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ABSTRACT

This work presents a stochastic daily precipitation generator that incorporates a climate index to reflect the

associated, seasonally varying, influence on simulated precipitation statistics. The weather generator is based

on a first-order, two-state Markov chain to simulate the occurrence of daily precipitation and a gamma dis-

tribution to compute the nonzero daily precipitation amounts. Therefore, it has four parameters that are, in

turn, allowed to vary daily following an autoregressive linear model in Gaussian space that simulates the

parameters’ deviations from their climatological seasonal cycle. This model is forced by the independently

predicted evolution of a climate index and captures how the model parameters and, therefore, precipitation

are gradually shifted by the associated climate signal. In this case, the Niño-3.4 index is used to account for the
influence of the El Niño–Southern Oscillation (ENSO) phenomenon on precipitation in Uruguay. However,

themethodology is general and could be readily transferable to indices of other climatemodes or downscaling

algorithms for seasonal climate prediction. The results show that the proposed methodology successfully

captures the ENSO signal on precipitation, including its seasonality. In doing so, it greatly reduces the un-

derestimation of the seasonal and interannual precipitation variability, a well-known limitation of standard

weather generators termed the ‘‘overdispersion’’ phenomenon. This work opens interesting opportunities for

the application of seasonal climate forecasts in several process-based models (e.g., crop, hydrological, electric

power system, water resources), which may be used to inform the decision-making and planning processes to

manage climate-related risks.

1. Introduction

Stochastic weather generators (WGs) have been

widely used in decision support systems for risk-based

planning and management of natural resources, linked

to different process models (e.g., crop, hydrological and

electric power system). The proper management

of these resources requires a suitable representation of

the risks associated with climate variability at different

temporal and spatial scales. Particularly, due to the ad-

vances in global circulation models (GCMs) and sea-

sonal climate predictions, during the last few decades

there has been a growing interest in the use of weather

generators as downscaling tools. This application poses

additional requirements on weather generators, other

than the basic ones of capturing seasonally varying

weather statistics. They should be able to incorporate

climate forecast information and simulate conditioned

synthetic sequences that account for the forecast shift.

According to Brissette et al. (2007), stochastic

weather generators can be divided into three main

categories: parametric [based on the Weather Genera-

tor (WGEN) model; Richardson 1981; Wilks 1998],

semiparametric/empirical [the best known is the

Long Ashton Research Station Weather Generator

(LARSWG); Semenov and Barrow 1997], and non-

parametric (generally based on resampling methods; e.g.,

Rajagopalan and Lall 1999). We adopt the parametric

approach, which has the advantage of being readily able

to incorporate climate forecast information through ap-

propriate adjustments to the model parameters (Wilks

2010). A comprehensive review of weather generators

can be found in Wilks and Wilby (1999), Baigorria and

Jones (2010), and Ailliot et al. (2015).

Several approaches have been proposed for the in-

corporation of climate forecast information into weather

generators. One approach is to estimate the parameters of

the model conditional to a given climate index that affects

the local climate. Grondona et al. (2000) developed a

stochastic precipitation generator conditioned on theCorresponding author: Alejandra De Vera, adevera@fing.edu.uy
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El Niño–Southern Oscillation (ENSO) phase with a range

of parameterization schemes, in which the model param-

eters are estimated separately for warm and cold ENSO

events, as well as neutral years. The approach was tested

in six locations in east-central Argentina and western

Uruguay (southeastern South America), an important

agricultural region with a clear ENSO precipitation signal

(Grimm et al. 2000). Wilby et al. (2002) explored the

combination of several predictor variables in order to

downscale both the high- and low-frequency components

of daily precipitation at sites across the British Isles. Three

daily precipitation models were considered: unconditional

of low-frequency forcing, implicitly conditioned by daily

airflow indices, and explicitly conditioned by mixtures of

daily airflow indices and either the North Atlantic Oscil-

lation (NAO) index or area-average sea surface tempera-

ture (SST) anomalies. An alternative approach starts from

preexisting aggregated climatic variables (e.g., at monthly

time scale) and then proceed to disaggregate or temporally

downscale to daily frequency. Hansen and Ines (2005)

implemented a stochastic weather generator that disaggre-

gates monthly rainfall data by conditioning input parame-

ters on forecast rainfall amounts or their predictors (e.g.,

ENSO phases) or by constraining the generated daily

sequences to match the target rainfall totals. They dem-

onstrate its use linked to a maize crop simulation model at

three locations: two in the southeastUnited States and one

in Kenya. More recently, Verdin et al. (2018) presented a

parametric stochastic weather generator able to simulate

sequences conditioned on interannual and multidecadal

trends. The generalized linear modeling (GLM) frame-

work of their weather generator allows any number of

covariates to be included, such as large-scale climate in-

dices, local climate information, seasonal precipitation,

and temperature forecasts, among others. They applied

thismethodology to theArgentine Pampas. In conjunction

with the GLMweather generator, Kim et al. (2016) used a

resampling scheme to translate the uncertainty in the

seasonal forecasts into the corresponding uncertainty for

the daily weather statistics. They also extended this ap-

proach to the case of climate change scenarios.

The objective of the present study is to develop a sto-

chastic daily precipitation generator that smoothly in-

corporates a climate index to reflect associated seasonally

varying shifts in simulated precipitation statistics. To this

end, we propose a modification of the standard stochastic

weather generator Markov1Gamma (referred to as the

base model), in which its parameters can gradually vary

associated with a climate index. In this case, we use the

Niño-3.4 index to account for ENSO phenomena. How-

ever, the methodology based on the ‘‘analog days’’

technique is general and could be readily transferable

to other climate indices and downscaling algorithms.

