are convex, linear, so the overall production cost is
also convex and the method is applicable. When a more detailed
production cost function is considered, a minimum operation point
appears resulting in a non convex function. If the system is great
enough the duality gap is irrelevant as shown in [4]. But in small
systems, where the power of a unit is greater than 10% of the power
of the demand the duality gap may be relevant and so the SDDP may
be inappropriate.

The daily maximum of the power demand in Uruguay is about
1000MW. The greatest thermal unit in the system has a power of
125MW, so the system is very small and some care must be taken
with dual optimization techniques. It is also true that classical SDP
method are more suitable for distributed programming and with the
permanent increasing of the power of computers at lower prices, it
is foreseeable that SDP method can be implemented in spite of ”the
curse of dimensionality”.

This work analyzes the necessary and sufficient conditions for the
stability of the stochastic dynamic optimization algorithm for the
calculus of the water cost for one hydroelectrical generation plant.
We present the theory and different simulations for parameters inside
and outside the stability region. A particular relationship between the
time integration step, the space discretization step and the maximal
incoming and outcoming flows.

In order to show some advantages and disadvantages of the
method, we show a simulation of the Uruguayan generation system
with four hydroelectrical generation plants. We show that the stability
conditions impose a small time simulation step, i.e., large total
simulation time. As a future research direction, we think that this
time can be reduced using non linear integration methods.

The article is organized as follows. In Section II, we present
the problem of dynamic programming, the derivation of the future
cost function using a linear approximation and the distinct forms of
performing the derivation. In Section III, the asymptotical analysis is
performed and a convergence condition is stated. An Example shown
the relevance of the number of water reservoirs is included in Section
IV. Finally, some conclusions and comments end the work.

II. THE PROBLEM

As we have mentioned, we want to optimize the operation of a
power system with one hydroelectrical generation plant. We perform a
time discretization, introducing a time step. We denote by the integer
k the actual time. The state of the system is given by the current
volume V of the water reservoir. Its ranges from V = 0 (empty) to
V = Vmax (full). Again, we discretize this level with step ∆V in



order to have a discrete state j, ranging from 0 (empty) to N (full).
It follows that

∆V =
Vmax

N − 1
, Vj = (j − 1).∆V , j = 1, . . . , N

We will construct a future cost function FCk(V ) that, for each
time step k and every state j, tells us the optimal cost of the future
operation of the system.

The Dynamic Programming Principle says that the operation cost
from time k and volume V is equal to the operation cost from time
k + 1 and volume V ′ plus the cost of the dispatch decisions made
at time k. We have the expression

FCk(V ) = β.FCk

(
V ′) + csk (V, uk, rk) (1)

where β represents the effect of a discount rate that adapts to the
actual time the future costs1, V and V ′ are the state of the system at
times k and k+1 respectively, csk is the running cost of the optimal
dispatch decisions at time k. It computes the cost of fuel wasted in
the thermal units and the cost associated with energy not supplied
to the demand during the stage k. It depends on the actual state Vk,
the control variables uk and some random inputs rk, like the water
inflows to the reservoir. We also assume we known the relationship
between V , the initial state at time k and the final state V ′:

V ′ = f (V, uk, rk)

We use a first order approximation of FCk:

FCk+1(V
′) ≈ FCk+1(V ) +

∂FCk+1

∂V
(V ).(V ′ − V ) (2)

The total variation of the volume, V ′ − V , is

V ′ − V = Q′k(V ).∆T (3)

with Q′k(V ) the net water inflow to the reservoir and ∆T the duration
of the stage. The net water inflow can be decomposed as follows:

Q′k(V ) = QE −QS = QE − (QT + QV + QP )

QE denotes the water flow that enters the reservoir. It includes
rain and up streams water; QT is the turbinated flow, that is, water
used to generate electric power; QV represents the water released and
QP the flow lost by evaporation and filtration. Combining equations
(1), (2) and (3), we obtain

FCk(j) = β.
[
FCk+1(j) +

∂FCk+1

∂V
(j).Q′k.∆T

]
+ csk(j) (4)

where we have simplified the notation of the volume.
We introduce a vector of future costs at the beginning of stage k:

ck = [FCk(1), FCk(2), . . . , FCk(N)]T

and the vector of dispatch costs (usually termal unit costs) at stage
k:

y′k = [csk(1), csk(2), . . . , csk(N)]T

Let q′k be a diagonal matrix with

q′k(i, i) = Q′k(i) , i = 1, . . . , N

Then, we can approximate the derivative ∂FCk+1
∂V

(j) as a linear
combination of the elements of Ck+1, divided by the volume step
∆V :

∂FCk+1

∂V
(j) =

1

∆V
.D.ck+1

1For example, in a daily time basis and with an annual discount rate of
12%, we have

β =

(
1

1 + 0.12

) 1
365

Meaningful discount rates should not exceed the 12%.

