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Abstract— In this paper we study the problem of traffic
matrix estimation. The problem is ill-posed and thus
some additional information has to be brought in to
obtain an estimate. One common approach is to use
the second moment statistics through a functional mean-
variance relationship. We derive analytically the Fisher
information matrix under this framework and obtain the
Cramér-Rao lower bound (CRLB) for the variance of an
estimator of the traffic matrix. Applications for the use
of the CRLB are then demonstrated. From the bounds
we can directly obtain confidence intervals for maximum
likelihood estimates. Another use for the CRLB is the
possibility to evaluate the efficiency of an estimator against
the lower bound. A third possible application is to utilize
the bounds in an approach to find the best placement for
direct measurements of OD flows, so that it is optimal with
regard to the traffic matrix estimation problem.

I. I NTRODUCTION

The traffic matrix gives the volume of traffic between
each origin/destination (OD) pair in the network. While
the knowledge of the traffic matrix is essential in net-
work management and traffic engineering, it usually is
not possible to measure it directly from the network.
This would require Netflow or equivalent measurement
devices running network-wide. This approach, however,
has huge overhead because of the massive measurements,
and is thus impractical in current IP networks.

The goal of traffic matrix estimation is to obtain an
estimate for the traffic matrix using information which
is readily available in the network: the link counts and
the routing matrix.

In the network there aren OD pairs andm links.
We denote the OD pair traffic volumes at timet by the
n-vector xt, in which each element corresponds to an
element of the traffic matrix, but the vector notation is
used for computational reasons. Similarly, the link loads
are denoted bym-vectoryt. The m× n routing matrix
is denotedA = (aij) ∈Mm×n such that

aij =
{

1 if the OD pairj is using link i
0 otherwise

Typically, the routing matrix is assumed to be known,
and we have several successive measurements of the link
counts available, denoted by{y1, · · · , yT }. The basic
relationship between the link counts and OD countsxt

can be written as

yt = Axt, (1)

Should we know the OD counts, it would be straight-
forward to calculate the link counts. However the op-
posite is not true, because in any realistic size network
there are more links than OD pairs (n > m), making the
problem of solving the traffic matrix from link counts
and routing matrix heavily under-constrained, and thus
ill-posed. To overcome this ill-posedness, some type of
additional information has to be brought in. Typically
either a prior obtained by the gravity method or the
second moment statistics of the link counts. Reviews of
proposed methods can be found e.g. in [1], [2].

More complex estimation techniques naturally often
yield more accurate results. In general, we can say that
there is a trade-off between the computational complex-
ity and the accuracy of the estimate. However, no matter
how elaborate the technique, there is a bound for the
accuracy of the estimate. This is due to the stochastic
nature of the traffic process, which makes it impossible
to obtain estimate accuracy below certain level.

The traffic volume can be considered a random vari-
able. The Fisher information matrix gives the amount
of information that the observed traffic volumes carry
of the underlying parameter, namely the expected traffic
volume. For any unbiased estimate, the Cramér-Rao
lower bound (CRLB), which is the inverse of the Fisher
information matrix, gives the limit of how small vari-
ances it is possible to obtain for an estimator.

In this paper we show how to calculate the Cramér-
Rao bounds for the traffic matrix estimation problem.
There are many benefits of obtaining an expression for
the CRLB. In synthetic data situations we can obtain
sample variances of an estimator by Monte Carlo sim-
ulations, and compare to the bound in order to evaluate
how close to optimality the considered method is. In real
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data situation the CRLB can be used to get an idea of
the uncertainty related to each OD pair estimate, since
we can obtain a result for how large the variance is at
least. As the Maximum likelihood estimate (MLE) is
asymptotically efficient, its variance coincides with the
Cramér-Rao lower bounds. Thus, we can obtain confi-
dence intervals for the MLE directly from the bounds.

