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Abstract

This thesis is framed in the study of partially hyperbolic systems (PH). Within these
systems, we cover three different topics: dynamical coherence (integrability of the
center-stable and center-unstable bundles), robust transitivity and accessibility.

Concerning dynamical coherence, we prove that in certain isotopy classes, the ex-
istence of a PH diffeomorphism dynamically coherent implies that every diffeomor-
phism inside this isotopy class is dynamically coherent as well.

With respect to robust transitivity we present a new definition of SH (some hy-
perbolicity) property, which is an extension of the one introduced by Pujals and Sam-
barino. We prove that this new definition is C! open and then we give a condition that
guarantees that certain PH diffeomorphisms with SH property are C! robustly transi-
tive (we present a similar result in the flow case). We then build new examples of C!
robustly transitive derived from Anosov diffeomorphisms.

Finally regarding the accessibility property, we worked on the Pugh-Shub acces-
sibility conjecture, which says that the set of PH diffeomorphisms which are stably
accessible is C" open and dense among PH diffeomorphisms. In a joint work with M.
Leguil, we prove that the conjecture is true, for the case of PH diffeomorphisms which
are stably dynamically coherent, with two dimensional center bundle and a strong
bunching condition.
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Resumen

Esta tesis se enmarca dentro del estudio de los sistemas parcialmente hiperbélicos
(PH). Dentro de estos sistemas, nos enfocamos en tres aspectos: la coherencia dindmica
(integrabilidad de los fibrados centro-estable y centro-inestable), la transitividad ro-
busta y la accesibilidad.

Respecto a la coherencia dindmica, se prueba que en ciertas clases de isotopia, la
existencia de un difeomorfismo PH dindmicamente coherente implica que todo difeo-
morfismo dentro de esta misma clase de isotopia, también es dindmicamente coher-
ente.

Sobre la transitividad robusta se presenta una nueva definiciéon de SH (some hy-
perbolicity) que generaliza a la introducida por Pujals y Sambarino. Probamos que
esta nueva SH es una propiedad C! abierta y luego se dan condiciones que garanti-
zan que un difeomorfismo PH con propiedad SH sea C! robustamente transitivo (se
presenta un resultado similar para el caso de flujos). Luego se construyen ejemplos
nuevos de difeomorfismos derivados de Anosov C! robustamente transitivos.

Finalmente respecto a la accesibilidad, trabajamos en la conjetura de Pugh-Shub.
Esta conjetura dice que el conjunto de los PH establemente accesibles es C” abierto
y denso dentro de los sistemas PH. En un trabajo en conjunto con Martin Leguil,
probamos que la conjetura es cierta para el caso de PH establemente dindmicamente
coherente, con fibrado central de dimensién 2 y una condicién de center bunching
fuerte.
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Chapter 0

Introduction and presentation of the
results

0.1 Introduction (English)

0.1.1 A brief introduction

This thesis is framed in the theory of dynamical systems, and more precisely in the
study of partially hyperbolic systems. The main purpose of dynamical systems is to
understand the asymptotic behaviour of orbits of a given law.

One may say that it all started with the law of universal gravitation, where Newton
gave the differential equations that govern the motion of planets. The fundamental
question was (and still is!) to determine if the solar system is stable in the long run.
Now, one thing is to know the laws that govern the motion, and another completely
different is to know the solutions or trajectories of this system. The problem is that,
the vast majority of differential equations are not easily solvable, even when they do
have solutions.

It was H. Poincaré when working on the three body problem, who realized that
even the most simple equations lead to chaotic or unpredictable behaviour. He then
proposed the qualitative study instead of the quanitative one, i.e. the study of the
geometry or topology of the solutions, instead of the numerical or analytic approach,
which were the usual methods by that time.

This unpredictability discovered by H. Poincaré in the three body problem was the
cornerstone of dynamical system theory but it was not until the 60’s with the appear-
ance of the hyperbolic theory that it took form as a real subject. It's importance lies in
the fact that uniform hyperbolicity turned out to be synonymous of chaos. This theory
of hyperbolic dynamics was initiated with the works of Anosov, Sinai and Smale, and
continued by Bowen, Franks, Manning, Mafié, Newhouse and Palis, just to name a
few.

Since then, hyperbolic dynamics has been widely studied, and despite some im-
portant questions that remain open, the theory is practically closed. In part thanks to
this success, dynamicists tried to push ideas form this theory to a more general set-
ting, and partially hyperbolic systems arise as one natural generalization of uniform
hyperbolicity (although there are other extensions like non-uniform hyperbolicity).

As the title says, the purpose of this thesis is to contribute to the study of partially
hyperbolic systems and in particular we will cover three different topics which are
at the core of the theory. The first one is the integrability of the center distribution,
known as dynamical coherence, the second is robust transitivity, and the third is stable
accessibility, and therefore stable ergodicity.

In what follows we are going to present these contributions.
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0.1.2 Dynamically coherence

As we mentioned above, the theory of hyperbolic dynamical systems has been very
fruitful since its appearance. Notably the results of D. A. Anosov [Ano67] about struc-
tural stability and stable ergodicity of globally hyperbolic diffeomorphisms, the works
of J. Franks [Fra70], [Fra69] and A. Manning [Man74] about the classification of the
(today called) Anosov diffeomorphisms on nilmanifolds, the codimension one case
obtained by S. Newhouse [New?70] and later the proof of the C! stability conjecture
by R. Mafié [Man87a] are perhaps the most paradigmatic or illustrative results of the
theory.

A fundamental tool in the proofs of these results is the stable manifold theorem,
i.e. the integrability of the stable E° and unstable E* bundles of a uniformly hyperbolic
diffeomorphism. Since these bundles are transversal, their corresponding integrated
foliations fill the space at least locally.

For the partially hyperbolic case, given a diffeomorphism f : M — M with a
splitting of the form TM = E} @ E} © E, it is known that the strong bundles E%, E¥
integrate into unique f-invariant foliations Wi and Wy (see [HPS77]) and the same
result holds for flows. However, the center bundle E$ can have many different be-
haviours and one hopes to be able to integrate the center bundle too, although this is
not always the case. This represents the first important difference between global and
partial hyperbolicity.

We say that a partially hyperbolic diffeomorphism f is dynamically coherent if the
bundles E} ® E} and E]C( ® E? are integrable (and hence, the center bundle EJC( is in-
tegrable too). Otherwise we say that f is dynamically incoherent. The first example
of dynamically incoherent partially hyperbolic diffeomorphism was built in [Wil98]
(see also [BW10]) on a six dimensional nilmanifold with 4-dim center bundle. Later
in [HHU16], the authors built an example on the torus T3 (with 1-dim center bun-
dle). In the later example on the 3-torus, the lack of differentiability on the bundles
breaks the integrability of the center bundle, although there are curves tangent to E¢
by Peano’s theorem. In the 6-dimensional manifold example, despite having C! bun-
dles, the Frobenius condition fails and thus no integrability is possible on the center
bundle (we will see this example in detail in Subsection 1.3.2).

It still unknown weather dynamical coherence is a C! open condition (a related
property is plaque expansivity and we will mention this on Section 1.4). For large
classes of maps, in [FPS14] the authors obtained dynamical coherence for entire iso-
topy classes of linear Anosov diffeomorphisms on TV. This is the first result where the
integrability of the center-stable and center-unstable bundles is obtained for a whole
isotopy class of maps (the nilmanifold case of this result is proven in [Pifi]).

Recently in [Bar+] it is proven that in certain Seifert 3-manifolds, every partially
hyperbolic diffeomorphism isotopic to the identity is dynamically coherent. On the
other hand, in [Bon+20] the authors constructed new examples of partially hyperbolic
diffeomorphisms which are robustly dynamically incoherent, and more recently in
[Bar+21] the authors obtained entire isotopy classes of dynamically incoherent par-
tially hyperbolic diffeomorphisms. All these results are somehow surprising, since on
the one hand integrability is hard and quite technical to get, and on the other hand
there is a lot of freedom to move inside isotopy classes (and there is no assumption on
the behaviour on center bundles despite domination).

By the previous evidence, it seems that integrability (or not) of the center-stable
and center-unstable bundles is a phenomenon that depends directly on the isotopy
class of the diffeomorphism.
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Our first contribution in this thesis is to go towards this ideas by generalizing
the mechanisms obtained by T. Fisher, R. Potrie and M. Sambarino in [FPS14] to a
more general setting. In that paper the authors proved that given a linear Anosov
A : T? — T, then every partially hyperbolic diffeomorphism f isotopic to A (such
that the isotopy is inside the set of partially hyperbolic diffeomorphisms) is dynami-
cally coherent.

The first thing we do in this chapter is to capture the main ideas of that result and
we provide a different approach to the problem in which similar techniques can be
applied. In particular we are able to obtain dynamically coherence in entire isotopy
classes for new kind of diffeomorphisms and manifolds (we will see these new ex-
amples in Subsection 2.1.2). We want to mention that there is an intrinsic technical
difficulty in this passage from one case to another and moreover, there is a wrong
proof in that paper, that we manage to solve it in our general context.

Let us give the following definition in order to state precisely the main theorems
of this chapter. Given a dynamically coherent partially hyperbolic diffeomorphism
f M — M we will say that f is fibered, if it verifies the following two conditions:

* the foliations VNVJES and VN\/}“‘ have global product structure in the universal cover
M, and the same happens with ch” and W,

e the induced map in the quotient by center leaves f. : M/ VV/JE — M/ )7\775 is a
hyperbolic homeomorphism.

In fact we are going to call f fibered if it checks these two conditions, and in addition,
it checks another two technical properties. We are going to give these technical condi-
tions at the beginning of Chapter 2, but basically the above two properties capture the
essence of what we mean with fibered partial hyperbolicity.

Notice that every linear Anosov diffeomorphism trivially checks the above defini-
tion (the center bundle can be any regrouping of intermediate bundles) and therefore
linear Anosov are fibered partially hyperbolic diffeomorphisms (hence we obtain the
result of [FPS14] as a particular case). We will see this, and different examples of
fibered partially hyperbolic diffeomorphisms in Subsection 2.1.2.

Our main theorem here is the following:

Theorem A. Let f : M — M be a fibered partially hyperbolic diffeomorphism. Let g be
a partially hyperbolic diffeomorphism isotopic to f such that the isotopy is inside the set of
partially hyperbolic diffeomorphisms (preserving the dimension of the bundles). Then g is
dynamically coherent.

From the proof of this theorem, we will be able to prove a classification result. Let
us first say that two dynamically coherent partially hyperbolic diffeomorphisms f and
g are leaf conjugate if there exists a homeomorphism h: M — M, called a leaf conjugacy,
such that # maps a f-center leaf to a g-center leaf, and h o f (WJE()) =go h(WJi())
We then prove the following.

Theorem B. Let f : M — M be a fibered partially hyperbolic diffeomorphism. Then, every
partially hyperbolic g which is isotopic to f such that the isotopy is inside the set of partially
hyperbolic diffeomorphism is leaf conjugate to f.

0.1.3 Robust transitivity

In short, dynamical system theory is the study of motion and we want to understand
the behaviour of most orbits. Tipically the structure of the orbits is very complicated,
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for example in some cases there are orbits that almost fill the whole space, making it
indecomposable from the dynamical point of view. That is what is called transitivity:
a dynamical system is said to be transitive if it has a dense forward orbit.

Even more interesting are the systems that present a dynamical feauture that is
stable or robust (meaning that it persists under perturbations). We say that a dynam-
ical system is robustly transitive, if there is a neighbourhood of the system (in some
particular topology) such that every system in this neighbourhood is transitive.

The first example of a robustly transitive map was given by D. A. Anosov in
[Ano67], where he proved that diffeomorphisms which posses a global hyperbolic
structure are stable under C! perturbations. As a corollary, every transitive diffeomor-
phism of this type, like a hyperbolic matrix in the torus, is in fact C! robustly transitive.

Thanks to this result, globally hyperbolic diffeomorphisms are now called Anosov
diffeomorphisms. In particular we call linear Anosov diffeomorphisms to the exam-
ples given by hyperbolic matrices on the torus (see Example 1.3.1) or hyperbolic auto-
morphisms on nilmanifolds (Example 1.3.2).

Let us mention that every Anosov diffeomorphism on a nilmanifold is conjugated
to a linear Anosov, and in consequence it must be transitive ([Fra70],[Man74]). How-
ever is still an open problem to determine which manifolds support Anosov diffeo-
morphisms, and if every Anosov diffeomorphism must be (robustly) transitive.

Years later M. Shub [Shu71] constructed the first non-Anosov C! robustly transitive
diffeomorphism on the torus T*. This example is a skew product (see Example 1.3.4)
of a torus T? over an Anosov on T? with two fixed points. Shub changed carefully the
index of one fixed point in order to break the uniform hyperbolicity. A few years later
R. Mafié improved this result and introduced an example on T3 [Mafi78]. Mafié’s idea
was to bifurcate the fixed point of a linear Anosov into three fixed points with different
indexes and keeping the center manifold robustly dense. Both Shub’s and Mafié’s
examples are isotopic to linear Anosov diffeomorphisms and by that reason they’re
called derived from Anosov examples (from now on DA maps, see Example 1.3.6).

Another way to construct robustly transitive diffeomorphisms was introduced by
C. Bonatti and L. Diaz in [BD96]. Their technique is based on the existence of some
particular hyperbolic subsets called blenders. With this technique, the authors were
able to build examples C!-close to time-t maps of Anosov flows (hence, isotopic to
the identity) as well as examples C!-close to the product of Anosov times the identity
(therefore, with trivial action on the center).

All these non-hyperbolic examples share the feauture of being partially hyperbolic
and this is not a coincidence. In [Maf82] R. Mafié proved that every C! robustly tran-
sitive diffeomorphism on a surface must be conjugated to a linear Anosov (and there-
fore the manifold must be the torus T? by [Fra70]). In the three-dimensional case, L.
Diaz, E. Pujals and R. Ures [DPU99] proved that C! robust transitivity implies par-
tial hyperbolicity (here the definition of partially hyperbolic is a little more general).
Finally C. Bonatti, L. Diaz and E. Pujals generalized this result to higher dimensions
by proving that C! robust transitivity imply dominated splitting [BDP03]. We want
to remark that in [BV00] C. Bonatti and M. Viana built a C! robustly transitive diffeo-
morphism in the torus T* that is not partially hyperbolic (although it necessarily has
dominated splitting). In short, a dynamical assumption like robust transitivity implies
strong geometric consequences.

A closely related property with transitivity is the minimality of the strong sta-
ble/unstable foliations. We say that a foliation F in a manifold M is minimal if every
leaf is dense, i.e. F(x) = M for every x € M. It’s easy to see that if the strong stable
(or unstable) foliation of a partially hyperbolic diffeomorphism is minimal, then the
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diffeomorphism is transitive. Therefore, robust minimality of strong stable/unstable
foliations implies robust transitivity.

In [PS06] the authors gave conditions to guarantee the robustness of these folia-
tions in a C! neighbourhood. They were looking for a (robust) property that in addi-
tion to transitivity will imply robust transitivity. In that spirit they introduced what
is called the SH (Some hyperbolicity) property. With this approach, the authors proved
that SH property in addition to minimality of the strong unstable foliation implies C?
robust minimality of the strong unstable foliation (and therefore C! robust transitiv-
ity). With this technique, they re obtained the examples of Shub’s and Maré’s. We
want to mention here, that one disadvantage of this approach is that it can not be
applied to symplectic diffeomorphisms.

Recently in [HUY22], the authors gave a different condition to guarantee the C?
robust minimality of the strong stable foliation for derived from Anosov diffeomor-
phisms in the three torus (and in consequence the C! robust transitivity). Moreover,
with this approach they built an example with both stable and unstable foliations C?
robustly minimal (the existence of such an example was unknown).

Despite these remarkable results, robustly transitive diffeomorphisms are not yet
very well understood. In particular, in all examples mentioned above, the dominated
splitting they have (which they must have according to [BDP03]), it is coherent with
the dominated splitting of its Anosov part, i.e. the splitting has the same indexes as the
linear Anosov. Recently R. Potrie in [Pot12] (page 152) constructed a robustly transi-
tive example on T® with dominated splitting, but in this case the example’s dominated
splitting is not coherent with its Anosov part'.

Our contribution in this part of the thesis is the introduction of a more general con-
cept of SH property, that we call SH-Saddle property. This new definition is a natural
generalization of the previous SH definition and as a consequence, it can be applied
to a larger number of cases. In particular, it has the advantage of being applicable in
the symplectic context (something that the previous definition couldn’t).

We want to mention that recently P. Carrasco and D. Obata showed in [CO21] that
the example introduced in [BC14]is C 1 robustly transitive. This example although it is
a skew product on T, it has the particularity of having mixing behaviour on the cen-
ter (which is two-dimensional) and thus makes it a new example. The authors men-
tion in the paper that this example can’t have the SH property (the original version).
However, it follows directly from the proofs of their article, that the example has the
SH-Saddle property. In consequence, it may be the case that every robustly transitive
partially hyperbolic diffeomorphism has SH-Saddle property of some index.

Back to our constributions, by applying this new approach we give a sufficient
condition for a derived from Anosov diffeomorphism to be C! robustly transitive. In
fact we are able to produce new examples of C! robustly transitive diffeomorphisms.
In particular, we can build examples for any dimension with as many different be-
haviours on center leaves as desire and moreover, the center bundle will not have a
splitting into two subbundles. In consequence, the dominated splitting of this map is
not going to be coherent with the hyperbolic splitting of the original linear Anosov.

Theorem C. Let A € SL(d, Z) be a hyperbolic matrix such that it has a partially hyperbolic
splitting of the form R? = E*° @ E¢ @ E** and let k = dimE®. Then thereis f : T — T9a C!
robustly transitive partially hyperbolic diffeomorphism isotopic to A with k + 1 fixed points:
Po, P1, - - -, Pk such that: index(p;) = j + dimE® for every j =0,... k.

Moreover, the center bundle E% does not admit a dominated splitting. In particular, the
splitting of f is not coherent with the hyperbolic splitting of A.

lonce again, the definition of partial hyperbolicity here is more general
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We then move to the flow case, and translate the definition of SH-Saddle property
from diffeomorphisms to flows. As we mention above, one advantage of our new def-
inition of SH property is that it can be applied to the symplectic context. In particular
we will be interested in geodesic flows, which always preserves a symplectic form.

There are many similarities between flows and diffeomorphisms concerning ro-
bust transitivity. For example, D. A. Anosov also showed in [Ano67] that, like in the
diffeomorphism case, every hyperbolic flow is C! stable under perturbations. In con-
sequence, hyperbolic flows which are transitive, are in fact C! robustly transitive. By
this reason globally hyperbolic flows are now called Anosov flows.

The main example of an Anosov flow is the geodesic flow of a manifold of negative
curvature (see Example 1.3.3). Moreover, for surfaces of —1 curvature the geodesic
flow is in fact transitive, and since Anosov flows are C! stable, this example is C!
robustly transitive. However, not every Anosov flow is transitive. Examples of non
transitive Anosov flows were given by J. Franks and R. Williams in [FW80].

Another way to construct examples is given by suspensions (see Example 1.3.5).
Since the suspension of a C! robustly transitive diffeomorphism gives a C! robustly
transitive flow, we can construct many examples by taking the suspension of every
robustly transitive diffeomorphism mentioned above.

Concerning classification results, the picture is a little different. When dim(M) =
3, C. I. Doering proved that every C! robustly transitive vector field must be a tran-
sitive Anosov flow [Doe87]. This is not true in higher dimensions, for example the
suspension of Mafi¢’s derived from Anosov diffeomorphisms gives a non Anosov C!
robustly transitive flow. Notice that the suspension of the Bonatti-Viana example gives
a C! robustly transitive flow which has no dominated splitting at all. However C. Bon-
atti, N. Gourmelon and T. Vivier [BGV06], [Viv06] proved that the linear Poincaré flow
of a C! robustly transitive flow must admit a dominated splitting. Once again, robust
transitivity implies strong consequences.

In [Rug97] R. O. Ruggiero proved that if the geodesic flow ¢; : T'"M — T'M
of a compact, n-dimensional manifold without conjugate points is expansive, then
it is topologically transitive. Our next theorem says that if in addition the flow is
partially hyperbolic and with the SH-Saddle property, then it is robustly transitive.
This theorem is motivated by the article of F. Carneiro and E. Pujals [CP14], where the
authors built the first example of a transitive partially hyperbolic flow that is not an
Anosov flow. This example verifies the SH-Saddle property although is not so clear
that it is expansive and has no conjugate points.

Theorem D. Let gg be a C* Riemannian metric on a compact differentiable manifold M
with no conjugate points and let ¢; : T'M — T'M be its geodesic flow. Suppose that @y is
expansive with stable sets W*® and unstable sets W". Suppose that in addition ¢, is partially
hyperbolic with a splitting T(T*M) = E* & E° @ (X) & E", and it has the SH-Saddle
property of index (dy,dy) where di = dimW?® — dimE®*® and dy = dimW*" — dimE"". Then
@t is C! robustly transitive.