Results are shown for theArtigasweather station, located

in the northern part ofUruguay (Fig. 1), where theENSO

signal is most significant. However, it could be readily

implemented in any region featuring seasonal predict-

ability associated with a climate mode or captured by an

index derived from a downscaling scheme. Moreover, it

could be applied in a multisite model following Wilks

(1998), where simultaneous simulations at multiple lo-

cations are achieved with a collection of individual

models fed by temporally independent but spatially cor-

related random numbers.

The paper is organized as follows. Rainfall data

and ENSO influence on precipitation are presented in

section 2. Section 3 contains a brief description and eval-

uation of the base model and in section 4 we introduce

the modified methodology or ‘‘proposed model.’’ In

section 5 we discuss the results. Finally, the conclusions

are presented in section 6.

2. Local precipitation data and ENSO

a. Rain gauge database

We used daily precipitation data from 22 weather

stations in Uruguay, between 1981 and 2015, provided

by Instituto Uruguayo de Meteorología (InUMet) and

Instituto Nacional de Investigación Agropecuaria (INIA).

Weather station locations are indicated in Fig. 1, together

with the mean annual precipitation (circle radius) that

ranges between 1100mm in the southwest and 1500mm

in the northeast for the 29-yr period (1981–2009) common

to all 22 stations.

b. ENSO influence on precipitation

It is well known that the major single source of climate

variability on seasonal-to-interannual scales in many parts

of the world, including southeastern South America,

is ENSO (Aceituno 1992), and that its influence presents

a marked seasonality (Ropelewski and Halpert 1987,

1989; Díaz et al. 1998; Grimm et al. 2000; Cazes-Boezio

et al. 2003).

During warm events or El Niño years, precipitation in

Uruguay tends to be higher in certain seasons, especially

from November to the following January and, although

weaker, between March and July of the following year.

Conversely, during cold events or La Niña years, pre-

cipitation tends to be below normal in similar periods.

Even within Uruguay, there are regional variations in

ENSO influence (Pisciottano et al. 1994; Montecinos

et al. 2000).

To represent the climatic information associated

with ENSO, we use the Niño-3.4 monthly index (referred

to as N3.4; Trenberth 1997) between 1981 and 2015.
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This dataset consists of the area-average sea surface

temperature anomalies over a region in the central

equatorial Pacific Ocean (58N–58S, 1208–1708W) and is

available online (www.cpc.ncep.noaa.gov/data/indices/

sstoi.indices).

The proposed methodology (see section 4) requires a

daily time series of a climatic index. We thus need to

construct a daily N3.4 series for which there are several

alternatives:

1) N3.4-NDJ: each day adopts the value of N3.4 averaged

in the quarter November–January (NDJ) associated

with the September–August ENSO year it falls in.

Considering that NDJ is the peak season of the ENSO

cycle, this methodology has been widely used to tag

analog years in association with ENSO phenomena.

2) N3.4-Simultaneous: each day adopts the N3.4 value

of themonth it falls in. A 30-daymoving filter may be

applied to smooth the time series.

3) N3.4-OL: for each day of the year, a computation

determines the lead time at which the index most

conditions the precipitation [as in Maciel et al.

(2015)] and assigns the associated value of N3.4.

In sections 4 and 5, we show the results using alter-

native 1 so that they can be readily compared with

previous work using analog years. However, very similar

results (not shown) were obtained using alternative 2.

Next, we present a quantification of the influence of

ENSO (as represented by N3.4-NDJ) on local pre-

cipitation. Figure 2 shows the Pearson correlation maps

between N3.4-NDJ and accumulated precipitation dur-

ing September–August (ENSO year) and NDJ (season

with strongest signal). We include the threshold of sta-

tistical significance at the 95% level according to a two-

sided Student’s t test (0.37). The correlation values

increase from southeast to northwest, reaching values

over 0.65 (0.60) for the NDJ (September–August) sea-

son, with statistically significant values in the northern

half of the country approximately.

In addition, we analyzed the seasonal variation

of ENSO’s impact on a few rainfall-based statistics.

FIG. 1. Weather station locations. Circle radius denotes the mean annual precipitation for the

1981–2009 period.
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We classified each September–August year according to

theN3.4-NDJ index and divided the results into quartiles.

The first quartile (Q1) roughly corresponds to La Niña
years (cold events) and the top quartile (Q4) is associated

with El Niño years (warm events). Results are shown for

the Artigas weather station (30.408S, 56.508W) located in

the northern part of Uruguay, where the ENSO signal is

most significant. The data series includes the daily total

amount of rainfall for a 35-yr period from 1981 to 2015, a

few years longer that the common record for all stations.

Figure 3 shows the annual cycle of daily precipitation

(with centered moving windows of 630 days) for all

years and for Q1 and Q4 ensembles. Statistical signifi-

cance was assessed through aMonte Carlo method. One

thousand random samples of 8 years (same length as Q1

andQ4) were drawn out of all years and the 5th and 95th

quantiles of the 8-yr average are indicated for each day.

