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ABSTRACT

Several algorithms that combine daily precipitation surface data and satellite Climate Prediction Center

Morphing Technique (CMORPH) estimations were implemented and tested for the Rio Negro basin in

northeastern Uruguay. Bias removal of satellite data through quantile matching—which requires historical

data on nearby rain gauges—produces an unbiased estimate whose skill, as measured by the probability of

detection (POD), is better than that obtained from surface observations for distances larger than approxi-

mately 50 km, which is twice the network characteristic distance between gauges of 23 km. Adjustment of

satellite estimate using spatial interpolation of CMORPH deviations evaluated at nearby points—which

requires simultaneous neighboring surface observations—eliminates biases to a large degree. Moreover, it

shows higher POD skill than using only surface data for the entire range of distances and daily precipitation

thresholds and for both seasons (cold and warm). The skill improvement attained, though, is small when the

network density is as high as in the present study. However, these results suggest a promising scenario for the

combined use of surface data and satellite retrievals as the latter continues to improve over time, both in

resolution—spatial and temporal—and skill.

1. Introduction

The Rio Negro basin, in northeastern Uruguay, is

a scenario of growing pressure for water by activities of

great economic and strategic importance for the coun-

try, mainly in the agriculture and energy sectors. Water

resource management in the context of a high spatial

and temporal variability of rainfall poses a stringent

requirement to precipitation monitoring. This situation

contrasts with the endemic difficulty of maintaining

a rain gauge network of sufficient quality and density.

Remote sensing from satellite platforms offers an al-

ternative, or rather complementary, opportunity. In re-

cent years, several satellite-based precipitation estimates

have become available in near–real time. In particular,

the Climate Prediction Center Morphing Technique

(CMORPH; Joyce et al. 2004), which is a combination

of geostationary images from infrared and microwave

sensors, provides precipitation estimates with different

spatial and temporal resolutions sinceDecember 2002. All

satellite estimates are indirect measures of precipitation

and thus require validation, and eventually calibration,

against surface observations, which will always be needed

in the daunting task of determining the precipitation field.

Researchers have increasingly moved toward a com-

bined use of satellite and gauge data to improve accu-

racy, coverage, and resolution. Several approaches have

been proposed for merging rainfall satellite estimates

and surface data into a single, best-estimate, dataset

(Huffman et al. 1997; Adler et al. 2003; Xie et al. 2003). A

recent review by Vila et al. (2009) presents a compre-

hensive assessment of a high-resolution, gauge–satellite-

based analysis of daily precipitation over continental

South America during 2004. Intercomparisons and cross-

validation tests were carried out between independent

rain gauges and different merging techniques, including

the control algorithm [Tropical Rainfall Measuring

Mission (TRMM) Multisatellite Precipitation Analysis

real-time algorithm]. The methodologies were tested for

different months and seasons and for different network

densities. All the merging schemes produce better re-

sults than the control algorithm, andwhen finer temporal-

(daily) and spatial-scale (regional networks) gauge

datasets are included in the analysis, the improvement

is remarkable. Moreover, Ruiz (2009) describes the
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application of several methods for the calibration of

precipitation estimates generated from passive micro-

wave sensors using rain gauge observations over

southeastern South America. Results show that the

proposed calibration algorithm can effectively reduce

the systematic errors in the precipitation estimates,

leading to an improvement on its reliability over the

study region. Also, Rozante et al. (2010) proposed

a new technique (called MERGE) to combine TRMM

satellite precipitation estimates with surface observa-

tions over the South American continent. Its perfor-

mance is evaluated for the 2007 summer and winter

seasons. Results show that over areas with a high

density of observations, the MERGE technique’s per-

formance is equivalent to that of simply averaging the

stations within the grid boxes. However, over areas with

sparse observations, MERGE shows superior results.

