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Abstract—Anomaly detection in Multivariate Time-Series
(MTS) data plays an important role in multiple domains,
especially in cybersecurity, for the detection of unknown
attacks. DC-VAE is a recent approach we have proposed
for anomaly detection in network measurement multivariate
data, which uses Variational Auto Encoders (VAEs) and
Dilated Convolutional Neural Networks (DCNNs) to model
complex and high-dimensional MTS data. However, detect-
ing anomalies using VAEs can result in performance degra-
dation and even catastrophic forgetting when trained on dy-
namic and evolving network measurements, particularly in
the event of concept drifts. We extend DC-VAE to a continual
learning setup, leveraging the generative Al properties of the
underlying models to deal with continually evolving data.
We introduce GenDeX, an approach to Generative Al-based
anomaly detection which compresses the patterns extracted
from past measurements into a generative model that can
synthesize MTS data out of input Gaussian noise, mimick-
ing the characteristics of the MTS data used for training.
GenDeX relies on a Deep Generative Replay paradigm to
realize continual learning, combining synthesized past MTS
measurements with new observations to update the detection
model. Using a large-scale, multi-dimensional network mon-
itoring dataset collected from an operational mobile Internet
Service Provider (ISP), we showcase the functionality of DC-
VAE in the event of concept drifts, and study in-depth its
generative characteristics, assessing GenDeX synthetically
generated MTS examples. GenDeX enables DC-VAE adapt-
ing to continually evolving data, overcoming the limitations
of catastrophic forgetting.

Index Terms—Anomaly Detection, Generative Al, VAE, Mul-
tivariate Time-Series, GenDeX

1. Introduction

Time-series analysis is an essential approach to cyber-
security, in particular to profile temporal data behaviors
and to detect anomalies in real-time. While time-series
based anomaly detection has a long standing literature
associated to signal processing techniques [1], modern
approaches to time-series anomaly detection based on
deep learning technology have flourished in recent years
[2]. Most approaches in the literature address the problem
by either focusing on univariate time-series modeling and
analysis — running an independent detector for each time-
series, or by considering multi-dimensional input data
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with short-term memory analysis, to avoid the scala-
bility limitations introduced by very deep architectures,
or the complexities and delays introduced by recurrent
topologies. To address these limitations, we have recently
introduced DC-VAE [3], a deep-learning based approach
to unsupervised anomaly detection in multivariate time-
series (MTS), based on Variational Auto-Encoders (VAEs)
[4]. VAEs are a generative version of classical auto-
encoders, with the particularity of having, by conception,
a probabilistic manner to describe an observation in the
latent space. Thus, rather than training an encoder which
outputs a single value describing each latent state attribute,
the encoder is formulated to describe a probability distri-
bution for each latent attribute. For a given input, VAEs
produce as output prediction not only an expected value,
but also the associated standard deviation, corresponding
to the distribution the model understands (i.e., has learned)
generated the corresponding input. This automatically de-
fines a normality region for each independent time-series,
which can then be easily exploited for detecting deviations
beyond this region. To exploit the temporal dependencies
and characteristics of time-series data in a fast and effi-
cient manner, DC-VAE uses Dilated Convolutional Neural
Networks (DCNNs) as the VAE’s encoder and decoder
architecture. Compared to normal convolutions, dilated
convolutions improve time-series modeling by increasing
the receptive field of the neural network, reducing compu-
tational and memory requirements, and most importantly,
enabling training — and detection — on longer-in-the-past
temporal sequences.

One of the main limitations faced by DC-VAE, and
in general by AI/ML-driven approaches for anomaly de-
tection, is their inability to deal with so-called concept
drifts. Concept drifts correspond to events where the sta-
tistical properties of the target variable or the relation-
ships between the input features and the target variable
change over time. As such, the patterns and rules that
an AI/ML model learned from historical data may no
longer hold in the current data, and the model may need
to be updated to adapt to the changes. Concept drifts are
intrinsically related to another phenomenon which impacts
and degrades the performance of AI/ML models, referred
to as catastrophic forgetting. Catastrophic forgetting is
a different but related problem, which occurs when an
AI/ML model trained on a set of tasks or data sam-
ples forgets previously learned information when learning
new tasks or samples. Under catastrophic forgetting, the