0.1.4 Accessibility and ergodicity

In 1871 L. Boltzmann stated his ergodic hypothesis when he was studying the motion
of gases and thermodynamics. He wanted a property that could let him “characterize
the probability of a state by the average time in which the system is in this state". Since
then, ergodicity has played a key role in dynamical systems, physics and probability.
Recall that a dynamical system f: M — M preserving a finite measure m is ergodic if
every f-invariant set has zero or total measure.
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After Birkhoff’s ergodic theorem, E. Hopf proved in 1939 the ergodicity of the
geodesic flow on a surface of constant negative curvature, introducing an argument
to get ergodicity which is now called Hopf’s argument [Hop39]. Twenty eight years
later, D. A. Anosov [Ano67] improved Hopf’s results by proving the ergodicity of
the geodesic flow on surfaces of negative (non necessarily constant) curvature and
compact manifolds of constant negative curvature. He also showed the ergodicity of
uniformly hyperbolic diffeomorphisms, now called Anosov diffeomorphisms. Since
hyperbolicity is a C!-robust condition, Anosov diffeomorphisms became the first ex-
ample of stably ergodic diffeomorphisms, that is, a C" ergodic diffeomorphism (pre-
serving a measure m) that remains ergodic after a C!-small perturbation.

For almost thirty years Anosov diffeomorphisms were the only known examples
of stably ergodic systems, until 1995 when M. Grayson, C. Pugh and M. Shub [GP594]
proved the C? stable ergodicity of the time-one map of the geodesic flow on surfaces
of constant negative curvature, hence the first non-Anosov stably ergodic example.
Despite being non globally hyperbolic, this example is partially hyperbolic. With the
evidence of this work they formulated in a 1995 conference [PS96] the following con-
jecture:

Conjecture 0.1.1 (Pugh-Shub’s stable ergodicity conjecture [PS96; PS97]). On any com-
pact connected Riemannian manifold, stable ergodicity is C"-dense among the set of volume
preserving partially hyperbolic diffeomorphisms, for any integer r > 2.

They also proposed a program in order to prove this, and split the conjecture into
two conjectures:

Conjecture 0.1.2 (Accessibility implies ergodicity). A C? partially hyperbolic volume pre-
serving diffeomorphism with the essential accessibility property is ergodic.

Here, essential accessibility is a measure-theoretic version of the accessibility prop-
erty.

Conjecture 0.1.3 (Density of accessibility). For any integer r € [2,+o0], stable accessibility
is open and dense among the set of C" partially hyperbolic diffeomorphisms, volume preserving
or not.

There has been a lot of progress on these conjectures, mostly depending on the
topology and the dimension of the center bundle.

The main conjecture was proven in [HHUO08] in the case where dim E¢ = 1 and
for the C" topology (in fact the authors showed C*-density). Recently in [ACW16] the
conjecture was proved in its full generality (any center dimension) for the C! topol-
ogy. Despite these remarkable results, in the C" case for r > 2 the conjecture is far
from being solved. Recently, M. Leguil and Z. Zhang [LZ22] obtained C"-density of
stable ergodicity for partially hyperbolic diffeomorphisms (for any center dimension)
with a strong pinching condition, introducing a new technique based on random per-
turbations.

With respect to Conjecture 0.1.2, C. Pugh and M. Shub [PS00] proved that a C?
volume preserving partially hyperbolic diffeomorphism that is dynamically coherent,
center bunched and with the essential accessibility property is ergodic. The center
bunching condition is required to compensate the lost of transversality between the
strong stable and strong unstable bundles (due to the existence of a center bundle).
The state-of-the-art on Conjecture 0.1.2 is the result of K. Burns and A. Wilkinson
[BW10] where the authors improved Pugh-Shub’s result by removing the dynamical
coherence hypothesis, and weakening the center bunching condition. In other words,
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by these works, a possible strategy to show that stable ergodicity is typical in the C”
topology would be to go further towards Conjecture 0.1.3, i.e., that stable accessibility
is C"-dense.

Regarding Conjecture 0.1.3, in [DW03; ACW22] stable accessibility is obtained for
a Cl-dense set of e all e volume preserving e symplectic partially hyperbolic diffeo-
morphisms. The authors strongly use C! techniques which seem hard to generalize to
other topologies.

For the dim E¢ = 2 case, there has been many results lately. The first one is the
remarkable result by F. Rodriguez-Hertz [Her05] where he classified the center acces-
sibility classes and obtained stable ergodicity of certain automorphisms on the torus
T .= R%/Z°. Elaborating on these ideas, in [HHS17] V. Horita and M. Sambarino
proved stable ergodicity for skew-products of surface diffeomorphisms over Anosov
diffeomorphisms. Recently, A. Avila and M. Viana [AV20] obtained C 1-openness of ac-
cessibility and C”-density for certain fibered partially hyperbolic diffeomorphisms with
2-dimensional center bundle using different techniques.

The last part of this thesis is a joint work with M. Leguil [LP], where we made a
contribution to the accessibility conjecture (Conjecture 0.1.3) by proving the C"-density
of accessibility for (stably) dynamically coherent partially hyperbolic diffeomorphism
with 2-dimensional center bundle which satisfy some strong bunching condition, for
any integer r > 2 (we will give this condition at the begining of Chapter 4). Given
a Riemannian manifold M of dimension d > 4 and an integer r > 2, we denote by
PHL(M) to the set of these diffeomorphisms. We also denote by PH. (M, Vol) C
PH. (M) to the subset of those that preserve volume.

Theorem E ([LP]). For any partially hyperbolic diffeomorphism f € PH, (M), resp. f €
PH.(M,Vol), with dim E; = 2, that is dynamically coherent and plaque expansive, and
for any § > 0, there exists a partially hyperbolic diffeomorphism ¢ € PH' (M), resp. § €
PH"(M,Vol), with dcr(f, g) < 0, such that g is stably accessible.

In particular, by the work of Burns-Wilkinson [BW10], this implies that for any partially
hyperbolic diffeomorphism f € PH' (M, Vol), with dim E = 2, that is dynamically coherent
and plaque expansive, and for any 6 > 0, there exists ¢ € PH" (M, Vol), with dcr (f, g) < 6,
such that g is stably ergodic.

One intermediate step is to show that trivial accessibility classes can be broken by
C’-small perturbations. This part of the proof also holds when the center is higher
dimensional and only requires center bunching.

Theorem F ([LP]). For any partially hyperbolic diffeomorphism f € PH' (M), resp. f €
PH' (M, Vol), with dim EJC( > 2, that is center bunched, dynamically coherent, and plaque

expansive, and for any § > 0, there exists a partially hyperbolic diffeomorphism g € PH' (M),
resp. § € PH"(M,Vol), with dcr (f,g) < 6, such that Cy(x) is non-trivial, for all x € M.

We want to mention here that Theorem F was obtained in [HS17] (Theorem 2) for
skew products over Anosov diffeomorphisms. The main difference between these two
cases is that in their context, the center leaves are all compact and in our setting we
don’t make any assumption on the topology of the center leaves, although the ideas
involved are quite similar.
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0.2 Introducciéon (Espaiiol)

0.2.1 Una breve introducciéon

Esta tesis se enmarca en la teoria de los sistemas dindmicos, mas precisamente en el
estudio de los sistemas parcialmente hiperbdlicos. El objetivo principal de los sistemas
dindmicos es entender el comportamiento asintético de las 6rbitas dadas por una ley
de movimiento.

Podria situarse el comienzo de los sistemas dindmicos con el descubrimiento de
la ley de la gravitaciéon universal de Newton. La misma nos brinda las ecuaciones
diferenciales que gobiernan el movimiento de los planetas. La pregunta era en ese
momento (y todavia es hoy dia!) determinar si el sistema solar es estable en el largo
plazo. Ahora, una cosa es conocer las leyes que gobiernan el movimiento, y otra com-
pletamente diferente es conocer las soluciones o trajectorias del sistema. El problema
es que la mayoria de las ecuaciones diferenciales no son féciles de resolver, incluso
cuando se sabe que éstas tienen solucién.

Cuando H. Poincaré estaba trabajando en el problema de los 3 cuerpos, se dio
cuenta de que hasta las mas simples ecuaciones implicaban un comportamiento im-
predecible o cadtico. A partir de ese descubrimiento, propuso el estudio cualitativo
de las ecuaciones diferenciales en lugar del estudio cuantitativo, i.e. el estudio de la
geometria o topologia de las soluciones, en lugar del enfoque numérico o analitico,
que era el usual en esa época.

Esta impredictibilidad descubierta por H. Poincaré en el problema de los tres cuer-
pos fue la piedra fundamental de la teoria de los sistemas dindmicos, pero no fue hasta
la década del 60 con la aparicion de la teorfa hiperbélica que tomé forma propia. Su
importancia radica en que la hiperbolicidad result6 ser sinénimo de caos. La teoria
hiperbélica de los sistemas dindmicos fue iniciada con los trabajos de Anosov, Sinai
y Smale, y luego continuada por Bowen, Franks, Manning, Mafié, Newhouse y Palis,
por nombrar algunos.

Desde entonces la dindmica hiperbélica ha sido ampliamente estudiada, y a pesar
de algunos problemas importantes que se mantienen abiertos, la teoria esta practica-
mente cerrada. En parte gracias a este éxito, los dinamistas han intentado empujar
las ideas de esta teoria a otros contextos mds generales, y la hiperbolicidad parcial
aparece como una generalizacion natural de la hiperbolicidad uniforme (aunque hay
otras generalizaciones como por ejemplo la dindmica no uniformemente hiperbélica).

Como dice el titulo, el prop6sito de esta tesis es contribuir al estudio de los sistemas
parcialmente hiperbdlicos, y en particular nos vamos a enfocar en tres aspectos difer-
entes que estan en el corazén de la teorfa. El primero es la integrabilidad del fibrado
central, conocido como coherencia dindmica, el segundo es la transitividad robusta y
el tercero es la accesibilidad, y por ende la ergodicidad.

A continuacién vamos a presentar estas contribuciones.

0.2.2 Coherencia dinamica

Como mencionamos recién, la teoria hiperbdlica de los sistemas dindmicos ha sido
fructifera desde su aparicion. Los resultados de D. A. Anosov [Ano67] sobre la esta-
bilidad estructural y la estabilidad ergédica de los difeomorfismos globalmente hiper-
bélicos, los trabajos de J. Franks [Fra70], [Fra69] y A. Manning [Man74] sobre la clasi-
ficacién de los (hoy llamados) difeomorfismos de Anosov en nilvariedades, el caso de
codimensién uno obtenido por S. Newhouse [New?70] y la prueba de la conjetura de
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estabilidad C! de R. Mafé [Mafi87a] son quizds los resultados méas paradigmaticos o
ilustrativos de la teoria.

Una herramienta fundamental en las demostraciones de estos resultados es el teo-
rema de la variedad estable, i.e. la integrabilidad de los fibrados estable E° e in-
estable E" de un difeomorfismo uniformemente hiperbdlico. Como estos fibrados son
transversales, sus correspondientes foliaciones llenan el espacio por lo menos local-
mente.

En el caso de la hiperbolicidad parcial, dado un difeomorfismo f : M — M con una
descomposiciéon de la forma TM = E} © Ef © Ef, es sabido que los fibrados fuertes
E} y Ef integran a foliaciones tnicas y f-invariantes Wg y Wy (ver [HPS77]) y el
mismo resultado aplica para flujos. Sin embargo, el fibrado central E% puede tener
diferentes comportamientos y uno esperaria poder integrar el fibrado central también,
aunque no siempre es posible. Esto representa la primera gran diferencia entre la
hiperbolicidad parcial y la hiperbolicidad global.

Decimos que un difeomorfismo parcialmente hiperbdlico f es dindmicamente coher-
ente si los fibrados E} © Ef y Ef @ Ey son integrables (y en consecuencia, el fibrado
central E$ también es integrable). En caso contrario decimos que f es dindmicamente
incoherente. El primer ejemplo de un difeomorfismo parcialmente hiperbdlico dindmi-
camente incoherente fue construido en [Wil98] (ver también [BW10]) en una nilvar-
iedad de dimension seis con un fibrado central de dimensién cuatro. Tiempo después
en [HHU16], los autores construyen un ejemplo en el toro T> (con fibrado central uni-
dimensional). En este tltimo ejemplo en el 3-toro, la falta de regularidad rompe con la
integrabilidad del fibrado central, aunque siempre existen curvas tangentes a E¢ de-
bido al teorema de Peano. En el ejemplo en la variedad de dimensién 6, a pesar de
tener fibrados C!, la condicién de Frobenius falla y ninguna integrabilidad es posible
en el fibrado central (veremos este ejemplo en detalle en la Subseccion 1.3.2).

Hasta la fecha no es posible determinar si la coherencia dindmica es una propiedad
C! abierta (una propiedad relacionada es la expansividad por placas, mencionaremos
esto en la Seccién 1.4). Para grandes conjuntos de mapas, en [FPS14] los autores ob-
tienen coherencia dindmica en clases enteras de isotopias de Anosov lineales en el
toro TVN. Este es el primer resultado en donde la integrabilidad de los fibrados centro-
estable y centro-inestable es obtenida en toda una clase de isotopia de mapas (la gen-
eralizacion para el caso en nilvariedades estd probada en [Pifi]).

Recientemente en [Bar+] se prueba que en algunas variedades de Seifert de di-
mensioén 3, todo difeomorfismo parcialmente hiperbdlico isotépico a la identidad es
dindmicamente coherente. Por otro lado, en [Bon+20] los autores construyen nuevos
ejemplos de difeomorfismos parcialmente hiperbélicos que son robustamente dindmi-
camente incoherentes, y un tiempo después en [Bar+21] los autores obienen clases de
isotopias enteras de difeomorfismos parcialmente hiperbélicos dindmicamente inco-
herentes. Todos estos resultados son de alguna forma sorprendentes, ya que por un
lado la integrabilidad suele ser dificil y técnica de obtener, y por otro lado hay mucha
libertad para moverse dentro de una clase de isotopia (y no hay ninguna hipétesis
extra en el fibrado central salvo la dominacion).

Debido a estos resultados, pareceria ser que la integrabilidad (o no) de los fibrados
centro-estable y centro-inestable es un fendmeno que depende fuertemente de la clase
de isotopia del difeomorfismo.

Nuestra primera contribucién en esta tesis va en esta direccién, generalizando los
mecanismos obtenidos por T. Fisher, R. Potrie y M. Sambarino en [FPS14] a un con-
texto més general. En dicho articulo los autores prueban que dado un Anosov lineal
A : T¢ — T, todo difeomorfismo parcialmente hiperbélico f isotépico a A (cuya
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isotopia este dentro del espacio de los difeomorfismos parcialmente hiperbdlicos) es
dindmicamente coherente.

Lo primero que hacemos es captar la idea principal del resultado, y darle un en-
foque diferente al problema, donde técnicas similares pueden ser aplicadas. Esto en
particular nos permite obtener coherencia dindmica en clases de isotopias para nuevos
tipos de difeomorfismos, y variedades (veremos estos nuevos ejemplos en la Subsec-
cién 2.1.2). Mencionamos aqui que existe una dificultad intrinseca en el pasaje de un
caso al otro, y més atin, en el articulo mencionado arriba existe un error en una prueba
que logramos solucionar en nuestro contexto.

Para enunciar los teoremas de este capituo con precision, presentamos la siguiente
definicién. Dado un difeomorfismo parcialmente hiperbdlico dindmicamente coher-
ente f : M — M decimos que f estd fibrado si verifica las siguientes dos condiciones:

* las foliaciones VV/JES y Wi tienen estructura de producto global en el cubrimiento

universal M, y lo mismo ocurre con Wiy W

e el mapa inducido en el cociente por hojas centrales f, : M/ VAVE — M/ )7\/? es un
homeomorfismo hiperbélico.

En realidad, vamos a llamar f fibrado si verifica estos dos puntos y ademds verifica
otras dos condiciones técnicas. Al comienzo del Capitulo 2 vamos a dar con precisiéon
estas condiciones técnicas, pero los dos puntos que mencionamos arriba captan la
esencia de lo que queremos decir con parcialmente hiperbdlico fibrado.

Vale la pena mencionar que todo difeomorfismo de Anosov lineal verifica triv-
ialmente las condiciones dadas arriba (el fibrado central puede ser cualquier reagru-
pamiento de subfibrados intermedios) y por eso, cualquier Anosov lineal es un difeo-
morfismo parcialmente hiperbélico fibrado (esto nos permite re obtener los resultados
de [FPS14] como un caso particular). Veremos este y otros ejemplos de parcialmente
hiperbdlicos fibrados en la Subseccion 2.1.2.

El teorema principal de este capitulo es el siguiente:

Theorem A. Sea f : M — M un difeomorfismo parcialmente hiperbélico fibrado. Sea § un
difeomorfismo parcialmente hiperbélico isotépico a f tal que la isotopia se encuentra dentro
del conjunto de los difeomorfismos parcialmente hiperbélicos (preservando la dimension de los
fibrados). Entonces g es dindmicamente coherente.

De la demostracion de este teorema, surge como corolario un resultado de clasifi-
cacion global. Decimos que dos difeomorfismos parcialmente hiperbdlicos y dindmi-
camente coherentes f y ¢ son conjugados por hojas si existe un homeomorfismo h: M —
M, llamado conjugacién de hojas, tal que 1 manda hojas centrales de f en hojas cen-
tralesde g,y ho fOWV{()) = go h(W;(1)).

Theorem B. Sea f : M — M un difeomorfismo parcialmente hiperbélico fibrado. Entonces,
todo parcialmente hiperbélico g isotdpico a f cuya isotopia se encuentre dentro del conjunto de
difeomorfismos parcialmente hiperbélicos, es conjugado por hojas a f.

0.2.3 Transitividad robusta

En resumen, la teorfa de los sistemas dinamicos estudia el movimiento y queremos
entender el comportamiento de la mayoria de las 6rbitas. Tipicamente la estructura
de las 6rbitas es muy complicada, por ejemplo en algunos casos existen 6rbitas que
llenan el espacio por completo, haciendolo indescomponible desde el punto de vista
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dindmico. Esto es lo que se conoce como transitividad: un sistemas dindmico es transi-
tivo si existe una Orbita futura densa en el espacio.

Auln maés interesantes son los sistemas que presentan una caracteristica que sea
estable o robusta (esto quiere decir que persiste por perturbaciones del sistema). Dec-
imos que un sistema dindmico es robustamente transitivo, si existe un entorno del sis-
tema (en alguna topologia dada) tal que todo sistema en este entorno es transitivo.

El primer ejemplo de mapa robustamente transitivo fue dado por D. A. Anosov
en [Ano67], donde el autor prueba que los difeomorfismos que poseen una estructura
globalmente hiperbélica son estables bajo perturbaciones C!. Como corolario directo
de esto, se obtiene que todo difeomorfismo transitivo de este tipo, como por ejemplo
una matriz hiperbélica en el toro, es de hecho C I robustamente transitivo.

Gracias a este resultado, los difeomorfismos globalmente hiperboélicos reciben el
nombre de difeomorfismos de Anosov. En particular llamamos difeomorfismos de
Anosov lineales a los ejemplos dados por matrices hiperbdlicas en el toro (ver Ejemplo
1.3.1) o los automorfismos hiperbdlicos en nilvariedades (Ejemplo 1.3.2).

Mencionamos aqui que, todo difeomorfismo de Anosov en una nilvariedad es con-
jugado a un Anosov lineal, y en consecuencia debe ser transitivo ([Fra70], [Man74]).
Sin embargo, todavia es un problema abierto determinar qué variedades admiten
difeomorfismos de Anosov, y si todo difeomorfismo de Anosov debe ser (robusta-
mente) transitivo.

Algunos afios después M. Shub [Shu71] construy6 el primer ejemplo no Anosov
de difeomorfismo C! robustamente transitivo en el toro T*. Este ejemplo es un skew-
product (producto cruzado, ver Ejemplo 1.3.4) del toro T? sobre un Anosov lineal en
T? con dos puntos fijos. La idea de Shub fue modificar con cuidado el indice de estos
puntos fijos para romper con la hiperbolicidad uniforme. Algunos afios después R.
Mafié mejord este resultado e introdujo un ejemplo en T? [Mafi78]. La idea del ejemplo
de Mafié fue bifurcar el punto fijo de un Anosov lineal en tres puntos fijos diferentes,
manteniendo la hoja central robustamente densa. Los dos ejemplos de Shub y Mafié
son isotdpicos a Anosov lineales y por esta razén son llamados ejemplos derivados de
Anosov (de aqui en adelante los denotaremos por DA, ver Ejemplo 1.3.6).

Otra forma de construir difeomorfismos robustamente transitivos fue introducida
por C. Bonatti y L. Diaz en [BD96]. Su técnica se basa en la existencia de unos con-
juntos hiperbolicos particulares llamados blenders. Con esta técnica, los autores fueron
capaces de construir ejemplos C!-cerca de tiempo t de flujos de Anosov (por ende,
isotpicos a la identidad) asi como ejemplos C!-cerca del producto de Anosov por la
identidad (por ende, con accién trivial en el fibrado central).