Then, equation (4) can be re-written as

ck = β.
(
1 +

∆T

∆V
.q′k.D

)
.ck+1 + y′k (5)

where D is a matrix that performs the derivative approximation.
Several matrices D can be used. For example, if we use a backward
incremental quotient:

∂FCk+1

∂V
(j) ≈





FCk+1(j)−FCk+1(j−1)

∆V
; j = 2, . . . , N

FC2(j)−FCk+1(1)

∆V
; j = 1

we have the matrix

Ddec =




−1 1
−1 1

−1 1
. . .

. . .
−1 1

−1 1
−1 1




(6)

Observe that we have repeated the first row, in order to solve the
border condition at j = 1. In the same way, if we use a forward
incremental quotient, we have

Dinc =




−1 1
−1 1

. . .
. . .
−1 1

−1 1
−1 1
−1 1




(7)

Matrix Ddec is suitable for handling qs, i.e., the outgoing vector
component of the water flow vector qk, since when the reservoir
is empty, no water can be released, turbinated or evaporated. By a
similar argument, we will use Dinc to deal with the vector qek of
entering water. To get a good derivative approximation, we choose
to use a linear combination of Ddec and Dinc. Our final first order
approximation of the cost function is the following:

ck = β.
[
1 +

∆T

∆V
. (qek.Dinc − qsk.Ddec)

]
.ck+1 + y′k (8)

with qek and qsk diagonal matrices, constructed like qk.

III. ASYMPTOTICAL ANALYSIS

In this Section, we find conditions for the convergence of the
algorithm showed in (8). It must be initialized at k = +∞ (or big
k). In order to formalize the analysis, we revert time, and consider
the infinity at k = 0. Let us put

Ak = β
[
I +

∆T

∆V
(qekDinc − qskDdec)

]
, bk = y′k

Then, we have the algorithm

ck+1 = Akck + bk (9)

We emphasize that at each step, Ak and bk stands for the optimal
dispatch decisions, that involve the released or turbinated flow. We
assume a known value QEmax, the maximum water flow that can
enter to the reservoir. In the same way, QSmax is the maximum
water flow that can leave the reservoir. Denote by A and B the sets
where we choose matrices Ak and bk from. These sets are convex
and bounded.

We consider two different initial conditions c0 and c0 (these are
the final values of the cost function). The algorithm (9) generates the
sequences {ck} and {c′k}. We prove that at each step, the sequences



strictly approach each other. We use the infinity norm for a N -
dimensional vector to measure the distance:

‖v‖∞ = max
i=1,...,N

{|vi|}

At time k + 1 we have

ck+1 = Akck + bk

c′k+1 = A′kc′k + b′k
(10)

Optimality of the couples (Ak, bk) and (A′k, b′k) implies

ck+1 = A′kck + b′k

c′k+1 = Akc′k + bk

where the inequalities are at each component. Then,

‖ck+1 − c′k+1‖∞ =
∣∣(ck+1)i −

(
c′k+1

)
i

∣∣
and one of the two following inequalities must be true

∣∣(ck+1)i −
(
c′k+1

)
i

∣∣ ≤
∣∣[Ak (ck − c′k)]i

∣∣
∣∣(ck+1)i −

(
c′k+1

)
i

∣∣ ≤
∣∣[A′k (ck − c′k)]i

∣∣
(11)

We know that

∣∣[Ak

(
ck − c′k

)]
i

∣∣ =

∣∣∣∣∣
N∑

j=1

Akij

(
ck − c′k

)
j

∣∣∣∣∣
Then ∣∣[Ak

(
ck − c′k

)]
i

∣∣ ≤ ‖A‖1.‖ck − c′k‖∞
where ‖A‖1 denotes the matrix norm induced by the norm we have
used for vectors [5]:

‖A‖1 = max
‖v‖∞=1

{‖Av‖∞} = max
i=1,...,N

{
N∑

j=1

|Aij |
}

For every k, we the the inequality

‖ck+1 − c′k+1‖∞ ≤ max
{
‖Ak‖1, ‖A′k‖1.