performance of the model on the old tasks deteriorates
significantly after learning new tasks, even if the old tasks
and new tasks are related. Concept drift and catastrophic
forgetting are strongly related because they both involve
changes in the data distribution that can cause the AI/ML
model to become outdated or inaccurate. Both problems
require methods to adapt to changing data distributions, by
retraining the underlying models. In its simplest and most
effective form, retraining an AI/ML model with newly
acquired data (post concept drift or for new similar tasks)
typically requires all previously used training data as well.
This traditional method of retraining is hence limited by
the availability of past data, as well as by the amount of
memory and computational resources.

We resort to the continual learning paradigm [5] to
address the continual model adaptation and retraining of
DC-VAE. Continual learning enables a model to learn
from a stream of evolving data, without forgetting previ-
ously learned knowledge. It involves updating the model’s
parameters and architecture as new data arrives, while
also preserving knowledge learned from previous data,
representing a promising approach to deal with concept
drift. We extend DC-VAE to a continual learning setup,
leveraging the generative Al properties of the underlying
VAE model to remember past data. By conception, once
the encoder-decoder VAE model has been trained, the
decoding function is capable to synthesize new “fake”
data mimicking the characteristics of the MTS training
datasets, using as input only Gaussian noise. As such,
the decoder acts as a lossy compression of the data used
for training. We combine DC-VAE and its generative de-
coder into GenDex, an approach to continual learning for
anomaly detection in MTS network measurements. In a
nutshell, when DC-VAE is confronted with concept drifts,
or is applied to a new MTS dataset — e.g., measurements
collected at a different network or representing a different
process — GenDeX uses the previously trained decoder to
synthesize past MTS measurements, and combines them
with the new MTS data to retrain the underlying VAE
model. GenDeX follows a Deep Generative Replay [6]
paradigm for continual learning, where a generative model
produces synthetic data which replays old memories dur-
ing training, augmenting the heterogeneity and expres-
siveness of the retraining. The rationale behind GenDeX
is that DC-VAE continually improves its tracking and
baselining capabilities as it processes new measurements
with different underlying statistical characteristics, im-
proving as such its generalization and anomaly detection
capabilities with time.

In this paper we study in depth the generative capa-
bilities of DC-VAE, describing the underlying architecture
and its adaptation to make it operate as a synthetic MTS
generator. We showcase DC-VAE operation in different
MTS datasets, including measurements collected at an
operational mobile ISP. We investigate the characteristics
of the resulting latent space, taming it for fine-grained,
temporal data generation. Finally, we demonstrate how
the trained decoder generates synthetic time-series out
of Gaussian noise, which track each of the individual
time-series of the MTS process, despite their different
nature. The reminder of the paper is organized as follows:
Section 2 briefly overviews the related work; in Section
3 we describe the DC-VAE model and architecture in

detail, explaining its operation through application in an
operational mobile ISP dataset; Section 4 shows DC-
VAE when confronted with different types of concept
drifts, introducing GenDeX; Section 5 reports the results
obtained in the synthetic generation of MTS data tracking
the temporal evolution of the different mobile ISP time-
series. Finally, Section 6 concludes the paper.

2. Related Work

There are multiple surveys on general-domain
anomaly detection techniques [1], [7], [8] as well as on
network anomaly detection [9], [10]. The diversity of data
characteristics and types of anomalies results in a lack of
universal anomaly detection models. Modern approaches
to time-series anomaly detection based on deep learning
technology have flourished in recent years [2]. Due to their
data-driven nature and achieved performance in multiple
domains, generative models such as VAEs and Generative
Adversarial Networks (GANs) have gained relevance in
the anomaly detection field [11]-[17].