In addition, Xie and Xiong (2011) developed a con-

ceptual model to construct high-quality, high-resolution

precipitation analyses over land by merging information

from gauge observations and CMORPH satellite esti-

mates using data over China for a 5-month period. A

two-step strategy was adopted. First, bias correction is

performed for the CMORPH estimates by matching the

probability density function (PDF)of the satellite datawith

that of the daily gauge analysis. Then, the bias-corrected

CMORPH precipitation estimates are combined with

the gauge analysis through the optimal interpolation

(OI) technique. Validation against independent gauge

observations demonstrates feasibility and effectiveness

of the conceptual algorithm,with themerged precipitation

analysis showing substantially smaller bias and signifi-

cantly improved pattern agreements compared to both the

input gauge and the satellite data alone. Similar two-step

approaches have been addressed in Krajewski (1987)

and Seo and Breidenbach (2002).

Existing analyses over South America are continental

or regional in scale, having at most a dozen observation

stations within Uruguay, while all of the referenced

studies cover a time period that ranges froma fewmonths

to a year. The present study describes and evaluates

several methodologies for merging CMORPH satellite

precipitation estimate and daily gauge data at a basin

scale (the Rio Negro basin in northeastern Uruguay)

with a high density of surface observations and a 7-yr-

long record for comparison. Our objective is not to eval-

uate the CMORPH estimate, but to compare several

ways of using CMORPH to improve estimates of pre-

cipitation when used in combination with gauge data.

We evaluate the combined product (with the different

methodologies) at points rather than area averages be-

cause point precipitation is known with more certainty,

whichmakes the determination of skill more robust. The

long period of study allows for both a better sampling of

larger events (up to 100 mm day21), while the high-

density network enables detailed analyses of the added

value of the satellite estimate as a function of distance

between surface observations.

The paper is organized as follows: Section 2 describes

the datasets used while section 3 presents the skill scores

used and the ability of the existing rain gauge network to

estimate the precipitation at a generic point. Section 4

identifies CMORPH bias and proposed different meth-

odologies to remove it. Next, in section 5, the evaluation

of the incremental skill of combined precipitation esti-

mates is discussed. Finally, conclusions are presented in

section 6.

2. Datasets

a. Rain gauge database

Precipitation data comes from the Administración

Nacional de Usinas y Trasmisiones Eléctricas (UTE;

public electric utility) network, which is composed of 133

rain gauges within the Rio Negro basin. Daily rainfall

totals are taken at 1000UTC.The period analyzed is from

2003 to 2009, during which a CMORPH satellite esti-

mate is also available. Warm season (October–March)

and cold season (April–September) were analyzed sep-

arately to assess the seasonality of skill for the different

precipitation estimates. The amount of data available is

not enough to further disaggregate the annual cycle

without compromising the statistical significance of the

results.

The Rio Negro basin, with an area of 71193 km2, is one

of the largest watersheds in Uruguay and plays a key role

in the hydroenergy production of the country. For this

reason, the precipitation station density is relatively high

with a characteristic separation between gauges of 23 km.

b. Rainfall satellite estimate, CMORPH

The satellite-based algorithm analyzed is CMORPH,

which combines the superior retrieval accuracy of pas-

sive microwave estimates and the higher temporal and

spatial resolution of infrared data, with no ground-based

information (Joyce et al. 2004). CMORPH estimates are

accessible online at different spatial and temporal res-

olutions, with amaximum spatial resolution of 0.07278 3
0.07278 and a maximum frequency of half an hour (in-

formation available in rotating files that contain the

most recent 31 days). The entire CMORPH record, un-

interrupted since December 2002, is available at a 3-h

frequency and a spatial resolution of 0.258 3 0.258. Since
the quantile-matching technique requires an accurate

representation of the climatological PDF of precipitation
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intensity, the latter dataset was selected, prioritizing

length of record over spatial and temporal resolution.

However, the present study is limited to daily pre-

cipitation totals, since this is the information available at

the rain gauges. The daily accumulation is obtained

adding the individual 3-h amounts from 0900 UTC of

one day to 0900 UTC of the next. There is, therefore, an

inevitable 1-h lag between the satellite estimate and the

rain gauge records.

Figure 1 shows the spatial distribution of the rain

gauge network and the CMORPH grid, which has 108

points within the Rio Negro basin.