Todos estos ejemplos de difeomorfismos robustamente transitivos no Anosov,
comparten la caracteristica de ser parcialmente hiperbdlicos, y esto no es una sim-
ple casualidad. En [Mafi82] R. Mafié prob¢ que todo difeomorfismo C! robustamente
transitivo en una superficie es conjugado a un Anosov lineal (y por ende, la variedad
debe ser el toro T? por [Fra70]). En el caso tridimensional, L. Diaz, E. Pujals y R. Ures
[DPU99] probaron que la C! transitividad robusta implica hiperbolicidad parcial (la
definicion de hiperbolicidad parcial aqui es un poco mas general). Finalmente C. Bon-
atti, L. Diaz y E. Pujals generalizan este tltimo resultado a dimensiones mayores y
prueban que la C! transitividad robusta implica descomposicién dominada [BDP03].
Queremos remarcar aqui que en [BV00] C. Bonatti y M. Viana construyen un ejemplo
de difeomorfismo C! robustamente transitivo en el toro T* que no es parcialmente
hiperbdlico (aunque necesariamente tiene descomposiciéon dominada). En resumen,
una propiedad dindmica como la transitividad robusta implica fuertes restricciones
geométricas.
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Otra propiedad intimamente relacionada con la transitividad es la minimalidad
de las foliaciones estables/inestables fuertes. Decimos que una foliacién F en una
variedad M es minimal si toda hoja es densa, i.e. F(x) = M para todo x € M. Es
facil ver que si la foliacion estable fuerte (o inestable fuerte) es minimal, entonces el
difeomorfismo es transitivo. Como resultado de esto, la existencia de una foliacion
estable (inestable) fuerte robustamente minimal, implica la transitividad robusta.

En [PS06] se dan condiciones que garantizan la minimalidad de estas foliaciones
en un entorno C!. En ese trabajo, los autores buscaban una propiedad (robusta) que en
presencia de transitividad implicara transitividad robusta. Con esta idea en mente, es
que introducen la propiedad SH (Some hyperbolicity) y logran probar que la propiedad
SH en presencia de una foliaciéon estable minimal, implica la C ! minimalidad robusta
de la foliacién estable (y en particular la C! transitividad robusta). Con esta técnica,
ademas, re obtienen los ejemplos de Shub y Mafié. Queremos mencionar aqui que una
desventaja de esta propiedad, es que no puede ser aplicada en el contexto simpléctico.

Recientemente en [HUY22], los autores dan diferentes condiciones que garantizan
la minimalidad de la variedad estable fuerte en un entorno C?, para difeomorfismos
derivados de Anosov en el toro T? (y en consecuencia la C! transitividad robusta).
Mas aun, con esta técnica construyen un ejemplo con ambas foliaciones estable e in-
estable fuertes C! robustamente minimales (la existencia de tal ejemplo era hasta ahora
desconocida).

A pesar de estos importantes resultados, la transitividad robusta atin no es com-
prendida del todo. En particular, todos los ejemplos mencionados anteriormente
tienen una descomposicién dominada (una condicién necesaria debido a [BDIP03]) que
es coherente con la descomposicién hiperbdlica de su parte lineal. Recientemente R.
Potrie en [Pot12] (pagina 152) contruye un ejemplo robustamente transitivo en el toro
T3 con descomposicién dominada, pero en este caso la descomposicion del ejemplo
no es coherente con la descomposicién de su parte lineal”.

Nuestra contribucién en esta parte de la tesis es la introduccién de una definicién
maés general de propiedad SH, que llamamos SH-Silla. Esta nueva definiciéon aparece
como una extensién natural de la definicién original de SH y en consecuencia puede
ser aplicada en contextos mds generales. En particular, tiene la ventaja de ser aplicable
al contexto simpléctico (algo que la definicion original no podia).

Queremos mencionar aqui que recientemente P. Carrasco y D. Obata prueban en
[CO21] que el ejemplo introducido en [BC14] es C 1 robustamente transitivo. Este ejem-
plo a pesar de ser un skew-product en T4, tiene la particularidad de tener compor-
tamiento mezclado en el fibrado central (que es de dimensién 2) y eso lo convierte en
un nuevo ejemplo. En dicho articulo, los autores mencionan que el ejemplo no puede
tener la propiedad SH (la version original de esta). Sin embargo, se desprende di-
rectamente de las pruebas del articulo, que el ejemplo si tiene la propiedad SH-Silla.
En consecuencia, podria ocurrir que todo difeomorfismo parcialmente hiperbodlico
robustamente transitivo verifique la propiedad SH-Silla.

Volviendo a los resultados de esta tesis, aplicando este nuevo enfoque damos
condiciones suficientes para que un difeomorfismo derivado de Anosov sea C! ro-
bustamente transitivo. Estas nuevas técnicas nos permiten construir nuevos ejemplos
de difeomorfismos derivados de Anosov C! robustamente transitivos. En particular,
podemos construir ejemplos en cualquier dimensién con todos los comportamientos
posibles en las hojas centrales como se desee, y mas atin, con un fibrado central que
sea indescomponible en suma de subfibrados mas pequefios. En consecuencia, la de-
scomposicién dominada de estos ejemplos no sera coherente con la de su parte lineal.

%]a definicién de parcialmente hiperbélico aqui es mas general
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Theorem C. Sea A € SL(d, Z) una matriz hiperbélica con una descomposicién parcialmente
hiperbélica de la forma R? = E%° @ E° ® E*" y sea k = dimE°. Entonces, existe f : T¢ — T4
un difeomorfismo parcialmente hiperbélico C! robustamente transitivo isotépico a A con k + 1
puntos fijos: po, p1, ..., px tal que: index(p;) = j+ dimE® para todoj=0,... k.

Ms aiin, el fibrado central E% no admite una subdescomposicién dominada. En particular,
la descomposicion de f no es coherente con la descomposicion hiperbélica de A.

Luego de esto nos pasamos al caso de flujos, y trasladamos la definicién de SH-Silla
de difeomorfismos a flujos. Como ya mencionamos, una ventaja de nuestra nueva
definiciéon de SH es que puede ser aplicada al contexto simpléctico. En particular
vamos a estar interesados en flujos geodésicos, que siempre preservan una forma sim-
pléctica.

Existen muchas similitudes entre flujos y difeomorfismos respecto a la transitivi-
dad robusta. Por ejemplo D. A. Anosov también probé en [Ano67] que al igual que
el caso de difeomorfismos, todo flujo hiperbélico es C! estable por perturbaciones.
En particular, los flujos hiperbélicos transitivos son de hecho C! robustamente transi-
tivos. Por esta razén los flujos globalmente hiperbélicos reciben el nombre de flujos
de Anosov.

Los ejemplos méas paradigmaticos de flujos de Anosov son los flujos geodésicos en
variedades de curvatura negativa (ver Ejemplo 1.3.3). En el caso particular de super-
ficies de curvatura constante —1 el flujo geodésico resulta transitivo, y por ende C!
robustamente transitivo, debido a la estabilidad de los flujos de Anosov. Sin embargo
no todo flujo de Anosov es transitivo, algunos ejemplos de este tipo de flujos fueron
dados por J. Franks y R. Williams en [FW80].

Otra forma de construir ejemplos son las suspensiones (Ejemplo 1.3.5). Dado que
la suspensién de un difeomorfismo C 1 robustamente transitivo, resulta ser un flujo C!
robustamente transitivo, podemos construir varios ejemplos tomando la suspensiéon
de todos los difeomorfismos C! robustamente transitivos mencionados anteriormente.

Respecto a los resultados de clasificaciéon, el panorama es un poco diferente.
Cuando dim(M) = 3, C. L. Doering prob6 que todo campo de vectores C! robusta-
mente transitivo es en realidad el campo de un flujo de Anosov transitivo [Doe87].
Esto no es cierto en dimensiones mayores, for ejemplo la suspensién del derivado de
Anosov de Mafié es un flujo no Anosov C! robustamente transitivo. Mencionamos
aqui que la suspensién del ejemplo de Bonatti-Viana nos da un ejemplo de un flujo
C! robustamente transitivo que no tiene descomposicién dominada. Sin embargo, C.
Bonatti, N. Gourmelon y T. Vivier [BGV06], [Viv06] prueban que el flujo de Poincaré
lineal de un flujo C! robustamente transitivo si admite una descomposicién dominada.
Nuevamente la transitividad robusta implica fuertes restricciones.

En [Rug97] R. O. Ruggiero prueba que si el flujo geodésico ¢; : T'M — T'M de
una variedad compacta, n-dimensional sin puntos conjugados es expansivo, entonces
es topoldgicamente transitivo. Nuestro siguiente teorema nos dice que si ademas el
flujo es parcialmente hiperbolico y verifica la propiedad SH-Silla, entonces es robusta-
mente transitivo. Este teorema estd motivado por el articulo de F. Carneiro y E. Pujals
[CP14], donde se construye el primer ejemplo de flujo geodésico transitivo parcial-
mente hiperbdlico, no Anosov. Este ejemplo verifica la propiedad SH-Silla, aunque no
es claro que sea expansivo o que no tenga puntos conjugados.

Theorem D. Sea gy una métrica Riemanniana C* en una variedad diferenciable y compacta
M sin puntos conjugados, y sea ¢; : T*M — T*M su flujo geodésico. Supongamos que ¢ es
expansivo con conjunto estable W* y conjunto inestable W*. Supongamos ademds que ¢; es
parcialmente hiperbélico con una descomposicién de la forma T(T'M) = E** @ E° & (X) @
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E"", y que tiene la propiedad SH-Silla de indices (dy,dy) donde di = dimW® — dimE* y
dy = dimW" — dimE"". Entonces ¢; es C! robustamente transitivo.

0.2.4 Accesibilidad y ergodicidad

En 1871 L. Boltzmann formulé su hipétesis ergddica cuando se encontraba estudiando
el movimiento de los gases y la termodindmica. El queria una propiedad que le per-
mitiera “caracterizar la probabilidad de un estado por el promedio temporal en que
el sistema estd en ese estado". Desde entonces, la ergodicidad ha jugado un papel
clave en los sistemas dindmicos, la fisica y la probabilidad. Decimos que un sistema
dindmico f: M — M que preserva una medida finita m es ergddico si cualquier con-
junto f-invariante tiene medida total o nula.

Luego del celebrado teorema ergédico de Birkhoff, E. Hopf prové en 1939 que el
flujo geodésico de una superficie con curvatura constante negativa es ergédico, intro-
duciendo un método para obtener la ergodicidad que hoy se le conoce como el argu-
mento de Hopf. Veintiocho afios después, D. A. Anosov [Ano67] mejor6 los resultados
de Hopf probando la ergodicidad de los flujos geodésico en superficies de curvatura
negativa (no necesariamente constante) y para variedades compactas de curvatura
negativa constante. También prob¢ la ergodicidad de los difeomorfismos uniforme-
mente hiperbélicos, hoy llamados difeomorfismos de Anosov. Debido a que la hiper-
bolicidad es una propiedad C!-robusta, los difeomorfismos de Anosov se convirtieron
en el primer ejemplo de difeomorfismos establemente ergédicos, es decir, difeomorfis-
mos ergodicos C” (que preservan una medida m) que permanecen ergddicos después
de perturbaciones C! pequefias.

Por casi treinta afios los difeomorfismos de Anosov fueron los tnicos ejemplos
de sistemas establemente ergddicos, hasta 1995 cuando M. Grayson, C. Pugh y M.
Shub [GPS94] probaron la C? estabilidad ergédica del tiempo-1 del flujo geodésico
en superficies de curvatura constante negativa, convirtiendose en el primer ejemplo
de difeomorfismo establemente ergédico no Anosov. A pesar de no ser globalmente
hiperbélico, el ejemplo es parcialmente hiperbélico. Con estos resultados en mente,
los autores formulan en una conferencia en 1995 [PS96] la siguiente conjetura:

Conjecture 0.2.1 (Conjetura de ergodicidad de Pugh y Shub [PS96; PS97]). En una
variedad Riemanniana compacta y conexa, la estabilidad ergddica es C" densa en el conjunto de
los difeomorfismos parcialmente hiperbilicos que preservan volumen, para todo enteror > 2.

También propusieron un programa con el fin de probar la conjetura, dividiendola
en dos subconjeturas:

Conjecture 0.2.2 (Accesibilidad implica ergodicidad). Un difeomorfismo parcialmente
hiperbélico C? que preserva volumen con la propiedad de accesibilidad esencial, es ergédico.

La accesibilidad esencial es una versién un poco diferente (mds débil) a la propiedad
de accesibilidad.

Conjecture 0.2.3 (Densidad de accesibilidad). Para cualquier entero r € [2,+o0], la ac-
cesibilidad estable es abierta y densa dentro del conjunto de difeomorfismos C" parcialmente
hiperbdlicos, preserven volumen o no.

Han habido grandes avances respecto a estas conjeturas, la mayoria dependiendo
de la topologia y de la dimension del fibrado central.

La conjetura principal fue probada en [HHUO8] para el caso dim E° = 1 y para
la topologia C" (en realidad, los autores prueban densidad C*). Recientemente en
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[ACW16] la conjetura fue probada en toda su generalidad (cualquier dimensién del
fibrado central) para la topologia C!. A pesar de estos notables resultados, en la
topologia C’, conr > 2 la conjetura esta lejos de ser probada. Recientemente M. Leguil
y Z. Zhang [LZ22] obtienen la C"-densidad de estabilidad ergédica para difeomorfis-
mos parcialmente hiperbélicos (con cualquier dimensién del fibrado central) con una
condicién de pinching fuerte, introduciendo una nueva técnica basada en perturba-
ciones aleatorias (random perturbations).

Con respecto a la Conjetura 0.2.2 C. Pugh y M. Shub en [PS00] probaron que un
difeomorfismo C? parcialmente hiperbélico que preserva volumen, dindmicamente
coherente, center bunched y con la propiedad de accesibilidad esencial, es ergédico.
La condicién de center bunching es necesaria para compensar la falta de transversali-
dad entre los fibrados estable e inestable fuertes (debido a la existencia del fibrado cen-
tral). El estado-del-arte de la Conjetura 0.2.2 es el resultado de K. Burns y A. Wilkinson
[BW10] donde los autores mejoran los resultados de Pugh y Shub, quitando la hipéte-
sis de coherencia dindmica, y mejorando la condicién de center bunching. En otras
palabras, gracias a estos trabajos, una posible estrategia para mostrar que la estabili-
dad ergddica es tipica en la topologia C” es ir hacia la prueba de la Conjetura 0.2.3, i.e.,
que la accesibilidad estable es C"-densa.

Con respecto a la Conjetura 0.2.3, en [DW03; ACW22] la accesibilidd estable es
obtenida para un conjunto C!-denso de difeomorfismos parcialmente hiperbélicos
(que preservan volumen, simplécticos, etc). En esos trabajos, los autores utilizan
fuertemente técnicas C! que no parecen faciles de aplicar a otras topologias.

Para el caso dim E¢ = 2, han habido muchos resultados en los dltimos afos. El
primero es el notable trabajo de F. Rodriguez-Hertz [Her05] donde se clasifican las
clases de accesibilidad centrales y se obtiene la estabilidad ergddica de ciertos auto-
morfismos en el toro T¢ := R?/Z%. Profundizando sobre estas ideas, en [HS17] V.
Horita y M. Sambarino prueban la estabilidad ergédica para skew-products de super-
ficies sobre difeomorfismos de Anosov. Recientemente A. Avila y M. Viana [AV20]
obtienen la C! estabilidad de las clases abiertas y la C"-densidad para algunos parcial-
mente hiperbdlicos fibrados con central de dimensién 2, utilizando técnicas diferentes.

La dltima parte de esta tesis es un trabajo en conjunto con M. Leguil [LP], donde
hacemos una contribucién a la conjetura de accesibilidad (Conjetura 0.2.3) probando
la C" densidad de accesibilidad (r > 2) para difeomorfismos parcialmente hiperboli-
cos con central de dimension 2 que son (robustamente) dindamicamente coherentes y
que satisfacen una condicién de bunching fuerte (daremos esta condicién de bunching
fuerte al comienzo del Capitulo 4). Dada una variedad Riemanniana M de dimensién
d > 4y un entero r > 2, notamos por PH) (M) al conjunto de estos difeomorfismos.
También notamos por PH, (M, Vol) C PH (M) al subconjunto de estos que preser-
van volumen.

Theorem E ([LP]). Para todo difeomorfismo parcialmente hiperbélico f € PH (M), resp.
f € PH,.(M,Vol), con dim Ef = 2, dindmicamente coherente y plaque-expansive, y para
todo § > 0, existe un difeomorfismo parcialmente hiperbélico g € PH'(M), resp. g €
PH"(M,Vol), conder(f,g) < 9, tal que g es establemente accesible.

En particular, por los trabajos de Burns-Wilkinson [BW10], esto implica que para todo
difeomorfismo parcialmente hiperbélico f € PH' (M, Vol), con dim E = 2, dindmicamente
coherente y plaque-expansive, y para todo 6 > 0, existe un difeomorfismo parcialmente hiper-
bolico g € PH' (M), resp. § € PH"(M,Vol), con dcr(f,g) < 6, tal que g es establemente
ergodico.

Un paso intermedio en la prueba, es mostrar que las cases de accesibilidad triviales
se pueden romper por perturbaciones C" pequefias. Esta parte de la prueba también
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funciona cuando el fibrado central tiene dimensién mayor que 2 y solo requiere center
bunching.

Theorem F ([LP]). Para todo difeomorfismo parcialmente hiperbdlico f € PH' (M), resp.
f € PH'(M,Vol), con dim Ef > 2, dindmicamente coherente, plaque-expansive y center
bunched, y para todo 6 > 0, existe un difeomorfismo parcialmente hiperbélico g € PH' (M),
resp. § € PH'(M,Vol), con dcr(f,g) < 9, tal que Cy(x) es no trivial, para todo x € M.

Queremos mencionar aqui que el Teorema F fue obtenido en [HS17] (Theorem 2)
para el caso de skew-products sobre difeomorfismos de Anosov. La principal diferen-
cia entre estos dos resultados es que en el contexto de skew-product, las hojas centrales
son todas compactas y en nuestro contexto no hacemos ninguna suposicién sobre la
topologia de las hojas centrales, aunque las ideas involucradas en las pruebas son bas-
tante similares.

0.3 Organization of the thesis
This thesis is organized as follows:

* In Chapter 1 we introduce some definitions and well known results that we are
going to use along this work.

* In Chapter 2 we study dynamically coherence in isotopy classes of fibered par-
tially hyperbolic diffeomorphisms and prove Theorem A and Theorem B.

¢ Chapter 3 is devoted to robust transitivity. We introduce the SH-Saddle property
and we prove that it is a C! open condition among partially hyperbolic diffeo-
morphisms. We then prove Theorem C and Theorem D.

* Finally in Chapter 4 we deal with the accessibility property and prove Theorem
E and Theorem F.

Chapter 1 is only for backround material, therefore readers with knowledge on the
field can skip this part and pass directly to the following chapters. The next three
chapters 2, 3 and 4, can be read independently since they don’t use any result in com-
mon. Besides, since we haven’t been very rigorous with the statements of the results,
a brief introduction has been placed at the beginning of each chapter.



18

Chapter 1

Preliminaries

1.1 Basic concepts and dynamical systems

1.1.1 Differentiable manifolds

Let X be a topological space. We say that X is a topological manifold of dimension d if
every point x € X has a neighborhood U which is homeomorphic to an open set of IR“.
In general since topology can be a little lax, we will need some additional structure on
our space that allow us to do geometry. We say that a differentiable manifold of dimension
d is a subset M and a family of bijective maps ¢, : U, C R? — M, of open sets U, of
R? on M such that:

1. Uy @a(Uy) = M.

2. For every pair , f such that ¢, (Uy) N @p(Ug) = W # @, we have that ¢, (W)
and ¢El (W) are open sets in R? and the functions ¢El o ¢, are differentiable.

3. The family {(U,, ¢«)} is maximal within all the ones satisfying 1 and 2.

The pair (Uy, ¢«) (and the function ¢,) with p € ¢,(Uy) is called a parametrization or
coordinate system of M at the point p. We call ¢,(U,) a coordinate neighborhood of
p. A family {(U,, )} satisfying conditions 1 and 2 is called a differentiable structure
on M. By a slightly abuse of notation, we will assume that a differentiable structure
satisfies condition 3 too, since we can always complete such a family.

A differentiable structure on a set M induces a natural topology on the manifold
M, such that the functions ¢, are continuous. Just define A C M as an open set if and
only if ¢; (AN @u(Uy)) is open in RY for every a. It is easy to see that this is a well
defined topology.

Moreover a differentiable structure allows us to define differentiable functions via
local coordinates. We say that a function f : M; — M, between differentiable mani-
folds is differentiable at p € M if there are parametrizations @g : Uy C R% — M, with
f(p) € ps(Up), and @, : Uy C RN — M; such that go;l o fo @, : U, — R% is differ-
entiable on ¢, !(p). We say that f is differentiable if it's differentiable on every point
of the manifold M;. This definition does not depend on the choice of parametriza-
tions due to condition 2. In the same way, we say that a function f : M; — M, is
of class C" if in local coordinates it is of class C’, i.e. their first r derivatives exists
and are continuous. We are going to call a curve on M to a differentiable function
a:(—€,€e) CR— M.