}
‖ck − c′k‖∞ (12)

and we conclude that, if every possible matrix Ak ∈ A has ‖Ak‖1 <
1, two different sequences generated by the algorithm (9) approach
each other as time evolve. Let us compute ‖Ak‖1. Recall that

Ak = β.
[
I +

∆T

∆V
(qekDinc − qskDdec)

]

Consider the non zero elements of the rows of Ak. For the first
row, we have

Ak(1, 1) = β.
[
1− ∆T

∆V
[QEk(1)−QSk(1)]

]

Ak(1, 2) = β.
∆T

∆V
[QEk(1)−QSk(1)]

For the generic i-th row:

Ak(i, i− 1) = β.
∆T

∆V
QSk(i)

Ak(i, i) = β.
[
1− ∆T

∆V
[QEk(i) + QSk(i)]

]

Ak(i, i + 1) = β.
∆T

∆V
QEk(i)

The final row N verifies:

Ak(N, N − 1) = β.
∆T

∆V
[QSk(N)−QEk(N)]

Ak(N, N) = β.
[
1− ∆T

∆V
[QSk(N)−QEk(N)]

]

First of all, observe that the sum of all the elements of the row
is β. In particular, this implies that matrix Ak has an eigenvalue β
with associated eigenvector the vector with all the components equal
to 1. In second place, note that if ∆T

∆V
is taken small enough, all the

elements of Ak are non negative. It must be

∆T

∆V
. [QEk(i) + QSk(i)] < 1 , ∀ i = 2, . . . , N − 1 (13)

∆T

∆V
. [QEk(1)−QSk(1)] < 1 (14)

∆T

∆V
. [QSk(N)−QEk(N)] < 1 (15)

The only problematic terms are Ak(1, 2) and Ak(N, N − 1).
Consider the first one. We are dealing with the reservoir at its lower
level. Then, it must be QSk(1) ≤ QEk(1), since it is a restriction
for an optimal dispatch. In the same way, if we consider the reservoir
full of water, an optimal dispatch will ensure QSk(N) ≥ QEk(N).
Then, a direct calculation gives

‖Ak‖1 = β

and we obtain that every non zero discount rate satisfies the desire
convergence condition. We can also conclude that every eigenvalue
of Ak lies in the unit circle, since [5]

max{|λAk |} ≤ ‖Ak‖1
So far, we have proved that the distance between any two distinct

sequences generated by the algorithm (9) converges asymptotically to
zero. Each of these sequences are monotone, since the cost function
FC increases when we add a new stage. Let KA and KB be bounds
for the elements in A and B respectively. As we have seen, we can
take KA < 1, using the induced norm. Then, for a given initial
condition c0, at the first iteration we have

c1 = A0c0 + b0

and

‖c0‖∞ ≤ ‖A0‖1.‖c0‖∞ + ‖b0‖∞ ≤ KA‖c0‖∞ + KB

For the k-th iteration, we obtain the bound

‖ck‖∞ ≤ ‖c0‖∞ + KB.

(
k−1∑
i=0

Ki
A

)

‖ck‖∞ ≤ ‖c0‖∞ +
KB

1−KA

Then, we always deal with bounded sequences. Then, the algo-
rithm converges to the same result, for every initial condition.

IV. EXAMPLE

The Uruguayan system has four hydro-plants:
”Bonete”,”Baygorria” and ”Palmar” over the ”Rio Negro” river and
the bi-national plant ”Salto Grande” over the ”Rı́o Uruguay” river.
The three plants over the ”Rio Negro” are chained one after the
other with Bonete at the upstream of Baygorria and this one at the
upstream of Palmar. The more relevant parameters of these plants
are shown in Table I.

In order to have a measure of the stability of the algorithm we
have carried out a set of optimizations with different time-steps. In
this optimization, mean values for the inflows and of the power of the
different units where considered, so no stochastic data are in play.
For the simulation we have chosen a volume discretization of five
points for the lakes of Baygorria, Palmar and Salto Grande and a ten
points discretization for Bonete.



