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AbstractDue to the inability ofGPS (or otherGNSSmethods) to provide satisfactory
precision for the indoor location scenario, indoor positioning systems resort to other
signals already available on-site, typicallyWi-Fi given its ubiquity. However, instead
of relying on an error-prone propagation model as in ranging methods, the popular
fingerprinting positioning technique considers a more direct data-driven approach to
the problem. First of all, the area of interest is divided into zones, and then a machine
learning algorithm is trained to map between, for instance, power measurements
(RSSI) from APs to the localization zone, thus effectively turning the problem into a
classification one. However, although the positioning problem is a geometrical one,
virtually all methods proposed in the literature disregard the underlying structure
of the data, using generic machine learning algorithms. In this chapter we consider
instead a graph-based learning method, Graph Neural Networks, a paradigm that
has emerged in the last few years and that constitutes the state-of-the-art for several
problems. After presenting the pertinent theoretical background, we discuss two
possibilities to construct the underlying graph for the positioning problem. We then
perform a thorough evaluation of both possibilities, and compare it with some of
the most popular machine learning alternatives. The main conclusion is that these
graph-basedmethods obtain systematically better results, particularly with regards to
practical aspects (e.g. gracefully tolerating faulty APs), which makes them a serious
candidate to consider when deploying positioning systems.
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1 Introduction

The key enabler for location-based services is naturally an accurate positioning
system. Although for outdoor scenarios GNSS systems (e.g. GPS) are generally
enough, the signal is not strong enough to provide a sufficient precision for indoor
applications. The resulting error is typically of tens of meters, barring its usage on
museum self-guided tours, customer navigation in shopping malls, or to provide
accessibility to visually impaired people, just to name a few examples of important
location-based services (Küpper, 2005).
Several approaches have been proposed to address this problem, which basically

consider other signals to infer the position of the mobile device. For instance, the
received power or the Channel State Information from a set of Wi-Fi, Bluetooth,
Ultra Wide-Band or radio-frequency identification tags (RFID) transmitters with a
known and fixed location (thus generally known as anchor nodes) may be used to this
end, constituting the so-called ranging techniques (Whitehouse et al., 2007). These
are generally model-based, requiring in turn a precise model that relates the position
of the mobile to the received power, a model which is generally unavailable.
Instead of collecting a large set of measurements to derive a channel model,

the so-called fingerprinting technique takes a more data-driven approach to the
problem at hand: directly learning to map, for instance, the received powers (from
the anchor nodes) to the position of the mobile, transforming the problem into a
regression one (Yiu et al., 2017). In fact, depending on the final application, the
actual coordinates of both the anchor nodes and the mobile device may actually be
unnecessary (or even unavailable). For instance, we may want to identify at what
shop is a certain customer of a shopping mall, and not the precise coordinates. In this
case, the problem turns into a classification one. That is to say, the area is divided into
zones and the objective is, given the power measurements from the anchor nodes,
inferring at which zone the mobile device is. Note that in both cases a measurement
campaign is still necessary in order to train a learning algorithm to provide this
mapping.
Interestingly, the vast majority of the existing fingerprinting techniques consider

vector-based learning algorithms, ignoring the geometric nature of the problem (Za-
fari et al., 2019). Following our ongoing example, if the number of anchor nodes
is 𝑛, then the input to the learning algorithm may be a vector in R𝑛 (the power
received from each anchor node), thus dropping the spatial information, which is to
be inferred again by the learning algorithm. This will limit the generalization power
of the resulting method. To illustrate the importance of considering the structure
of the data, suffice to say that it is one of the main reasons behind the success of
Convolutional Neural Networks (CNNs) for image and audio processing.
In what follows, wewill assumewe are usingWi-Fi Access Points (APs) as anchor

nodes and the measured power (Received Strength Signal Indicator, RSSI) from all
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APs as the input to the learning algorithm, which will map this input to a zone (i.e. a
classification problem). Extending the proposed methodology to other technologies,
inputs or to considering a regression problem is straightforward.
In this chapter, we study how to take into account the geometric information of the

problem as an a priori on the learning algorithm. To this end, we will define a graph
with APs as its nodes, where the existence of an edge and its weight is indicative
of the distance between each pair of APs (e.g. the mean RSSI between each pair of
APs). A given input (i.e. the RSSI of each AP as measured by the mobile node) is
now actually a number associated to each node on the graph (or a two-dimensional
vector, if the APs are dual-band), thus defining a signal on the graph. The proposed
classifier is based on Graph Neural Networks, which basically extend the concept of
CNNs to signals defined on graphs (Gama et al., 2019).
We will introduce two versions of the learning algorithm. In the first one the