Modeling data sequences through a combination of
variational inference and deep learning architectures has
been vastly researched in other domains in recent years,
mostly by extending VAEs to Recurrent Neural Networks
(RNNs), with architectures such as STORN [18], VRNN
[19], and Bi-LSTM [20] among others. Convolutional
layers with dilation have been also incorporated into some
of these approaches [21], [22], allowing to speed up
the training process based on the possibilities of par-
allelization offered by these architectures. One of these
approaches using Dilated Convolutional Neural Networks
as the encoder-decoder architecture for VAEs is our DC-
VAE model [3].

There are various approaches to continual learning,
including regularization techniques [5], generative re-
play [6], and dynamic architecture [23]. Regularization
techniques involve penalizing the model’s parameters to
reduce the impact of new data on previously learned
knowledge. One of such techniques is Elastic Weight
Consolidation (EWC) [5], which uses a quadratic penalty
term to constrain the neural network’s weights during
training to protect important parameters from forgetting.
Generative replay involves generating synthetic data that is
similar to previously observed data to reinforce old mem-
ories. Deep Generative Replay (DGR) [6] is an example
of this approach, which uses a generative model to pro-
duce synthetic data that is similar to previously observed
data. The synthetic data is used to replay old memories
during training to prevent forgetting. Similar to DGR,
BooVAE [24] generates new data to augment the training
set. However, unlike generative replay, BooVAE generates
new samples by perturbing the existing data rather than
directly generating new samples from scratch, (in theory)
preserving the statistical properties of the original data
distribution. Dynamic architecture involves expanding or
shrinking the model’s architecture to accommodate new
knowledge or discard outdated knowledge. Progressive
Neural Networks (PNN) [23] is a notable approach to
dynamic architectures, which dynamically expands the
neural network architecture to incorporate new knowledge
while retaining previous knowledge. PNN can achieve
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Figure 1. DC-VAE’s variational autoencoder. The encoder/decoder archi-
tecture is based on Dilated CNNs.

high accuracy on sequential learning tasks without for-
getting previously learned knowledge. This paper is a
continuation of our initial work on continual learning for
anomaly detection in multivariate time-series data [25]
(extended abstract/poster presentation).

3. DC-VAE Model and Architecture

MTS data is generally processed through sliding win-
dows, condensing the information of the most recent 7T’
measurements. We define « as a matrix in RM*T where
M is the number of variables in the MTS process. As
depicted in Figures 1 and 2, for a given input x, the trained
VAE model produces two different predictions, pt,, and o
— matrices in RM*T corresponding to the parameteriza-
tion of the probability distribution which better represents
the given input. If the VAE model was trained (mainly)
with data describing the normal behavior of the monitored
system, then the output for a non-anomalous input would
not deviate from the mean p, more than a specific integer
« times the standard deviation o . On the contrary, if the
input presents an anomaly, the output would not belong
to this normality region.

The main goal of the VAE model is to learn a com-
pressed representation of & in an unsupervised manner.
This compressed representation z is referred to as a latent
variable, and it is learned by training the VAE to generate
data that is similar to the input data. Similar to x, z will
also be a sequence of length 7', but with a smaller number
of dimensions J < M, z € R’*T, VAEs learn a proba-
bilistic mapping between the input data and its latent vari-
able, which allows to generate new data by sampling from
the learned latent variable distribution. The probabilistic
encoder computes the approximated posterior distribution
po(z|z) in the form of g4(2z|x) ~ ps(z|z), whereas the
conditional likelihood distribution py(x|z) is realized by
the probabilistic decoder, both distributions parameterized
by ¢ and 6, respectively. In the vanilla VAE, the latent
space is assumed to be a set of multivariate Gaussian
distributions, and therefore, z ~ g (2|x) = N (2, 0:2).

The latent vector z is sampled from the encoder-
generated distribution before feeding it to the decoder.
This random sampling makes it difficult for backpropaga-
tion to happen for the encoder, as errors cannot be propa-
gated. VAE uses a re-parameterization trick to model the
sampling process, which makes it possible for the errors
to propagate through the network. The latent vector z is
explicitly represented as a function of the encoder’s output
{p,,0o.}, in the form z = p, + o€, with e ~ N (0, I).
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(a) Encoder network. (b) Decoder network.