Periods for which Q1 or Q4 ensembles fall below or

above those quantiles are shaded as significant to the

95% level. As expected, precipitation is above (below)

average during Q4 (Q1) years, most significantly during

spring and early summer. Moreover, the ENSO signal is

somehow stronger during Q4 (El Niño events) than

during Q1 (La Niña events).

Figures 4 and 5 present equivalent results for two

‘‘weather within climate’’ statistics: the probability of a

given day falling into a heavy rainfall event and a dry

spell, respectively. A ‘‘strong rainfall event’’ is consid-

ered to occur when the precipitation accumulated over

3 days exceeds 50mm. Figure 4 shows that the proba-

bility of a given day falling into a heavy rainfall event

inherits the characteristics already identified for daily

precipitation. A ‘‘dry spell’’ is defined as a set of at least

20 consecutive days with accumulated rainfall of less

than 10mm. Figure 5 shows that, as opposed to daily

precipitation, the ENSO signal on dry spells is stronger

during La Niña events (Q1) than El Niño events (Q4),

with a second significant period during the late fall and

early winter.

3. Base model

a. Description

Because of the mixed character of daily precipitation,

as both a discrete and continuous variable, most avail-

able parametric weather generators involve two com-

ponents (Wilks and Wilby 1999): 1) the occurrence

processes (the sequence of dry or wet days) and 2) the

intensity processes (the sequence of the nonzero pre-

cipitation amounts on wet days). In this study, a wet day

is defined as having nonzero (.0mm) rainfall.

FIG. 2. Pearson correlation map between N3.4-NDJ and the (right) September–August and (left) NDJ accumulated precipitation for the

1981–2009 period. Statistical significance at the 95% level according to a two-sided Student’s t test is indicated.
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1) PRECIPITATION OCCURRENCE PROCESS

The daily precipitation occurrence model used here is

the first-order, two-state Markov chain, according to

which the probability of precipitation depends only on

whether the previous day was wet or dry. This model is

widely used to represent daily precipitation occurrence

due to its simplicity (Gabriel and Neumann 1962; Katz

1977a; Richardson 1981;Wilks 1999). It is a two-parameter

model that can be defined in terms of the two transition

probabilities, p01(k) and p11(k), which are the probability

of a wet day following a dry day and the probability of a

wet day following a wet day at location k, respectively:

p
01
(k)5P[X

t
(k)5 1jX

t21
(k)5 0] and

p
11
(k)5P[X

t
(k)5 1jX

t21
(k)5 1]. (1)

Here, Xt(k) represents the binary event of precipitation

or no precipitation occurring at location k on day t.

FIG. 4. Annual cycle of the probability of a given day falling into a heavy rainfall event

obtained from the observed precipitation series for Artigas: climatological mean and ENSO-

conditioned extreme quartiles. Dashed lines represent the bottom and top thresholds with 95%

significance for the average of ensembles of size equal to the quartiles based on Monte Carlo

resampling.

FIG. 3. Annual cycle of daily precipitation obtained from the observed precipitation series for

Artigas: climatological mean and ENSO-conditioned extreme quartiles. Dashed lines repre-

sent the bottom and top thresholds with 95% significance for the average of ensembles of size

equal to the quartiles based on Monte Carlo resampling.
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The two complementary transition probabilities are

p00(k)5 12 p01(k) and p10(k)5 12 p11(k); then, only

two parameters fully determine the model.

This simple model’s main limitation is that it generates

synthetic rainfall series with very long dry spells (runs of

consecutive dry days) too infrequently (Buishand 1977;

Racsko et al. 1991; Wilks 1999). It has been found that

this deficiency can be addressed by considering Markov

chains of higher order (Chin 1977; Coe and Stern 1982;

Wilks 1999), but these models are more complex and

require more parameters for validation (a kth-order,

two-state Markov process is defined by 2k parameters);

therefore, they are not discussed here.

2) PRECIPITATION INTENSITY PROCESS

Given the occurrence of a wet day, daily nonzero pre-

cipitation amount can be modeled using many statistical

distributions (exponential, gamma, mixed exponential,

lognormal, and Weibull distributions). The most domi-

nant statistical feature of daily precipitation amounts is

that their distribution is strongly positive skewed (Wilks

and Wilby 1999). This work considers the two-parameter

gamma distribution with a probability density function:

f (x)5
(x/b)a21

e2x/b

bG(a)
; x,a,b. 0 . (2)

The variable x is the daily precipitation amount (mm),

a and b are the two distribution parameters (shape and

scale parameters, respectively), and G(a) indicates the
gamma function evaluated at a.

The gamma distribution is one of the most popular

choices for representing distributions of daily nonzero

precipitation amounts in stochastic weather models

(Katz 1977b; Stern and Coe 1984; Wilks 1992; Aksoy

2000; Baigorria and Jones 2010).

Common assumptions are that daily nonzero pre-

cipitation amounts are identically distributed and in-

dependent of both the occurrence process and of rainfall

amounts on previous and/or successive days.

We also evaluated (not presented) a three-parameter

mixed exponential distribution (mixing probability a and

scale parameters b1 and b2). Even though this model

delivers marginally better performance than the gamma

distribution, it was deemed that the improvement does

not justify the use of a less parsimonious model. This

may be due to the relatively narrow spectrum of climatic

regimes in Uruguay, in particular with no dry season

anywhere.

3) SEASONAL VARIATION OF MODEL

PARAMETERS

To capture the seasonal variation in precipitation, we

determine the mean annual cycle of the model param-

eters. A separate set of parameters is estimated for

each calendar day using a centered moving window

of 630 days, and sampling data from all days, as

well as from every year, falling within such a window

(Rajagopalan et al. 1996).