3. Skill scores

We determine the performance of the combined pre-

cipitation estimates based on the bias score (BIAS), the

probability of detection (POD), the false alarm ratio

(FAR), and the equitable threat score (ETS) for different

precipitation thresholds, based on a 2 3 2 contingency

table (Table 1) containing all four possible combinations

of forecast–event pairs (Wilks 2006).

The total number of forecasts, N 5 A 1 B 1 C 1 D,

corresponds to the number of days in the period of

study. Notably, in our case,D is far larger thanA,B, and

C because it includes the days without rain that were

correctly forecasted.

The BIAS 5 (A 1 B)/(A 1 C) compares the num-

ber of events forecasted against the ones observed.

Unbiased forecasts exhibit BIAS5 1, indicating that the

event was forecasted the same number of times that it

was observed. However, it provides no information about

the correspondence between the forecasts and observa-

tions. BIAS. 1 indicates overforecasting and BIAS, 1

underforecasting.

The POD 5 A/(A 1 C) gives the fraction of events

that were correctly detected. It therefore ranges from

0 to 1 with a perfect score of 1.

The FAR5 B/(A1 B) is the fraction of yes forecasts

that turn out to be wrong—that proportion of the fore-

cast events that fail to materialize. It thus ranges from

0—best possible scenario—to 1.

In the case of an unbiased estimator,A1 B5A1 C,

and therefore POD 5 1 2 FAR. In these cases, POD

and FAR give essentially the same information.

The ETS 5 (A 1 Aref)/(A 1 B 1 C 2 Aref) where

Aref 5 (A 1 B)(A 1 C)/N measures the fraction of ob-

served events that were correctly estimated, adjusted for

hits associated with random chance. It therefore ranges

from 0 to 1 with a perfect score of 1 (a value of 0 repre-

sents an estimate where the number of hits is similar to

that obtained by chance expressed by the amount Aref).

Each score was computed for daily precipitation

thresholds ranging from 0 to 100 mm every 5 mm.

Figure 2 shows the total number of cases as a function

of daily rainfall totals throughout the period analyzed

(2003–09) for the warm and cold season separately. It

shows that the number of cases sampled is quite low for

the highest thresholds. Anyway, the analyses were per-

formed up to 100 mm, aware of the limitations posed by

the limited sampling.

In addition to the skill scores based on the contingency

table, we computed other parameters to measure the

ability of the different schemes, such as the root-mean-

square error (RMSE) and the linear correlation coefficient.

a. Statistical significance

To assess the statistical significance of results pre-

sented later, it is relevant to compute the POD of a

random (but unbiased) precipitation estimate. Consider

N total number of days in the sample; in our case and for

each season, we have 7 years of data that amount to

approximately N 5 1250 days. There are M rainy days

for each precipitation threshold; from Fig. 2 we see than

M ranges from 2 (100 mm) to almost 200 (5 mm).

FIG. 1. Rain gauge network and the CMORPH grid in the Rio

Negro basin.

TABLE 1. Two-by-two contingency table.

CMORPH . X mm CMORPH # X mm

Rain gauge . X mm A (hits) C (misses)

Rain gauge # X mm B (false alarms) D (correct negatives)
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An unbiased estimator will have M rainy days distrib-

uted among theN possible spots, with S hits (0# S#M).

If the estimator is random, the probability of S hits can be

computed from combinatory theory:

probhits5S 5
CS
MCM2S

N2M

CM
N

(1)

where Cn
k 5

n!

k!(n2k)!
. (2)

The POD significant at a 95% confidence level is such

that the number of associated hits S* has a 0.05 chance of

being topped randomly, thus

�
S*

S50

probhits5S 5 0:95. (3)

For the givenN and eachM, S* can be computed from

the previous expressions. POD at 95% significance level

is then S*/M.