graph signal is mapped to a zone. In a nutshell, we will transform the positioning
problem into a graph classification one. By means of two public datasets we will
compare this method to some popular alternatives, namely K-Nearest Neighbors,
a Fully Connected Neural Net, or the combination of methods used in the indoor
positioning software FIND31. Results indicate that the proposed method performs
systematically better in terms of accuracy. For instance, in one of the datasets it
performed above KNN using less than half of the training samples.
These virtues notwithstanding, this first method’s main drawback is that it consid-

ers the geometry between APs only, ignoring the zones. We may include the zones
on the graph, resulting in a so-called heterogeneous graph. In particular, although
we may define the same kind of edges (e.g. mean RSSI from each AP to each zone),
the signal on nodes corresponding to zones is clearly not of the same kind as the one
on each AP (they may even be of different dimensions). In any case, the problem
now turns into a graph signal interpolation one, where given the signal on the nodes
corresponding to APs, we want to estimate a probability distribution over the nodes
corresponding to zones. This method obtained similar results than the homogeneous
case, with the addition to showing much better robustness in the scenario where one
or several APs fail. It is important to note that neither of the methods require a map
to construct the graphs, and we resort to the training dataset only.
The document is organized as follows. The next section presents the literature on

indoor localization, focusing on the use of graphs. In section 3 we formally state the
fingerprinting positioning technique, we present Graph Neural Networks in detail
and discuss how to use it on the positioning problem. Finally, section 4 describes
and analyzes the experiments carried out before concluding the chapter in section 5.

1 https://github.com/schollz/find3
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2 Related Work

The problem of indoor localization is a widely studied topic and different methods
and technologies have been used to address it. In (Basri and El Khadimi, 2016)
technologies such as the use of infrared sensors, ultrasound sensors, cameras and
their subsequent processing, radio frequency technologies such as Radio Frequency
Identification (RFID) and methods based onWireless Local Area Network (WLAN)
are presented. The latter has gained great interest in recent years due to the growth
of Wi-Fi network deployments. The goal is to take advantage of the existing wireless
connectivity infrastructure to solve the localization.
As we mentioned before, indoor positioning based on WLAN infrastructure is

usually done bymeans of powermeasurements from the different networkAPs. Since
it is not easy to fit a propagationmodel that accurately estimates the signal received at
each point, fingerprint-based techniques have become the most popular approach to
the problem (Zafari et al., 2019). In this case, the RF propagation model is not taken
into account directly, but through RSSI measurements from mobile devices. This
data-driven approach converts the problem into a machine learning one, turning the
position estimation into a regression problem. It can be further simplified if, instead
of the exact position, the goal is only to estimate the area where the mobile device is
located, reducing the problem to a classification one.
One of the most used methods to address this problem is K-Nearest Neigh-

bors (KNN), due to its simplicity and good results (Bahl and Padmanabhan, 2000;
Varshavsky et al., 2007). Other machine learning techniques used for this problem in-
clude Deep Learning (Nowicki andWietrzykowski, 2017), Random Forests, Support
Vector Machine or Multi Layer Perceptron (MLP) (Bracco et al., 2020). However,
all of them are vector-based learning algorithms, where the model simplification
ignores the geometric nature of the position estimation problem, particularly the
relationship between the RSSI measurements at a certain point from the different
APs.
A novelmachine learning approachwhichwewill explore here and enables to take

into account the geometric information as a model prior are Graph Neural Networks
(GNNs). For this purpose, a graph is defined with the network APs as nodes, and the
edges weights should reflect the distance between each pair of APs. As detailed later
on, in this model the RSSI values measured by the mobile devices will be signals
defined on the graph. Although there are still not many indoor localization works
based on GNNs in the literature yet, some promising results are already beginning
to show that it is a successful approach to address the problem (Yan et al., 2021;
Lezama et al., 2021).
In (Yan et al., 2021) a GNN based method is presented, analyzing a simulated

scenario where the distance between nodes is modeled with noisy values of the
Euclidean distance between them. Results with a real dataset like (Torres-Sospedra
et al., 2014) (which we present later in this chapter) can be found in (Sun et al.,
2021), which uses a graph convolutional network (GCN) to address the problem.
Two different ways to build the graph are discussed, an important issue that will be
explained in Section 4. A real world implementation is presented in (Ding et al.,
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2022), for on-demand delivery on multi-floor malls. Another advantage of the graph
based approach discussed in (Chen and Chang, 2022) is the possibility of using
transfer learning, adapting a previously trained networkwith data fromother location,
thus requiring less number of measurements to train the model.
Finally, it is worth highlighting other variants of the problem, which are differ-