For each calendar day, parameter estimates for both

the intensity and occurrence models are obtained using

the maximum likelihood method.

FIG. 5. Annual cycle of the probability of a given day falling into a dry spell longer than

20 days obtained from the observed precipitation series for Artigas: climatological mean and

ENSO-conditioned extreme quartiles. Dashed lines represent the bottom and top thresholds

with 95% significance for the average of ensembles of size equal to the quartiles based on

Monte Carlo resampling.
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As an example, Fig. 6 shows the mean annual cycle

of model parameters (p01, p11, a, and b) obtained

for the Artigas (northern), Paysandú (western), Melo

(eastern), and Prado (southern) stations for the 1981–

2009 period.

This approach smoothly captures the seasonal cycle of

model parameters with the fewest assumptions; no fixed

seasons or functions, harmonic or otherwise, are imposed.

No attempt is made to independently calibrate a large

number of parameters either; the methodology is data

driven, with the vast majority of the data reused in the

determination of parameters from one day to the next. It

does implicitly assume the interannual stationarity of the

model parameters. This assumption will be relaxed in

section 4, in order to allow for interannual variability of

model parameters associated with a climate index.

b. Evaluation

To evaluate the performance of the base model, we

simulated 100 realizations of a 29-yr (same length as

the common historical record) synthetic series of daily

precipitation for each weather station.

The stochastic precipitation model considered here

(Markov1Gamma) has been shown to yield practically

exact reproductions of the average number of wet days

and the average wet-day amount (Wilks 1999; Wilks and

Wilby 1999). Additionally, our base model with season-

ally varying parameters also captures, by construction,

the climatological seasonal cycle of precipitation.

The model should also closely reproduce the mean

of aggregated quantities such as monthly (or seasonal)

total precipitation (Katz and Parlange 1996; Grondona

et al. 2000). However, it is well known that standard

weather generators fitted to time series of daily pre-

cipitation tend to underestimate the interannual vari-

ance of aggregated quantities such as monthly, seasonal,

or annual total precipitation (Katz and Parlange 1998;

Wilks 1999). This phenomenon, in which the observed

variance exceeds the one obtained from the fitted model,

is termed ‘‘overdispersion.’’

In this sense, Fig. 7 shows the spatial variability of the

overdispersion coefficient (Wilks 1999), expressed on a

percentage basis, for the September–August accumu-

lated precipitation:

FIG. 6. Annual cycle of model parameters (p11, p01, a, and b) obtained for the Artigas (northern), Paysandú
(western), Melo (eastern), and Prado (southern) stations.
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Overdispersion Coef

5

�
Observed Variance

Modeled Variance
2 1

�
3 100%. (3)

Overdispersion presents a southwest–northeast gra-

dient, with the largest positive values being over 170%.

This confirms that the model does not adequately cap-

ture the amplitude of the variability at interannual time

scales, which was expected since such variability is not

explicitly considered. Moreover, it is evident that the

spatial pattern in Fig. 7 is quite similar to that in the right

panel of Fig. 2, confirming that ENSO-related interan-

nual variability is dominant.

4. Proposed model

Wenext present amodification of theMarkov1Gamma

basemodel in which the parameters (p01, p11,a, andb) can

vary associated with a climate index. The approach is

to generate daily synthetic time series of deviations of

the model parameters around their climatological sea-

sonal cycle associated with the evolution of a climate

index that, in the scenario of a real-life application, has

to be independently predicted.

We use the daily N3.4-NDJ time series presented

in section 2b as the climate index. Nevertheless, the

methodology is completely general and could be readily

transferable to other climate indices, representatives of

other climate modes, or as part of a downscaling tech-

nique (Nicholas and Battisti 2012; Guo et al. 2014).

The proposed methodology comprises the following

steps:

1) Construct daily time series of the model parameters

associated with the climate index using the ‘‘analog

days’’ technique.

2) Based on the daily time series of model parameters

and the climate index, fit a vector autoregressive

FIG. 7. Overdispersion coefficient associated with simulations with the base model (Sim 1) for

September–August accumulated precipitation.
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(VAR) linear model in Gaussian space (Chaer 2005)

for model parameters taking seasonal variability into

account.

3) Generate synthetic time series of model parameters.

4) In turn, generate synthetic time series of daily

precipitation.

Results are shown for the Artigas weather station,

among those with the strongest ENSO signal (Fig. 2) and

highest overdispersion (Fig. 7).

a. Time series of the model parameters associated
with the climate index

For any given day in the time series, we first need to

define a set of ‘‘analog days’’ that is large enough to be

able to estimate the weather generator parameters (p01,

p11, a, and b) and is composed of days that are ‘‘similar’’

enough to the day in question. By similar enough, we

mean close enough in time of year and in the value of the

climate index.

The underlying assumption is that, in view of the

known relation between ENSO and precipitation

in Uruguay (Pisciottano et al. 1994), the historical

data distribution limited to the analog days better

represents the expected value as compared to the entire

historical set.

The determination of the size of the window that de-

fines the analog days, both in the calendar year and in

the climate index, represents a compromise between the

sample size and similarity of analog days.