The rest of the paper is organized as follows. In section
II-A we introduce the model and define the concepts of
information matrix and Cramér-Rao lower bounds. In
section II we derive an expression for the information
matrix, which thus enables analytical expression for the
CRLB. Section III gives examples of possible applica-
tions for the result.

II. CRAMÉR-RAO LOWER BOUND

In this section we develop an analytical expression
for the Fisher information matrix, and thus for the
Cramér-Rao lower bound for variance. First we introduce
the model and the assumptions used, and define some
expressions we need later. Then we consider the CRLB
for a general multivariate Gaussian case, and then the
specific problem of traffic matrix estimation with OD
pairs following Gaussian distribution.

A. Preliminaries

In our model we assume that the OD pair traffic
follows Gaussian distribution, that OD pairs are inde-
pendent of each other, and also that successive measure-
ments for each OD pair are independently and identically
distributed. The expected value of OD pair countsxt is
denoted by the vectorλ and the covariance matrix by
Σ.

xt ∼ N(λ,Σ). (2)

Furthermore, it is assumed that there is a functional rela-
tion between the mean and the variance with parameters
Φ andc.

Σ = Φdiag(λc), (3)

In the sequel we use the notation

Σ′ = diag(λc).

This is a typical assumption in traffic matrix estimation,
which enables the use of maximum likelihood approach.
Through the mean-variance relation, the link covariances
are used to bring in the extra information needed to yield
an estimate for the traffic matrix.

The link counts are denoted by random vectorY that
has probability density function (pdf)p(y;Ψ), whereΨ
is the vector containing the unknown parameters. Due

to (1) the link counts have expected valueAλ and
covariance matrixAΣAt. Thus, using (3), we can write

yt ∼ N(Aλ,ΦAΣ′At). (4)

The parametersΨ of the model are then elements of
λ and the parameters relating the mean to the variance,
that isΦ andc, of which c is treated as a preset constant
as in [3].

Ψ = (λ1, λ2, . . . , λn,Φ). (5)

The likelihood function forΨ, formed from the ob-
served datay is

L(Ψ) = p(y;Ψ). (6)

The log-likelihood function is denoted by

l(Ψ) = log L(Ψ). (7)

The gradient vector of the log-likelihood is given by the
score statistic

S(y;Ψ) =
∂l(Ψ)
∂Ψ

. (8)

We assume that the pdfp(y;Ψ), where Ψ =
(Ψ1, Ψ2, · · · , Ψd)t, satisfies the regularity conditions

E

(
∂l(y;Ψ)

∂Ψ

)
= 0 ∀Ψ, (9)

where the expectation is taken with respect top(y;Ψ).
These regularity condition are satisfied if it is possible
to exchange the differentiation with the expectation.

Using this, we can state the following
Proposition 1: Under the regularity conditions of (9),

the expected (Fisher) information matrixI(Ψ) is given
by

I(Ψ) = EΨ(S(Y ;Ψ)St(Y ;Ψ))
Theorem 1:Under the regularity conditions of (9), the

covariance matrix of any unbiased estimatorΨ∗ satisfies

CΨ∗ − I−1(Ψ) ≥ 0, (10)

where “≥ 0" is interpreted as meaning that the matrix is
positive semidefinite, andI(Ψ) is the Fisher information
matrix evaluated at the true value ofΨ.

The above theorem gives the Cramér-Rao lower
bound. It states thatCΨ∗ , the variance/covariance matrix
of any unbiased estimator cannot be lower than the
inverse of the Fisher information matrix.
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B. Information matrix for the general Gaussian case

We will set the traffic matrix framework aside for
a moment and calculate the CRLB for the general
Gaussian case. To avoid confusion, we use different
symbols for mean and variance in this case, than those
introduced for the traffic matrix estimation problem in
the previous section. The incomplete data is a multi-
variate Gaussian with meanµ = µ(Ψ) and covariance
matrix C = C(Ψ). The probability density function is

p(y;Ψ) =
1

(2π)m/2detC(Ψ)1/2
·

· exp
{
−1

2
(y − µ(Ψ))tC(Ψ)−1(y − µ(Ψ))