ent applications where the GNNs-based approach is still very useful. On the one
hand, (Chiou et al., 2020) studies the case where the signals are not measurements
of the power of a Wi-Fi network, but images from multiple cameras of the mobile
device. It is clear that the graph model (named Graph Location Networks in this con-
text) still suits to the problem, in this case modeling the relationship between images
taken at different locations. Another problem extension is addressed by (Lin et al.,
2021), which uses a GNN to estimate the device next location, taking advantage of
the graph to model the trajectories given by the device locations sequence.

3 GNNs for Indoor Localization

3.1 Problem Statement

As we mentioned before, in the fingerprinting approach the localization problem is
usually turned into a classification one: given the RSSI measurements of the 𝑛𝐴𝑃
APs as received by the device, the objective is to learn how to map these values to
the corresponding zone. Let us denote by X ∈ R𝑛𝐴𝑃×𝐹𝑖𝑛 one of these measurements,
where for instance 𝐹𝑖𝑛 = 2when measurements for both the 2.4 and 5 GHz bands are
available. We will use x𝑖 ∈ R𝐹𝑖𝑛 to indicate the 𝑖-th row of X, corresponding to the
RSSI measurement fromAP 𝑖 (with a default value of, for instance, -100 dBm in case
this particular AP’s RSSI was below the sensitivity of the device). Given 𝑛𝑧 possible
zones, we want to estimate the parameters of a function𝚽 : R𝑛𝐴𝑃×𝐹𝑖𝑛 → {1, . . . , 𝑛𝑧}
that minimizes a certain loss over the available training set.
We remark again that if other type ofmeasurements are available (such as Channel

State Information), they may easily be included on the framework by modifying the
definition of x𝑖 accordingly. Moreover, if we were interested in the actual coordinates
of the mobile node, we would simply change the codomain of the function 𝚽 and
consider a regression problem; i.e. we would have 𝚽 : R𝑛𝐴𝑃×𝐹𝑖𝑛 → R3 and the
cost function would for instance be the Mean Squared Error. In any case, the family
of functions 𝚽 typically chosen (e.g. a Neural Network) does not consider at all
the underlying structure of the problem, which is expected to be learned from the
training set instead. Here we consider an alternative approach, where the geometric
information is provided a priori by means of a graph.
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3.2 Graph Neural Networks

Learning from data represented by graphs or networks has received considerable
attention over the last few years. Applications range from the analysis of social
networks (Wang et al., 2015) to predicting properties of chemical compounds (Coley
et al., 2019). The most important challenge is that, differently to for instance audio
or images, graph data is highly irregular and non-euclidean.
Some of the first works to propose Graph Neural Networks, which basically try

to emulate the success obtained by CNNs onto the graph domain, represent node 𝑖
(for 𝑖 = 1, . . . , 𝑛) by a vector x𝑖 ∈ R𝑑 , which is iteratively updated by combining it
with its neighbors’ vector representation (Scarselli et al., 2009). After a number of
iterations, a final vector representation of each node is obtained, which is then used
to, for instance, node classification.
An alternative approach to the problem was provided by taking a Graph Signal

Processing perspective (Shuman et al., 2013). In particular, a spectral-based graph
convolution was first considered (Estrach et al., 2014), an operation that is extremely
costly and numerically unstable. To remedy this, a Chebyshev polynomial on the
Laplacian matrix was first proposed to approximate the spectral convolution (Def-
ferrard et al., 2016).
However, considering the analogous to discrete-time convolution, a first-order

convolution layer for a GNN may be obtained as follows (Kipf and Welling, 2017):

x′
𝑖 = 𝜎

©«𝚯𝑇
∑︁

𝑗∈N𝑖∪{𝑖 }
𝑆 𝑗 ,𝑖x 𝑗

ª®¬ , (1)

where x′
𝑖
∈ R𝑑′ is the output of the layer, 𝜎(·) is a point-wise non-linearity (e.g. the