TABLE I
DATA OF THE EXAMPLE OF SECTION IV.(*): ELEVATION IS MEASURED ABOVE SEA LEVEL; (**): THIS VALUES CORRESPOND TO THE 50% OF THE

PLANT OWNED BY URUGUAY.

Bonete Baygorria Palmar Salto-UY
Minimum elevation of the lake [m] 70 53 36 30 *
Maximum elevation of the lake [m] 81 56 44 35.5 *
Discharge elevation [m] Baygorria Palmar 7.5 5 *
Storage capacity of the lake [Hm3] 8210 216 2575 3058 **
Mean inflow to the basin [m3/s] 567 0 290 2358
Maximum discharge flow [m3/s] 680 828 1373 4200 **
Installed power [MW ] 155 108 333 945 **

TABLE II
OPTIMIZATION PARAMETERS IN EXAMPLE OF SECTION IV.

Bonete Baygorria Palmar Salto-UY
Maximum inflow [m3/s] 567 680 970 2358
Maximum outflow [m3/s] 680 828 1373 4200
Time filling the lake (TFL) [days] 168 4 31 15
Time emptying the lake (TEL) [days] 139.7 3.0 21.7 8.4
Discretization steps [n] 10 5 5 5
Volume step (V/(n− 1)) [Hm3] 912.2 54.0 643.8 764.5
Time filling a volume step (TFVS) [hours] 446.9 22.1 184.3 90.1
Time emptying a volume step (TFVS) [hours] 372.64 18.12 130.26 50.56
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Fig. 1. Value of the water of Baygorria at state x3 - only one hydroelectrical
plant. (Reversed time axis in hours).

Knowing the maximum inflow and outflow of the lake, we can
compute the Time to Filling the Lake (TFL), the Time to Emptying
the Lake (TEL), the Time to Fill a Volume Step (TFVS) and the
Time to Emptying a Volume Step (TEVS). These values are shown in
Table II for the four lakes of Uruguay. The stability criterion (13)-)15)
imposes an optimization time-step less than the minimum TFVS and
less than the minimum TEVS. In our example the TEVS of Baygorria
imposes a optimization time-step less than 18 hours.

The first example is considering only the lake of Baygorria with
a discretization of 5 points of the state space. For each of the
optimization stages the future cost function for the five state-points
x1, x2, x3, x4 and x5 is computed. Fig. 1 shows the result of the
optimization for the point x3 for stages of different time duration. The
values plotted are derivative of the future cost function with respect
to the volume of the lake, that is, the value of the stocked water. The
trajectory corresponding to the time-step of 18 hours diverge and is
plot against the secondary axis in the picture. This simple example
shows the relationship between the discretization and the time steps.

Fig. 1 shows the value of the water of Baygorria for the five
discretization points chosen for the representation of the state space

value of water of Baygorria at state x3 (with the others lakes in the system)
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Fig. 2. Value of the water of Baygorria at state x3 - with the other lakes in
the system. (Reversed time axis in hours).

at the last computed stage of the optimization process. Look that this
stage is the first in time because the optimization is carried from
the future to the present. This picture was build considering only the
Baygorria lake. The values of the water of Baygorria for steps-times
les than 6 hours are approximately the same. For a time step of 12
hours, the curve differs from the curve of 4 hours. The calculus is
still stable but an error is present. As we increases the time step, the
error increases. For a time step of 18 hours, the calculus is unstable
and the algorithm diverges. When more than one lake is considered,
the stability criterion differs from the case of only one lake in the
system. Fig. 2 shows the same than fig. 1 but when the four lakes are
considered for the optimization. In this case, the optimizations with
time steps less than or equal to 6 hours are stable and the trajectories
of the water value are visually the same. A time step of 9 hours is
to large and the error are accumulated.

V. CONCLUSIONS

A criterion for the stability of a stochastic dynamic optimizer for
optimal dispatch policies. This criterion imposes a maximum time



step for the computation of the dispatch policy. A good selection of
the time step is five times lesser than the theoretical maximum. This
ensures a good error control, since we use a linear approximation
for the future cost function. The stability condition was derived for
a power system with only one reservoir and does not directly apply
when more reservoirs are present. The example with four reservoir
illustrates this fact. In the actual implementation in our simulator,
the stability condition was improved using prediction-correction
techniques, keeping the restrictions derived here for error control.
The simulator is is freely available at http://iie.fing.edu.uy/simsee/.
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