}
. (11)

And it follows that the log-likelihood is

l(y;Ψ) = − log(2π)m/2 − 1
2

log det(C(Ψ))

−1
2
(y − µ(Ψ))tC(Ψ)−1(y − µ(Ψ)). (12)

An element of the information matrix can be written as

I(Ψ)ij = E

[
∂l(y;Ψ)

∂Ψi

∂l(y;Ψ)
∂Ψj

]
(13)

Proposition 2: The analytical expression for the in-
formation matrix is

I(Ψ)ij =
∂µ(Ψ)t

∂Ψi
C−1(Ψ)

∂µ(Ψ)
∂Ψj

+
1
2
tr

(
C−1(Ψ)

∂C(Ψ)
∂Ψi

C−1(Ψ)
∂C(Ψ)

∂Ψj

)
(14)

The derivation of this expression is given in the appen-
dix.

C. Information matrix for Gaussian origin-destination
pairs

We will now return to the traffic matrix estimation
problem, and use the result obtained above for the
general Gaussian case. We have previously defined the
vector of link countsyt as multivariate gaussian distri-
bution with mean

µ(Ψ) = Aλ, (15)

and covariance matrix

C(Ψ) = ΦAΣ′At, (16)

where notation defined in section II-A is used. Thus the
probability density function is

p(yt) =
1

(2π)m/2det(ΦAΣ′At)1/2
·

· exp
{
−1

2
(yt −Aλ)t(ΦAΣ′At)−1(yt −Aλ)

}
.(17)

Since consecutive measurement samples of the link
counts are considered independent from each other, the
pdf can be written in product form

p(y) =
T∏

t=1

p(yt). (18)

It follows directly that the log-likelihood can be written
as a sum

l(y) =
T∑

t=1

l(yt), (19)

and as the information matrix is the same for each time
period, because of the iid property, we can write

I(Ψ) = TIt(Ψ), (20)

where

It(Ψ) = EΨ(S(Yt;Ψ)St(Yt;Ψ)), (21)

andS(Yt;Ψ) is the score statistic of the incomplete data,
defined in equation (8).

An element of the information matrix for the general
case was given in (14). Thus, to obtain this for the
specific case in question here, we have to calculate the
expressions

∂µ(Ψ)
∂Ψi

and
∂C(Ψ)

∂Ψi
(22)

for the traffic matrix estimation problem. Inserting the
expressions from (15) and (16) into (22), we obtain for
i = 1, · · · , n the derivative of the mean as

∂µ(Ψ)
∂Ψi

=
∂Aλ

∂λi
= Ai, (23)

whereAi is theith column ofA, and for the covariance
matrix

∂C(Ψ)
∂Ψi

= Φ
∂AΣ′At

∂λi
= ΦA

∂Σ′

∂λi
At = Φcλc−1

i AiAit.

(24)
For the casei = n+1, the differentiation is done with

regard to the parameterΨn+1 = Φ. This yields

∂µ(Ψ)
∂Ψi

=
∂Aλ

∂Φ
= 0 (25)

and

∂C(Ψ)
∂Ψi

=
∂(ΦAΣ′At)

∂Φ
= AΣ′At. (26)

The information matrix has the following form

It(Ψ) =
(

I1 I2

I3 I4

)
, (27)

where I1 is a n × n matrix, I2 is a column vector of
lengthn, I3 is a row vector of the same length, andI4
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is a scalar. To simplify the notation we introduce the
matrix

W = At(AΣAt)−1A, (28)

which has the elements

wij = Ajt(AΣAt)−1Ai. (29)

Starting from the expression obtained in (14) and using
the derivatives ofµ(Ψ) and C(Ψ) derived above, we
can now calculate the expressions for the elements of
the information matrix. Fori, j = 1, · · · , n,

