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Abstract—In this paper we study the problem of traffic  Typically, the routing matrix is assumed to be known,
matrix estimation. The problem is ill-posed and thus and we have several successive measurements of the link
some additional information has to be brought in to counts available, denoted by, -- ,yr}. The basic

;)hbtam andestlmatet. tO’t’_et_COThmO” happfroacth 'Sl 10 US€ rg|ationship between the link counts and OD counis
e second moment statistics through a functional mean- . "0

variance relationship. We derive analytically the Fisher
information matrix under this framework and obtain the Y, = Ay, 1)

Cramér-Rao lower bound (CRLB) for the variance of an . .
estimator of the traffic matrix. Applications for the use Should we know the OD counts, it would be straight-

of the CRLB are then demonstrated. From the bounds forward to Ca|CU|ate the I|nk counts. However the Op'
we can directly obtain confidence intervals for maximum posite is not true, because in any realistic size network
likelihood estimates. Another use for the CRLB is the there are more links than OD pairs ¢ m), making the
possibility to evaluate the efficiency of an estimator against problem of solving the traffic matrix from link counts
the lower bqund. A third possiple application is to utilize gng routing matrix heavily under-constrained, and thus
the bounds in an approach to find the best placement for j yoseq To gvercome this ill-posedness, some type of
direct measurements of OD flows, so that itis optimal With » yqitisna| information has to be brought in. Typically
regard to the traffic matrix estimation problem. . . . .

either a prior obtained by the gravity method or the

second moment statistics of the link counts. Reviews of

|. INTRODUCTION proposed methods can be found e.g. in [1], [2].

The traffic matrix gives the volume of traffic between. More complex estimation techniques naturally often

each origin/destination (OD) pair in the network. Whil leld more accurate results. In general, we can say that

: o L here is a trade-off between the computational complex-
the knowledge of the traffic matrix is essential in net: .
19/ and the accuracy of the estimate. However, no matter

work management and traffic engineering, it usually how elaborate the technique, there is a bound for the

not possible to measure it directly from the network. curacy of the estimate. This is due to the stochastic
This would require Netflow or equivalent measuremeft y . ' . o .
devi . . i nature of the traffic process, which makes it impossible
evices running network-wide. This approach, howev § obtain estimate accuracy below certain level
has huge overhead because of the massive measurements; _ y . ' .
e traffic volume can be considered a random vari-

and is thus impractical in current IP networks. ble. The Fisher inf i trix a th ¢
The goal of traffic matrix estimation is to obtain aﬁr"f _e.f € i 'S tehr ;ntﬁrmablon m(? ;lefqlvesl € amoun
estimate for the traffic matrix using information WhiChOf tlt? ormg |o|n_ at the Ot serve Iratrllc vo umf[esdctar;fy
is readily available in the network: the link counts and' "€ underlying parameter, namely the expected tratlic
; - volume. For any unbiased estimate, the Cramér-Rao
the routing matrix. I bound (CRLB). which is the i f the Fish
I the netwiork there are OD pairs andn finks. R PRI B e S e
We denote the OD pair traffic volumes at timéy the » gIves S

. . ances it is possible to obtain for an estimator.
n-vector x;, in which each element corresponds to an . ,
In this paper we show how to calculate the Cramér-

element of the traffic matrix, but the vector notation i b ds for the traffi i timati bl
used for computational reasons. Similarly, the link Ioa%_‘ao ounds for the traflic matrx estimation problem.

are denoted byn-vectory,. The m x n routing matrix th ergRaLrE n|1any btehn?‘lts dOft Obt.f"”'t’?g an expressu;)r: f_or
is denotedA = (a;;) € Mynxn SUch that e . In synthetic data situations we can obtain

sample variances of an estimator by Monte Carlo sim-
S 1 if the OD pairj is using links ulations, and compare to the bound in order to evaluate
"1 0 otherwise how close to optimality the considered method is. In real



data situation the CRLB can be used to get an ideatof (1) the link counts have expected valuk\ and
the uncertainty related to each OD pair estimate, sincevariance matrixdX A’. Thus, using (3), we can write
we can obtain a result for how large the variance is at
least. As the Maximum likelihood estimate (MLE) is y, ~ N(AX, PAT' AY). 4
asymptotically efficient, its variance coincides with the
Cramér-Rao lower bounds. Thus, we can obtain confihe parameterd of the model are the: elements of
dence intervals for the MLE directly from the bounds.A and the parameters relating the mean to the variance,
The rest of the paper is organized as follows. In sectidhat is® andc, of which c is treated as a preset constant

II-A we introduce the model and define the concepts a6 in [3].
infor_mation matri>_< and Cramér—Rao lower _bounds._ In U= (A, Aoy A, @), (5)
section Il we derive an expression for the information
matrix, whic_h thus e_nables analytical expre_ssion for_ the-l-he likelihood function for®, formed from the ob-
QRLB. Section 1l gives examples of possible applmas?erved datay is
tions for the result.