ReLU function), 𝚯 ∈ R𝑑×𝑑′ is the learneable parameter of this layer,N𝑖 is the set of
neighbors of node 𝑖, and 𝑆𝑖, 𝑗 is the 𝑖, 𝑗 entry of matrix S ∈ R𝑛×𝑛, the so-called Graph
Shift Operator (GSO). This is a matrix representation of the graph, which should
respect its sparsity (i.e. 𝑆𝑖, 𝑗 ≠ 0 whenever there is an edge between nodes 𝑖 and 𝑗).
The adjacency matrix of the graph, its Laplacian or their normalized versions are all
valid GSOs. Moreover, larger values of 𝑆 𝑗 ,𝑖 means that x 𝑗 will have more weight on
Equation (1), and thus should be indicative that the signal on nodes 𝑖 and 𝑗 are more
related to each other.
To grasp the rationale behind Equation (1) note that a discrete-time signal may

be represented by a linear graph (successive samples are joined by an edge). If
𝑑 = 𝑑 ′ = 1, we would be linearly combining the previous and current samples, and
then evaluating this with function 𝜎(·). For a general graph we would be linearly
combining the vector representation of the node’s neighbors. As we concatenate 𝐾
such layers, the final vector representation of node 𝑖 will depend on its neighbors at
most 𝐾 hops away.
Let us now considermatrixX ∈ R𝑛×𝑑 , which basically stacks all nodes’ vectors x𝑖 ,

and is termed a graph signal. Computing the matrix product SX = Y we end up with
another graph signal that aggregates at each node the information of its neighbors,
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corresponding to the first-order convolution we used in Equation (1) (albeit without
parameter 𝚯, which we will include shortly). By writing S𝐾X = S(S𝐾−1X) we
may see that this way we aggregate the information 𝐾 hops away. A general graph
convolution is defined simply as a weighted sum of these 𝐾 signals (i.e.

∑
𝑘 S𝑘Xℎ𝑘 ,

where scalars ℎ𝑘 are the taps of the filter). Notice that parameter 𝚯 in Equation (1)
is now interpreted as a filter bank. Indeed, by considering a 𝑑 × 𝑑 ′ matrixH𝑘 instead
of the scalar taps, a single-layer GNN (or graph perceptron) results of applying a
pointwise non-linear function 𝜎(·) to this convolution (Gama et al., 2019; Isufi et al.,
2021):

X′ = 𝜎

(
𝐾−1∑︁
𝑘=0

S𝑘XH𝑘

)
, (2)

whereas a deep GNN is constructed by concatenating several perceptrons.
In addition to having empirically been shown to provide state-of-the-art perfor-

mance in a number of important problems (Zhou et al., 2020), GNN’s theoretical
properties have been intensively studied during the last few years. Important to our
problem at hand, are their permutation equivariance (i.e. the output signal on each
node is independent of the nodes’ ordering), stability (i.e. small perturbations on the
graph’s edges lead to small perturbations on the output graph signal) and transfer-
ability (i.e. one may actually train in a small graph, and as long the statistic is similar,
the performance should remain the same on a larger one) (Gama et al., 2020; Ruiz
et al., 2021).

3.3 Proposed Architectures

3.3.1 Homogeneous Graphs

Let us then go back to our localization problem. Aswementioned before, wewill first
consider the APs graph. Although the details on how the graph can be constructed
for our particular case are included in Section 4.1, suffice to say at this point that
each node is an AP, an edge exist between nodes 𝑖 and 𝑗 if the received power
between them is above a certain threshold, and that the edge’s weight will be the
corresponding mean RSSI plus this threshold (so as to turn larger weights to more
related signals on the nodes).
Over this graph, we will consider the signal we defined before X ∈ R𝑛𝐴𝑃×𝐹𝑖𝑛 ,

corresponding to the RSSI measurements for each AP (with 𝐹𝑖𝑛 = 2 if measurements
for both bands are available). The learning algorithm should then output on what
zone (from the 𝑛𝑧 possibilities) was that measurement taken. This thus corresponds
basically to a graph classification problem.
Graph classification is typically achieved by taking the output of a GNN, passing

it through a so-called readout layer (which transforms all nodes signals into a single
vector that represents the whole graph) and then applying, for instance, an MLP
followed by a softmax (Wu et al., 2021). Although typical readout layers (e.g. the
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sum) enforce permutation equivariance (Navarin et al., 2019), it is clear thatwhichAP
had a certain representation is important to infer at which zone was the measurement
taken. We have thus used as readout a stacking of the node’s representation, resulting
thus in a vector y ∈ R𝑛𝐴𝑃𝐹𝑜𝑢𝑡 , where 𝐹𝑜𝑢𝑡 is the last layer’s dimension of the GNN.
An illustrative example diagram is displayed in Figure 1.