(I1)i,j =
∂µ(Ψ)t

∂λi
C(Ψ)−1 ∂µ(Ψ)

∂λj

+
1

2
tr

�
C(Ψ)−1 ∂C(Ψ)

∂λi
C(Ψ)−1 ∂C(Ψ)

∂λj

�
=

1

Φ
Ait(AΣ′At)−1Aj +

c2λc−1
i λc−1

j

2
·

·tr
�
(AΣ′At)−1AiAit(AΣ′At)−1AjAjt

�
=

1

Φ
Ait(AΣ′At)−1Aj +

c2λc−1
i λc−1

j

2
·

·
�
Ajt

(AΣ′At)−1AiAit(AΣ′At)−1Aj
�

= wij +
c2λc−1

i λc−1
j

2
φ2w2

ij . (30)

For i = 1, · · · , n

(I2)i,(n+1)

=
1

2
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Φ
C(Ψ)−1 ∂C(Ψ)

∂λi

�
=

cλc−1
i

2
tr

�
1

Φ
(AΣ′At)−1AΣ′At 1

Φ
(AΣ′At)−1ΦAiAit

�
=

cλc−1
i

2Φ
tr
�
(AΣ′At)−1AiAit

�
=

cλc−1
i

2Φ

�
Ait(AΣ′At)−1Ai

�
=

cλc−1
i

2
wii (31)

Analogously, forj = 1, · · · , n

(I3)(n+1),j =
cλc−1

j

2
wjj (32)

And finally,

(I4)(n+1),(n+1)

=
1

2
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Φ
C(Ψ)−1 ∂C(Ψ)

∂Φ

�
=

1

2
tr

�
1

Φ
(AΣ′At)−1AΣ′At 1

Φ
(AΣ′At)−1AΣ′At

�
=

1

2Φ2
tr (Idm×m) =

m

2Φ2
. (33)

We have now obtained an analytical expression for the
Fisher information matrix of the traffic matrix estimation
problem. The Cramér-Rao lower bound for the variance
of an estimator is then justI−1, where the CRLB for

variances of the parameters are the diagonal elements.
In the next section we will demonstrate the benefits of
obtaining the expression for the CRLB.

III. A PPLICATIONS

A. Evaluation of estimation techniques

Based on synthetic data evaluation studies ([1], [4]) of
traffic matrix estimation methods, it would seem that the
most effective methods are the ones using the maximum
likelihood approach, most notably the method by Cao et
al. [3]. The problem with this approach is that even with
numerical methods such as the EM algorithm [5] the
method does not scale well to realistic size networks.
Thus, computationally lighter approaches, such as [6],
[?], that trade accuracy for computational lightness have
been proposed. However, as the likelihood method scales
poorly, it is difficult to make comparisons about the
tradeoff between estimation accuracy and computation
time in realistic size situations. Indeed, in both [6] and
[?], the comparisons between the proposed methods and
the full likelihood method is performed only in a small
topology.

The asymptotic efficiency of the MLE is a well known
results, see e.g. [5]. That is to say, The asymptotic
covariance matrix of the MLE is equal to the inverse
of the expected information matrix.

√
n(Ψ̂n −Ψ) → N(0, It(Ψ)−1).

From simulations with synthetic traffic matrices we
can obtain sample variances for the considered methods.
Then calculating the CRLB, it is possible to compare
them to the bound, and thus to the variance of MLE.
This way we can evaluate how much less accurate the
methods are than the full MLE, without having to run
the full likelihood method.

AC AD

BDx x

x

xx

ADxAC

BC

C

A

D

B

AC AD

BDBCx x

x

x

AC
ADx

x

B

A

DC

Fig. 1. Left: Example topology. Right: LinkBD is replaced by
virtual links BD1 andBD2



5

B. Optimal location for direct measurements

Consider that on one link of the network we could
deploy a measurement device able to obtain direct mea-
surements of the OD counts. For instance NetFlow [7] is
capable of collecting these types of flow level measure-
ments. We consider here link-wise measurements, but
the basic technique is the same even if measurements
are available router-wise for each link adjacent to the
router where the measurement device is used.