L(¥) =p(y; ¥). (6)

[I. CRAMER-RAO LOWER BOUND
In this section we develop an analytical expressioh1® 10g-likelihood function is denoted by

for the Fisher information matrix, and thus for the
Cramér-Rao lower bound for variance. First we introduce [(®) = log L(¥). (7)
the model and the assumptions used, and define some

expressions we need later. Then we consider the CRIBE gradient vector of the log-likelihood is given by the

for a general multivariate Gaussian case, and then §fgfre statistic a1®)

specific problem of traffic matrix estimation with OD S(y; W) = ' (8)
pairs following Gaussian distribution. o
We assume that the pdp(y;¥), where ¥ =
A. Preliminaries (U, Wy, ,W,)t, satisfies the regularity conditions
In our model we assume that the OD pair traffic Dy T
follows Gaussian distribution, that OD pairs are inde- E <(y,)> =0 V&, (9)
pendent of each other, and also that successive measure- ov

ments for each OD pair are independently and identicau\yh
distributed. The expected value of OD pair cousmisis
denoted by the vectoA and the covariance matrix by
3.

ere the expectation is taken with respecptg; ¥).
These regularity condition are satisfied if it is possible
to exchange the differentiation with the expectation.
Using this, we can state the following
Proposition 1: Under the regularity conditions of (9),
Furthermore, it is assumed that there is a functional relie expected (Fisher) information matiX¥) is given
tion between the mean and the variance with parametbys

® andc. .
> = ddiag(A°), (3) I(¥) = Eg(S(Y;¥)S(Y;¥))
. Theorem 1:Under the regularity conditions of (9), the
In the sequel we use the notation covariance matrix of any unbiased estimalof satisfies
¥ = diag(X\°).
s Cg-—T71(®) >0, (10)

This is a typical assumption in traffic matrix estimation,

which enables the use of maximum likelihood approacWhere > 0" is interpreted as meaning that the matrix is

Through the mean-variance relation, the link covariancpesitive semidefinite, anfi(¥) is the Fisher information

are used to bring in the extra information needed to yiefdatrix evaluated at the true value @.

an estimate for the traffic matrix. The above theorem gives the Cramér-Rao lower
The link counts are denoted by random vedoithat bound. It states that'y,-, the variance/covariance matrix

has probability density function (pdf)y; ¥), where® of any unbiased estimator cannot be lower than the

is the vector containing the unknown parameters. Dirverse of the Fisher information matrix.



B. Information matrix for the general Gaussian case  Since consecutive measurement samples of the link
We will set the traffic matrix framework aside forcounts are considered independent from each other, the

a moment and calculate the CRLB for the generBAf can be written in product form

Gaussian case. To avoid confusion, we use different T

symbols for mean and variance in this case, than those p(y) = Hp(yt). (18)
introduced for the traffic matrix estimation problem in t=1

the previous section. The incomplete data is a mulii-follows directly that the log-likelihood can be written
variate Gaussian with megm = (%) and covariance gs a sum