Figure 2. DC-VAE encoder/decoder architecture using causal dilated con-
volutions, implemented through a stack of 1D convolutional layers. The
architecture is slightly modified for GenDeX synthetic MTS generation,
trimming z to keep an easier to analyze latent space.

To exploit the temporal dimension of the input time-
series, DC-VAE encoder/decoder architecture is based on
popular CNNs, using Dilated Convolutions (DCs) [26].
DC is a technique that expands the input by inserting gaps
between its consecutive samples. In simpler terms, it is the
same as a normal convolution, but it involves skipping
samples, so as to cover a larger area of the input.

Figure 2 depicts the encoder/decoder architecture used
in DC-VAE. The network architecture must be such that
the output values depend on all previous input values. The
length T of the sliding window plays a key role here, as it
must ensure that the output at ¢ depends on the input at that
time and at {¢t—1,¢{—2,...,t—T+1}. The simplest way to
achieve this is to use filters of length F' = 2 and DCs with
dilatation factor d = F", which grow exponentially with
the layer depth h € [0, H — 1], where H is the number of
layers of the network. Subsequently, H is the minimum
value that verifies: T < 2 x FZ~1 1In the example, the
window length is 7' = 8, and the target is achieved by
taking H = 3 layers. This direct relationship between T’
and the network architecture has a strong practical impact,
making it easy to construct the encoder/decoder, based on
the desired temporal-depth of the analysis. The original
architecture of DC-VAE is slightly modified for GenDeX
synthetic MTS generation, trimming z € R/*T to keep
a more compact and easier to analyze latent space. As
shown in Figure 2, we only keep the last dimension of
the latent variable z at T, resulting in a vector z € R”.
We analyze the resulting latent space in Section 5.

Training the VAE involves minimizing the standard
ELBO loss function [4], consisting of a reconstruction
loss, which measures the difference between the original
input data and its reconstruction, and a regularization
term, which forces the learned latent variable distribution
to be close to a standard normal distribution. This term
ensures that the learned latent variables are meaningful
and useful for generating new data samples. Model train-
ing is fully unsupervised and on top of normal-operation
data, to capture the baseline for anomaly detection. Once
trained, the detection process runs continually, rolling the
sliding window of length 7" by a unitary-time step.



dataset H # samples | duration [ # anomalous samples ‘
training 310,980 3 months 5,407 (1.7%)
validation 103,680 1 month 385 (0.4%)
testing 317,952 3 months 7754 (2.4%)
total [[ 732612 | 7 months 13,546 (1.8%) |

TABLE 1. TELCO DATASET. SEVEN-MONTHS WORTH OF
MEASUREMENTS MANUALLY LABELED, FOR 12 DIFFERENT METRICS.
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(a) Prediction of TSg. (b) Prediction of TSj2.

Figure 3. Example of time-series analysis through DC-VAE. Normal-
operation is defined by pe and 0.

We evaluate DC-VAE in a proprietary MTS dataset,
corresponding to real measurements collected at an op-
eration mobile ISP. The TELCO dataset corresponds to
twelve different time-series TSy to TSq2, with a temporal
granularity of five minutes per sample, collected and
manually labeled for a period of seven months, between
January 1 and July 31, 2021. Table 1 presents the main
details of the dataset. Note in particular how strongly
imbalanced is the dataset in terms of normal-operation
and anomalous samples, which is the typical case for real
cybersecurity measurements in operational deployments.
By definition, anomalies are rare events. We split the full
dataset in three independent, time-ordered sub-sets, using
measurements from January to March for model training,
April for model validation, and May to July for testing.

For reference and to better understand DC-VAE’s op-
eration, Figures 3, 4, and 5 present DC-VAE predictions,
using a sliding-window of length 7' = 512 samples,
corresponding to roughly two days of past measurements.
For each of the displayed time-series TS;, its real value
x;, along with the outputs of the VAE p,, and o,,, are
reported. DC-VAE properly tracks different and individual
types of behavior in the time-series, including the strong
seasonal daily component, but also the operation during
weekdays and weekends, e.g., visible in Figure 4(d). In
this example, time-series TS3 and TSy are noisier than
time-series TS5 and TSis, which justifies the need for
different sensitivity thresholds &« = {«;} to address the
underlying nature of each monitored metric. Indeed, in
DC-VAE, each «; can be set individually, for each time-
series. Note in addition how different periods of time-
series variability result in more or less tight normal-
operation regions estimated by DC-VAE. The detection
of anomalies with different nature is depicted in Figure 5.