By direct OD flow measurements we can obtain the
actual traffic volumes of each OD pair traversing the
measured link, instead of just the total link load available
by SNMP measurements, leading to more accurate esti-
mates of the traffic matrix. By directly observing some
of the OD pairs, not only do we get accurate information
about these OD pairs, but also the estimates for other OD
pairs are more accurate, since the situation is now less
underconstrained, due to the extra measurements.

To incorporate the direct measurements of some OD
flows to the traffic matrix estimation framework we
propose a model that creates a new linear system. This
can be interpreted as a virtual topology, where the link
where the direct measurements are made is replaced by
several virtual links, such that each OD pair using the
link would have its own virtual link. This enables us
to incorporate the direct OD pair measurements without
changing the basic situation. For example, the network
in Figure 1 has three links (AB, BC, BD) and four OD
pairs (xAC , xAD, xBC , xBD). The routing matrix is

A =




1 1 0 0
1 0 1 0
0 1 0 1


 .

The link BD has two OD flows,xAD and xBD, using
it. In the virtual topology the link is replaced by virtual
links BD1 and BD2. Now xAD is the only OD flow
traversing link BD1 and xBD is the only OD flow
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Fig. 2. Fictional US Backbone topology

traversing linkBD2. Thus the direct measurements can
be incorporated into the estimate through the usual
inference techniques from equation

y′ = A′x,

wherey′ andA′ are the link loads and the routing matrix
of the virtual topology. The routing matrix changes so
that the last row ofA, that corresponds to linkBD,
is divided into two rows corresponding to virtual links
BD1 andBD2.

A′ =




1 1 0 0
1 0 1 0
0 1 0 0
0 0 0 1


 .

Using the equations derived earlier in this paper we
can calculate the Cramér-Rao lower bounds for variances
of the OD pairs for this virtual topology. If we have
maximum likelihood estimates for the OD pairs, we can
calculate the variance of the estimates by plugging in
the MLE into the CRLB equations. As some of the OD
pairs are directly observed, their variances are very small.
It is not zero, however, since we are observing the OD
pair traffic loadsx, a stochastic variable, whose expected
valueλ we are trying to estimate.

Changing the location of the measurement device,
creates different virtual topologies that lead to different
OD pairs being directly observed.

Also, as this is all analytical calculations, it is rather
quick to calculate all two link combinations, to find out
how to best place two measurement devices.

Comparing the OD pair variances of the virtual topol-
ogy to the OD pair variances of the original topology, the
accuracy gained from measurements on a given link can
be evaluated. Any number of criterions may be used, but
for the sake of example we use the ratio of the average
of the OD pair variances

tr(I(A′)−1)/n

tr(I(A)−1)/n
(34)

in the sequel, as this gives an good indication about how
much a measurement is able to reduce the variances.

Repeating the above procedure for each link, we can
compare the results each measurement would yield for
the average variance, and thus be able to find the optimal
location for measurement, that is, the link yielding the
lowest average variance.

For example, consider the fictional US backbone
topology in Figure 2, where the links have been enumer-
ated such that we refer to the direction with the number
next to it by that number, and indicate the opposite
direction by lower case r. So for instance the link from
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TABLE I

BEST PLACEMENTS FOR A SINGLE LINK MEASUREMENT

link 18r 18 15r 9r 14 10 . . . 2
Avg. Var 0.58 0.72 0.72 0.73 0.73 0.74 . . . 0.99

TABLE II

BEST PLACEMENTS FOR TWO LINK MEASUREMENTS

link1 18r 18r 18r 18r 18r 18r 18r 18r 18r 18 18 18r
link2 18 9r 15 10 14r 19 4r 12 5r 15r 14 3r
Avg. Var 0.36 0.39 0.40 0.40 0.40 0.43 0.44 0.46 0.47 0.47 0.48 0.48

LA to SF is 1 and the link in the reverse direction from
SF to LA is then 1r.