matrix C = C(¥). The probability density function is T
(y) =Y Uyy), (19)
1 t=1
p(y; ¥) = (27)m/2delC (W)1/2 ’ and_ as the information r_natrix is the same for (_aach time
1 , period, because of the iid property, we can write
: ——(y — p(E)C(®) (y — pu(P)) . (11
exp {0~ () CO) iy - u(w)} . (1) %) - ) o0
And it follows that the log-likelihood is where
1
. _ m/2
(y; ®) = —log(2m)™? - 5 log det(C(¥)) T,(®) = Eg(S(Yi; )S'(V;; ¥)), (21)
_%(y — p(@)IC (W) (y — p(®)). (12) andS(}Q_; W) is th_e score statistic of the incomplete data,
_ _ _ _ defined in equation (8).
An element of the information matrix can be written as ap element of the information matrix for the general
Ol(y: W) Ol(y: ¥ case was given in (14). Thus, to obtain this for the
I(¥);; = F [ qul_ ) (5)1{11 )] (13) specific case in question here, we have to calculate the
5 ion 2: Th I o I I or the | expressions
roposition 2: The analytical expression for the in-
formation matrix is () and oC(¥) (22)
t 8\1!1 8\111
(W), op(¥) C YW ou(¥) . . . . .
(¥)i; o, (¥) o, for the traffic matrix estimation problem. Inserting the
’ expressions from (15) and (16) into (22), we obtain for
4%757“ C_l(W)agé?)C‘l(W)ag’é‘y)g (14) i=1,---,n the derivative of the mean as
The derivation of this exprelssion is given in the appen- ou(¥®)  0AX n (23)
dix. ov;  oN T

. . _ . . whereA' is theith column of A, and for the covariance
C. Information matrix for Gaussian ongm—destmaﬂoqnatrix

pairs
C (¥ o
We will now return to the traffic matrix estimation (%) =o =®A AP = derilAT AT,
problem, and use the result obtained above for the (24)

general Gaussian case. We have previously defined thgor the case = n+1, the differentiation is done with

vector of link countsy, as multivariate gaussian distri-regard to the parametdr, . = ®. This yields
bution with mean

dAT'AL O

ou(¥)  0AX
p(¥) = AX, (15) av;, oo 0 (25)
and covariance matrix and
C(¥) = PAT'A", (16) 3?&}‘_1’) _ 8(@3?%)_ ASAL (26)

where notation defined in section II-A is used. Thus the
probability density function is

1 o I | D
p(y,) = GG AT AN I(P) = ( L1, >> (27)

- exp {—;(yt — A)\)t(q)AE’At)_l(yt - A)\)} (17)

The information matrix has the following form

where I; is an x n matrix, I is a column vector of
lengthn, I5 is a row vector of the same length, and



is a scalar. To simplify the notation we introduce theariances of the parameters are the diagonal elements.
matrix In the next section we will demonstrate the benefits of
W = A (AT A") A, (28) obtaining the expression for the CRLB.

which has the elements

. . IIl. APPLICATIONS
wi; = AT (ASAY 1AL (29)

Starting from the expression obtained in (14) and usihAQj Evaluation of estimation techniques

the derivatives ofu(¥) and C(¥) derived above, we Based on synthetic data evaluation studies ([1], [4]) of
can now calculate the expressions for the elementstaiffic matrix estimation methods, it would seem that the

the information matrix. Foé,j =1, -+ ,n, most effective methods are the ones using the maximum
likelihood approach, most notably the method by Cao et
(L), - ou(P)* ( ),lau(ql) al. [3]. The problem with this approach is that even with
Lnd O\ OA; numerical methods such as the EM algorithm [5] the
1 ~10C(¥) ~10C(¥) method does not scale well to realistic size networks.
+=tr | C(P) C(P) X ]
2 N o _18/\,7' Thus, computationally lighter approaches, such as [6],
_ lAit(AE/At)—lAj 46 NN [?], that trade accuracy for compqtati_onal lightness have
o e 2t U been proposed. However, as the likelihood method scales
tr ((AEA) A'AT (AX A7) AJA]) poorly, it is difficult to make comparisons about the
_ L it At g AEXTINT! tradeoff between estimation accuracy and computation
) ( ) + 2 ' time in realistic size situations. Indeed, in both [6] and
: (Ajt(AE’At)‘1AiA”(A2’At)‘1Aj) [?], the comparisons between the proposed methods and
2 )e-1ye-1 the full likelihood method is performed only in a small
= wy+— 5wy, (30) topology.
Fori—=1.---.n The asymptotic efficiency of the MLE is a well known
T results, see e.g. [5]. That is to say, The asymptotic
(I2)i,(n+1) covariance matrix of the MLE is equal to the inverse
. (C(\I,)ABC(‘I’)C(\I,)%‘?C(‘I’)) of the expected information matrix.
2 ) N
c—1 A _
- CA; tr (é(Az’At)—lAz’At%(Az:’AU‘%A"A“) V(W — W) — N0, I,(¥) ).
- c;%;” ((AzfAc)flAiAit) From simulations with synthetic traffic matrices we
et ' can obtain sample variances for the considered methods.
= 2’11) (A”(AE’At)‘lA') Then calculating the CRLB, it is possible to compare
exe1 them to the bound, and thus to the variance of MLE.
= Ty W (31)  This way we can evaluate how much less accurate the
Analogously, forj =1,--- |n methods_ are than the full MLE, without having to run
DY the full likelihood method.
(Is)(n+1)5 = —5 Wi (32)
And finally,
(14) (n+1),(n+1)
_ 1 ~10C(¥) ~10C(¥)
= tr (C(\I!) 56 C®) o
_ 1 l 1At —1 ’ tl ’Aty—1 I At
= 2tr(q)(Az:A) AT'A' S (AT'A") AEA)
- L _m Xac
= gzt Udman) = 5o (33)