GNN Readout NN

Fig. 1: Illustrative diagram of the graph classification problem for localization.
The signal of a graph with 𝑛𝐴𝑃 = 5 dual band APs (and thus each x𝑖 has 𝐹𝑖𝑛 =

2 dimensions) is processed by a GNN which produces a signal with 𝐹𝑜𝑢𝑡 = 2
dimensions too. The readout layer then stacks all vectors and passes it through a
Neural Net which produces a probability distribution over the 𝑛𝑧 = 4 zones. Note
that training can be performed end-to-end.

It may seem that we have returned to a learning algorithm that drops the geometry
of the data, as in traditional learning algorithms. Although this is actually true for
the zones, a drawback we will address in the following section, just considering the
geometry of the APs will have important performance advantages over traditional
baselines, as will be further discussed on Section 4.

3.3.2 Heterogeneous Graphs

The question thus remains on how to include the zones’ geometry as an a priori. Let
us then consider that zones are now nodes on the graph. The first thing to note is
that we have no input signal associated to a zone. We may for instance associate an
arbitrary scalar to all zones or a one-hot encoded vector (Vignac et al., 2020). On
the contrary, we have an output signal (e.g. a 1 if the measurement was taken at that
zone, or 0 if not) which is not present on the APs’ nodes. We will thus consider the
output signal only at the zones’ nodes to compute the loss.
Furthermore, we have at least two types of edges now: the edges between APs

(which we have been considering so far) and between an AP and a zone. Although
we may define the latter just as the one we used for the inter-APs edges (i.e. the
mean RSSI at that zone from that AP plus a threshold), it is clear that in terms of
propagating information they should be considered different. We may even include
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edges between zones, considering for instance their distance or if it is possible to
transit from one to the other.
In any case, we are in the context of heterogeneous graphs (or networks) and

learning therein (Dong et al., 2017). The most typical application is in relational
data or knowledge graphs, such as academic graphs (where nodes may be papers,
authors, conferences, etc.) (Tang et al., 2011) or recommender systems (where nodes
may be users and films, as well as actors, directors, country of origin, etc.) (Shi et al.,
2019). In our particular case, we want to learn to estimate the zones’ signal given
the APs’ one, thus turning the localization problem into a graph signal interpolation
one.
Graph convolution is easily extended to the heterogeneous case. For instance,

Equation (1) is now written as (Schlichtkrull et al., 2018):

x′
𝑖 = 𝜎

©«𝚯𝑇0 x𝑖 +
∑︁
𝑟 ∈R

𝚯𝑇𝑟
∑︁
𝑗∈N𝑟

𝑖

𝑆𝑟𝑗,𝑖x 𝑗
ª®¬ , (3)

where R is the set of possible relations (e.g. between APs or between an AP and a
zone),N𝑟

𝑖
are the set of neighbors of node 𝑖 of relation type 𝑟 , and 𝑆𝑟

𝑗,𝑖
is the 𝑗 , 𝑖 entry

in the GSO if the corresponding relationship is of type 𝑟 (and 0 else). Note that we
now have an specific learning parameter𝚯𝑟 for each type of relation. An illustrative
example diagram of the proposed signal interpolation system is presented in Figure
2.

Heterogeneous

GNN

Fig. 2: Illustrative diagram of the positioning system as a graph signal interpolation
problem in the heterogeneous context. Similarly to Figure 1, there are 𝑛𝐴𝑃 = 5 dual
band APs and 𝑛𝑧 = 4 zones. The graph now also includes nodes representing these
zones (the white ones) and edges connecting them to the APs (the slashed ones),
with a weight which may be the mean RSSI as measured in the corresponding zone.
The input signal on the APs is the same as before, and we have arbitrarily set all
input signals on the zones as a constant. This heterogeneous signal is processed by
a (heterogeneous) GNN, which will produce a vector for each AP (which we will
ignore in the training cost) in addition to a distribution over the zones’ nodes. Note
that information is propagated through all nodes and edges.
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4 Implementation and Experimental Results