We consider a traffic distribution generated by the
gravity model based on the population of the cities in
question. There are a few larger OD pairs, especially
the ones between LA and NY, as well as from those
two to the middle sized cities. The best location for the
measurements is not solely dependent on the location
of the link, but needs to capture as many of the bigger
flows as possible. It turns out that the best placement by
far is link 18r. The next best locations include the other
links from the sameNY −LA route. Table I shows the
optimal links and the ratio of average variances divided
by the average variances of the original case.

Also the best two link combinations are dominated
by the aforementioned link 18r. Best combination is to
have both links betweenNY andDC to capture the big
flows betweenNY andLA in both directions. The best
placements are shown in Table II

Selecting the combination of two links from the single
link calculations would in these example cases yield the
optimal placements, but not always as the second best
link might be capturing some of the same large OD pairs
as the first link, making it good location for a single
measurement point but not very reasonable for a second
point if the large OD pair is already measured by the first
location. This is the case, for instance, between best and
third best links in the gravity case, which combination
would not be very effective choice for two measurement
locations. Doing the selection sequentially, on the other
hand, would remove this problem and yield in most
cases optimal solution reducing the running time of the
calculations fromm2 to 2m, wherem is the number of
links.

IV. CONCLUSION

In this paper we derived an analytical expression
for the Fisher information matrix in the traffic matrix
estimation framework. The result was used to yield the

Cramér-Rao lower bound for the variance of an estimator
in the situation where we assume a functional mean-
variance relationship for origin-destination flows in the
network. We demonstrated why this result is extremely
useful in various ways. We can obtain variances, and
thus confidence intervals for the maximum likelihood
estimate directly from the Cramér-Rao lower bounds.
This means that we can identify the OD pairs whose
estimates have large uncertainties. If the estimated traffic
matrix is used, for instance, in load balancing, it should
prove beneficial to know for which OD pairs the estimate
might not be accurate. The CRLB can be used also in
evaluation of estimation techniques, as we can compare
the variance of the evaluated estimator to the lower
bound to see how effective it is. A third use for the
bounds is demonstrated in section III-B, where we show
how to utilize the result in finding the optimal place for
direct measurements to reduce the average error of a
traffic matrix estimate as much as possible.

APPENDIX

A. Derivation of the general gaussian case information
matrix

An element of the information matrix can be written
as

I(Ψ)ij = E

�
∂l(y;Ψ)

∂Ψi

∂l(y;Ψ)

∂Ψj

�
(35)

We will use the following identities

∂ log det(C(Ψ))

∂Ψi
= tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
(36)

and
∂C(Ψ)−1

∂Ψi
= −C(Ψ)−1 ∂C(Ψ)

∂Ψi
C(Ψ)−1. (37)

Now we need to calculate the first order derivatives of
the log-likelihood.

∂l(y;Ψ)

∂Ψi
= −1

2

∂ log det(C(Ψ))

∂Ψi

−1

2

∂

∂Ψi

�
(y − µ(Ψ))tC(Ψ)−1(y − µ(Ψ))

�
(38)
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The first term is

−1

2

∂ log det(C(Ψ))

∂Ψi
= −1

2
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
We now consider the second term:

∂

∂Ψi

�
(y − µ(Ψ))tC(Ψ)−1(y − µ(Ψ))

�
=

∂(y − µ(Ψ))t

∂Ψi
C(Ψ)−1(y − µ(Ψ))

+(y − µ(Ψ))t ∂C(Ψ)−1

∂Ψi
(y − µ(Ψ))

+(y − µ(Ψ))tC(Ψ)−1 ∂(y − µ(Ψ))

∂Ψi

= −∂µ(Ψ)t

∂Ψi
C(Ψ)−1(y − µ(Ψ))