We have now obtained an analytical expression for t@
Fisher information matrix of the traffic matrix estimation _ _ _
problem. The Cramér-Rao lower bound for the varian&®- 1. Left: Example topology. Right: Link3D is replaced by

. . . 1 virtual links BD1 and BD-
of an estimator is then just—*, where the CRLB for



B. Optimal location for direct measurements traversing link BD,. Thus the direct measurements can

Consider that on one link of the network we coulge incorporateql into the estimgte through the usual
deploy a measurement device able to obtain direct m&d€rence techniques from equation
surements of the OD counts. For instance NetFlow [7] is y = Az,
capable of collecting these types of flow level measure-
ments. We consider here link-wise measurements, Mfierey’ andA’ are the link loads and the routing matrix
the basic technique is the same even if measuremepftghe virtual topology. The routing matrix changes so
are available router-wise for each link adjacent to tHBat the last row ofA, that corresponds to link3D,
router where the measurement device is used. is divided into two rows corresponding to virtual links
By direct OD flow measurements we can obtain th8D1 and BD.

actual traffic volumes of each OD pair traversing the 110 0
measured link, instead of just the total link load available , 101 0
by SNMP measurements, leading to more accurate esti- A= 0100
mates of the traffic matrix. By directly observing some 000 1

of the OD pairs, not only do we get accurate information _ _ L _
about these OD pairs, but also the estimates for other opsing the equations derived earlier in this paper we

pairs are more accurate, since the situation is now &€& calculate the Crameér-Rao lower bounds for variances
underconstrained, due to the extra measurements. ©f the OD pairs for this virtual topology. If we have

To incorporate the direct measurements of some ximum likelihood estimates for the OD pairs, we can

flows to the traffic matrix estimation framework Wecalculate the variance of the estimates by plugging in

propose a model that creates a new linear system. ng MLE mto the CRLB equatl_ons. _AS some of the OD
can be interpreted as a virtual topology, where the lipairs are directly observeql, their variances are very small.
where the direct measurements are made is replacedltb? not zero, however, since we are observing the OD
several virtual links, such that each OD pair using ﬂ%artraﬁlc loads, .astochas.tlc variable, whose expected
link would have its own virtual link. This enables us"a'cur‘?A we a“li ”yl'”g o es“}[“arfe- e

to incorporate the direct OD pair measurements without“"an9INg the location of the measurement device,
changing the basic situation. For example, the netwoyleates different virtual topologies that lead to different

in Figure 1 has three links (AB, BC, BD) and four ODODIpairs beri]pg 'dire”ctly olbs_er\lled.l lati . h
PaIrs (z.4c, 2.4, x50, T5p). The routing matrix is Also, as this is all analytical calculations, it is rather

) quick to calculate all two link combinations, to find out
1100 how to best place two measurement devices.
A= 1 0 1 0 |. Comparing the OD pair variances of the virtual topol-
01 01 ogy to the OD pair variances of the original topology, the
. accuracy gained from measurements on a given link can
USINg e evaluated. Any number of criterions may be used, but

it. In the virtual topology the link is replaced by virtuaI]cor the sake of example we use the ratio of the average
links BD; and BDy. Now x 4p is the only OD flow of the OD pair variances

traversing link BD, and zgp is the only OD flow

The link BD has two OD flowszap andxzgp,

Z(A)!
tr(Z(A) )/ a4)
tr(Z(A))/n
= @ (o) W) in the sequel, as this gives an good indication about how

/@ & much a measurement is able to reduce the variances.
& =

Repeating the above procedure for each link, we can
compare the results each measurement would yield for
the average variance, and thus be able to find the optimal
location for measurement, that is, the link yielding the
lowest average variance.