Now given a point p € M, we say that a vector v is tangent to p if there is a curve
« : (—€,€) — M such that «(0) = p and #/(0) = v (tangent vectors are just velocity
vectors as in Euclidean spaces). We denote by T, M to the set of all tangent vectors to
M at the point p and we call T, M the tangent space of M on p. It’s easy to see that T, M
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is a vector space of dimension d = dim(M). More generally, we are going to call the
set TM = {(x,v) : x € M, v € TyM} the tangent bundle of M, that is the union of
all tangent spaces of M. It’s easy to see that a differentiable structure on M induces
a differentiable structure on TM, that makes it a differentiable manifold of dimension
dim(TM) = 2d.

Now that we have tangent spaces, we can define the derivative of a function. Let
M; and M, be two differentiable manifolds and let f : M; — M, be a differentiable
funcion. Take p € M and v € T,M, and take « : (—€,€) — M a corresponding curve
associated to v, that is «(0) = p and a’(0) = v. Call B(t) = (f oa)(t). Then the map
Dfy : TyMy — Tf(,yMa given by Df,(v) = B'(0) is called the derivative of f at p. This
map is a linear transformation and does not depend on the choice of the curve a.

A vector field on a differentiable manifold M is a function X : M — TM, such that
X(p) € T,M for every p € M. We say that the vector field X is differentiable if the
map X : M — TM is differentiable (with their respective differentiable structures).
In the same way, we say that the vector field is C" if X : M — TM is C’. In local
coordinates, given a parametrization ¢ : U C R? — M we can write

where g; : U — R are functions on U and { } is a basis of T, M associated to ¢. This
way we have that X is a differentiable vector “Held iff the functlons a; are differentiable
for every i. We are going to note by X”(M) to the set of C" vector fields on M.

In the same way, we say that a distribution or subbundle E of dimension k on M is a
continuous family of k-dimensional subspaces E, C T, M. By continuity we mean that
for every x € M there is U a neighbourhood of x and Xj, ..., X linearly independent
continuous vector fields defined on U such that for every y € U we have E(y) =
(X1(y), - .., Xk(y))- We say that the distribution is of class C" if the vector fields can be
chosen of class C".

1.1.2 Riemannian geometry

A differentiable manifold (Hausdorff and with numerable basis) allows us to intro-
duce a special type of metric on the manifold in order to do geometry.

A Riemannian metric on a differentiable manifold M is a correspondance which
associates an inner product g, to every TyM which varies differentiably with respect
to x € M. By differentiability we mean that if ¢ : U C RY — M is a parametrization,
q € ¢(U), and aix,- is a basis of T; M then the funcions g;; = <a%, a%> are differentiable.
We call the functions g;; the local representations of the metric and we are going to call
the pair (M, g) a Riemannian manifold.

Recall that the tangent bundle is the set TM = {(x,v) : x € M, v € TyM} and
it is a differentiable manifold of dimension 2d. Therefore, we can see the metric g as
a smooth section g : M — Symm, (TM), where Symmj (TM) is the set of positive
definite symmetric and bilinear forms.

Notice that we can equip a differentiable manifold M with many different Rieman-
nian metrics. However, if the manifold is compact all metrics are equivalent in the
following sense: given two Riemannian metrics g1 and g» there are constants &, f > 0
such that for every x € M and v € T,M we have:

afjolly < [vll2 < Bllollx
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where |[|-||x denotes the norm associated to the metric g, for k = 1, 2.
The unitary tangent bundle will be the restriction of TM to unitary vectors:

T'M = {(x,v) € TM : g«(v,v) = ||v]|* = 1}

Notice that the tangent bundle TM does not depend on choice of the Riemannian met-
ric, but the unitary tangent bundle does. However, given two different Riemannian
metrics g1 and g, their corresponding unitary tangent bundles TgllM and T;zM are
diffeomorphic.

Volume form

Another important tool form Riemannian geometry is the concept of volume form on
the manifold M. Let ¢ : U C R? — M be a parametrization and let {ej,...,e,} be an
orthonormal basis of T,M and let X;(p) = a%i(Q) be written by X;(p) = ¥; ; aijej then
we have

gij(p) = (Xi(p), Xj(p)) = Zlaijakl<ej/ er) = Zﬂijﬂkj
j j

Then we define the volume by the equation

Vol(Xi(p), .-, Xu(p)) = det(ay) = /det(g;)(p)

This definition does not depend on the choice of the parametrization. We call Vol the
volume form of M associated to the Riemannian metric g.

Geodesic flow and exponential map

Given a Riemannian metric g, we are goint to note by V to the Levi-Civita conex-
ion associated to this metric, and by % to the covariant derivative associated to this
conexion. We say that a parametrized curve 7y : I — M is a geodesic if 2 (‘%) = 0 for

every t € I. In particular, for this kind of curves we have that the lenght of 7/(¢) is
constant. We say that a geodesic is normalized when this constant is equal to 1. Now
given a curve 7 : I — M which in local coordinates ¢ : U C R? — M has the form
y(t) = (x1(t),...,x4(t)) we have that 1y is a geodesic if and only if:

D (dy\ _ do?xy i dx; dx;
°—w<w>—§{mz+§%mdtxk

Or equivalently, for every k = 1,...,d we have:

dzxk k dxi dx]
o Ll O (D

i,j

where l"i?j are defined by Vx X; = Y l"i-‘ij and are called the Christoffel symbols of

the conexion. By a change of variables we can transform this system of differentiable
equations of second order into a first order system. Notice that any differentiable

curve t — y(f) on M determines a unique curve t — ('y(t), ‘Z—Y(t)) on TM. Moreover
the curve 7 is a geodesic if and only if the curve

dX1

fs <x1(t),...,xd(t),Eﬁ(t),...,ci;;d(t)>
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verifies the system:

dx,
g T 1.2

{ﬁyf = — L Tiyyj .
where (x1,...,%4,Y1,---,Y4) is a local system on TU. We thus obtain a vector field
G : TM — T(TM) defined in local coordinates by Equation (1.2). We call this vector
field the geodesic field. Notice that the trajectories of G are of the form t — (7y(t), 7' (t)).
Integrating this vector field by classical theorems of differential equations, we obtain
a flow which is called the geodesic flow.

Moreover, for every p € M there is an open set U in TU where ¢ : U — M
is a coordinate system on p and (p,0) € U, there is 6 > 0 and a C* function ¢ :
(—0,0) x U — TU such that the curve t — ¢(t,4q,v) is the only trajectory of G with
initial conditions ¢(0,q,v) = (g,v) for every (q,v) € U. This allow us to define the
following function (at least locally). Let U/ be a sufficiently small open set in TU, then
the function exp : Y — M given by

vV
exp(,9) = 1(1,4,0) = 7 (nvu,q, ||v||> , (g,0) U

is called the exponential map. Notice that the map exp is differentiable. In general we
are going to fix a point 4 € M and consider the function

exp, : B(0,€) C TqM — M givenby exp,(v) = exp(q,0)

Now by definition of the exponential map we have that D(exp,)o(v) = v, then

D(exp q)O is the identity on T;M and by the inverse function theorem, we have that

there is € > 0 such that exp, : B(0,e) — M is a diffeomorphism onto its image (an
q

open set of M). If exp,, is a diffeomorphism on a neighbourhood V of 0 € T, M, then

exp,(V) = U is called a normal neighbourhood of p. If B(0,e) C V then we call
B(p,e) = expp(B(O, €)) a normal ball centered at p of radius €.

We end this subsection with one last definition concerning the critical points of the
exponential map. We say that a Riemannian metric ¢ on M has no conjugate points, if
the exponential map exp,, : T,M — M is non singular, for every p € M.

Curvature

Given a Riemannian manifold, a curvature R is a correspondance which associates for
every two vector fields X, Y a function R(X,Y) : X(M) — X(M) given by

R(X, Y)Z =VyVxZ—-VxVyZ + V[X,Y]Z

where V is the Riemannian conexion. Notice that in the euclidean case, we have that
I“fj = 0 for every k, i,j and therefore R(X,Y)Z = 0 for every X,Y,Z € X(M). This tell
us that in a sense, the curvature measures how far we are from being Euclidean.
The curvature is bilinear in X(M) x X(M) and moreover it verifies the Bianchi
identity:
R(X,Y)Z+R(Y,Z)X+R(Z,X)Y =0

We can see the curvature operator in local coordinates: let (U, x) be a coordinate
system, and let a%- = X; and let R(X;, X)Xy = ¥ Rf].le. Then the numbers Rf].k are
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the components of the curvature R in (U, x). Given three vector fields

X=YuX, Y=Y vX;, Z=Y uX
i j k

we have by linearity that

R(X,Y)Z = ) Rizu'vw'X,
ik,

The curvature operator allows us to define a more geometric concept of curvature.
Given a point p € M and a plane ¢ C T, M, take two vectors X, Y € T, M that form a
basis of ¢. Then the sectional curvature of o at p is:

o) = ST

where | X A Y| = /|X[2|Y]2 — (X, Y)? is the area of the bidimensional parallelogram
determined by X and Y. It can be seen that this number does not depend on the choice
of the basis and therefore the sectional curvature is well defined.

1.1.3 Diffeomorphisms and flows

Given a topological space X, we say that f : X — X is a homeomorphism if it is
continuous, invertible and its inverse f —1 is continuous. In the differentiable setting,
given a differentiable manifold M, we say that f : M — M is a diffeomorphism if f
is bijective, differentiable and its inverse function f~! is differentiable too. Given a
differentiable manifold M we are going to note by

Diff(M) = {f : M — M diffeomorphism }

to the set of all diffeomorphisms on M. In the same way, for r > 1 we are going to
note by Diff" (M) to the set of all C" diffeomorphisms on M. In the space Diff" (M) we
can introduce a natural topology: we say that two diffeomorphisms f,¢ € Diff (M)
are € close in the C" topology, if the first r derivatives of f and g are € close.

In general we will be interested in maps which have the same behaviour under a
change of coordinates: we say that two diffeomorphisms f : M -+ Mand g: N — N
are topologically equivalent or conjugated if there exist a homeomorphism i : M — N
such that 1 o f = g o h. This relation is represented in the diagram below:

M-t M

=
=

N—%+N

We will be interested in R actions besides Z actions. Let M be a Riemannian man-
ifold and » > 0. A C"-flow on M isa C"-map ¢ : R x M — M such that ¢(0,x) = x
and @(t, ¢(s,x)) = @(t +s,x) for every t,s € R and x € M. In general we are going
to note by ¢;(x) = ¢(t,x), and just called ¢; a flow.

One particularly important example of a flow, is given by the geodesic flow of a
Riemannian metric as defined in the previous section. Recall that the geodesic flow of
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a Riemannian metric g is the flow given by:
¢r ™ — TM, (I)t(X,U) = (’)’(x,v)(t)/ ,y/(x,v)(t))

where 7, ) is the geodesic for the metric g with initial conditions 7, ,)(0) = x and
/

Vo) (0) = v, for x € Mand v € Ty M. Since the speed of the geodesics is constant, we
can restrict the flow to the unit tangent bundle TM.

1.1.4 Dynamically defined sets

As we mentioned in the introduction, we are interested in studying the orbit structure
of dynamical systems. The following subsets play a major role in this study. Let us fix
a topological space X and a homeomorphism f : X — X. Given point x € X we are
going to call the orbit of x to the set

O(f,x) ={f"(x) :neZ}

The points with finite orbit has special interest, in particular the ones with only one
point. We denote by

Fix(f) ={x e X: f(x) = x}
to the set of fixed points and moreover we denote by

Per(f) = {x € X: fP(x) = x, forsome p € Z*}

to the set of periodic points. When the orbit of a point x € M is an infinite set, we can
look at the accumulation points of the orbit (both for the future and for the past). We
then define the omega limit set and the alpha limit set of x as the sets

w(f,x)={y € M: f"(x) — y for some {n;} C Z*, ny — +oo}
a(f,x)={y e M: f™(x) — y for some {ny} C Z~, ny — —oo}

The union of all this sets is called the limit set, that is

L(f) = U a(f,x) U (f,x)

xeX

We say that a point x € X is recurrent for the future if x € w(f, x) and analogously with
the past, i.e. a point x € X is recurrent for the past if x € a(f,x). A little weaker notion
of recurrent points is the following. We say that a point x € X is non-wandering if for
every neighborhood U of x there is n € Z such that f"(U) N U # @. The set of all
non-wandering points is called the non-wandering set and we note it by Q(f), i.e.

Q(f) = {x € X : YU neighborhood of x,3In € Z : f"(U) N U # O}

It is easy to see that we have the following inclusions:

Fix(f) € Per(f) € L(f) € Q(f)

These inclusions are not equalities in general, there are many counterexamples for any
of the previous inclusions.

Additionally to the previous sets, there are more dynamically defined susbets of a
dynamical system, but the previous ones are enough for our purposes.
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Notice that we have defined these sets for the discrete case (when f is a homeo-
morphism), but for the continuous case (for a flow) we have exactly the same subsets,
we only have to change the time variable from Z to R.

1.2 Invariant structures.

Along the thesis, we will be interested in systems which preserve some geometric
structure invariant by the dynamics. We begin with the most paradigmatic case, the
uniform hyperbolicity.

1.2.1 Uniform hyperbolicity

Definition 1.2.1 (Anosov diffeomorphism). We say that a diffeomorphism f : M — M is
Anosov or globally hyperbolic, if there exists a D f-invariant splitting TM = E} © E} of the

tangent bundle, a Riemannian metric ||-|| and constants A, Ay, C > 0 with:
0<As <1 <Ay
such that for any (x,t) € TM and n > 0, it holds

IDxf"(0)|| < CASlol, ifv € Ex(x) \ {0},
IDxf " (@) < CA o]l ifv € E¢(x) \ {0}.

We call E% and E% the stable and unstable subbundles respectively.

It is usual to ask for the subbundles to be continuous, but this is a direct conse-
quence of the inequalities in Definition 1.2.1. To see this, suppose that x, — x. By
taking a subsequence, we can suppose that dimE}(xn) = k, for every n € IN. Now
take {v,v},...,0}} an orthonormal basis of E}(xn) and {v},,...,v}} an orthonor-
mal basis of E?(xn). We can assume too that U? — v; when n — +oco. Notice that
{v1,...,v¢} and {vg41,...,v4} are orthonormal subsets too. Call E(x) = (vy,...,0%)
and F(x) = (vx41,...,v4). Now given v € E(x) with ||v|| = 1 we can take a sequence
vy € E;(xn), with ||v,|| = 1 converging to v. Then for a fixed m € IN we have

1D @)l = Lim [IDf,(vn)l] < CAS

This implies that E(x) € E%(x). In the same way we get F(x) € E¢(x) and in particu-
lar we have EN F = {0}. This implies that E(x) = E(x) and F(x) = E}(x) proving
the continuity of the bundles.

Now suppose that ||-|| is the Riemannian metric given in the Anosov definition,
and let ||-||« be another Riemannian metric. Since any two Riemannian metrics on M
are equivalent, we know there are constants a, § > 0 such that «||-|| < |||« < B]-||-
Now given v € E}(x) we have that

C
1D @) < BIDA@)] < CBAZ ol < Aol
Hence the bundle E} is uniformly contracting with one metric if and only if it is uni-

formly contracting with the other metric. We thus have obtained the following remark.

Remark 1.2.2. Definition 1.2.1 does not depend on the choice of the Riemannian metric.
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The previous remark tell us that we can choose among all Riemannian metrics, to
the one that is easier to work with. In particular we will be interested in a metric such
that the contraction and expansion is seen at the first step. We can define this special
metric in the following way. For vectors v € E}(x) let’s define

lolls := Y IDf5uy (@)1 > o]l

n>0

Notice that it is well defined since

C
Y Dy @) < X Aol = 1= lol] < o

n>0 n>0

Then we have that ||v|| < ||v||s < 1_—CASHUH and in particular ﬁ > 1. Then we have:

s 1— A 1— A
IDA@)1s = DS @) = ol = ol < ol ~ 2 HvHs=<1— - )\vns

and we see the contraction of the bundle in one step. We can do the same with the
unstable bundle E} and obtain a norm |-, Finally for a vector v = (vs,v,) € E} ® E}

we define the norm ||v||, = max{||vs||s, ||vu||u }- Then we have obtained what is called
an adapted metric, i.e. a metric where C = 1 in Definition 1.2.1.
If we look at flows instead of diffeomorphisms we get the following definition.

Definition 1.2.3 (Anosov flow). Given a flow ¢; : M — M in the manifold M generated
by a vector field X : M — TM we say that it is an Anosov flow if there is a D¢-invariant
splitting TM = E° & (X) @ E" of the tangent bundle TM, and constants As, Ay, > 0 with:

0< A <1< Ay

such that for any (x,t) € TMand t > 0, it holds

IDxgx (0) | < Aglloll ifv € E°(x) \ {0},
IDxp—+ ()]l < A, [Io] ifv € E*(x) \ {0}.

We call E° and E* the stable and unstable subbundles respectively.

Recall that every Riemannian metric has a natural dynamical system associated to
it; the geodesic flow. Then we can translate the Anosov definition to metrics.

Definition 1.2.4. We say that a C* Riemannian metric is Anosov, if its corresponding
geodesic flow, is an Anosov flow.

1.2.2 Partial hyperbolicity

In this subsection we introduce the dynamical systems we are going to work with
along the thesis. Let us fix a compact Riemannian manifold M of dimension m > 3.
Recall that we denote by Vol the volume form, and we denote by || - | the norm on
TM associated to the Riemannian metric. There are many defintions in the literature,
we are going to use the following.

Definition 1.2.5 (Partial hyperbolicity). We say that a diffeomorphism f : M — M is
partially hyperbolic if there exists a nontrivial D f-invariant splitting TM = E; ® E; © E} of
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the tangent bundle and continuous functions As, A7, A}, Ay : M — R with
As <1 <Ay, As <A < AT <Ay, (1.3)

such that for any (x,v) € TM, it holds

IDxf (@) < As(x)[o]], ifv € Ex(x) \ {0},
Ac (@)l < IDxf (@) < AZ(x)]lll, ifv € E¢(x) \ {0},
Au(@)[[o]l < [[Dxf (0)]], ifv € E¢(x) \ {0}.

As in the Anosov case, partial hyperbolicity does not depend on the choice of the
Riemannian metric. Notice that in the definition above, there is no constant C > 0 like
in the Anosov case. This is because for partially hyperbolic diffeomorphisms there is
an adapted metric too. In this case the proof is not that simple, but N. Gourmelon did
it on [Gou07] by pushing the same idea above.

For any integer r > 1, we will denote by PH' (M) to the set of all partially hyper-
bolic diffeomorphisms of M of class C”; we also denote by PH' (M, Vol) C PH' (M)
to the subset of volume preserving partially hyperbolic diffeomorphisms.

The analogous definition for flows is the following.

Definition 1.2.6 (Partially hyperbolic flow). We say that a flow ¢; : M — M generated
by a vector field X : M — T M is partially hyperbolic if there exists a nontrivial D ¢-invariant
splitting TM = E* @ E° @ (X) @ E"* of the tangent bundle TM, a Riemannian metric ||-||
and continuous functions As, A , AT, Ay : M — R with

As <1< Ay, As <A < AT <Ay, (1.4)

such that for any (x,v) € TMand t > 0, it holds

IDx@e(0) || < As(x)'[|]], ifo € E°(x) \ {0},
Ac (@) loll < IDxgi(@) | < AS(x)'[lo]l, ifv € E°(x) \ {0},
Mu(x)'|[2]| < [[Dxgr (o), ifv € E*(x)\ {0}.

Remark 1.2.7. If ¢¢ : M — M is a partially hyperbolic flow with dimE(, = c, then for every
T € R, the diffeomorphism f := @1 : M — M is partially hyperbolic with dimEJi =c+1

Like in Definition 1.2.4 we can translate the partially hyperbolic definition to Rie-
mannian metrics.

Definition 1.2.8. We say that a C* Riemannian metric is partially hyperbolic if its corre-
sponding geodesic flow is partially hyperbolic.

1.2.3 Dominated splitting

A more general concept than partial hyperbolicity is what is called dominated split-
ting. It was introduced by Liao and Mafié when working on the stability conjecture.

Definition 1.2.9. Let f : M — M be a diffeomorphism on a differentiable manifold M. We
say that f has dominated splitting if there exists a D f-invariant splitting TM = E; & - - - ® Ej
of the tangent bundle, and constants C > 0 and A € (0,1) such that for x € M and every
pair of vectors v; € Ej(x) \ {0} and vj1 € Ej;1 \ {0} and n > 0 it holds

IDf () IDf¥ (541

——— < CA"
o] 10744l

(1.5)
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Like in the Anosov case, the distributions E; varies continuously with the point
x € M. Moreover, the dominated splitting does not depend on the choice of the
Riemannian metric, and it also has an adapted metric such that C = 1 [Gou07].

If we call m(A) to the minimum norm or co-norm of a matrix A, then the domina-
tion Equation (1.5) above can be expressed by:

||Df”|E/_(x)H < CA”m(Df”|E]_H(x)), foreveyx € M, n >0

Notice that dominated splitting does not necessarily implies there is contraction or
expansion in some of the bundles, it just tell us that there are directions which are
dominant with respect to others. With this new definition, we can say that a partially
hyperbolic diffeomorphism is a map with a dominated splitting of the form TM =
E;1 @ -+ ® E; and such that the bundle E; uniformly contracts, and the bundle E;
uniformly expands.