For smallM (large precipitation threshold), even if the

chance of randomly getting a hit is low, the impact in

POD score is very large, resulting in a sharp increase in

the level of the statistically significant PODas the number

of events runs short. Conversely, asM—or ratherM/N—

becomes large (lowprecipitation threshold) the chance of

getting random hits grows and so does the significant

POD. In between, Fig. 3 shows an ample range of M

(between 10 and 60) for which the statistically significant

POD is about 0.1. For the vast majority of cases consid-

ered below, the significant POD is less than 0.15.

b. Ability of the rain gauge network

As a reference, we first compute the ability of the

existing rain gauge network to estimate the precipitation

at a generic point by determining the unbiased proba-

bility of detection of daily precipitation as a function of

distance and rainfall amounts.

For each pair (8778 in all) of stations, the unbiased

relative POD was computed; bias was removed follow-

ing the quantile-matching technique presented in sec-

tion 4b(1). POD scores were sorted by the distance

among the stations involved and then averaged in 10-km

bins to construct the contour plots shown in Fig. 4.

FIG. 2. Total number of events as a function of daily precipitation threshold for each season.

The inset gives more detail at the high threshold values.

FIG. 3. POD at the 95% significance level as a function of number

events M, for a sample with N 5 1250 days.
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Separate analyses were performed for the April–

September semester (cold season) and October–March

semester (warm season), considering that characteristic

precipitating systems may differ and therefore the spatial

correlation of precipitation could potentially change.

We indeed observe slightly higher levels of detection for

a given distance in the cold season, when frontal systems

are dominant, than in warm season, when smaller-scale

convective systems are more frequent. This is most ev-

ident for large thresholds, as expected. For instance, for

an intermediate threshold of 50 mm and a distance of

25 km (characteristic of the rain gauge network), the

probability of detection is 0.47 in the warm season and

0.63 in the cold season, confirming the faster spatial

decorrelation in the former case.

These results summarize the present ability of the

rain gauge network alone to estimate the precipitation

at a generic point in the basin. We next explore the

ability of the satellite retrievals to improve the skill

when used in combination with gauge data.

4. Methodology

a. CMORPH bias identification

To describe CMORPH bias, Fig. 5 displays the global

(all stations during the entire period) PDFs of daily pre-

cipitation in the Rio Negro basin for both the observa-

tional network and CMORPH estimate. It shows that

CMORPH overestimates precipitation frequency for all

intensities, but especially low-amount events. CMORPH

bias should not be interpreted as equivalent to error, since

part of the bias is due to the fact that we are comparing an

area-averaged estimation against a point observation.

Figure 6 shows the average bias of CMORPH esti-

mates when compared to the nearest gauge and its stan-

dard deviation among the 133 stations in the Rio Negro

basin. The satellite estimate has a large bias—it over-

estimates rainfall—for all daily precipitation thresholds,

while the standard deviation is relatively small for low

thresholds and increases steadily with daily precipitation

amounts.

Previous results confirm the need to implement a bias

removal scheme to the satellite estimator before com-

bining it with rain gauge data.

b. Bias removal schemes

1) HISTORICAL QUANTILE MATCHING

One way to remove the CMORPHbias, when historical

information of both the estimator and observed data in

a nearby station is available, is through quantile matching

(Panofsky and Brier 1958; Déqué 2007). Historical

FIG. 4. POD as a function of distance and daily rain threshold for

(top) cold and (bottom) warm seasons—rain gauge network.

FIG. 5. Global PDF (%) of daily precipitation in the Rio Negro

basin for 133 rain gauges and 108 CMORPH grid points—period

2003–09.
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records, from both rain gauges and CMORPH, are used

to define the function that relates the distributions of both

datasets. This can be made parametrically (for which we

must assume a particular analytical distribution) or with

a nonparametric approach; in this case we chose the lat-

ter method.

To determine the piece-linear function that defines the

matching, CMORPH estimations are compared against

the observed precipitation in the nearest rain gauge, hav-

ing previously ordered both records separately. Figure 7

shows a particular case; every point on the graph shares the

same percentile in their respective time series but not the

same date. In the presence of a new value of the estimator,

the bias can be removed by calculating the value that

shares the same percentile in the distribution of the gauge

by interpolation between the closest historical values.