4. GenDeX - Continual Learning for DC-VAE

A Concept Drift (CD) can manifest itself as a shift
in the mean, an increase or decrease in the variance, or
even as complete data modifications. Such changes may be
related to important trends in the data or to measurements
collected in a different setup, requiring proper detection
and retraining. Figure 6 shows an example of DC-VAE
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(c) Prediction of time-series TSg.
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(d) Prediction of time-series TS12.

Figure 4. Example of time-series analysis through DC-VAE, using T' =
512 samples — almost 2 days of temporary receptive field in the past.
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(a) Example of real anomalies in TS2.
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(b) Example of real anomalies in TS4.
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Figure 5. Examples of real anomalies present in the analyzed dataset,
and their identification by DC-VAE.

operation under a concept drift, where a gradual change
in the interval indicated as the CD zone is simulated
in a single time-series (TSj5), leaving the other series
untouched. DC-VAE is not capable to track this individual
drift, given its multivariate nature — the complete MTS
process introduces an hysteresis effect in the reaction of
the model. Note in particular how the model can perfectly
track the non-modified time-series, and how the estimation
for TS5 follows the pre-CD pattern. Once the induced
drift is over, and the MTS process returns to previous
statistical behavior, DC-VAE’s tracking for TS5 becomes
again accurate. Figure 7 shows DC-VAE under a more
drastic concept drift, in this case considering data from
different years (2015 and 2017) from the open SWaT
dataset [27] — commonly used for detection of cyber-
attacks in cyber-physical systems. Figure 7(a) shows the
tracking of DC-VAE in (top) the 2015 normal operation
dataset used for training, (middle) the 2015 attack dataset
used for testing, and (bottom) the 2017 dataset. DC-VAE
performs accurately in the testing dataset, as the under-
lying empirical distributions of both training and testing
datasets significantly overlap, as evidenced in Figure 7(b).
However, the model totally fails to capture the SWaT
dataset in 2017, as the underlying distributions of the
corresponding data are significantly different.
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Figure 6. DC-VAE response to univariate concept-drift: a gradual linear fall of the values during the day.
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Figure 7. Strong subset changes requires retraining.

We therefore explore an approach to cope with the
described concept drifts, in particular exploiting the gener-
ative nature of the DC-VAE model for continual learning.
In a continual learning framework, we assume a continu-
ally evolving stream of data, represented as a sequence
of subsets S;, each characterized by a specific under-
lying distribution. We define a sequence of A\, subsets
S1,...,59\, sequentially arriving, and assume access to
only the data in current subset S;, with ¢ < A,,. We
consider a CD occurring at time ¢, and thus, assume that
the underlying distributions of Si,...,S5;_1 are similar
among them, but significantly different from .S;. An initial
DC-VAE model is trained using S; data, which performs
accurately till time ¢. We refer to this model as DC-
VAE, = {q3,p3} = {E}, Dy}, where E and D represent
the encoding and decoding functions, respectively.

learning data
after concept-drift

data pre
concept-drift

teacher — generative model student — new detection model

Figure 8. The GenDeX generative replay approach. At time ¢, a concept
drift significantly modifying the underlying distribution of Sy triggers a
model retraining event .

GenDeX follows the principles behind Deep Genera-
tive Replay (DGR) [6] to adapt DC-VAE to the new data
S;, without forgetting the parameterization learned from
S1, valid for Sy, ..., S;_1. Figure 8 explains the GenDeX
approach. The decoding function Dg acts as generator,
and it is used to synthesize a new dataset F'_,;_1) out of
Gaussian noise, which mimics former training examples
in Sy and its underlying distribution. We say Dj acts
as the teacher model. Then, the new student model DC-
VAE is trained on joint synthetic data F' and new data S;.
This approach is conceptually simple, model-agnostic and
overcomes catastrophic forgetting, as the updated model
DC-VAE; is now capable to handle pre- and post-concept
drift data distributions. The challenging part in GenDeX is
to tame the latent space of DC-VAE to actually generate an
MTS process which reliably reproduces the data initially
used for training, in a fully controllable manner.