1.3 Examples

The most common examples of partially hyperbolic systems are automorphisms on
torus (or nilmanifolds), time-one maps of geodesic flows (on non-positive curvature)
and skew-products over Anosov diffeomorphisms. Recentley new examples on three
manifolds were built by the works of Bonatti, Gogolev, Hammerlindl, Parwani and
Potrie [BPP16], [BGP16], [Bon+20]. In this section we are going to briefly present some
of these examples.

1.3.1 Automorphisms on the torus T*

Let A € SL(d, Z) be a matrix with integer coeficients and determinant one. Since the
matrix A is Z%-invariant, it induces a diffeomorphism f4 in the torus T¢ = R/ Z° by
the equation ITo A = f, o IT, where IT : R — T* is the canonical projection.

Suppose the matrix has a dominated splitting of the form RY = ES & E% ¢ EX" @
EU4. If we call E5, = E5 @ E%° and EY, = E%" & E%, then with the splitting RY =
ES, & EY the induced example f4 is an Anosov diffeomorphism on the torus T¢.

On the other hand we can think the example as a partially hyperbolic diffeomor-
phisms by taking the center bundle as E§ = EY%°® ® E%". Then with the splitting
RY = ES @ E4 & EY4" the map f, is a partially hyperbolic diffeomorphism.

In the same way, if A € SL(d,Z) is a matrix with a splitting of the form RY =
ES, @ EY @ E'}, where Ef is the generalized eigenspace associated to the eigenvalues
of modulus equal to one. Then the example is a partially hyperbolic diffeomorphism.

1.3.2 Automorphisms on nilmanifolds

The example we just saw in the torus can be generalized to nilmanifolds. For our pur-
poses on this thesis we are going to see a specific construction. The example we are
going to present appeared for the first time in [Sma67] and it is attributed by S. Smale
to A. Borel. The example orginally was presented as an Anosov diffeomorphism in
a compact orientable manifold that is not a torus. Years later A. Wilkinson [Wil98]
observed that putting together weak sub bundles, one creates a partially hyperbolic
diffeomorphism whose center distribution is not integrable. For a more detailed pre-
sentation of these examples see [Sma67], [BWO08] or [Ham13]. We now give a brief
description of this example.
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Take # the Heisenberg group, that is the subgroup of matrices in SL(3,R) of the

form
1 x z
01y
0 01

with x,y,z € R. Identifying (x,y,z) with the upper triangular matrix, the product in
‘H has the form:

(v y,2)- (9, 2) = (x+ 2y +v, 2+ 2 +xy)

Then we have that H is a connected, simply connected, nilpotent Lie group, diffeo-
morphic to IR?, and it is clearly non abelian. Its corresponding Lie subalgebra b is
generated by the matrices

010 000 001
X=1000],Y=1001 and Z=| 0 0 O
000 000 000

These matrices satisfy the following relations: [X,Z] = [Y,Z] = 0 and [X,Y] = Z.
If we identify (a,b,c) with aX + bY + ¢Z € b the exponential map exp : h — Hisa
diffeomorphism and its formula is given by

1 a c+ %ab
exp(a,b,c)=1| 0 1 b
00

1

Now consider the group G = H x H with the direct product group structure. We
get that G is a connected, simply connected nilpotent Lie group diffeomorphic to R°.
Its Lie algebra g = h @ b is generated by {X3,Y1,Z1, X2, Y2, Z>}. Note that the only
non-trivial relations are

[Xl,Yl] = Z1 and [Xz, Yz] = Z2

Now identify (c,b,a,a’,b,¢") € R® x R¥withaX; +bY; +cZ; +a'Xo+b'Ya+'Zy € g.
Take a matrix A € SL(2,Z) and suppose that A > 1and A~ < 1 are their eigenvalues.
Now A and A~ ! are units in the ring of integers. The field Q(A) is a quadratic extension
of Q; it’s Galois involution ¢ interchanges A and A~!. Now if we take I' C g as the set

of vectors of the form:
fwvua(u) 0’(())0’ Y
27 ’ ! 2

with u,v,w € Z[A] the ring of algebraic integers in Q(A). It can be proved that I is
an irreducible and cocompact lattice of g. Then it’s easy to see that I' = exp([) is a
discrete and cocompact subgroup of G. Now for any pair of real numbers « and B, the
linear map B

B: (¢, ba,a,b,c") — (AP, bAP,aA®, ' A=*, b’ AP, A=%F)

is an automorphism of g and induces an homomorphism Fp : G — G whose derivative
at the identity is B. If a, € Z the automorphism B preserves [ and we obtain a
diffeomorphism fp : G/T' — G/T. If one of &, B, « + B is non zero, then fp is partially
hyperbolic and if all three are non zero, fg is Anosov. Assume thata + 8 > > a > 0.
In this case fp is Anosov: the center bundle is trivial, the stable bundle E° is generated
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by Xy, Y2, Z, and the unstable bundle E* by X3, Y7, Z;. This way we get an Anosov
diffeomorphism fp : G/T' — G /I on a six dimensional nilmanifold that is not a torus
(because its Lie algebra/group is non abelian).

This is the form in which this example originally appeared in [Sma67], but as we
mentioned above there are several ways in which one can think about this example.
These are the following:

¢ In [Wil98] A. Wilkinson made the following observation: take the stable bundle
E°® generated by Z,, the unstable bundle E* is generated by Z; and the center
bundle E° generated by the remaining fields Xj, Y7, X, and Y>. With this splitting
fp is a partially hyperbolic diffeomorphism. The interesting thing about this
example is that the center bundle E° is not integrable because is not closed under
the Lie bracket operation: [X;,Y1] = Z; € E*.

* A third way of seing this is due to A. Hammerlindl. One chooses the bundle E*
to be generated by Z;, Y7 and Xj, the center bundle E¢ generated by X; and Y>
and the stable bundle E° generated by Z,.

¢ We can see the example in a fourth way, a much simpler one: the unstable bundle
E* is generated by Zj, Y1, the center bundle E€ generated by X;, X, and the stable
bundle E° generated by Y, and Z,.

1.3.3 Geodesic flows

Recall that given a C* Riemannian metric g, we have a flow associated to this metric
called the geodesic flow, and it is given by

¢t T™ — TM, ¢t(xr U) = (’)/(x,v)(t)/ r)/l(x,v)(t))

where 7, ,) is the geodesic for the metric ¢ with initial conditions 7y, ;) (0) = x and

'yE ) (0) =, for x € M and v € T, M. Since the speed of the geodesics is constant, we

can restrict the flow to the unit tangent bundle T' M.

D. A. Anosov showed in [Ano67] that if the seccional curvature of the metric is
negative at every point, then the geodesic flow is an Anosov flow (see Definition 1.2.3).
This is the most paradigmatic example of an Anosov flow. Recall that the time 1 map
of an Anosov flow gives a partially hyperbolic diffeomorphism, and thus we obtain
another example with discrete time.

In [CP14] F. Carneiro and E. Pujals built the first examples of C* Riemannian met-
rics such that their geodesic flows are partially hyperbolic but non Anosov. Moreover,
some of these geodesic flows are transitive. Again taking the time 1 map of these
flows, we get partially hyperbolic diffeomorphisms.

1.3.4 Direct products and skew-products

Take A : M — M any of the examples above, and take N another manifold of any
dimension. Then the diffeomorphism f : M x N — M x N given by f = A x Id,
thatis f(x,y) = (Ax,y) is a partially hyperbolic diffeomorphism. Clearly the center
bundle is E% = E x N. This example is called a direct product example.

We can take another kind of product examples. Let A : M — M be an Anosov
diffeomorphism and consider N another compact manifold. Consider an open set
U C Diff' (M) such thatif h € U then f x h: M x N — M x N is partially hyperbolic
with fibers {x} x N. Let g : M — U be a continuous map. For a fixed x € M, denote
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by gx to the map g(x) : N — N. Then the diffeomorphism F : M x N — M x N
defined by F(x,y) = (Ax, gx(y)) is called a skew-product. By definition F is partially
hyperbolic.

1.3.5 Suspension constructions

Take any diffeomorphism f : M — M on a closed manifold M. Take the product space
M x R and consider the equivalence relation

(x,81) ~ (y,52) <= s1—sx € Zand 1 %2(x) =y

Denote by M to the quotient space (which is a closed manifold) and p : M x R —
M to the canonical projection. Then the flow ¢ : R x M x R — M x R given by
¢(t, (x,5)) := (x,t +5) induces a flow @ : R x M — M by the equation (¢, p(x,s)) =
p(e(t, (x,s))). The flow ¢ is called the suspension flow.

Now if the diffeomorphism f is Anosov, then the suspension flow ¢ is an Anosov
flow. In the same way, if the map f is partially hyperbolic, then the suspension flow is
a partially hyperbolic flow.

1.3.6 Derived from Anosov

The last kind of examples of maps we are going to mention are the derived from Anosov
diffeomorphisms. These examples are built by deforming a linear Anosov by a specific
isotopy, in order to change the index of a given fixed point, but keeping the partially
hyperbolic structure. These maps were introduced by R. Mafié in [Mafi78]. In Section
3.4 we are going to see this kind of examples in detail.

1.4 Integrability of distributions

By a k-dimensional C° foliation 7 with C! leaves we mean a partition of the manifold
M into k-dimensional, complete, connected C! submanifolds F(x) that depends con-
tinuously with the point x € M. Another way of saying this, is that for every point
x € M there is a neighbourhood U and a homeomorphism ¢ : ID* x D% — U such
that for each y € D7~ the set Fi1(¢(—,y)) := ¢(DX,y) (called the local leaf) is con-
tained in F(¢(0,y)) and ¢(-,y) : D* — Fu(¢(0,y)) is a C' diffeomorphism which
depends continuoulsy on y € D~ in the C! topology.

FIGURE 1.1: Foliation F
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When the local chart (U, ¢) at x can be chosen C” with C! leaves we say F is a
C’ foliation with C' leaves. We remark that the regularity of the local chart is always
smaller or equal to the regularity of the leaves (I > r).

Given a k-dimensional distribution E C TM, we say that E is integrable if there
exists a C foliation F with C! leaves which are everywhere tangent to E, i.e. Ty F(x) =
E(x) for every x € M. We call such a foliation an integral foliation of E. We say that
E is uniquely integrable if it’s integrable with integral foliation F and in addition any
C! curve everywhere tangent to E lies on a single leaf of F, i.e. everya : [ — M
satisfying a’(t) € E(a(t)) for every t € I, is contained in F(«(0)). Notice that unique
integrability implies that E has a unique integral foliation, although the reciprocal is
not true. The typical example is given by the distribution E tangent to the foliation F
on the real plane IR? given by leaves of form {(¢, (t +c)3) : t € R}. Despite being F
the only integral foliation tangent to E, it is not uniquely integrable: the curve {(¢,0) :
t € R} is tangent to E but it doesn’t belong to any leaf of 7. Thus unique integrability
is slightly stronger than having a unique integral foliation.

When the distribution E is C!, that is when the local chart can be chosen C!, the
problem of integrability was solved by G. Frobenius, who proved that a C! distribu-
tion E is uniquely integrable if the distribution E is closed by the Lie bracket opera-
tion, i.e. for every pair of vector fields X,Y on M such that X,Y € E, we have that
[X,Y] € E. Therefore in the differentiable case it’s enough to see how the Lie bracket
behaves in order to get integrability. A proof of Frobenius Theorem can be found in
[War71].

However in our context the distributions are only continuous and therefore an-
other techniques are needed to get integrability (the Lie bracket doesn’t make any
sense). To be more precise it is well known that if f € PH (M), then the stable and
unstable bundles E} and E} are only Holder continuous. Nevertheless the celebrated
stable manifold theorem says that the strong bundles E? and E]s( are uniquely inte-
grable ([HPS77]). Their corrresponding unique integral foliations are called the strong
unstable and strong stable foliations respectively, and we note them by Wy and Wi
We want to remark that in general the stable/unstable foliations are not C! even if
the diffeomorphism is highly regular: in [Ano67] there is an example of a C* Anosov
diffeomorphism whose distributions are only Holder continuous.

Notice that since E% and E} are D f-invariant, then unique integrability (or having
a unique integral foliation) implies that their corresponding integral foliations Wi are
invariant under the dynamics, i.e., f(W;(+)) = Wi (f(+)) for x = u,s.

Despite the stable manifold theorem, we don’t have a priori integrability of the rest
of the bundles E}S, E;” and E;. This fact leads to the following definition.

Definition 1.4.1 (Dynamical coherence). A partially hyperbolic diffeomorphism f is dy-
namically coherent if the center-unstable bundle Ef' .= E; © E} and the center-stable bundle
E}s = Eji @ Ejf are integrable. Their corresponding integral foliations are called the center-
unstable foliation, resp. the center-stable foliation and are noted by W¢", I

Notice that dynamical coherence implies that the center distribution E% is inte-
grable too: if f € PH(M) is dynamically coherent, then for any x € M the set
Wi(x) == Wg(x) N W (x) integrates Ef and we call Wi the center foliation. On
the other hand, the integrability of E% does not imply dynamically coherence: if Ef in-
tegrates into JV¢ and if we take W (x) = UyGW;(X)W; (y) we obtain a plaque tangent
to EY’ (x) but the union of this plaques is not going to be a foliation necessary.

We do have the following proposition.
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Proposition 1.4.2 (Proposition 2.4 in [BWO08]). Let f € PH (M) be dynamically coherent.

Then, the foliations Wy and Wi subfoliate W", while VW; and W¢ subfoliate VY.

The previous proposition was included in the original definition of dynamically
coherent in [PS97] but it was soon realized to be a consequence of integrability. In
[BWO8] there is a long discussion about all the possible definitions of dynamical co-
herence that have been used since its introduction and every implications between
them. We want to remark also that we don’t require unique integrability of the bun-
dles EY’ and E%" in the definition above, although every known example of dynamical
coherence is uniquely integrable.

It is an open question whether dynamical coherence is a C!-open condition among
PH(M). A closely related property is plaque expansiveness. Before introducing it, we
need another definition.

Definition 1.4.3. Given € > 0 we say that a sequence {xy, }ncz C M is a e-pseudo orbit with
respect to f if d(f(xn), Xn41) < € for every n € Z. In addition, we say that the pseudo orbit
respects Vg if f(xn) € WJS(an)for every n € Z.

Definition 1.4.4 (Plaque expansiveness). We say that f € PH(M) is plaque expansive
(see [HPS77, Section 7]) if f is dynamically coherent and there exists e > 0 with the fol-
lowing property: if (pu)n=0 and (qn)n=0o are e-pseudo orbits which respect V¢ and such that

d(pn,qn) < € foralln > 0, then g, € We(pn).

It is known that plaque expansiveness is a C'-open condition (see Theorem 7.4 in
[HPS77]). The importance of plaque expansivity lies on the following theorem.

Theorem 1.4.5 (Theorem 7.1 [HPS77], see also Theorem 1 in [PSW12]). Let us assume
that f is dynamically coherent and plaque expansive. Then any § € PH' (M) which is
sufficiently C'~close to f is also dynamically coherent and plaque expansive. Moreover, there
exists a homeomorphism b = bhe: M — M, called a leaf conjugacy, such that b maps a f-

center leaf to a g-center leaf, and b o f(W5(-)) = g o h(W5(-)).

As a result, every f € PH (M) dynamically coherent and plaque-expansive is C
stably dynamically coherent. The problem then, is to decide when a partially hyper-
bolic diffeomorphism is plaque exapansive. This problem is open in its full generality
although plaque expansivity has been obtained in several cases:

e when the center foliation WJE is C! (or E/i is C! or both Ejis and E}“ are C1) this
was proved in [HPS77].

e when Df]| ES is an isometry this was proved in [HHUO07], originally mentioned in
[HPS77] without proof.

¢ when the center foliation W}’ is uniformly compact, i.e. every center leaf is com-
pact and there is a uniform bound on the volumes, this was proved in [Car11]

Notice that Examples 1.3.1, 1.3.3, 1.3.4 and 1.3.5 mentioned in Section 1.3 are dy-
namically coherent and fall into one of the previous cases, hence each one of these
examples is stably dynamically coherent. In Chapter 2 we are going to treat the three
possible cases of Example 1.3.2.

We finish this section by adding another important definition (which we already
mentioned in the introduction) that arises from Theorem 1.4.5 and it is related with
the topological stability of a partially hyperbolic diffeomorphism.



Chapter 1. Preliminaries 33

Definition 1.4.6 (Leaf conjugacy). We say that two dynamically coherent partially hyper-
bolic diffeomorphisms f,g : M — M are leaf conjugate if there exists a homeomorphism
h: M — M, called a leaf conjugacy, such that b maps a f-center leaf to a g-center leaf, and

ho fOVi()) = go bW ().

Leaf conjugacy is the analogous to topological conjugacy for Anosov diffeomor-
phisms in the partially hyperbolic case (notice we need dynamically coherence for
this definition to make sense). Then by Theorem 1.4.5 every f € PH (M) dynamically
coherent and plaque expansive is topologically stable in the sense mentioned above.

1.5 Holonomies

Let us assume that f is a partially hyperbolic dynamically coherent diffeomorphism.
In the following, for any * € {s,c,u,cs,cu} we denote by dW}f the leafwise distance,
and for any x € M and for any € > 0, we denote by

Wi(x,¢) == {y € W(x) :dw}«(x,y) <e}

the e-ball in W; of center x and radius e.

Take x; € M and let x; € W}(xl). By transversality, there are neighbourhoods 14"
of xy in Wi (x1) and U3" of x2 in Wi"(x2) such that for any z € Uj", the local stable
leaf through z intersects U5" at a unique point, denoted by H: . (z) € US". We thus
get a well defined local homeomorphism

S . cu cu
H o ut — Uy

called the stable holonomy map. Since f is dynamically coherent the image of the restric-

tion H . | UsWE (x,) O the center leaf W;(xl) is contained in the center leaf Wj?(xz).

We define the unstable holonomy in the same way.

Wi(x1) it | Ty

W (1) \ /

Wi(x1) Wi (x2)

FIGURE 1.2: Stable holonomy

Notice that a priori we have no additional information about the regularity of these
holonomies beyond continuity. In next subsections we’ll see that under some extra
hypothesys, we can provide more regularity to the holonomies.

1.5.1 0-pinching

Definition 1.5.1 (6-pinching). Let f € PH(M) with functions As, A7, A, Ay as in Defi-
nition 1.2.5. We say that f is 0-pinching for some 6 € (0, 1) if there are constants A, and As
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which verifies As < |Df || 7' < ||Df|| < Ay, and such that
As < —= and A, < =% (1.6)

Notice that given any f € PH(M) with functions A;, A7, AT, A, we can take
Ay = maxyem{||Dfxl|} and As = mingep{||Df;1||}. Then for 8 sufficiently close to
0 we always get the 6-pinching condition in Equation (1.6). Therefore, every partially
hyperbolic diffeomorphism is f-pinching for some 6 € (0, 1), possibly close to 0.

The importance of the pinching condition comes from the following theorem
which relates the pinching condition with the regularity of the u, s holonomies.

Theorem 1.5.2 (Theorem A in [PSW97)). If f € PH' (M) satisfies the pinching condi-
tion for some 6 € (0,1), then local stable/unstable holonomy maps between center leaves are
uniformly 6-Holder.

1.5.2 Center bunching

We can ask for a little stronger condition on the derivatives than pinching (which is
always satisfied for every f € PH(M)).

Definition 1.5.3 (Center bunching). We say that f € PH(M) is center bunched if the
functions As, A, AT, Ay in (1.3) can be chosen such that

max(As, (M) ) < 5 (1.7)
Ac
Unlike the pinching condition, not every partially hyperbolic diffeomorphism is
center-bunched, but every known example is arbitrarily C! close to a center bunched
one. The analogous result relating the bunching condition and the regularity of the
u, s holonomies is again due to C. Pugh, M. Shub and A. Wilkinson.

Theorem 1.5.4 (Theorem B in [PSW97]). If f € PH*(M) is dynamically coherent and
center bunched, then local stable/unstable holonony maps between center leaves are C' when
restricted to some center-stable/center-unstable leaf.

1.6 Accessibility

Given f € PH(M), a f-accessibility sequence is a sequence [x1, ..., x| of k > 1 points in
M such that forany i € {1,...,k — 1}, the points x; and x;1 belong to the same stable
or unstable leaf of f.

x2

/ /
g, 4 S
Wi(x1) Wi(zs)

FIGURE 1.3: A f-accessibility sequence [xq, X2, ..., x7]
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In particular, the points x; and x; can be connected by some f-path, i.e., a contin-
uous path in M obtained by concatenating finitely many arcs in W¢ or Wy. We will
refer to the points x1, ..., xi as the corners of the accessibility sequence [x1, ..., x;]. We
say that two points belonging to the same f-path are su-related. This is an equivalence
relationship and their equivalence classes are called accessibility classes. That is

Accs(x) := {y € M : there is a f-path from x to y}

Notice that you can have infinitely many equivalence classes, for example if we
take f = A x Id : T" x N — T" x N like Example 1.3.4, then Acc¢(x) = p1(x) x N for
every x € T" x N (where p; : T" x N — T" is the projection on the first coordinate)
and we have as many classes as points in the torus T". On the other hand, the time-
one map of the geodesic flow of a surface of constant negative curvature has only one
accessibility class. We will be interested in maps having this last property.