We used a centered moving time window of 630

calendar days as before [see section 3a(3)]. Regarding

the climate index, the window contains 25% of the days

with more similar values, it is centered around the value

of the given day when possible, and it coincides with the

extreme quartiles when the value falls into the top oc-

tiles. Therefore, the subset of analog days has a total

length of 25% 3 (30 1 1 1 30) days 3 35 years ’
533 days, within which approximately 28% (150 days)

correspond to wet days (.0mm).

Once the time series of model parameters (p01,

p11, a, and b) associated with the climate index are

computed, we calculate their deviations (‘‘parameter

anomalies’’) from their climatological seasonal cycle

(shown in Fig. 6).

The time series thus obtained (Fig. 8) attempt to

capture the variability of the model parameters asso-

ciated with the climatic index used, in this case the

FIG. 8. Parameter anomalies time series (September 1981–August 2015) constructed based

on the N3.4-NDJ index using the analog days technique.
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N3.4-NDJ, through sampling of analog days in the ob-

served rainfall record.

To quantify the potential impact of the added vari-

ability, Table 1 shows the mean value of each model

parameter, the standard deviation (std dev) of its mean

annual cycle, and the standard deviation of the series

of parameter anomalies previously obtained. Both de-

viations are of the same order of magnitude, confirming

that the amplitude of the interannual variability associ-

ated with ENSO is as important as the seasonal cycle

itself. The last column in Table 1 will be discussed in

section 5.

b. Autoregressive linear model in Gaussian space
for model parameters

We then proceed to fit a VAR linear model in

Gaussian space, estimated considering seasonal vari-

ability. The methodology is similar to that employed in

Maciel et al. (2015), and the following text is derived

from there with the required adaptations and minor

modifications.

The model first constructs nonlinear functions, and

their inverse, to transform daily histograms of parameter

and climate index anomalies (real space) into normal

distributions (Gaussian space) through quantile match-

ing. In no way do we imply that the original distributions

are normal; the convenience of working in Gaussian

space simplifies the modeling that is introduced next.

A first-order vector autoregressive model VAR(1) is

calibrated in Gaussian space, incorporating the N3.4

index:

2
6666664

p
01

p
11

a

b

N3.4

3
7777775
k11

5 [A
k
(53 5)]3

2
66666664

p
01

p
11

a

b

N3.4

3
77777775
k

1 [B
k
(53 5)]3w

k
(53 1). (4)

Parameters of the (k 11)th day are computed multi-

plying parameters of the kth day by matrix Ak, which

captures the auto- and cross correlations with a lag of

1 day, plus correlated Gaussian white noise, Bk 3 wk.

The coefficients of matrix Ak, which varies with the day

of the year (1–365), are calibrated using the daily time

series of the model parameter anomalies and the N3.4

index (1981–2015) in Gaussian space. This enables the

system to capture the (strong) seasonality of the relation

between N3.4 and the parameters. Once Ak is known,

the coefficients of matrix Bk, which also vary with the

day of the year, are determined so that the covariance of

the synthetic time series coincides with the observed

covariance (Chaer 2013). When available time series are

short, the computation of Ak and Bk for every calendar

day again requires the consideration of a window cen-

tered around the given day to give robust estimations.

As the linear transformation of Gaussian processes is

also Gaussian, the shape of the parameters’ daily his-

tograms is conserved once the inverse functions are

applied and the synthetic time series in ‘‘real space’’ are

obtained. In addition, 1-day correlations and autocor-

relations in Gaussian space are maintained.

Figure 9 presents the distribution of the model pa-

rameter anomalies (conditioned by ENSO) prior to

normalization. Note that, in this case, they are quite

close to normal, which implies that the correlations are

approximately conserved also in real space.

As an example, Table 2 shows the coefficients of

matrices A and B without considering seasonal vari-

ability (only one matrix for the entire year).

Additionally, Fig. 10 shows the seasonal variation

of one of the key coefficients [b, N3.4] of matrix Ak

as a function of the length of the sampling window

(5, 7, and 10 days); the value without seasonal vari-

ability (0.027) is also included. This coefficient rep-

resents the influence of ENSO on the b parameter,

which dominates the amplitude of precipitation amounts.

Figure 10 highlights the importance of considering the

seasonality in matrix Ak. It also shows that the impact

of the sampling window, which was set at 7 days, is

relatively minor.

c. Synthetic time series of model parameters

Equation (4) could either be used in a ‘‘free’’ mode,

synthesizing all five variables, or prescribing the trajectory

TABLE 1. Statistics of ENSO-conditioned model parameters series: Mean and std dev of annual cycle and std dev of parameter anomalies

(constructed and synthetic).

Parameter Mean

Std dev

Mean annual cycle Constructed series Synthetic series

p01 0.21 0.016 (7.6%) 0.016 (7.9%) 0.018 (8.6%)

p11 0.48 0.037 (7.6%) 0.035 (7.2%) 0.035 (7.2%)

a 0.55 0.027 (4.9%) 0.038 (7.0%) 0.041 (7.5%)

b (mm) 26.3 5.3 (20.2%) 4.3 (16.5%) 5.1 (19.6%)
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of the climate index as in Maciel et al. (2015).

The latter is the intended use of the model, which in

no way attempts to capture the dynamics of the cli-

mate index, but rather generates many possible re-

alizations of p01, p11, a, and b, conditioned to a certain

evolution of ENSO. That is why the cells in italics in

Table 2 (last row) are not used in the simulation of the

parameter series.