Recall that the latent space z € R7*T can be poten-
tially huge, e.g., in the examples we showed in Section 3,
J =4 and T = 512, so we have to deal with a 2048-
dimensional space, and thus, sampling Gaussian noise
of such dimensionality might not generate the desired
outcome. Therefore, as mentioned before and as reflected
by the architecture of DC-VAE in Figure 2, we trim the
latent space dimensionality and focus exclusively on z
at T, resulting in a vector z € R’. Realizing a latent
space where the sample distribution approaches a zero-one
normal distribution, as the VAE hypothesis states, helps
the generative part of the VAE model, i.e., the decoder, to
generate samples that resemble the real ones, by simply
drawing inputs from such a Gaussian distribution. Next,
we demonstrate how to realize the generating function in
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Figure 9. GenDeX latent space representation. Latent space z with J = 4. The colors correspond to the hours of the day. Grid of samples generated
from uniform sampling on dimensions z[2] and z[3] of the z latent space. If the figure is traversed clockwise, it is possible to see how the generated

time-series evolve over time.

the practice, exploring the latent space and reporting the
results obtained in the synthetic generation of MTS data
from the TELCO time-series dataset.

5. Exploring GenDeX Generative Al

We now focus on the generative properties of DC-VAE,
firstly by analyzing the latent space generated by the en-
coding function Ey, and then by exploring the generative
capabilities of the generative model as represented by the
trained decoding function Dy. The dimension of the latent
space in a VAE model is one of the hyper-parameters
to define during model evaluation. These dimensions are
restricted by the dimensions of the input samples x space,
as for the model to only capture the relevant information
or energy of the samples, there must be a dimension re-
duction. By conception and hypothesis, the distribution of
the samples z living in the latent space must be a normal
distribution with zero mean and an identity covariance
matrix. This is enforced during training with the second
term of the ELBO loss function.

To evaluate the behavior of the encoder Fy, a rep-
resentation of the latent space is shown for a trained
DC-VAE model, using TELCO data. We take J = 4,
resulting in z = {z[0], z[1], 2[2], 2[3] }. Figure 9(a) depicts
the resulting latent representation, projecting on each bi-
dimensional combination of dimensions z[i]. Each point
in the figure corresponds to the projection of a sample
from the validation set. The first observation to highlight
is that the distribution of samples in z does look very
close to a zero-one normal distribution. It is certainly
centered at zero, and the highest concentration of points is
in the range [—3, 3]. As we explained before, while this is
enforced by the ELBO target loss function the VAE was
trained for, it is not always properly realized, due to usual
problems of so-called degeneration learning in generative
models. VAEs in particular suffer from the problem of
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Figure 10. DC-VAE latent space representation, in an hourly basis.
Sampling the latent space at different angles results in different times of
the day in the generated time-series.

degeneration when using deep architectures [28], which
seriously weakens the correlation between the input and
the corresponding latent variables, failing in both latent
representation and generation. The usage of dilated con-
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Figure 11. Synthetic MTS data generated through GenDeX. For each time-series in TELCO, two examples of time-series generated from noise are
depicted. The trend of the twelve time-series is perfectly captured by the synthetically generated examples.

volutions helps DC-VAE stabilizing the latent space, as
skipping connections in a VAE deep architecture is known
to enable the preservation of information between inputs
and latent variables [28].