For example, consider the fictional US backbone
topology in Figure 2, where the links have been enumer-
ated such that we refer to the direction with the number
next to it by that number, and indicate the opposite
Fig. 2. Fictional US Backbone topology direction by lower case r. So for instance the link from




TABLE |
BEST PLACEMENTS FOR A SINGLE LINK MEASUREMENT

link 18r 18 15r or 14 10 e 2
Avg. Var || 0.58 | 0.72] 0.72| 0.73| 0.73| 0.74 | ... | 0.99
TABLE I

BEST PLACEMENTS FOR TWO LINK MEASUREMENTS

link1 18r | 18r | 18r | 18r | 18r | 18r | 18r | 18r | 18r 18 18 18r
link2 18 9r 15 10 14r 19 4r 12 5r 15r 14 3r
Avg. Var || 0.36 | 0.39 | 0.40 | 0.40 | 0.40| 0.43| 0.44| 046 | 0.47 | 0.47 | 0.48 | 0.48

LA to SF is 1 and the link in the reverse direction fronCramér-Rao lower bound for the variance of an estimator
SF to LA is then 1r. in the situation where we assume a functional mean-
We consider a traffic distribution generated by theariance relationship for origin-destination flows in the
gravity model based on the population of the cities imetwork. We demonstrated why this result is extremely
question. There are a few larger OD pairs, especialigeful in various ways. We can obtain variances, and
the ones between LA and NY, as well as from thodbus confidence intervals for the maximum likelihood
two to the middle sized cities. The best location for thestimate directly from the Cramér-Rao lower bounds.
measurements is not solely dependent on the locatibnis means that we can identify the OD pairs whose
of the link, but needs to capture as many of the biggestimates have large uncertainties. If the estimated traffic
flows as possible. It turns out that the best placement matrix is used, for instance, in load balancing, it should
far is link 18r. The next best locations include the othgarove beneficial to know for which OD pairs the estimate
links from the sameVY — LA route. Table | shows the might not be accurate. The CRLB can be used also in
optimal links and the ratio of average variances dividezValuation of estimation techniques, as we can compare
by the average variances of the original case. the variance of the evaluated estimator to the lower
Also the best two link combinations are dominatedound to see how effective it is. A third use for the
by the aforementioned link 18r. Best combination is thounds is demonstrated in section IlI-B, where we show

have both links betweeiVY and DC' to capture the big how to utilize the result in finding the optimal place for
flows betweenVY and LA in both directions. The bestdirect measurements to reduce the average error of a

placements are shown in Table Il traffic matrix estimate as much as possible.
Selecting the combination of two links from the single
link calculations would in these example cases yield the APPENDIX

optimal placements, but not always as the second best = . ) ) )
link might be capturing some of the same large OD paifAs D_erlvatlon of the general gaussian case information
as the first link, making it good location for a singld"a!rx _ _ . _
measurement point but not very reasonable for a second\n element of the information matrix can be written
point_ if the Igrge OD pairis alrgady measured by the fir§p Sow — g |y ®) Oy @) .
location. This is the case, for instance, between best and (®)ij = o, oV (39)
third best links in the gravity case, which combinatiowe will use the following identiti

would not be very effective choice for two measuremen oflowing ldentities

locations. Doing the selection sequentially, on the other Ologde(C(¥)) _ (C(,I,)fl 80(‘11)) (36)
hand, would remove this problem and yield in most oV; oV;
cases optimal solution reducing the running time of thg,g

. 2 . -1
c_alculatlons fromm= to 2m, wherem is the number of oCc(¥)” _ _C(‘I,)_lac(‘ll)c(ql)_l. 37)
links. v, ov;

Now we need to calculate the first order derivatives of

IV. CONCLUSION the log-likelihood.

Olly; ®) _19logde(C(¥))

In this paper we derived an analytical expression 5 o

for the Fisher information matrix in the traffic matrix O Lo . )
estimation framework. The result was used to yield the ~5 gy, (B~ (@) CE)" (y —p(P)] (38



The first term is Let us definez = (y — p(¥)) for a shorter notation.