One hundred realizations of 34-yr-long synthetic time

series of model parameter anomalies were generated

using the observed evolution of N3.4-NDJ.

The correlations between N3.4-NDJ and the synthetic

series of model parameters were compared to the cor-

responding correlations of the time series constructed

using the ‘‘analog days’’ technique (used to calibrate the

model itself). In the case of the synthetic series, we

considered the average of the correlations calculated for

each of the 100 realizations. Table 3 shows that the

synthetic seriesmanage to reproduce the structure of the

correlations of the constructed series, when the latter

are significant, but with a bias to lower (absolute) values.

d. Synthetic time series of daily precipitation

Finally, we generate the synthetic time series of daily

precipitation based on the simulated time series of

model parameters, using the Markov1Gamma model

presented in section 3. The results are shown and ana-

lyzed in the next section.

The methodology presented thus far makes use of all

the available historical record. Consequently, the result-

ing model cannot be validated against observations dur-

ing the sameperiod. Since all climate predictions, which is

what we want to encapsulate in the proposed model, are

TABLE 2. Coefficients of matricesA andB of the VAR(1) model

without considering seasonal variability. The italic numerical values

are not used in the simulation of the parameter series.

p01 p11 a b N3.4

Matrix A

p01 0.938 0.003 0.024 0.024 0.007

p11 0.015 0.932 0.000 03 0.025 0.011

a 20.006 0.011 0.961 20.001 20.002

b 0.017 0.003 20.009 0.931 0.027

N3.4 0.006 20.003 20.001 20.003 0.998

Matrix B

p01 0.323 20.014 0.007 20.014 20.014

p11 20.014 0.307 20.007 0.019 0.017

a 0.007 20.007 0.286 20.075 20.003

b 20.014 0.019 20.075 0.296 0.009

N3.4 20.014 0.017 20.003 0.009 0.087

FIG. 9. Distribution of the model parameter anomalies prior to normalization.
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probabilistic in nature, the performance cannot be judged

on the basis of a low number of seasons. In addition, the

period for which data are available is relatively short,

rendering the strategy of separating calibration and vali-

dation periods unfeasible. We, therefore, turned to a

leave-one-out approach for validation, taking advantage

that the ‘‘analog days’’ technique does not require con-

tinuity in the data.

Accordingly, the entire methodology (construction of

the parameter time series, calibration of the VARmodel,

simulation of the WG parameters, and, in turn, pre-

cipitation) was repeated 34 times, once per September–

August year, following a strict leave-one-out approach,

whereas the observed precipitation data for each given

year are not used at all. Every result presented in the next

section, and compared to observations, is done in leave-

one-out validation mode.

5. Results

To evaluate the performance of the proposed meth-

odology we conducted three sets of simulations:

1) Sim1: One hundred 34-yr-long simulations of daily

precipitation with the base model as originally pre-

sented in section 3, without incorporating inter-

annual variability in the model parameters;

2) Sim2: One hundred 34-yr-long simulations of daily

precipitation based on the parameters’ time series

constructed using the analog-days technique (con-

ditioned by the N3.4 index) and used to cali-

brate the improved model, thus, representing the

model in calibration mode; it is included only as a

reference;

3) Sim3: One hundred 34-yr-long simulations of daily

precipitation based on the improvedmodel with varying

parameters in associationwith the observed evolution of

the N3.4-NDJ index in the 1981–2015 period. One daily

precipitation series was simulated from each realization

of the synthetic time series of model parameters.

a. Parameters: Stratification plots

The last column in Table 1 shows the standard de-

viation of the synthetic series of model parameter

anomalies, confirming that the methodology fully cap-

tures the amplitude of interannual variability of the

parameters associated with ENSO.

Next, we analyzed the seasonal variation of the ENSO

signal in the model parameters. In addition to their

applied interest, the parameters may also be related to

the nature and frequency of precipitating systems in a

given region.

We determine the mean annual cycle of the model

parameters (p01, p11, a, and b) for each quartile ac-

cording to the N3.4-NDJ index (similar to Figs. 3–5).

Figure 11 shows the results obtained for the con-

structed parameter time series (8 years per quartile)

used in Sim2 (left column) and the synthetic series

of model parameters (8 3 100 years per quartile)

used in Sim3 (right column). It also includes, in

dashed lines, the extreme quartiles derived from the

simulated daily precipitation, with Sim2 and Sim3,

FIG. 10. Seasonal variation of the coefficient [b, N3.4] of matrix Ak in the VAR(1) model as

a function of the length of the overlap window.

TABLE 3. Correlation of N3.4-NDJ index with the model param-

eter anomalies for the constructed and synthetic time series.

Parameter Constructed series Synthetic series

p01 0.36 0.21

p11 0.50 0.43

a 20.08 0.13

b 0.59 0.57
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FIG. 11.Mean annual cycle of themodel parameters for each quartile according to theN3.4-NDJ index for the (left)

constructed (Sim2) and (right) synthetic (Sim3) parameters time series (see text).
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respectively, considering a centered moving window

of 630 days (8 3 100 years per quartile).

In general, we observe that Q1 most stratifies the

conditional probabilities of precipitation, whereas Q4

differs substantially from the other quartiles in the

parameter b (which dominates the amplitude of pre-

cipitation amounts). These stratifications are in the

expected direction: Q1 (La Niña events) has negative

associated rainfall biases in Uruguay and Q4 (El Niño
events) has positive ones (see Fig. 3). For the param-

eter a there is no clear distinction between the different

quartiles. Also, it is the parameter for which the left and

right columns most differ. It should be noted that this

analysis does not have an associated test to identify sta-

tistically significant differences among the quartiles. Such

tests are implemented for the observed and simulated

precipitation series (see sections 2b and 5c).