4.1 Graph Construction

Before presenting the results we obtained with the proposed methods, let us discuss
how we built the graphs underlying them. Recall that in the graph nodes are the APs
(and maybe zones) and the edges’ weight should be related to the distance between
them. If a map with the position of the APs and zones is available, then we may
build the graph by considering the inverse (or some other decreasing function) of
the distance between them. Note however that we are using the RSSI from all APs
as the graph signal in order to infer the corresponding zone. It may well happen that
two points are very near to each other but, for instance, separated by a thick wall,
meaning that the RSSI as measured in each point may be significantly different.
It would then be more sensible to use an edge weight related to a “RF distance”

between points. To this end, we have used precisely the RSSI between them. If we
had access to the area where the positioning system is deployed, we may for instance
measure the received RSSI at a given AP from all the rest. However, this was not the
case here, as we had access to the datasets only.
We have thus proceeded as follows to construct the inter-AP graph. Given a certain

AP indexed by 𝑖, all X in the training set which have measurements for this AP are
considered and a certain (large) quantile of the corresponding set {x𝑖} is used as
a threshold. We then consider only the subset of measurements X for which x𝑖 is
above this value, the rationale being that these should correspond to measurements
that were taken near AP 𝑖. The edge’s weight between APs 𝑖 and 𝑗 is simply the mean
over this subset of the RSSI for AP 𝑗 (i.e. the mean of the corresponding {x 𝑗 } on
this subset).
Note that in the case when there are measurements for both bands (i.e. 𝐹𝑖𝑛 = 2)

we will obtain two weights per edge. Although this is easily accommodated for the
methods we discussed before, results do not change significantly when using either
of them or both, so we will focus on the results of using a single weight per edge
(the one corresponding to the 2.4GHz band). Furthermore, in order to work with
positive weights, we have subtracted the minimum RSSI value to all measurements
as a pre-processing step. Note that this way AP pairs may be disconnected on the
graph (with a weight equal to zero), effectively reflecting they are far apart. Finally,
note that the resulting graph is not necessarily symmetric.
In the case of the heterogeneous graph, edges between zones and APs can be

constructed similarly. We have simply considered as an edge weight the mean RSSI
as measured as that zone (minus the minimum RSSI). Furthermore, we have used 0
as the input signal on the nodes corresponding to zones (very small changes were
obtained using other alternatives).
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4.2 Datasets

In order to be able to compare the obtained results with those from other studies, two
datasets were used:MNAV (Bracco et al., 2020) andUJIIndoorLoc (Torres-Sospedra
et al., 2014). We now briefly describe them.

4.2.1 UJIIndoorLoc

This dataset can be found at Kaggle2 and was used as the official dataset of the
IPIN2015 competition (Torres-Sospedra et al., 2014). This dataset was designed to
test WLAN fingerprinting techniques. The data was acquired in three buildings of
the University of Jaume I, each with 4 floors or more and covering an area of over
110,000m2. In total, it has 19,937 training samples and 1,111 validation/test samples
acquired 4 months after the training data. The dataset was collected by more than 20
users using 25 different models of devices. In addition to RSSI measurement from
520 APs, each measurement is labeled with the corresponding building and floor,
along with its longitude and latitude (which were not taken into account here).
Note that in this case the positions of the APs are unavailable, highlighting the

practical importance of the method to construct the graph we discussed in Section
4.1. Furthermore, it was observed that the columns associated with some APs had
very few significant values, so they were not taken into account for the construction
of the graph (resulting in 253 APs).
Different definitions of zones may be explored in this case. For instance, a simple

and coarse case-scenario is to predict at which building is the device. We have
considered the more interesting scenario where we want to predict both the building
and the floor (resulting in 13 zones).

4.2.2 MNAV

The second dataset we considered here was created within the framework of (Bracco
et al., 2020), which sought to provide an indoor localization system to the Museo
Nacional de Artes Visuales (MNAV, National Museum of Visual Arts) in Uruguay,
using fingerprinting techniques with Wi-Fi. The dataset is available at Github3.
Furthermore, the article includes a map of the museum, including the position of the
deployed APs and the 16 areas that were defined.
The dataset has 10,469 measurements from 188 AP addresses, each labeled with

the corresponding zone. Inside the museum there are 15 APs, each one using both
the 2.4GHz and 5GHz bands, thus defining 30 of the 188 addresses available in the
dataset. The rest are APs outside the museum that the devices found while searching
for Wi-Fi networks. In this work, only the features corresponding to the APs within

2 https://www.kaggle.com/giantuji/UjiIndoorLoc
3 https://github.com/ffedee7/posifi_mnav/tree/master/data_analysis
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the museum were used, discarding the rest. We have used an 80%/20% split for
training and test purposes.