Definition 1.6.1 (Accessibility). We say that f € PH(M) is accessible if there is only one
accessibility class, i.e. there is x € M such that Accg(x) = M.

Moreover we will be interested in maps which are accessible and such that every
map in a sufficiently small neighbourhood is accessible too.

Definition 1.6.2 (Stable accessibility). We say that f € PH (M) is stably accessible if there
exists U a C! neighbourhood of f such that every g € U is accessible.

1.6.1 Center accessibility classes

When f is dynamically coherent, we define the center accessibility class of x as the set
Cy(x) := cc(Accr(x) N Wi(x, 1), x)

i.e. the connected component containing x of the intersection of the accessibility class
of x and the local center leaf through x. Similarly, for any ¢ > 0, we let C f(x, €) ==
cc(Accs(x) N Wji(x, g), x). Therefore, instead of looking at the accessibility class on M,
we can look at the accessibility class inside the center leaf. This naturally decreases
the difficulty of classifying the accessibility classes. In particular for open accessibility
classes, this idea is reflected in the following lemma.

Lemma 1.6.3. The following are equivalent:

1. Accy(x) is an open subset.

2. Accs(x) has non-empty interior.

3. Cy(x) is an open subset of Wj?(x)

4. C¢(x) has non-empty interior (in Wji(x) ).

Proof. If we have 1, then we trivially have 2, 3 and 4. On the other hand if Cf(x) is
an open subset in ch-(x) then we can saturate this set by stable and unstable leaves,
and by local product structure we obtain an open set on M. The proofs of the other
equivalences are basically the same. O

As a result, if we want to determine the “shape” or the topology of a given accessi-
bility class, it is a better idea to see what is the structure on the center leaf. Notice that
center accessibility classes are connected subsets of the center leaves, but classify con-
nected subsets is an immeasurable problem in general. However in lower dimensions
there are a lot of important results.
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Case dimE°¢ =1

Suppose that we have dimE} = 1. We will see that the simple topology of R has
strong consequences in the structure of accessibility classes. Fix a sufficiently small
o > 0 in order to have local product structure. Given a point x € M we take the
following points: x1 € W}‘(x,a/lO), Xy € W]i(xl,cr/lo), X3 = W}’(xz, )N W]Cf(x, o),
and x4 = W;(x:g, o)N W}(x, o) . This gives a f-accessibility sequence [x, x1, X2, X3, X4].
By continuously decreasing the size of the first two legs (i.e. making ¢ goes to 0), we
obtain that x4 € C¢(x). Since Wji(x) is 1-dimensional and the connected subsets of the
real line are only points or segments we have only two possibilities:

e x; = x for every f-accessibility sequence [x, x1, X2, X3, X4],

e x4 # x for some f-accessibility sequence [x, X1, X2, X3, X4]

The first case implies that the bundle EY = E; © Eyis integrable, this is known
as trivial accessibility class (see the left image on Figure 1.4 below). The second case
implies that C¢(x) contains a non-trivial interval and hence a non-empty interior. Then
by Lemma 1.6.3 we get that Accs(x) is open (see the right image on Figure 1.4).

FIGURE 1.4: Dichotomy between center accessibility classes: Integra-
bility of E°* bundle vs open classes

To sum up, when the center bundle is 1-dimensional we have a dichotomy for ac-
cessibility classes: either we have trivial accessibility classes (E}” is integrable), or we
have open accessibility classes. In particular, in order to open a trivial accessibility
class, it is enough to break the integrability of E¥ bundle. This idea was exploited by
Ph. Didier to obtain stability of accessibility in [Did03], and by J. Rodriguez-Hertz, F.
Rodriguez-Hertz and R. Ures in [HHUO8] where they proved the Pugh-Shub conjec-
ture in the 1 dimensional center case.

Case dimE° =2

We now investigate the structure of accessibility classes when the center bundle has
dimension two, that is f € PH (M) and dimE{ = 2. We can make the same construc-

tion of a f-accessibility sequence [x, x1, X2, X3, x4] as above, but in this case we don’t
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have a dichotomy between center accessibility classes because the connected subsets
of a 2-dimensional plane can be very complicated. However in [Her05] F. Rodriguez-
Hertz made the following remarkable result.

Theorem 1.6.4 (Proposition 5.2 in [Her05]). Let f € PH(M) and assume dimE; = 2. Let
x € M. Then one and only one of the following holds:

e Cs(x) is open.
o Cs(x) =x.
* Cs(x) is a topological one dimensional manifold.

This classification result of center accessibility classes was used by F. Rodriguez-
Hertz to prove that certain linear automorphisms on the torus TV with 2-dimensional
center are C° stably ergodic. Later in [HS17] V. Horita and M. Sambarino used this
classification to prove the Pugh-Shub conjecture for skew-product surface diffeomor-
phisms over Anosov.

Case dimE° > 3

When dimE/ﬁ > 3 there is no information about the center accessibility classes. It
has been conjectured in [Wil13] (Conjecture 1.3) that the same phenomenon on the 1
and 2 dimensional center case, occurs in any case, for any dimension of the center
bundle. For example in the dimE; = 3 case, it should be reasonable to expect that
given a point x € M the center accessibility class Cf(x) should be point, a continuous
curve, a topological plane or an open set. This however, is an open problem until now,
although it seems reasonable to be true.

C! homogeneity

The classification of center accessibility classes is also motivated by the following fact.
Take two points x,y € M that are su-related by a f-accessibility sequence [x1, ..., xk]
such that x = xy and y = x. Forj € {1,...,k — 1} we let

Hf{;jl,l,xj: W]Cf,loc(xjfl) — chf,loc(xj)
be the holonomy map where *; € {s, u} is such that x;,; € W;j (7).
By concatenating these local holonomy maps along the arcs of v we get a well
defined map Hy W}/loc(xl) — Wf{loc(xk), ie.,

Hyp, = HY' oo o HJ

frxkfllxk f/x1/x2

Notice that by definition, for every z € W}/loc(x) we have that Hy,(z) € Accs(z).
In particular Hy, (Cs(x) N Wj’illoc(x)) =Cs(y)N W5 1o (y). This motivates the follow-
ing definition.

Definition 1.6.5. Let M be a Riemannian manifold. A subset N C M is said to be C'-
homogeneous, if for every pair of points x,y € N there are neighborhoods Uy, U, and a
C’-diffeomorphism ¢ : U, — U, such that (U, N N) = U, N N and ¢(x) = y.
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By the previous observation we have that center accessibility classes are C°-
homogeneous subsets because the holonomy maps between center leaves are con-
tinuous (in fact, local homeomorphisms). Now if we ask for f € PH(M) to be cen-
ter bunched (see Definition 1.5.3) then the holonomy maps H;fg;jl_l,xj : W]Cclloc(x]-,l) —

Wj‘i,loc(xj) are C! according to Theorem 1.5.4. Therefore, the map Hy,, above is C' and

the center accessibility classes are C!-homogeneous sets.

Given a manifold M, the most common example of a C!-homogeneous set is a C!-
submanifold N C M. Then the question on the opposite direction becomes natural:
is a Cl—homogeneous set necessarily a C! submanifold? In [RSS96] the authors par-
tially answered the question by proving that every C! homogeneous set that is locally
compact, mustbea C l_submanifold.

To sum up, if f € PH(M) is center bunched, then the holonomies are C!, and in
consequence center accessibility classes are C! homogeneous subsets. In particular if
the center accessibility class is 1-dimensional (a topological curve like in the classifica-
tion of [Her05]), then it is in fact a C! curve. This is what Horita and Sambarino used
in [HS17] to prove that 1 dimensional center accessibility classes form a C! lamination.
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Chapter 2

Dynamical coherence of partially
hyperbolic isotopic to fibered PH

In this chapter we are going to prove Theorems A and B. In Section 2.1 we introduce
a few definitons and some classical well known results, and then we restate the main
theorems in a more specific setting. In Section 2.2 we prove an integrability criterion
for partially hyperbolic diffeomorphisms isotopic to fibered partially hyperbolic dif-
feomorphisms. In Section 2.3 we obtain dynamically coherence in the whole isotopy
class of a fibered partially hyperbolic diffeomorphism and prove Theorem A. Finally
in Section 2.4 we deal with leaf conjugacy and prove Theorem B.

2.1 Preliminaries

2.1.1 Definitions and notations

Let f : X — X be a homeomorphism on a metric space (X, dist). We define the stable
set and the stable set of size € of a point x € X as the sets:

Wi(x) = {y € X = dist(f"(x), f*(y)) —n-s+e0 0}
Wi(x,€) = {y € X : dist(f"(x), f"(y)) < e foralln € N}

In the same way but looking at the past, we define the unstable set and the unstable set
of size € of a point x € X as the sets:

WE(x) = {y € X : dist(f " (x), £ (1)) “norsoo 0}
We(x,€) ={y € X :dist(f "(x), f"(y)) < eforalln € N}
Definition 2.1.1 (Hyperbolic homeomorphisms). We say that a homeomorphism f : X —

X on a metric space (X, dist) is uniformly hyperbolic if there are constants C > 0, A > 1,
€ > 0and 6 > 0 such that:

1. dist(f"(x1), f"(x2)) < CA™"dist(x1, x2), for all x1,x2 € Wi(x,€), n > 0.
2. dist(f"(x1), f"(x2)) < CA™"dist(x1,x2), for all x1,xp € W}‘(x,e), n>0.

3. ifdist(x1,x2) < O then Wji(xl,e) and W}’(xz,e) intersect at exactly one point denoted
by [x1, x2] and this point depends continuoulsy with (x1,x;) € X x X.

Originally it was said that a homeomorphism f satisfying the previous definition
had hyperbolic coordinates. In [Mafi87b] (Chapter IV, Section 9) R. Mafié presents a
slightly different definition of a hyperbolic homeomorphism that the one we stated,
but later J. Ombach observed in [Omb96] that they are both equivalent. We state it this
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way because we think is the most natural one. Hyperbolic coordinates or hyperbolic
homeomorphisms, appeared on the seventies in the attempt to give a topological de-
scription of the concept of hyperbolicity (see [Wal78], [Omb86], [Omb87], [Omb96]).
Notice that Definition 2.1.1 is purely topological.

Now recall that according to Definition 1.4.1 from Chapter 1, we say that a partially
hyperbolic diffeomorphism f : M — M with a splitting TM = EJS[S ® E} @ E?” is
dynamically coherent if the center-unstable bundle Ef* = E5 © EY" and the center-
stable bundle EY’ := EY’ @ E} integrate respectively to invariant foliations WE*, W’
called the center-unstable and the center-stable foliation respectively. This implies in
addition, that we have a center foliation W}(x) = Jis(x) N W}“(x) which is also
f-invariant and tangent to EJE.

This center foliation WV} gives a partition of the manifold M and thus we have a
well defined quotient space M/W;. We are going to note by p : M — M/W; to
the projection into equivalence classes. Moreover, we have an induced map in the
quotient space:

fcM/W;%M/W; givenby pof = f.op

The idea of this map is to “cancel” the non-hyperbolic behaviour of the partially hy-
perbolic diffeomorphism f in order to get some hyperbolicity in the quotient space.
We have the same behaviour on the universal cover. Let 7 : M — M be the
universal cover of M and recall that M = M/T where I = 71;(M) acts on M by
isometries. In this case we have that ch gives a partition of the manifold M and we

have a well defined quotient space M/ VNVJCC We are going to note by p : M — M/ VV/}
to the projection into equivalence classes, and its corresponding induced map will be:

ﬁ:M/VNV}—HVI/WJ? given by ﬁof:ﬁoﬁ

Additionally since the center leaves are invariant by the dynamics, we can define a
function 7t : M/ Wi —= M / Wi by the equation 7. o p = p o 7. It is clear that this map

is well defined because if ¥ € M then 5(X) = W;(f) and therefore

7 0 p(X) = me(WH(F)) = WH(n(X)) = Wi(x) = p(x) = po n(3)

Notice that a priori, nothing tell us that the previous quotient spaces will have nice
properties. The following is the main object of this chapter.

Definition 2.1.2 (Fibered partially hyperbolic). Let f : M — M be a dynamically coherent
partially hyperbolic diffeomorphism of class C". We say that f is fibered if:

1. the foliations W;S and W}’” have global product structure;
the foliations WC“ and WSS have global product structure.

2. For every X,ij € M we have that dH(Wf( X), Wf(y)) < oo, As a consequence, the
Hausdorff distance in M induces a distance (noted by dist) in the quotient space M/ )7\7]5
3. the map f.: M/ 7\7; — M/ )7\7/5 is a hyperbolic homeomorphism.

4. there exists a linear Anosov A : R9=¢ — R4~ with a splitting R"~¢ = E% & E%, and
a bi-Lipschitz homeomorphism h : M/Wf — R such that Aoh = ho f,.



Chapter 2. Dynamical coherence of partially hyperbolic isotopic to fibered PH 41

The following diagram illustrates all maps involved in the previous definition:

Mm— e m
| |
T /IANIC ﬁ c
]Rd—c A le—c

Lemma 2.1.3. Condition 2 in the definiton above implies the following: given K > 0 there is
C > Osuch that, if d(X,y) < K then dist(p(X), p(y)) < C.

Proof. Let D be a compact fundamental domain and let 7y, ...,y € I be such that if
X € D then B(¥,K) C U'_, ;- D =: D. By compactness and since j : M — M/WJE is

continuous, there exists C > 0 such thatif x, y € D then dist(p(%), p(7)) < C.
Now if Z,w € M and d(z,w) < K, there is y such that ¢ -z € D and this implies
that v - w € D too. We conclude that: dist(p(z), p(w)) = dist(p(y-X),p(v-y)) <C
O

Let us give a simple notation that will be useful in the whole chapter. If A is a
hyperbolic matrix with a splitting R9~¢ = E$ @ E4* and v € R?"¢ we are going to
note by

I : R — v+ EY

for o = ss, uu to the corresponding orthogonal projections.
Now let f : M — M be a fibered partially hyperbolic diffeomorphism. From now
on for simplicity, we are going to note by

[X] := ho p(X) € R*° forevery X € M.
Recall that M = M/T where ¢ = 711 (M) acts on M by isometries. Then we can define
an action of I' in M/W¢ given by the equation
7-P(x) = plr-%)
Since for every ¢ € I' we have that 1 - 17\7]’5(37) = W}(’y - X) the action is well defined

and moreover for every v € I' and every X,y € M we have:
dist(y - p(%),v-p(y) = dist(p(X),p(@)) = du(WV5(y-2), Wi(7-9))
= du(Ws(x), Wi(y)) = dist(p(x), p(y))

and the action preserves the distance. In the same way we can define an action of I' in
R?=¢ = Im(h) by the equation:

7 [ =75

Notice that since [X] := h o p(X) this is equivalent to v - h o p(X) := ho p(y - X). Then
the action is well defined, but it doesn’t necessarily preserves the distance. However
we have the following estimate.
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Lemma 2.1.4. There exists a constant K > 0 s.t. for every v € T and every [x],[y] € R¥~¢

we have:
Iy - (%] = v - Wl < K[|[x] — [¥]]

Proof. Let C; > 0 and C;,-1 > 0 be the Lipschitz constants of & and h~! respectively.
Then given [x], [j] € RY~¢ we have:
dist(h=' %), k(7)) < Gy | [%] — @1

Since T acts on M/ 17\7]5 preserving the distance, given y € I' we have:

dist(y -~ [%], v -7 [7]) = dist(hH[Z], i [7]) < Gy || %] — (911

This implies that:
ly - [&] = - @1l = [y - 2D = By - R D) < CoCoa | [3] = (711
Taking K = C;,.C;-1 we obtain the lemma. O

Remark 2.1.5. In the previous lemma we used that the map h~' in Definition 2.1.2 is Lips-
chitz. This is the only part of the chapter when we use this property, but it will have strong
consequences.

2.1.2 Examples of fibered partially hyperbolic diffeomorphisms

The following are some examples of fibered partially hyperbolic diffeomorphisms.

Anosov automorphisms.

Let A € SL(d, Z) be a hyperbolic matrix with a splitting of the form R? = E{ & E%* &
E9" @ E'}". This matrix induces an Anosov diffeomorphism f : T¢ — T? as we saw in
Example 1.3.1. Then we can see f as a fibered partially hyperbolic with trivial fibers.
In this case RY/ 17\7; = R? and fc = A and the four conditions above are trivially
satisfied.

On the other hand we can see f as a partially hyperbolic diffeomorphism by taking
the center bundle as E} = E}* @ E}". Since Ej is a linear subspace, we get that f
is dinamically coherent and moreover f has global product structure (as in 1). The
quotient space is IRY/ VNVJS = E$ @ E% = R and the map J can be seen as the
orthogonal projection TT°* : RY — E$ @ EY = R%=¢ proving point 2. The quotient
map is f, = A exopw and we get 3. Point 4 is not needed since f. is already linear (or
in this case i = Id). Therefore f is a fibered partially hyperbolic diffeomorphism.

Partially hyperbolic automorphisms.

Let A € SL(d, Z) be a matrix with a splitting of the form R? = ES{ & ES & E4", where
E¢ is the generalized eigenspace associated to the eigenvalues of modulus equal to
one. Like in the Anosov case (see Example 1.3.1), the matrix A induces a map f :
T¢ — T¢ which is a dynamically coherent partially hyperbolic diffeomorphism. In
the same way as above since f is linear, it’s clear that f has global product structure
as in 1, the quotient space is RY/ W}? = E% @ E'Y* and the map p is the orthogonal

projection IT* : R — E5 & E4" proving 2. Finally observe that j?c = Alpsopw and
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thus we get point 3. Once again we don’t need point 4 since fc is already linear. We
conclude that f is fibered partially hyperbolic.

Anosov x Identity.

Let A € SL(d, Z) be a hyperbolic matrix with a splitting of the form R? = ES, & E%.
This matrix induces an Anosov diffeomorphism f : T? — T? as we already saw. Let
N be any other manifold of any dimension and let ¢ : T x N — T% x N be the map
g = f x Id. Then g is a dynamically coherent partially hyperbolic diffeomorphism
with global product structure (see Example 1.3.4). The center leaves are of the form
Wg(x,y) = {x} x N and then its quotient space is (R? x N)/Wgc =R? = E¥ & EY,
the projection p, : R? x N — (R* x N)/ VNng = R? is just the projection on the first
coordinate and the induced map is gc = A|g; £y . This shows points 1, 2 and 3. Again
h = Id in this case and we have 4. Therefore g is fibered partially hyperbolic.

Dominated splitting examples.

Generalizing the previous example take f : M — M any of the previous fibered par-
tially hyperbolic diffeomorphisms and let N be a manifold of any dimension. Take a
map g : N — N such that its behaviour is dominated by f: there exist A € (0,1) such
that ||[Dg,[| < )\Wl(Dfx|E}4() and HDfx|E;|| < Am(Dgy) for every x € M, y € N. Then
themap F : M x N = M x N defined by F = f x g is a dynamically coherent par-
tially hyperbolic diffeomorphism. Since the center leaves are Wi (x,y) = Wi(x) x N

the quotient space is (M x N)/ WE = M/ 17\7} Moreover since f is fibered, we have
that F has global product structure as in point 1. The projection pr is the function
Pr(%,7) = pr(x) where oy : M — ]\71/)7\7} proving 2 and the induced map is just
F. = fNC getting point 3. If we take h = hy we have 4 and therefore F is a fibered
partially hyperbolic diffeomorphism.

Skew-products

Let f : T — T? be an Anosov diffeomorphism induced by some hyperbolic matrix
as above and let G be a compact Lie group. Take a smooth function § : N — G and
consider the map F : N x G — N x G given by F(x,g) = (f(x),0(x)g). Then it
is easy to see that F is a dynamically coherent partially hyperbolic diffeomorphism
with global product structure in the universal cover proving 1. The center leaves are
given by Wi (x, g) = {x} x G, and therefore we have point 2. By the same reason the
projection into equivalence classes pr is just the projection into the first coordinate and
the induced map is just F, = f getting point 3. Since the Anosov in the base f is linear,
we have 4 and therefore F is a fibered partially hyperbolic diffeomorphism.

Fiberings

More general than the previous examples, we have the systems that fiber over partially
hyperbolic diffeomorphisms. Take f : T¢ — T be a fibered partially hyperbolic

c

diffeomorphism with a splitting of the form TTY = E; ®E i ) E?. Take a fibration

N— M5 T4 ie 7' ({x}) ~ N for every x € T and denote by N(x) = 7w~ !({x})
to the fiber through x. Consider alift F : M — M, thatis amap suchthatroF = fo .
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Then if we ask for the lift F to verify:
ID fre(ay g | < m(DEx|n(x)) < [IDFelrngay | < m(D frx)lex)

then F is partially hyperbolic and dynamically coherent. Moreover since the map in
the base f is a fibered p.h. we have that F has global product structure 1 and cen-
ter leaves in the universal cover are WE(J?) = WE(T[(J?)) x N proving 2. Tt is direct
to check that the projection map pr is just the composition py o 77, showing point 3.
Finally taking hp = hy we get point 4 and F is a fibered partially hyperbolic diffeo-
morphism.