The Gaussian property of the latent space distribution
is essential for the MTS generation process, as there are
no input samples = in GenDeX to use as reference, thus
samples need to be generated from input noise. Besides
the shape of the realized distribution, and to reflect the
temporal dimension of the MTS data, Figure 9(a) depicts
the coded samples in colors, each color representing a
different hour of the day. More specifically, each sample
color corresponds to the discretized hourly values of the
newest sample-value within the input sequence, at time t.
If we consider the bi-dimensional latent space {z[2], z[3]},
we observe how each hour of the day maps to a different
angular area in the data distribution. To appreciate this
effect better, Figure 10 shows the same encoding, but this
time highlighting the {z[2],z[3]} values for each hour.
Interestingly, each hour has a particular range of angles,
and these are sequentially arranged, ordered continuously
by hour of the day. Under this setup, it is enough to
feed the decoder Dy with samples drawn from a zero-one
normal distribution to generate synthetic MTS samples
out of noise. Figure 9(b) shows a series of synthetically
generated time-series, by uniformly sampling on dimen-
sions z[2] and z[3]. If the figure is traversed clockwise,
it is possible to appreciate how the generated time-series
evolve over time.

We now move on to the generation of synthetic MTS
data, for the twelve time-series in TELCO, using Dy.
Figure 11 shows two examples per time-series generated
out of noise, along with real time-series included in the
original validation set, for two days worth of time series
duration. The trend of the twelve time-series is perfectly
captured by the synthetically generated examples, with the
paramount advantage of these being synthetically gener-

ated by Dy. The twelve time-series are properly generated,
despite having different types of behavior and variability.

To evaluate the generative power of GenDeX more
broadly, we generate the same number of samples as those
in the validation set for each time-series, and compare
them with the real time-series values in the validation set.
Figure 12 reports, for each time-series, the distribution
of the generated and real values, in the form of a his-
togram. Each pair of distributions have strong overlapping,
especially for non-spiky values. Time-series TS3, TSg,
and TS;o show a rather variable behavior, with values
strongly deviating from the baseline, which cannot be
tracked by the generated baseline values, as shown in
the corresponding histograms. Recall that we are using
GenDeX to track the form and trends of the time-series,
by generating 1,., which would naturally not capture spiky
behaviors. Indeed, we are interested in adapting the base-
lines for anomaly detection, to enable a proper detection
of deviations from these baselines.

6. Concluding Remarks

DC-VAE is a promising approach for anomaly de-
tection in network measurement multivariate data, but
similarly to other learning-based approaches, it requires
retraining when confronted to concept drifts and new
detection tasks. We have extended DC-VAE to a continual
learning setup, leveraging the generative Al properties of
the underlying models to deal with continually evolving
data. Through GenDeX, DC-VAE can be easily retrained
without requiring access to past MTS data, maintain-
ing modeling performance without forgetting previously
learned knowledge. The rationale behind GenDeX is that
DC-VAE can continually improve its tracking and baselin-
ing capabilities as it processes new measurements with
different underlying statistical characteristics, improving
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Figure 12. Synthetic MTS data generated through GenDeX. Histograms of samples (1) generated from noise for each time-series of the TELCO
dataset. The same number of samples as those in the validation set are generated for each time-series.

as such its generalization and anomaly detection capa-
bilities with time. In this paper we have investigated
the generative Al capabilities of DC-VAE, exploring the
latent space and demonstrating how to tame it to enable a
generative process of MTS synthetic data. Using real ISP
measurements, we have shown how GenDeX synthetically
generated MTS samples perfectly track the behavior and
trends of the real data originally used for model training,
drawing these samples from simple Gaussian noise.

While not reported in this paper, our initial results
on the application of GenDeX for improved anomaly
detection under emulated concept drift scenarios and dif-
ferent datasets show that it is possible to improve DC-VAE
baseline modeling and anomaly detection as more data is
added, despite having different underlying distributions.
We are working on a large-scale benchmarking to demon-
strate the performance gain introduced by GenDeX.

Finally, throughout the paper we have assumed that
GenDeX is applied once a concept drift takes place, but
in the practice, such concept drifts must be automatically
detected to trigger the proposed retraining process. There
is abundant literature in the problem of on-line and off-
line concept drift detection, and thus assume it out of the
scope of this paper; nevertheless, a practical deployment
of GenDeX requires the instantiation of such a concept
drift detection step. GenDeX enables DC-VAE dealing
with concept drifts and adapting to continually evolving
data, overcoming the limitations of catastrophic forgetting,
retraining without the need of past data.
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