Figure 7 highlights the limitations of the nonparametric

quantile-matching approach when dealing with extreme

events, where historical sampling is sparse. In particular,

in the presence of a new maximum in CMORPH esti-

mation, the historical observed maximum of the nearest

rain gauge was used.

The detailed methodology is as follows: First, every

CMORPHestimate during the period is quantilematched

on its own grid using the historical information from the

nearest rain gauge. The matched estimations are then

interpolated (either linearly or taking the nearest neigh-

bor) from CMORPH grid to the stations and compared

against actual observations to compute scores.

2) ADJUSTMENT BASED ON SIMULTANEOUS

NEARBY STATIONS

If simultaneously observed records in neighbor sta-

tions are available, these can be used, combined with

CMORPH, to assess a spatial description of the differ-

ences between the two platforms, which in turn can be

used to adjust CMORPH estimation in a generic point.

No historical data of any kind are required. Systematic

biases are not guaranteed to be eliminated through this

adjustment, as was the case with quantile matching.

However, later results will show that the CMOPRH

estimation adjusted in this way presents very small

biases.

The detailed methodology is as follows: First,

CMORPH estimates are interpolated (linearly or

nearest neighbor) to each rain gauge and the difference

is computed at said points by subtracting the simulta-

neously observed values. Withdrawing one station at

a time in a cross-validation approach, these differences

are further interpolated (with same method as before)

from all remaining gauges and used to adjust the in-

terpolated CMORPH value at the withdrawn station.

Finally, the adjusted estimate is compared against the

actual observation to compute scores.

3) QUANTILE MATCHING AND ADJUSTMENT

In the presence of both historical information and si-

multaneous observations in nearby rain gauges, we can

combine the quantile matching with the adjustment by

interpolation of CMORPH deviations assessed at

neighboring stations. This combinationmakes full use of

both satellite and rain gauge information, both historical

and simultaneous.

The detailed methodology is as follows: First, every

CMORPH estimate is quantile matched on its own grid

using the historical information from the nearest station

as in 1 above. Second, matched CMORPH estimates are

interpolated (linearly or nearest neighbor) to each sta-

tion and the difference is computed at said points by

subtracting the simultaneously observed values. With-

drawing one station at a time, these differences are

FIG. 6. Average and standard deviation of BIAS of CMORPH

estimate with respect to the nearest-neighbor stations in the Rio

Negro basin.

FIG. 7. CMORPH vs rain gauge—bias removal through quantile

matching (polynomial fitting is shown for illustration but not used).
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further interpolated (with same method as before) from

all remaining gauges and used to adjust the interpolated

matched CMORPH value at the withdrawn station. Fi-

nally, the matched-adjusted estimate is compared

against actual observation to compute scores.

Note that methodologies 2 and 3 above can generate

negative precipitation estimates. Scores based on the

contingency table are not affected by negative values

but both the RMSE and the correlation coefficient—as

most real-life applications—are. In these cases, zero

precipitation was assumed.

We end by summarizing the different methodologies

presented above. In every case an interpolation is per-

formed we used both linear and nearest neighbor:

1) Quantile-matching at CMORPH grid (CG) using

nearest rain gauge (RG) 1 interpolation from

matched CG to RG.

2) Interpolation from CG to RG1 compute difference

at RG 1 interpolation of the difference from RG

(excluding self-point) to RG.

3) Quantile matching at CG using nearest RG 1 in-

terpolation from matched CG to RG 1 compute

difference at RG 1 interpolation of difference from

RG (excluding self-point) to RG.

c. Assessment and selection of methodology

Methodologies 1, 2, and 3 were implemented for 121

stations internal to Rio Negro basin for the entire period

of study; those stations in the border of the basin were

left out of the analysis since the spatial interpolation

from neighboring stations is ill defined.

Figures 8 and 9 present the average bias for the Rio Ne-

gro basin and its standard deviation based on the quantile-

matched, adjusted, and matched-adjusted CMORPH, with

linear and nearest-neighbor interpolation, respectively.