2.1.3 Shadowing and stability

The main object of study in this chapter are fibered partially hyperbolic diffeomor-
phisms and their induced hyperbolic homeomorphisms on their respective quotient
spaces. As we mentioned in the introduction, uniform hyperbolicity is a robust prop-
erty. In this subsection we are going to see that this fundamental relation between
hyperbolicity and stability is given by a property which is in the core of hyperbolicity:
the shadowing property.

The pseudo-orbit tracing property or shadowing property originally appeared in
the works of R. Bowen where he studied the ergodic properties of Anosov or Axiom A
diffeomorphisms. This shadowing property was quickly generalized to many contexts
(for example hyperbolic homeomorphisms) but we are just going to state the simplest
version since it is enough for our purposes.

Let f : X — X be a homeomorphism on a metric space (X, dist) and take a C°-
perturbation of size K > 0, i.e. amap g : X — X such that dist(f(x),g(x)) < K for
every x € X. Then given a point x € X the g-orbit of x, i.e. the sequence x, := ¢"(x)
satisfies the following: dist(f(xy),x,4+1) = dist(f(xn),g(x,)) < K. Hence the g-orbit
of x is almost an orbit of f in the sense that it is allowed to make jumps of length smaller
than K. This simple observation leads to the following classical definition.

Definition 2.1.6. Given a homeomorphism f : X — X on a metric space (X, dist) and § > 0
we say that a sequence of points {x,}nez C X is a K-pseudo orbit (with respect to f) if
dist(f(xn), xut+1) < K for every n € Z.

Now the real problem is to determine which condition must satisfy the homeomor-
phism f in order to get a precise relationship between the set of K-pseudo orbits (with
respect to f) and the truly orbits of f. The key ingredient turned out to be uniform
hyperbolicity as the following classical lemma shows. We are going to see a specific
statement of the lemma, the one that best suits for our purposes, although there are
more general versions.

Lemma 2.1.7 (Shadowing lemma for hyperbolic automorphisms). Let A : RY — R?
be a hyperbolic matrix. Then given K > O there is &« > 0 such that for every K-pseudo orbit
{xn }nez there is a unique y € RY such that || A" (y) — x,|| < « for every n € Z.

We say that the A-orbit of y is the one that a-shadows the pseudo orbit {x, } nez.

We are not going to see a proof of this lemma, the interested reader can found
a proof in [Sam09]. The only thing we are going to mention is that the constant «
depends on A, A, (eigenvalues of A) and K.

The following theorem establishes the relation between the shadowing property
and the C%-stability.



Chapter 2. Dynamical coherence of partially hyperbolic isotopic to fibered PH 45

Theorem 2.1.8 (Stability of fibered partially hyperbolic diffeomorphisms). Let f :
M — M be a fibered partially hyperbolic diffeomorphism. Then for every g : M — M such

that sup{dist(f (%), g(X))} < K < oo for some lift  : M — M, there exist a continuous and
surjective map Hg : M — R~ and a number « = a(f, K) > 0 such that:

1. AoHy = Hgog
2. deo(Hg, hop) < a

3. the map H, varies continuously with g in the C° topology.
4. Hg is I invariant.

Proof. Let f be a fibered partially hyperbolic diffeomorphism. By hypothesys, there
exists a linear Anosov A : R9¢ — R and a bi Lipschitz homeomorphism # :
]\71/17\7; — R¥¢such that Aoh =ho f,.

Let ¢ € PH (M) be such that sup{dist(f(%),3(X)) : ¥ € M} = K < o for some lift
g: M — M on the universal cover. Now for this K > 0 we know by Lemma 2.1.3 that
there is C > 0 such that if d(¥, y) < K then dist(p(%x), p(y)) < C.

Given a point ¥ € M we define the following sequence:

Gn(X) = hop(g"(x)) = [§"(%)]

We claim that {G,(X) }nez is a C,C-pseudo orbit with respect to A where Cj, is the
Lipschitz constant of h. First observe that:

A(Gu(X)) = Aohop(g"(X)) =hopo f(g"(X))

Then we have that:

1A(Gi(®) = Gunan (D = [[Achop("(%)) —hop(g" (3]

Since d(f(%),3(%)) < Kfor every ¥ € M, we have that d(f(3"(¥)),3(g"(%))) < K
and therefore dist(p(f(g"(X))), p(2(8"(X)))) < K. We conclude that ||A(G,(X)) —

Gn+1(X)|| < CyK proving that {G,(X)} is a C;,C-pseudo orbit with respect to A. Since
A : R — R9~¢ is a hyperbolic automorphism, we can apply the Shadowing Lemma
2.1.7 and obtain a unique vector v € RY~¢ such that ||A"v — G,(X)|| < « for every
n € Z. Notice that « depends only on f, Cj, and K (and C;, depends on f). Therefore
the map H, : M — RY¢ given by H, +(X) = v is well defined. Now by definition we
have:

Gus1 (%) = o pF™1(%) = h o PE (§(X))) = Gal@(®))
Then
|A"(A o Hy)(3)) = Gu(@(®)]| = |4 (Hy(®) — Goir(B)] <

and the uniqueness in the Shadowing Lemma implies that
Hy(g(x)) = A(Hy(x)) orequivalently AoHy = Hyog

proving point 1. By definition we have that ||A" o H¢(X) —h o p(g"(X))|| < «, thus
taking n = 0 gives ||[Hg(X) —ho p(X))|| < a for every ¥ € M, proving point 2.
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To see the continuity of Hy suppose that the sequence {%; }xew C M is such that
Xr — X as k — oo, and fix some integer | € Z. Then,

|4 (lim Hg (%)), o p(&' (%) = |A'(lim He(%)) —hopog (lim %)

= lim || A" (Hy(%)) — o p(F (%)l <

Since | € Z is arbitrary, by the uniqueness of the shadowing we get limy_,o, Hg(X;) =
Hy(X) and Hg is continuous. Since dco(Hg, ho p) < a by a degree argument we get
that H, is surjective.

To prove the continuous variation with respect to g, take some € > 0 and fix some
large Ny € IN such that every vector v € RY~¢ with |[v| > e verifies: ||AMN ()| >
20 + C,C or ||A~No(v)|| > 2a + C,C. We always have this Nj since A is hyperbolic.
Let U(g) be the C? neighbourhood of g s.t. for every ¢’ € U(g), ¥ € M and |j| < Ny

we have d(§](f),gN’](5cV)) < K. Now take ¢’ € U(g), ¥ € M and |j| < Np:

1AT(Hy (%)) = Al (Hg (D)) < [|A/(H,(X)) — (ﬁ(ﬂ)ll
+ |IhoFE(R) —ho plg’ (R))]

+ |lho (8" (%)) — Al(Hy (%)
< a+CCH+a=2a+C,C

where the first and third inequalities come from the shadowing property, and the sec-

ond one because [[l: o 5§ (%)) —ho p(g" (%)) < Cudist(p(F (%)), B(8" (%)) < CiC
since d(§/(%),¢" (%)) < K. This implies |[Hg(X) — Hy (X)|| < € by the above condition
and therefore we get point 3.

To finish the proof we have to prove that H, is [-invariant. Recall that by definition
we have [X] = ho p(X) and 7 - [X] = [y - X]. First notice thatif we call ¢ : I' — T the
induced map of fvin the fundamental group, we get that for every v € I' and every

XeM: N N
f(r-x) =o(y) f(%)

and the same happens for every g as in the hypothesys: g(v-X) = ¢(7) - §(¥). By
induction we get that f(y - ) = ¢" () - f*(%). In a similar way we have:

Alrv-[B]) = Ally-%) = A(hoply-%) =hopofly-%)
= hop(e(y) f(X) = @(y) -hop(f(X))
= @(7) Aohop(x) = ¢(v) - A([x])

By induction we get that A" (7y - [X]) = ¢" () - A"([¥]). Finally just observe that:
Gu(y-X) = hop(§"(y-X)) =hop(e"(7)-8"(X))
= ¢"(7)-hop(§"(x)) = ¢"(7) - Gu(%)

To sum up, forevery y €I, x € M and n € Z we have

|A" (7 - Hg(X)) = Gu(y- %) = |l¢"(7) - A"(Hg(%)) — 90 7) - G (%) ||
< GGy [|A"(Hg(%)) — Gu(%)[| < CpCaa

where the first inequality comes from Lemma 2.1.4. By uniqueness of the Shadowing
Lemma, we get that Hy(y - X) = - Hg(X), proving point 4. O
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Remark 2.1.9. As we mentioned in Remark 2.1.5, we only use the fact that h~' is Lipschitz in
order to prove Lemma 2.1.4, and we have just used this lemma to prove Point 4 in the theorem
above. In short, we need h™ to be Lipschitz in order to get the T invariance of Hy.

Remark 2.1.10. In case ¢ = f we get Hy = h o p. In many parts of this chapter we will note
Hy instead of h o p.

Remark 2.1.11. If g € PH (M) is isotopic to f and we take a lift g, then we always have that
sup{d(f(%),g§(X)): ¥ € M} < K < o0

Therefore Theorem 2.1.8 applies and we get the map H.

2.1.4 Main results

From now on f € PH (M) will be a fibered partially hyperbolic diffeomorphism and
we are going to consider the subset PH (M) C PH(M) of partially hyperbolic dif-
feomorphisms such that:

DU (M) = ¢ € PH(M) which are isotopic to f and such that
f(M) = dimE{ = dimE¢, for o = ss, ¢, uu

By Theorem 2.1.8 (and Remark 2.1.11) we have that for every ¢ € PH (M) there is a
continuous and surjective map Hy : M — R such that A o He = Hgog, ie. gis
semiconjugated to the linear Anosov A. The first direct consequence of this semicon-
jugacy is the following:

if § € W5 (%) then Hy(7) € E5 + Hy(%)
and the same happens with the unstable manifold:
if 7 € WY (X) then Hy(y) € E4" + Hy(%)

This is easy to see since y € 17\7;5(55) if and only if d(g"(y),3" (X)) — 0 for n — —+oo0.
This implies that ||[Hy o g"(y) — Hy 0 §"(X)|| — 0 and by the semiconjugacy relation
this is the same as || A" (H, () — H¢(X))|| — 0. By hyperbolicity this can only happen
if Ho(y) € E% + Hg(X). The same calculation works for the past.

On the other hand suppose there are points ¥, € M such that their orbits are
at finite distance at any time (this is the “ideal” picture of the behaviour on center
leaves), then since A is uniformly hyperbolic we have H, (X) = H,(y). This motivates
the following definition, which is the analogous to the one introduced in [FPS14].

Definition 2.1.12 (Center fibered). We say that a dynamically coherent § € PH (M) is
center-fibered (CF) szg‘l(Hg(f)) = Wg(f) for every X € M.

In particular this means that two different center leaves of g are sent by H, to two
different points in R,
Now given a fibered partially hyperbolic diffeomorphism f, we are going to note:

PHO (M) = connected componentes of PH f(M) which contains a
f B DC and CF p.h.d. with global product structure
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We remark that the partially hyperbolic diffeomorphism f is itself center fibered by
definition because Hy = h o p, then for every X € M we have that:

(Hp) "' (Hf)(®) = (ho p) M (ho p)(%) = p ' (B(X)) = WE()

Then the set P’H? (M) is a non-empty open set with at least one connected component.

Let us mention here that in [FG14] it is proved that given a linear Anosov A : T¢ — T¢
(with d > 10), the space of Anosov diffeomorphisms homotopic to A has infinitely
many connected components. In particular, this implies that P’H? (M) may have more
than one connected component (besides the one containing f).

With this new notations we can restate the main result of this chapter.

Theorem 2.1.13. Every g € PH?(M) is dynamically coherent and center-fibered.

A direct consequence from the proof of this theorem, is that it implies to have
plaque expansiveness in the whole connected component. Applying Theorem 1.4.5
and a connectedness argument, we can obtain the following classification result.

Theorem 2.1.14. Any two diffeomorphisms in the same connected component of PH?(M)

are leaf conjugate. In particular every g € PH?(M ) in the same connected component of f is
leaf conjugate to f.

Let us summarize the main steps of the proofs of these theorems.

1. We first state an integrability criterion for partially hyperbolic diffeomorphisms
isotopic to a fixed fibered partially hyperbolic diffeomorphism. This criterion is
a generalization of the one introduced in [FPS14] and it is based on the concepts
of o-properness, global product structure (GPS) and strong almost dynamical
coherence (SADC). This is done in Section 2.2.

2. We then study the C! openess and C! closedness of all these properties: o proper-
ness, GPS and SADC. In particular, once this is achieved, we get that if there is
a partially hyperbolic diffeomorphism g which satisfies all these properties, we
have that every partially hyperbolic diffeomorphism in the same connected com-
ponent of g satisfies these properties as well. We then can apply the integrability
criterion mentioned in Point 1 to every partially hyperbolic diffeomorphism in
that connected component. This is shown in Section 2.3.

3. We then pass to the proof of Theorem 2.1.13. The only thing we must check,
is the other way around; let ¢ € PH (M) be a partially hyperbolic diffeomor-
phism isotopic to a fibered p.h. f, such that g is dynamically coherent and center-
fibered (and has global product structure), then g is o-proper and SADC. This is
done in Subsection 2.3.5.

4. We then pass to the proof of Theorem 2.1.14. To do this, we just prove that every
g in the above conditions must be plaque expansive, and by classical arguments
we prove the leaf conjugacy between g and the fibered p.h. f. The proof of this
theorem is made in Section 2.4.
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2.2 Integrability for fibered partially hyperbolic diffeomor-
phisms

In this section we are going to see an integrability criterion for partially hyperbolic

diffeomorphisms isotopic to fibered partially hyperbolic diffeomorphisms. This crite-

rion is a generalization of the one given in [FPS14] and therefore it can be applied in a
larger number of cases.

2.2.1 o-Properness

Recall that given g € PHf(M), forany * € {ss,uu}, forany x € M, and for any € > 0,
we denote by

Wi (%€) == {7 € W; (%) : dyy, (%,7) < €}
to the e-ball in Wé‘ of center X and radius ¢, where dW* denotes the leafwise distance,
&g

that is the distance induced by the Riemannian metric in M restricted to the leaves.
In order to avoid any confusion (since we are working in different spaces), for any
* € {ss,uu}, forany v € R?—¢, and for any € > 0 we denote by

Dj(v,e):={w e E,+v:|v—w| <e}
The following definition is the analogous of the one introduced in [FPS14].

Definition 2.2.1 (c-proper). For 0 = ss,uu we say that § € PH¢(M) is o-proper if for
every ¥ € M the map Hy restricted to )7\7? (X) is uniformly proper. More precisely, for every
R > 0 there exists R" > 0 such that

(Hg) (DG (Hy(%),R)) NWS(X) C WS(X,R) forevery ¥ € M

Remark 2.2.2. In the previous definition, we can take R = 1 by uniform hyperbolicity of the
strong bundles, and the cocompactness of M.

The definition of o-properness can be expressed in a different and more geomet-
ric way. The next lemma gives the desire equivalence. We omit its proof since it is
the same as Lemmas 3.2 and 3.4 in [FPS14]. Given ¢ € PH¢(M) we say that ¢ has
condition:

(I7) If the function Hy is injective restricted to Wg -leaves.

(87) If the function Hy is surjective restricted to VNVg -leaves.

Then if g verifies both conditions, the map Hg\wgm : Wg” (X) = E§ + Hg(%) is a
8

homeomorphism.
Lemma 2.2.3. If ¢ € PHs(M) then, g is o-proper if and only if g satisfies properties (17)
and (S7). Moreover (17) implies (S7).

2.2.2 Strong almost dynamically coherence

Given a subset K CNZ\7I and R > 0 we call B(K, R) the R-neighbourhood of K, that is,
the set of points in M that are less than R from some point in K:

B(K,R) = {X € M : thereis § € K s.t. d(X,9) < R}
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This includes the case K = ¥ and:
B(X,R) = {7 € M :d(X,j) < R}

Definition 2.2.4 (Almost parallel foliations). Given Fi and F two fq{iations in M, we
say they are almost parallel if there exists R > 0 such that for every X € M, there are points
X1, %> € M such that:

i j—:'l(@ - B(ﬁz(fl), R) and }:2(3?1) C B("%l(@/R)
o F2(X) C B(F1(%2),R) and Fi(%2) C B(F2(X),R)

It's easy to see that this is an equivalence relation. Moreover the condition can be
expressed in terms of the Hausdorff distance: for every X € M, there exist x1,x, € M
such that dH(fl(f),fz(J’CVl)) < Rand dH(fz(f),]:](fz)) < R.

Definition 2.2.5 (SADC). We say that g € PH¢(M) is strongly almost dynamically
coherent (SADC) if there exists foliations Fg°, Fg" (not necessarily invariant) such that:

CS CU uu SS )
. Fg , Fg are transverse to Eg , Eg respectively,

o F G fg”’ are almost parallel to the foliations Wes, W}” respectively.

—~cs

Wy (z1)

F(z)

g

—~c§

Wf (mz)

FIGURE 2.1: Almost parallel foliations F¢® and ch—s

The previous name (SADC) comes from [Pot12] where Potrie defines the concept
of almost dynamically coherent as a partially hyperbolic diffeomorphism with foliations
F ]ﬁs, .7:;“ transverse to E?”, Ejsf. In fact in that paper the author proved for dimension
3 that these foliations are almost parallel to E5, E}'. In higher dimension this is not
clear, that’s why in [FPS14] they added the stronger hypothesis.

Definition 2.2.6 (SADC with GPS). Given g € PH (M) which is SADC with their corre-
sponding foliations F¢* and F¢", we say that g has global product structure if F¢* and VNVg?‘“
have global product structure (GPS) and, F¢"* and W;S have global product structure.

2.2.3 Integrability criterion

The following is an integrability criterion for partially hyperbolic diffeomorphisms
isotopic to fibered partially hyperbolic diffeomorphisms.
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Theorem 2.2.7 (Integrability criterion). Assume that g € PH (M) verifies the following
conditions:

* g is uu-proper.
* ¢is SADC with global product structure.

Then the bundle E¢’ is integrable into a g-invariant foliation We¢® that verifies Hy YES +
Hy(x)) = Wgs(f). Moreover, Wgs and Wg“ have global product structure.

Proof. The idea of the proof is pretty clear: take the foliation ]ifs given by the SADC
property and iterate it backwards by ¢ hoping that in the limit it will converge to the
desired foliation. Specifically the goal is to show that {(Hg) ' (Hg(y) + E%) : 7 € M}
is the center-stable foliation of g.

First observe that this partition of M is g-invariant:

g ((Hy) M(Hg(y) + EX)) = (Hgo8) '(Hg(y) +E¥)
Hg ' (A7 (Hg(§) + EX))
= Hg'(Hg(3™'9) +EX)

(Ao Hg) ™ (Hg(¥) + EX)
He (AN (Hg (7)) + E3)

Moreover the partition is invariant by deck translations since H is I'-invariant. Now
take the foliation ¢* given by the SADC property. Since it is almost parallsl to W
and Hy is at bounded Hausdorff distance from Hy = h o p we have that Hg(Fg°(X)) is
also at bounded Hausdorff distance from some translate of E’; for every x € M.

Since Wg" and F° have global product structure, we can see the leaves of F¢°
(and then of g™"(F¢%)) as graphs of functions from R* to R"". Since the foliation
F¢' is uniformly transverse to E;* we know there are local product structure boxes of
uniform size in M, i.e. thereis € > 0s.t. VX € M there is a neighbourhood Vi O B(X,¢€)
and C!-local coordinates 15 : D% x D** — V such that:

* Px(ID° x D") = Vg

e For every § € B(X,e) C Vi we have that if we call W¥(#) to the connected
component of Vi N g~ "(F¢*(g"(¥))) that contains y then

(Wi (y)) = graph(h,”)
where hZ’g : D — ID** is a C! function with bounded first derivatives.

This way we get that the set {/,”},cn is precompact in the space of Lipschitz func-
tions D — ID"* ([HPS77]). Therefore the leaves of g~*”(]f"§s ) have convergent sub-
sequences. From this point we have to deal with two problems: the first one is that
a priori there could be a leaf with more than one limit, and second, that in the limit,
different leaves might merge. We will handle these two problems in the same way.
For every iy € B(X,€), we call j; to the set of indices such that for every a & j;

there is a Lipschitz function hey, : D — ID** and a subsequence nj — oo such that:

Xy . Xy
hoo%’,x = lim hyY
j—+oo

Every hfoy“ has its corresponding graph, and we note Wfoa('yv) to the image by 93 of
this graph. The following claim is crucial for the theorem.
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Claim 2.2.8. For every Z € B(X,€) and every a € JZ, we have that Hy(WZ ,(2)) C
H,(2) + E.