+(y − µ(Ψ))t ∂C(Ψ)−1

∂Ψi
(y − µ(Ψ))

−(y − µ(Ψ))tC(Ψ)−1 ∂µ(Ψ)

∂Ψi
(39)

Using

(y − µ(Ψ))tC(Ψ)−1 ∂µ(Ψ)

∂Ψi
=

�
∂µ(Ψ)t

∂Ψi
C(Ψ)−1(y − µ(Ψ))

�t

(40)
it follows that

∂

∂Ψi

�
(y − µ(Ψ))tC(Ψ)−1(y − µ(Ψ))

�
= −2

∂µ(Ψ)t

∂Ψi
C(Ψ)−1(y − µ(Ψ))

+(y − µ(Ψ))t ∂C(Ψ)−1

∂Ψi
(y − µ(Ψ)) (41)

Then,

∂l(y;Ψ)

∂Ψi
= −1

2
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
+

∂µ(Ψ)t

∂Ψi
C(Ψ)−1(y − µ(Ψ))

−1

2
(y − µ(Ψ))t ∂C(Ψ)−1

∂Ψi
(y − µ(Ψ))(42)

Having obtained an expression for the derivatives of
the log-likelihood, we are now ready to calculate the
information matrix, i.e:

I(Ψ)ij = E

�
∂l(y;Ψ)

∂Ψi

∂l(y;Ψ)

∂Ψj

�
(43)

Let us definez = (y − µ(Ψ)) for a shorter notation.

∂l(y;Ψ)

∂Ψi

∂l(y;Ψ)

∂Ψj

=
1

4
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψj

�
(44a)

− 1

2
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
∂µ(Ψ)t

∂Ψj
C(Ψ)−1z (44b)

+
1

4
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
zt ∂C(Ψ)−1

∂Ψj
z (44c)

− 1

2

∂µ(Ψ)t

∂Ψi
C(Ψ)−1z tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψj

�
(44d)

+
∂µ(Ψ)t

∂Ψi
C(Ψ)−1z

∂µ(Ψ)t

∂Ψj
C(Ψ)−1z (44e)

− 1

2

∂µ(Ψ)t

∂Ψi
C(Ψ)−1zzt ∂C(Ψ)−1

∂Ψj
z (44f)

+
1

4
zt ∂C(Ψ)−1

∂Ψi
z tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψj

�
(44g)

− 1

2
zt ∂C(Ψ)−1

∂Ψi
z

∂µ(Ψ)t

∂Ψj
C(Ψ)−1z (44h)

+
1

4
zt ∂C(Ψ)−1

∂Ψi
zzt ∂C(Ψ)−1

∂Ψj
z (44i)

Since
E(z) = E(y − µ(Ψ)) = 0 (45)

and all odd order moments are also zero, terms
(44b),(44d),(44f) and (44h) are zero in the above equa-
tion. For calculating the expectation

E

�
∂l(y;Ψ)

∂Ψi

∂l(y;Ψ)

∂Ψj

�
(46)

we need to consider the expectations of terms (44a),
(44c), (44e), (44g) and (44i).

Before we compute the expected value of (44c) let us
first compute

E(zt ∂C(Φ)−1

∂Φj
z).

Since

E(utv) = tr(E(vut))

we have that

E

�
zt ∂C(Ψ)−1

∂Ψj
z

�
= tr

�
∂C(Ψ)−1

∂Ψj
E
�
zzt��

= tr

�
∂C(Ψ)−1

∂Ψj
C(Ψ)

�
= −tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψj

�
, (47)

where the least equality follows from using equation
(37). So the expected value of (44c) is

1

4
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
E

�
zt ∂C(Ψ)−1

∂Ψj
z

�
= −1

4
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψj

�
(48)
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Analogously for (44g),

E

�
1

4
zt ∂C(Ψ)−1

∂Ψi
z

�
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψj

�
= −1

4
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψj

�
(49)

Let us now compute the expected value of (44e).