Figures 10 and 11 show the average and standard de-

viation of POD in the Rio Negro basin based on the quan-

tile-matched, adjusted, and matched-adjusted CMORPH,

with linear and nearest-neighbor interpolation, respectively.

A combined evaluation of Figs. 8–11 shows that the

adjustment based on simultaneous nearby stations (meth-

odology 2) greatly improves the probability of detection as

compared with quantile-matched alone (methodology

1), without a significant detrimental effect on the bias.

Within the adjusted estimates, the impact of a previous

quantile matching is extremely small in both the bias

and POD scores. Considering the extra requirement

in historical data, its use is not justified. However, in

the absence of simultaneous nearby observations with

which to compute the adjustment, the historical quantile

matching is still necessary and useful to remove the

bias.

Tables 2 and 3 show the RMSE and the correlation

coefficient for the three schemes proposed and with

linear and nearest-neighbor interpolation. Linear in-

terpolation has a better performance than the nearest

neighbor (lowerRMSEandhigher correlation coefficient)

in all cases. Quantile matching again underperforms

compared to the adjusted methodologies. Within the

latter, the impact of a previous quantile matching is

extremely small in both RMSE and correlation, as was

the case with the skill scores.

Overall, linear interpolation introduces somewhat

larger bias but also a slightly higher chance of detection

than the nearest-neighbor interpolation and has signifi-

cantly better RMSE and correlation coefficient. There-

fore, linear interpolation is selected hereafter in view of

the higher skill in the parameters considered most rel-

evant to the purpose of the study.

FIG. 8. Average and standard deviation of BIAS in the Rio

Negro basin, period 2003–09—quantile-matched, adjusted, and

matched-adjusted CMORPH with linear interpolation.

FIG. 9. As in Fig. 8, but with nearest-neighbor interpolation.
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Figure 12 presents the average ETS for the Rio Negro

basin and its standard deviation based on the linear in-

terpolated quantile-matched, adjusted, and matched-

adjusted CMORPH. The relative performance among

the methodologies is the same as for all other measures

of skill presented.

5. Incremental skill of combined precipitation
estimates

Next, we assess the incremental skill of the combined

precipitation estimates comparing with the situation

in which only rain gauge data is available. For this

purpose we compute the probability of detection as a

function of distance and daily precipitation threshold as

in section 3b.

a. Quantile-matched CMORPH

We showed that, if historical records are available, the

removal of systematic biases of CMORPH could be

achieved through quantile matching. The matched es-

timate does not use any simultaneous rain gauge data

and therefore the probability of detection does not de-

pend on distance but only on the daily rainfall threshold

as shown in Figs. 10 and 11.

Figure 13 shows the incremental POD contour plots for

the matched CMORPH minus that with the rain gauge

data only. As before, the results are presented separately

for the cold and warm season. For distance smaller than

approximately 50 km—with variations depending on the

season and threshold—contours are negative, indicating

that interpolation from rain gauges has greater POD than

matched CMORPH estimate. For longer distances,

though, the quantile-matched CMORPH provides a more

skillful estimate, especially during the cold season.

b. Adjusted CMORPH

We showed that, in the presence of simultaneous ob-

servations in nearby stations, adjusting CMORPH esti-

mates based on spatial interpolation of the differences

with rain gauge data largely corrects the bias, and that no

further skill is gained by previously quantile-matching

CMORPH, which requires historical data.

In Fig. 14 we present the contour plots of the POD of

linearly interpolated adjusted CMORPH as a function

of daily precipitation threshold and distance to the sta-

tion, which is used to estimate CMORPH deviations.

Again, the seasonal differences in POD are evident with

larger values during the cold season, especially for large

thresholds. A quick comparison with Fig. 4 highlights

the much larger skill of the adjusted CMORPH for large

distances, as the POD of the gauge network vanishes and

FIG. 10. Average and standard deviation of POD in the Rio

Negro basin, period 2003–09—quantile-matched, adjusted, and

matched-adjusted CMORPH with linear interpolation.

FIG. 11. As in Fig. 10, but with nearest-neighbor interpolation.