One distinctive difference of the cycles obtained

based on the synthetic series of model parameters

(Fig. 11, right column) is that they are monotonically

stratified in quartiles, with notable seasonal variations

(a feature best captured in Fig. 12), which is not strictly

the case in the left column, especially when ENSO

stratification is weak as is the case for parameter a.

Cycles obtained from simulated precipitation series

(dashed lines) are much smoother but follow the re-

spective driving parameters.

Figure 12 shows the mean annual cycle of the model

parameter anomalies for each quartile according to the

N3.4-NDJ index, obtained from the synthetic series of

model parameters (8 3 100 years per quartile). It is the

same information conveyed in the right column of

Fig. 11, but presented as normalized deviations of the

model parameters from their climatological seasonal

cycle (presented in Fig. 6), for better visualization of the

relative amplitude of the (seasonally varying) ENSO

signal on each parameter.

The seasonality of ENSO’s impact on precipitation in

Uruguay has been established previously (Cazes-Boezio

et al. 2003): it is strongest during austral spring (October–

December), recedes in peak summer (January–February),

and returns weakly in fall–winter (March–July). Parame-

ters p01, p11, and b present clear stratifications that roughly

follow this pattern with subtle differences. Parameter

b shows the stratification with larger relative amplitude. It

has its strongest signal during the local spring and extends

until winter (July–August), with lower deviations during

February. Parameters p01 and p11 also present a stronger

and longer stratification during austral spring, as compared

to fall. Parameter p01 shows a pronounced break in the

FIG. 12. Mean annual cycle of the normalized model parameter anomalies for each quartile according to the

N3.4-NDJ index, obtained from the synthetic series of model parameters.
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signal in late summer and early fall. Finally, parameter

a shows a weak signal in the spring (October–December)

and peak summer, which reverses sign during the fall.

Regardless of the intensity and seasonality of the

ENSO signal, the quartiles Q1, Q2, Q3, and Q4 are al-

ways orderly stratified for all parameters, except when

the signal is very weak. This property is not strictly

verified in the constructed series.

b. Precipitation variance

We then proceed to evaluate the performance of the

proposed model. In particular, we focus on the aspects in

which the base model, without incorporating interannual

variability in the parameters, performsworst (section 3b):

the seasonal and interannual precipitation variability.

Table 4 shows the observed and simulated interannual

variance of Artigas rainfall accumulated over ENSO

years (September–August) and NDJ, the season with the

strongest ENSO signal. Table 4 also presents the square

of the correlation coefficients in Fig. 2 for Artigas, which

can be interpreted as the fraction of the variance of pre-

cipitation explained by a linear relation to ENSO. Mul-

tiplying columns 3 and 4 in Table 4 thus gives an estimate

of the amplitude of ENSO variance in the record: 19030

and 69 390mm2 for the NDJ and September–August

periods, respectively.

Sim1, which does not explicitly model interannual

variability, has approximately one-half (one-third) of the

observed variance for the trimester (year), which con-

firms that the overdispersion problem grows with the

averaging period in these models. We see that the pro-

posed model (Sim3) doubles the variance of Sim1 at the

annual time scale and more than doubles it in the sea-

son of strongest ENSO influence (NDJ). Since the WG

variability that Sim3 inherits from Sim1 is entirely in-

dependent from the newly incorporated result associated

with ENSO, the respective variances can be considered

additive. Therefore, the magnitude of the ENSO-related

variance added can be obtained by subtracting that of

Sim1 from that of Sim3, giving 24022 and 70591mm2 for

the NDJ and September–August periods, respectively.

In summary, Sim3 captures almost the exact amount

of the ENSO-linearly related variance in the record for

September–August years and overestimates it during

the season of peak signal (NDJ).

c. Shifts in precipitation associated with ENSO

For the proposed model to be useful in probabilistic,

prediction mode, we need to show that it smoothly cap-

tures the time-evolving shift in key precipitation statistics

associated with the influence of the climate index, the

prediction of which has to be independently provided.

For such purpose, we analyzed the stratification as-

sociated with ENSO for the three rainfall-based statis-

tics presented in section 2b based on the simulations in

leave-one-out validation mode.

TABLE 4. Mean, variance, and fraction of variance linearly associated with ENSO for the Sep–Aug and NDJ accumulated precipitation at

the Artigas station. The variance and associated overdispersion in simulated series with Sim1 and Sim3 are shown.

Period Mean obs (mm) Variance obs (mm2) N3.4-NDJ R2 Variance Sim1 (mm2) Variance Sim3 (mm2)

NDJ 399 39 645 0.48 20 331 (95.0%) 44 353 (210.6%)

Sep–Aug 1503 198 256 0.35 69 105 (186.9%) 139 696 (41.9%)

FIG. 13. Annual cycle of observed (dotted) and simulated (solid) daily precipitation for Artigas with (left) Sim1

and (right) Sim3: 34-yr climatology and 8-yr ensemble conditioned to ENSO extreme quartiles. In the case of

simulations, 61 std dev among 100 realizations is shaded both for the climatology and the quartiles of Sim3.
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Figure 13 shows the annual cycle of daily precipitation

for Artigas derived from Sim1 (left panel) and Sim3

(right panel) for all years (mean) and for ensembles

conditioned by the extreme quartiles of the N3.4-NDJ

index (Q1 and Q4), considering a centered moving

window of 630 days. We do have 100 annual cycles,

one per 34-yr-long simulation, so we present the mean

plus and minus one standard deviation among the

simulations (shaded). The figure also includes, in

dashed lines, the cycles derived from the single 34-yr

observed record (as in Fig. 3). In the left panel we

show the results with the base model (with seasonality

but no interannual variability), which captures the

seasonal cycle quite well, not only for daily precipita-

tion but also for higher-order statistics (heavy rainfall

events and dry spells; Figs. 14 and 15, respectively).