4.3 Experimental results

Let us now present the experimental results of the proposed methods, along with
some popular baselines. Regarding the latter, we have used KNN, a fully connected
Neural Net and the combination of methods discussed in (Bracco et al., 2020)
(which in turn is a small variation on the combination used in the popular FIND3
software4), implemented through Scikit-Learn (Pedregosa et al., 2011). All GNNs
were implemented using Pytorch Geometric (now PyG) (Fey and Lenssen, 2019).
Regarding the homogeneous case, the structure of the model consists of two layers

with an output dimension of 20, and a filter length of 𝐾 = 2 for UJIIndoorLoc and
𝐾 = 3 for MNAV. In particular, we used the implementation of the architecture
proposed in (Du et al., 2017) (cf. Eq. 2). After the readout we used an MLP with
the same size as the number of zones (cf. Figure 1). In the heterogeneous case we
had to resort to the simpler architecture studied in (Morris et al., 2019), basically a
single-tap filter (generalized to heterogeneous graphs in (Schlichtkrull et al., 2018) as
presented in Eq. 3), as the more general architecture we used before did not support
heterogeneous graphs in PyG. In any case, the final architecture has 4 layers, all with
an output dimension of 20 (except, naturally, the last one, which has dimension equal
to 1).
All hyper-parameters (including mini-batch sizes, learning rates and weight de-

cay) were obtained through cross-validation. All code generated for the experiments
is available at https://github.com/facundolezama19/indoor-localization-gnn.

4.3.1 On the size of the training set

Let us first discuss the overall test accuracy of the different methods on both datasets.
Table 1 presents these results. There are three important conclusions that may be
drawn from the resulting accuracies. Firstly, the performance of all methods is
relatively high, with a minimum accuracy of 87.7% for KNN on the UJIIndoorLoc
dataset. Secondly, that the homogeneous GNN systematically performs better than
the rest of the methods, particularly in the UJIIndoorLoc dataset. Figure 3 displays
the corresponding confusion matrix, where it can be seen that the bigger errors occur
when classifying zone 4 as 5 (corresponding to two floors of the second building).
Lastly, the heterogeneous GNN presents very competitive results, coming third on
the UJIIndoorLoc case (only 0.1% below the FCNN), and second on the MNAV one.
Note that, as stated for example in (Bracco et al., 2020), the fingerprint gathering

stage is time-consuming and represents a non-negligible part of the total cost of

4 https://github.com/schollz/find3
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Table 1: Classifier accuracy on both datasets.

Dataset
Method UJIIndoorLoc MNAV
KNN 87.7% 95.8%
FCNN 90.1% 95.9%
(Bracco et al., 2020) 87.9% 96.0%
GNN (homogeneous) 93.7% 97.2%
GNN (heterogeneous) 89.9% 96.8 %
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Fig. 3: Confusion matrix obtained by the homogeneous GNN on the UJIIndoorLoc
dataset.

the system. It is then pertinent to evaluate the merits of the different methods in
terms of how many training samples they require. To this end, we have considered
sub-samples of the training set with varying sizes (uniformly chosen among zones,
so that we do not incur in an imbalance) and measured the obtained accuracy on the
testing set.
In particular, for each sub-sample’s size (measured as a percentage of the original

training set’s size) we have constructed 10 random training sub-samples and report
the test results in Figure 4 in the form of a boxplot for both datasets. For the sake
of presentation clarity, as a baseline we are only showing KNN in this figure, since
results are similar or worse for the other methods. For instance, this case-study was
also carried out in (Bracco et al., 2020) for their method in the MNAV dataset,
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resulting in an accuracy as low as 90% when using 30% of the dataset, and 95%
when using 70%. For this dataset, all three methods in Fig. 4b obtain a similar
performance but using approximately 50% of the samples, and fare well above an
accuracy of 90% when using only 30% of the samples. The superiority of the GNN-
based method is clearer in the UJIIndoorLoc dataset (Fig. 4a), where we may see that
the homogeneous GNN’s performance is above that of the KNN, even when using
30% of the samples. On the other hand, the heterogeneous architecture requires
roughly 70% to surpass KNN.
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Fig. 4: Accuracy using different amount of fingerprints for KNN (left), homogeneous
GNN (middle) and heterogeneous GNN (right). GNN based methods maintain an
excellent performance even with very few training samples.