TABLE 2. RMSE for the different schemes proposed for both linear

and nearest-neighbor interpolation.

Methodology

Linear

interpolation (mm)

Nearest-neighbor

interpolation (mm)

Quantile matched 8.0 8.2

Adjusted 6.2 7.5

Matched adjusted 6.1 7.4

TABLE 3. Correlation coefficient for the different schemes pro-

posed for both linear and nearest-neighbor interpolation.

Methodology

Linear

interpolation

Nearest-neighbor

interpolation

Quantile matched 0.75 0.74

Adjusted 0.85 0.79

Matched adjusted 0.85 0.79
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the performance of the adjusted estimate is determined

by the skill of the local interpolated CMORPH.

For a more detailed comparison, in Fig. 15 we present

the contour plots with the difference between the POD

of linearly interpolated adjusted CMORPH estimations

minus that of the rain gauge network. It represents the

benefit in skill, as measured by POD, of using satellite

information on top of the rain gauge data, as a function

of the distance and the daily precipitation threshold.

In general, Fig. 15 shows that the addition of

CMORPHdata to the surface observations generates an

improvement of rainfall estimation for virtually the en-

tire range analyzed in both seasons. It has to be noted

that, although the improvement in POD for large dis-

tances is very significant, for smaller ones (less than

approximately 100 km) the impact is marginally signif-

icant from a statistical point of view (see section 3a).

Seasonality of the differences is much less pronounced

than in the absolute skill itself.

6. Summary and conclusions

We first identified the bias of the satellite rainfall esti-

mate CMORPH within the Rio Negro basin in north-

eastern Uruguay. Next we devised several bias removal

schemes fromwhichwe developed threemethodologies to

combine the satellite retrievals with rain gauge data. The

following methodologies were implemented and tested:

1) a quantile-matching algorithm that removes the bias

in the distribution of daily precipitation intensity

forcing the distribution of the estimator to coincide

with the historical distribution at a nearby rain gauge;

2) an adjustment that makes use of simultaneous

nearby surface observations to estimate CMORPH

deviations, which is then interpolated to the target

point and removed; and

3) a method that combines the two previous ones: it first

applies the quantile matching of CMORPH esti-

mates and then adjusts through interpolation of the

remaining differences between CMORPH and the

neighboring gauges.

The quantile-matched CMORPH (which requires

only historical data on nearby rain gauges) has a higher

probability of detection (POD)—compared with that

obtained from surface observations only—for distances

greater than approximately 50 km, but not in the case of

Rio Negro basin where the characteristic distance be-

tween gauges is 23 km.

Within the adjusted estimates, the impact of a previous

quantile matching is very small in all scores computed.

Considering that the matched-adjusted CMORPH 3) re-

quires historical data and simultaneous neighboring

FIG. 12. Average and standard deviation of ETS in the Rio

Negro basin, period 2003–09—quantile-matched, adjusted, and

matched-adjusted CMORPH with linear interpolation.

FIG. 13. Differences in POD between the matched CMORPH

estimation and the rain gauge network as a function of distance and

daily rain threshold for (top) cold and (bottom) warm seasons.
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observations, and adjusted CMORPH 2) only needs the

simultaneous surface data, the use of thematched-adjusted

estimates is not justified. However, in the absence of si-

multaneous nearby observations with which to compute

the adjustment, the historical quantile matching, as in 1)

above, is still necessary and useful to remove the bias.

The adjusted estimate 2) performs better, asmeasured

by POD, than using only surface data, for the entire

range of distances and daily precipitation thresholds and

for both seasons. It has to be noted, though, that the

improvement in skill is marginally significant for dis-

tances less than approximately 100 km.

The incremental skill attained in the representation of

the precipitation field through the appropriate addition

of satellite retrievals to the rain gauge data is already

measurable, although not very significant when the

network density is high as in the present study. However,

it is reasonable to expect that the satellite products con-

tinue to improve over time (both in resolution—spatial

and temporal—and skill), providing an encouraging sce-

nario for the combined use of satellite technology and

rain gauges in the determination of rainfall distribution.
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