Ol(y; ¥) Ol(y; ¥)

_10logdetC(¥)) _ 1 (g1 0C() ov; oY,
2 O 2 ( oF: ) :itr <C(@)‘18§$'))tr (C(‘P)_lagé,‘f)) (44a)
1 _,0C(®)\ op(®)
We now consider the second term: - St (C(‘I’) aéi)> lg(q,j) C(¥) "z (44b)
5 ) + %tr (C(‘I:)*lagf))ziacgq‘ljj z (44c)
—p(®)'C(P)  (y — u(P ¢
o, v~ ))6( ) (i o - o) v (0@ 25 @
= Wt o)y pw)) o .y ’
‘e + %\1/,- C(\I’)_lzlgTC(\I!)_lz (44e)
+(y — p(®)) ~—(y — u(®)) L 1
8\111 _ laﬂ(‘l’) C(‘I,)—lzztac(lll) (44f)
Sy — (ql))tc(ql)*la(y_“(‘ll)) 2 0V, ov;
’ Nt v + lztac(q})ilztr(C(\Il)’laC(‘Il)) (449)
= 2 o)y - p(w)) R
' -1 _ 2t M) crw)! 44h
(W) T — u(®) 2 w *ou, O 2 (44m
’ 1 ,0C(®)"' ,oC(®)! .
—(y—u(‘l'))tC(‘I')‘lagff) (39) toIF T ew, T aw, ¢ (44i)
Since
E(z) = E(y —pn(¥)) =0 (45)

Using

and all odd order moments are also zero, terms
(44b),(44d),(44f) and (44h) are zero in the above equa-
tion. For calculating the expectation

(y — p(@))C(w) 1 2HE) _ (8"(“” Cw) Ly - u(‘I’)))

o ovs (40) Ol(y; ) dl(y; ¥)
Y; Y;
E( 0w, oy, ) (46)

it follows that

we need to consider the expectations of terms (44a),

a?y [(y — 1(2)'C(T) " (y — pu(®))] (44c), (44e), (449) and (44i).
' Op(D)" Before we compute the expected value of (44c) let us
- 2 %\pi C(®) ' (y — u(®) first compute
19C(®)"! tw
Hy = p(9) =5y - p(¥) (@) B¢, %)
Since

Then, E(ulv) = tr(E(vu'))

ol ) . () we have that
Y; _ -1
op(w) . o, ov,
+= g, C(®) (v —n(¥) B ICW) " (g
oCw) = tr( o0, ( ))

~ 5t = n@) Ty u(w) @) —

= —tr (C(\I:)*T%> ., (47)

Having obtained an expression for the derivatives @fhere the least equality follows from using equation
the log-likelihood, we are now ready to calculate th@7). So the expected value of (44c) is

information matrix, i.e: @) )t
1 _10C(¥ L 0C (W)~
Ztr (C(\II) v, ) E (z v, z)

_ - [0l(y; ®) Ol(y; ®) 1 _10C(¥) _,0C (W)
(W) = B | =0 ov, (43) = —Ztr(C(\Il) 5, )tr(C(qf) o, )(48)




Analogously for (449), REFERENCES
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Before we compute the expected value of (44i) let uff!
remind that if D; and D, are symmetric then

where D = E(yy'). Using that result it comes that the
expected value of (44i) is

1_,0C(®)" ,0C(W)"!
E(4z v, zz o, z

= L (P o) (0 o)
-

-1

4 oV, oV, o

%tr(acé()i)-l _ C(\Il))

= itr (C(\P)‘l%\gj)) tr (C(xp)—l ag‘é\f))
ot (80553-1 aca(i)-l

where the final equality follows from using (37) on the

first term.
Thus, noting that the expectation of (44a) is just the
term itself and taking the terms (48),(50),(49), and (51),

c(w) cov)) . 6D

we get
E (al(y; V) Ol(y; ‘I’)>
0w, 09,
= Jr (o 250 (o) 25

g (C(\Il)’l P ) (C(\Il)’l ag*é\]p))
(D (g0

fitr (C(\If)’1 acazg)> tr (C(\I:)’1 agé,?))
—&—itr (C(\Il)’l 83\;‘}’)) r (C(\I:)*Lgé‘f))
%tr(aca(i)f C(\p)aca(i)f C(\If)). (52)

And finally, as the first and second, as well as the fourth
and fifth term above cancel each other out, we get
o p(®) L g Ou(P)
Wy = ov; cw) oV,
1

1,0 OC(®) Ly OC(P)
+§tr<C (¥)5y, ¢ @y )(53)