4.3.2 Propagation environment changes

One of the main drawbacks with fingerprint-based localization methods is the need
of updating the system in terms of the propagation environment. For instance, if
a wall is built it will change the RSSI received at certain zones, thus potentially
resulting in a lower performance of the localization method. This is remedied by
periodically taking new measurements (or at least when such changes occur), which
in turn further increases the cost of these deployments.
In this subsection, we will consider a variant of this scenario, where the RSSI

received from a certain AP is lower (by a certain constant) than expected. This is
achieved by simply decreasing the RSSI corresponding to this AP only on the test
set. This scenario may occur if, after the system is trained and deployed, for instance



On the application of Graph Neural Networks for Indoor Positioning Systems 15

the AP configuration is changed and starts transmitting at a lower power, its antennas
are rotated, or simply because it is lowered in height.
Figure 5 shows the results for the MNAV dataset when substracting 5 or 10

dBm to the received RSSI of a single AP. Each boxplot represents the resulting
15 accuracies (one for each AP in the dataset). Note how in this case KNN and
the one studied in (Bracco et al., 2020) are the methods that obtain the best results,
although they are closely followed by the homogeneousGNN. Furthermore, although
the heterogeneous graph does perform competitively well in the -5 dBm example,
its performance is significantly degraded when the offset is -10 dBm. Finally, it
is interesting to highlight that FCNN is the method that performs worst in these
examples. This shows the importance of considering the structure of the data in the
form of the underlying inter-APs graph.
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Fig. 5: Accuracy when an offset of -5 dBm (left) or -10 dBm (right) is applied to the
received power of one AP during testing only. Although KNN and (Bracco et al.,
2020) perform best, the homogeneous GNN method obtains competitive results.

Note that the way we constructed the graph (cf. Sec. 4.1) the tag of which zone
correspond to each measurement is not necessary. This means that we may actually
update the edges’ weight as clients send the measured RSSI (assuming a centralized
scheme, where clients send their measurements and the server answers with the
estimated zone). A reasonable question is to what point do this updated GSO affects
the resulting accuracy in this scenario. Our experiments show a somewhat marginal
gain, of approximately 1%.

4.3.3 AP failures

Let us now consider a typical failure scenario, where one or several APs cease
operation. This may happen due to a faulty AP or an electrical power problem on the
building. In the latter case, it would affect a group of APs, which are not necessarily
all of the ones used for localization. Although this type of problems are typically
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transient and (should) last for a limited amount of time, it is important to verify if
the system still works reasonably well during these problems.
Note that this AP failure case-scenario may be considered as a variation of the

one we studied in the previous sub-section, where we are basically dropping to zero
the transmitting power of a certain group of APs. Quiet interestingly, results show
that differently from that case, KNN now performs much worse.
We will consider that a certain number of APs fails (1, 2 or 3), which is simulated

by simply placing the minimum default RSSI on the entries corresponding to the
faulty APs on the test dataset. All possible combinations of APs are considered, and
results are reported in the form of a boxplot in Fig. 6.
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Fig. 6: Test accuracy on theMNAVdataset when a 1 (left), 2 (middle) or 3 (right) APs
fail. All possible combinations of faulty APs are considered. GNN-based methods
(particularly the heterogeneous one) perform much better than the baseline.

The main conclusion to draw from Figure 6 is that GNN-based methods tolerate
much more gracefully AP failures. Whereas with a single AP failure these methods
may still obtain over 90% accuracy (and this may even be the case in the two AP
failure scenario, depending on which APs fail), this is not at all the case for baselines
(only KNN is shown for the sake of clarity of the figure, but similar results were
obtained with the other methods). Even in the case of a single failure, results are
typically below 90%,whereas with twoAP failures they obtain a performance similar
to, or even worse than, the GNN-based methods when three APs failed.

5 Conclusions

In this chapter we have explored the possibility of applying graph-based learning
methods, Graph Neural Networks (GNNs), to the indoor localization problem. Dif-
ferently to traditional methods, the rationale was to consider the structure of the data
a priori. We have presented the necessary theoretical background, and discussed two
ways of constructing the underlying graph, neither of which require the map of the
deployment. One of these methods results in a so-called heterogeneous graph, since
both APs and zones are now included in the graph.
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We have then conducted a thorough performance evaluation of the homogeneous
and heterogeneous methods, including two datasets, and comparing them to popular
methods. Results show that GNNs achieves systematically better results. We have
furthermore evaluated the practical advantages of these methods, where for instance
they gracefully tolerate faulty APs.
In any case, these results are promising and encourage further research on using

GNNs to approach indoor localization problems. For instance, other network archi-
tectures may be explored (e.g. attention-based), or include temporal information to
the model.
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