However, statistics conditional to ENSO years are

naturally entirely missed, since the base model has

no explicit interannual signal and the randomness

intrinsic to the WG is far too small at the interannual

time scale. The results with the proposed model are

consistent with the behavior previously observed in

the cycles of the model parameters (Figs. 11 and 12).

The synthetic series reproduced the signal identi-

fied in the observed ones, but with a slightly smaller

amplitude.

Figure 14 shows that the seasonality of the ENSO

signal in the probability of a given day falling into a

heavy rainfall event is, again, well captured by the pro-

posed model, but its amplitude is somewhat reduced.

The mean annual cycle of the probability of a given day

falling into a 20-day-long spell is quite well reproduced;

FIG. 14. Annual cycle of observed (dotted) and simulated (solid) probability of a given day falling within a heavy

rainfall event for Artigas with (left) Sim1 and (right) Sim3: 34-yr climatology and 8-yr ensemble conditioned to

ENSO extreme quartiles. In the case of simulations, 61 std dev among 100 realizations is shaded both for the

climatology and the quartiles of Sim3.

FIG. 15. Annual cycle of observed (dotted) and simulated (solid) probability of a given day falling within a dry

spell longer than 20 days for Artigas with (left) Sim1 and (right) Sim3: 34-yr climatology and 8-yr ensemble con-

ditioned to ENSO extreme quartiles. In the case of simulations, 61 std dev among 100 realizations is shaded both

for the climatology and the quartiles of Sim3.
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however, such events are not easily captured by first-

order models. The conditioning of ENSO is also evident

in the synthetic series, but the seasonality and amplitude

deviate from the observed record (Fig. 15). The longer

the spell and the less frequent the event, the worse the

performance of the model (not shown). It has to be kept

in mind that the weather generator is not specifically

designed to capture extremes and should not be used for

such purposes.

6. Summary and conclusions

We have proposed a stochastic daily precipitation

generator that smoothly incorporates a climate index

to reflect associated and gradually varying shifts in

simulated precipitation statistics. Theweather generator

is based on a first-order, two-state Markov chain for

simulating the occurrence of daily precipitation and a

gamma distribution for computing the nonzero daily

precipitation amounts. Therefore, it has four parameters

that are, in turn, allowed to vary daily following a vector

autoregressive linear model in Gaussian space that

simulates the parameters’ deviations from their cli-

matological seasonal cycles. This model is forced by

the independently predicted evolution of a climate

index and captures how the model parameters and, in

turn, the precipitation are shifted by the associated

climate signal.

The proposed methodology comprises four steps:

1) Construct daily time series of the Markov1Gamma

model parameters associated with the climate index

using the ‘‘analog days’’ technique.

2) Based on the daily time series of model parameters

and the climate index, fit a first-order VAR linear

model in Gaussian space estimated considering the

seasonal variability.

3) Generate synthetic time series of model parameters

using the VAR(1) model previously fitted.

4) Generate synthetic time series of daily precipitation

using the Markov1Gamma model.

In this case, we use the N3.4 index to account for the

influence of the ENSO phenomena on precipitation in

Uruguay. However, the methodology is completely

general and could be readily transferable to other

regions provided there is significant seasonal pre-

dictability associated with a scalar index that could

either represent a climate mode or result from a cli-

mate prediction downscaling algorithm.

The results show that the proposed methodology suc-

cessfully captures ENSO’s impact on the model parame-

ters and, consequently, on daily precipitation and key

statistics as it gradually emerges and recedes. The resulting

stratifications are in the expected directions, where Q1

has negative associated rainfall biases in Uruguay and Q4

has positive ones. The results roughly follow the seasonal

pattern previously established by Cazes-Boezio et al.

(2003): the ENSO signal is strongest during austral spring,

recedes in peak summer, and returns weakly in fall–

winter. Parameter b shows the stratification with

larger relative amplitude, followed by the conditional

probabilities p01 and p11. One distinctive feature of

the cycles obtained based on the synthetic series of

model parameters is that, regardless of the intensity

and seasonality of the signal, they are monotonically

stratified in quartiles, which is not strictly verified in

the constructed series.

By successfully capturing most of ENSO-related

variability, the proposed model greatly reduces the

‘‘overdispersion’’ problem, a well-known limitation

of standard weather generators (from 187% in the

base model to 42% for the accumulated September–

August rainfall). Of course, the part of the variability

that is not associated with the particular climate in-

dex used (in this case N3.4) is beyond the scope of

this method.

These results open interesting opportunities for

the application of seasonal climate forecasts in several

process-based models (e.g., crop, hydrological, electric

power system, water resources), which may be used to

inform the decision-making and planning processes for

managing climate-related risks.
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