E

�
∂µ(Ψ)t

∂Ψi
C(Ψ)−1z

∂µ(Ψ)t

∂Ψj
C(Ψ)−1z

�
=

∂µ(Ψ)t

∂Ψi
C(Ψ)−1E

�
zzt�C(Ψ)−1 ∂µ(Ψ)

∂Ψj

=
∂µ(Ψ)t

∂Ψi
C(Ψ)−1 ∂µ(Ψ)

∂Ψj
(50)

Before we compute the expected value of (44i) let us
remind that ifD1 andD2 are symmetric then

E(ytD1yytD2y) = tr(D1D)tr(D2D) + 2tr(D1DD2D)

whereD = E(yyt). Using that result it comes that the
expected value of (44i) is

E

�
1

4
zt ∂C(Ψ)−1

∂Ψi
zzt ∂C(Ψ)−1

∂Ψj
z

�
=

1

4
tr

�
∂C(Ψ)−1

∂Ψi
C(Ψ)

�
tr

�
∂C(Ψ)−1

∂Ψj
C(Ψ)

�
+

1

2
tr

�
∂C(Ψ)−1

∂Ψi
C(Ψ)

∂C(Ψ)−1

∂Ψj
C(Ψ)

�
=

1

4
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψj

�
+

1

2
tr

�
∂C(Ψ)−1

∂Ψi
C(Ψ)

∂C(Ψ)−1

∂Ψj
C(Ψ)

�
, (51)

where the final equality follows from using (37) on the
first term.

Thus, noting that the expectation of (44a) is just the
term itself and taking the terms (48),(50),(49), and (51),
we get

E

�
∂l(y;Ψ)

∂Ψi

∂l(y;Ψ)

∂Ψj

�
=

1

4
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψj

�
−1

4
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψj

�
+

∂µ(Ψ)t

∂Ψi
C(Ψ)−1 ∂µ(Ψ)

∂Ψj

−1

4
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψj

�
+

1

4
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψi

�
tr

�
C(Ψ)−1 ∂C(Ψ)

∂Ψj

�
+

1

2
tr

�
∂C(Ψ)−1

∂Ψi
C(Ψ)

∂C(Ψ)−1

∂Ψj
C(Ψ)

�
. (52)

And finally, as the first and second, as well as the fourth
and fifth term above cancel each other out, we get

I(Ψ)ij =
∂µ(Ψ)t

∂Ψi
C−1(Ψ)

∂µ(Ψ)

∂Ψj

+
1

2
tr

�
C−1(Ψ)

∂C(Ψ)

∂Ψi
C−1(Ψ)

∂C(Ψ)

∂Ψj

�
(53)

REFERENCES

[1] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C.
Diot, "Traffic matrix estimation: Existing techniques and new
directions", ACM SIGCOMM, Pittsburg, USA. August 2002.

[2] S. Vaton, J.S. Bedo, A. Gravey, "Advanced methods for the
estimation of the Origin Destination traffic matrix", Revue du
25ème anniversaire du GERAD, 2005.

[3] J. Cao, D. Davis, S. V. Wiel, B. Yu, “Time-varying network
tomography," Journal of the American Statistical Association,
vol. 95, pp. 1063–1075, 2000.

[4] A. Medina, K. Salamatian, N. Taft, I. Matta, Y. Tsang, C. Diot,
"On the Convergence of Statistical Techniques for Inferring
Network Traffic Demands", Tecnhical Report, 2003.

[5] G.J. McLachlan and T. Krishnan, “The EM Algorithm and
Extensions",John Wiley and Sons, Inc, 1997.

[6] J. Cao, S. V. Wiel, B. Yu, Z. Zhu, "A scalable method for es-
timating network traffic matrices," Bell Labs Technical Report,
2001.

[7] Cisco NetFlow, www.cisco.com/warp/public/732/Tech/netflow.