Proof. Take z € B(X,€) and & € JZ. Then by hypothesis there is subsequence nj —
+o0 such that W,f]_ (z) = W3 ,(2). Giveny € W% ,(Z) we want to prove that Hg(¥) €
Hg(z) + E3. Call z;,, = VA\Z;,’“@) N W,fj (Z) (see Figure 2.2 below). Then z,,, — § when
j — +ooand " (Zy) € F¢°(8"(2)). If Hg(y) = Hg(2) we're done. Suppose by the
contrary that Hy(2) # Hg(y). Then Hg(an) — H¢(y) # Hg(2). Note that z and Zn,
belong to the same leaf ¢, and the same for §" (Z) and g (Zn;)-

Since F¢° is almost parallel to VA\}JES and Hy is C%-close to H f = hop, wehave that
there is constant C; > 0 such that for any j € IN:

g (Hy(3"(2) - He(3" &)l < €

Therefore by semiconjugacy we deduce that
Ty (A" (Hy (2)) — A" (Hig(2) ) 1| < Gy

Since A is hyperbolic this implies Hg(z) — Hq(zn,) € E3 for every j € IN. Finally
taking the limit when j — +co we get Hy(Z) — Hy(y) € E. O

We are going to solve the two problems mentioned above in the same way. Sup-
pose first that z € B(¥, ) has two different limits W, ,(Z) and W, ;(Z). Then there are

points z; € WX ,(2) and z; € Wfo,ﬁ(Z) that belong to the same Wg”—leaf. The previous
claim implies that H (Z1) and Hg(22) belong to Hy(Z) + E¥; and this can happen if and
only if Hg(z1) = Hg(22) which contradicts the injectivity of Hg|3,-

8

—~uu

W, @)

Wi () c g (F, G4(3)

» N

W.a(?)

FIGURE 2.2: Plaques does not merge.

For the second problem we manage the same way. Let’s suppose there are points
z1 # 7 in B(X, €) such that their limits W, ,(z1) and W, ﬂ(z"}) have non empty inter-
section. Then we get two points y; € W% ,(z1) and 1, € W2 5(22) inside the same
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Wg“-leaf. Again the previous claim implies Hy(z1) = Hg(22) and this contradicts the
injectivity of H8|)7V§,m‘

To sum up, we obtained that for every ¥ € M and every § € B(X,¢), the limit
WZ (1) of the W (¥) leaves is unique, and for every pair of points 7,z € B(X, €), their
limits are disjoint or coincide. These limits are also g-invariant. To get that it is truly
a foliation, it’s enough to observe the following: given two points z,w € B(X,€), we
have that W% (z) and Wé’“(@) intersect in a unique point. Since the leaves of Wé’,‘”
varies continuously and the plaques of W2 either coincide or are disjoint, we get a
continuous function from D x ID** to a neighbourhood of X which sends horizontal
disks to W2 -plaques. This proves that these plaques form a foliation. Since the leaves
of the foliations are tangent to small cones around the EJ® direction and these leaves
are g-invariant, we get that the foliation is tangent to E¢°. Finally observe that the

foliation VNV? has the same properties that F gcs. Thus we have global product structure
between ngs and Wg”. O

Corollary 2.2.9. If ¢ € PH (M) verifies the following conditions:
* gisuu and ss proper.
* ¢is SADC with global product structure.
Then g is dynamically coherent, center fibered and has global product structure.

We end this section with a proposition which finishes the proof of the equivalence
between dynamically coherence and center fibered, with o properness and SADC (in
presence of global product structure).

Proposition 2.2.10. If ¢ € PH (M) is dynamically coherent, center fibered and has global
product structure, then it is o-proper (o = ss, uu) and SADC with global product structure.

Proof. Take a dynamically coherent and center fibered ¢ € PH (M), such that Wgs
and W;" have global product structure, and Wg" and Wg* have global product struc-
ture. Suppose that there is y € Wy" (%) such that Hy(y) = Hg(X). Then by center
fibered this implies that y € Wg(x) C Wg¥(x). But then {X,y} € W““( X)N W“S (%)
which violates the global product structure This implies that H, ’W”“ isa homeomor—
phism, and therefore g is uu-proper by Lemma 2.2.3. The case ss-proper is exactly
the same. Now recall that Wg* and Wg" are uniformly transverse to Eg* and E7’ re-
spectively, and so in order to prove that g is SADC, it remains to show that VN\/§S and

17\7”‘ are almost parallel to the center-stable and center-unstable foliations of f. This
is qu1te direct, since o-properness, global product structure and center fibered 1mp11es

that H (WCS( X)) = E + Hy(x) and H (WC”( X)) = E% + H,(X) for every ¥ € M.
This irnphes SADC because H ¢ is at bounded distance from ho ﬁ = Hy. O

2.3 Dynamical coherence is open and closed

To obtain the main theorem of this chapter, we have to prove that SADC, o-properness
(0 = ss,uu) and global product structure (between the strong stable/unstable man-
ifolds and the ones given by SADC) are C! open and closed properties among
PH¢(M). Then we can apply Corollary 2.2.9 to a whole connected component as
long as it contains a diffeomorphism with such properties.
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2.3.1 SADC is C! open and closed
Proposition 2.3.1. SADC is a C! open property among PH F(M).

Proof. This is pretty direct since the same foliation works by the continuity of the E*
and E"" bundles. Take ¢ € PH (M) with SADC property and let F¢*, F¢" be the
foliations given by the SADC property These foliations are transverse to Eg", EF° and
their lifts are almost parallel to Wf and Wf respectively. Then 4(.7-" “(x), E““) (X) > €

for every ¥ € M and there is U(g) a nelghbourhood of g in the C! topology s.t. for
every ¢’ € U(f) we have Z(E”“( X), Eg' (X)) <3, VX € M. Take Fg = Fy', then

AF@ERE) +5 > AFPEESE) + LB E), BN (D)

This implies that 4(]—"“( X), E“”( X)) > § for every x € M. Then every ¢’ € U(g) has
foliations Fy7, Fof transverse to Eg', E) and thus each ¢ € U(g) verifies SADC.  [J

Proposition 2.3.2. SADC is a C! closed property among PH F(M).

Proof. Take g, € PHs(M) such that g, —C' ¢ and every g, — g is SADC. Call
E; = EF @ E;, and let 77, F* be the foliations given by the SADC property for
every n € IN. By the C! convergence we have E — EZ and E}Y — Eg". Lety =

Z(EZ, Eg") (minimum bound of the angle). Now since E;’ — E{° there is 77 > 0 such

that Z(Eg", E) > 1. Take J; foliation uniformly transverse to Ej. Then there is
ny > 0 such that g, (Fy) is contamed in a cone centered at E;’ of radius 7. Thus
Sn, 2 (F) is uniformly transverse to E3". To finish the proof, just notice that since g, is

isotopic to f, it fixes the class of fohatlons almost parallel to any f-invariant foliation.
Then g,/ (F¢ o) is almost parallel to Wf and g is SADC. O

2.3.2 o-properis C! open
The following remark refers to a classical fact about hyperbolicity that we’ll be useful.
Remark 2.3.3. Given f € PH(M), there exist constants 1 < Ay < Ag and there exists U a
Cl-neighbourhood of f s.t. for every ¢ € U, ¥ € M and R > 0 we have:

Wit (8(%), ArR) € §OVg"(%,R)) € Wit (3(%), ArR)
Analogously for Wgs by applying g1
Proposition 2.3.4. For o = ss, uu, being o-proper is a C* open property among PH F(M).

Proof. Given g € PH (M) thatis o-proper, we must find a neighbourhood ¢/(g) in the
C! topology such that every ¢’ € U(g) is o-proper. Remark 2.2.2 says that it’s enough
to find a neighbourhood ¢/ (g) and R; > 0 such that for every ¢’ € U(g) and X € M:

(Hy) H(D4(Hy (%),1)) N W (%) C Wy (%, R1)
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Since ¢ is o-proper, we know H,
Then there is Ry > 0 s.t.

e (3 Wg“(f) — Hg(X) + E4 is a homeomorphism.
8

Hy (Wy (%, Ry)%) N D% (Hy (%),2) = @

Call A;’,R,g/(f) the annulus Wg”/(f,R) \ Wg(f,r) for R > r > 0. Then for R, > ARy
we have that
Hy (AR, Ry5(X)) N D} (Hy(X),2) = @

where we take A; > 1 like in Remark 2.3.3. Now since H, is continuous and I'-
invariant, it is uniformly continuous. Then there is €7 > 0 s.t. if d(X,y) < €; then
d(H,(%), He(y)) < 1/4. Take the following C!-neighbourhoods:

 From uniform hyperbolicity there is /1 (g) such that the constants A, and A4 are
uniform in U (g) (see Remark 2.3.3).

* The continuous variation of the leaves in the C! topology says that for every
€1 > 0and R, > 0, there is Uy(g) and 6 > 0 s.t. for every ¢’ € Usp(g) and every
pair of points ¥, y with d(, y) < 6 we have dci Wy (X, R2), Wy (¥, Rz)) < €1

o Take U3(g) = {g/ S PHf(M) : dco(ng,Hg) < 1/4}.

Finally take U, := U;(g) NU2(g) NUs(g). Now, let ¢’ € U(g) and X,y such that
ye A%LRz,g’(f)' Then there is z € A?{l,RZ,g(J?) such that d(z,7) < €1 and from uniform
continuity we get d(Hg(Z), Hg(y)) < 1/4. SinceZ € Ai’il,Rz,g(Ja and d(Hg(z), Hg(y)) <
1/4, applying the triangular inequality we obtain:

2 < |[[Hg(2) = Hg(%)|| < [|Hg(2) = Hg (9| + || Hg () — Hg(%)]]
< U4+ |[H(y) - Hy(3)]

Therefore ||Hq(y) — Hg(X)|| > 2 — 1/4. Once again the triangular inequality gives:

< |Hy(®) ~ Hy(®)]
< ||Hy(®) ~ Hy (@) + | Hy (5) — Hy (&) + | Hy (%) — Hy(®)|
< 1/4+ |Hy(§) - Ho(3)] +1/4

2—-1/4

and we conclude that || Hy () — He (X)|| > 2 —3/4 > 1, which means
Hg/ (AR, g, (X)) N DG (Hg(X),1) =@ forevery x € M (2.1)
Finally this implies
(Hg) ™M (D%(Hg (%),1)) N W5(X) € W(X,Ry) forevery ¥ € M
If it weren't the case, there will be y € Wé’,(f) such that Hy(y) € D4 (Hy(X),1)

but y ¢ Wg,(f, R3). By the choice of A; we know that there is n € Z s.t. ") €
A% ko (8 (%) and Hy (" (%)) € W(g" (%),1). This contradicts (2.1) above. [

2.3.3 SADC + o-proper + GPS is C! open

In this subsection we are going to prove that given ¢ € PH¢(M) which is o-proper
and SADC with global product structure, then every ¢’ sufficiently C! close to g is o-
proper and SADC with global product structure (maybe with a different foliation than
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the original one).

Proposition 2.3.5. Let g € PH (M) be such that g is o-proper, for ¢ = ss, uu, and SADC
with global product structure. Then there is a C' neighbourhood U of g such that every ¢’ € U
is o proper and SADC with global product structure.

Proof. Take g € PH (M) such that g is o-proper for o = ss, uu, and SADC with their
corresponding foliations fgcs and .F ', and suppose that .7-' <> and W“” have global
product structure (the other case is symmetrlc) By Theorem 227 we now that g is
dynamically coherent, center-fibered and Wgs and Wg” have global product structure.

Now we can replace F, ¢ by Wgs in the SADC definition of g (i.e. with these new fo-
liations g is still SADC by Proposition 2.2.10). We have to do this interchange because
we need I'-invariance of the foliations (this will be clear in a moment).

By Proposition 2.3.1 we know there is a C! neighbourhood U; of g such that every
¢’ € Uy is SADC (applying the proposition to Wgs).

On the other hand by Proposition 2.3.4 we know there is a C! neighbourhood U,
of g such that every ¢’ € U, is o-proper. Moreover we know there is R; > 0 such that:

(Hy) (D4 (Hy (%),1)) N Wg(X) € Wy (%, R1) (2.2)

for every ¥ € M and g’ € Us,.

Claim 2.3.6. There is a C! neighbourhood Us of g such that for every §' € Uz and every
X € M we have that: - -
W (X, R1) N Wg* (%) = {x} (2.3)

Proof. Just notice that for every X € M thereis e(X) > 0 and a C! neighbourhood U (%)
of g such that for every ¢’ € U(X) and every iy € B(X,e(X)) Equation (2.3) holds. Since
Wgs is I' invariant, we can restrict ourselves to a compact fundamental domain. Then,
we can cover this fundamental domain by finite balls B(x1,€(x7)),...,B(Xn,€(XN))
and take U3 = ﬂl-i \U(X;). This proves the claim. O

To end the proof of the proposition, take ¢’ € U := U; NU, N U3 and take two
points ¥, € M. Now it is easy to see that W””( X)N WCS (¥) is non empty. By Equation

(2.2) and Equation (2.3) of the claim, we have that W”“( X)N Wcs(m is exactly one

point. This proves the global product structure between g,” and Wgs. O

Remark 2.3.7. In the proof of the previous claim, we need the foliation to be I'-invariant, in
order to restrict ourselves to points in a fundamental domain, and then later to be able to take
a finite cover. That’s why we interchange JF¢* with W¢® in the proof.

2.34 SADC + o-proper + GPS is C! closed

The previous proposition shows that o-properness and SADC with global product
structure are C! open among PH £(M). To finish the proof of the main theorem we
have to prove that they are also C!-closed properties. This is the most difficult part of
the theorem. For the proof we are going to use once again Theorem 2.2.7. Recall that
we already know that SADC is C! closed by Proposition 2.3.2.

Before getting into the proof, recall that if A is a hyperbolic matrix with a splitting
R¥~¢ = E3 @ E4*, for o = ss,uu and ¥ € M we denote by

I2: R — ¥+ E9
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to the corresponding orthogonal projection.

Theorem 2.3.8. For o = ss,uu, being o-proper and SADC with global product structure is
a C'-closed property in PH ;(M).

Proof. Take a sequence {gx} C PH (M) with gy — g in the C! topology, such that for
every k € IN, g is o-proper and SADC with global product structure. By Proposition
2.3.2 we know that g is SADC. We have to prove that g is o-proper and that we have
global product structure. We are going to prove case ¢ = uu, but the case ¢ = ss is
completely symmetric.

Note that every g is in the hypothesis of Theorem 2.2.7, then for every k € IN there
is a gy-invariant foliation W' tangent to Eg} & Eg, such that:

WE (%) = (Hy,) ™} (Hg, (%) + E3) (2.4)
Then by center-fibered we have that:
Hy, (%) = H, (7) if and only if 7 € W, (%) (2.5)

Claim 2.3.9. Given € > 0, there exists & > 0, a cone field C""* around Eg" and ko such that if
k > ko and D is a disk tangent to C"* of internal radius larger than e and centered at X, then

DY (Hy, (7),6) € T 5 0 Hy, (D)

am
Y

I

2

Cuu

Proof. This is because g — ¢ in the C! topology, and so E{ — Eg for every 0. Then M
has a finite cover of local product structure boxes B of size smaller than € > 0 such that
for k > ko large enough, these are local product structure boxes for g, too. Moreover,
we can take these boxes B small enough in order to have the following;:

¢ The boxes 2B and 3B are also local product structure boxes for g.

* For every B of the covering and every disk D C M tangent to C** of internal
radius larger than € and centered at a point x € B we have that D intersects in a
unique point in 3B every center-stable plaque of W¢’ which intersects 2B.
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Ny, Wa(y)

FIGURE 2.3: Boxes with local product structure.

We can lift this cover by boxes and obtain a cover of M with the same properties as
above. The previous condition plus Equation (2.5) implies that:

I ) © H, (2B) C I} (o) o Hy, (D)

where D C M is a lift of a disk D C M as above. Using the injectivity of Hg, re-
stricted to Wy leaves, we have that given a connected component 2B of a lift we have
int(H”H';k(%) o Hy, (2B)) # @ and every point § € B verifies that H”H';k (E)(Hgk (y)) lies

in the interior of IT}} @ ©° Hg, (2B). Since there are finite boxes (in M), there is a uni-
8k .

form 6 > 0 such that HMHL;k(f) (Hg,(B)) is at bounded ¢ distance from the boundary of

1_[}‘;; & © He (2B) independently of the box B. We deduce that every disk D of inter-
k

nal radius € and centered at X and tangent to a small cone around Eg* verifies that
Hﬁ‘ikm o Hgk(ﬁ) contains D%"(Hy, (X),0) as desired. O

Claim 2.3.10. For k sufficiently large enough and for every pair of points X, € M, we have
that Wg"(xX) and Wg; (i) have non-trivial intersection.

Proof. Given two points ¥, € M, take S the segment in E%* + Hg, (x) that connects
Hi(X) and H”I{gk ® (Hg, ()). Fix e > 0 and take the corresponding ¢ > 0, the cones C"*

and ko > 0 from the previous claim. Then we have that
Hqu;k(f) © Hgk (W;u (3?/ 6)) ) Dfilu (Hgk (f), 5)
In the same way we get that

T o) Ho, OWI(,2€)) S DY (Hy, (3),20)
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We can apply inductively the same argument, and since the segment S is compact, we
get m € IN such that

Iy H,, (%) © (Wg“(f,me)) D D' (Hg, (¥),mé) O S

Then there is a point z € Wg” (x,me) C Wg“ (X) such that
g, (7 © He(2) = Ty (5 © Hg, (V)

Then Hy, (Z) — H,, (y) € E and this implies by Equation (2.4) that z € WCS (v). We

conclude thatz € 17\7;”( x) N WCS °(y) as desire.

U
Claim 2.3.11. For k sufficiently large, the foliations VNV”” and VNVCS have global product struc-
tur.e. Equivalently, the map Hqu;k(;?) o H, ’Wgu( 7 Wuu( %) — Hgk( %) + E4 is a homeomor-
phism.

Proof. By the previous claim, we only have to prove that the intersection between
Wt (x) and WiE(y) is unique for every pair of points X,y € M. Since the leaf Wi ()

intersects transversely W,ﬁs('yv) for every X,y and H,, (WCS (V) = Hg, (V) + E} we have
that Hy, (VN\/;” (X)) is topologically transverse to Hg, (i) + E%. This 1mp11es that

I (@) : He, OV§" (%)) = Hg, () + E4"

is a covering and since E'}" is contractible, it must be injective. This proves that

H“H‘;k & © Ha restricted to ng’”(f) is a homeomorphism onto Hg, (¥) + E%". O

This claim proves that g is SADC with global product structure. To finish the proof
of the theorem we must prove there is R > 0 such that:

(Hg) (DY (Hg(%),1)) N WH(X) € W¥(X,R), V¥ € M

Fix ¥ € M. We know that dco(Hg,, Hy) < K, for some constant K, > 0. The previous
claim says that that the restriction of H”H’; ) © H, to Wg“(f) is a homeomorphism

onto H, (X) + E%". Then there is Ry = Ry(x) > 0 such that

g, ¢ 5 © Hg, (Wy"(%, R1))°) N DY (Hg, (%), 1+ 2K,) = @

Take y € Wg” (X, R1)¢. Then applying the triangular inequality we obtain

142K < [Ty (5 (Hg (%) = T 5 (Hg ()]
< T (5 (Hg (%)) — H”” 7 (Hg (%))l
+ Ty, ) (He (X)) — Hqu @(Hg(m)H
+ My, ¢ (He(¥) — @ (He (1))l
< K.+ HHg(x) Hy(y )H ‘|'K
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where we are using the fact that orthogonal projections does not increase the norm.
Thus ||Hg(X) — Hg(y)|| > 1 and therefore we get

Hg(Wg" (%, R1)°) N D' (Hg,(3),1) = @
which is the same as
(Hg) ™' (DA (Hy (), 1)) N\ W (%) € Wi (%, Ry)
Then we have proved that the function ¢ is well defined where
@(x) =inf{R > 0: (Hy) (D4 (H,(%),1)) N )7\/;‘,‘“(37) C Wg””(f,R)}

By Remark 2.2.2 we have to prove that ¢ is uniformly bounded in M for getting uu-
proper. Since ¢ is I'-periodic (because H is I periodic), it’s enough to restrict ourselves
to points in a fundamental domain which is compact. Thus it is enough to show that
if x, — X then ¢(x,) < ¢(x). To prove this, note that Hg(Wg,’”(f, ¢(X))) contains
D'}*(Hg(X),1). Now for every € > 0 we can find § > 0 such that

D' (Hg(%),1+6) € Hy(Wg"(%,¢(%) + €))

By continuous variation of the Wg“-leaves and since H ¢ is continuous, we deduce that
for n large enough Hg(Wg”(ﬂl, ¢(X) +€)) contains D%"(Hg(x,),1). This shows that
limsup ¢(x,) < ¢(X) + €. Since the choice of € > 0 was arbitrary, we get the desire
result. O

2.3.5 Proof of the Theorem 2.1.13 (Theorem A)

In this subsection we are going to finish the proof of Theorem 2.1.13 (Theorem A in
the introduction). Let ¢ € PH¢(M) be a diffeomorphism in the same connected com-
ponent of a partially hyperbolic diffeomorphism g’ such that:

* ¢’ is dynamically coherent.
e ¢’ is center fibered.

J VNV;S and VNV;,“ have GPS and, VNV(;? and VNVZ;? have GPS.

Then by Proposition 2.2.10 we have that ¢’ is ¢ proper and SADC (and has global
product structure).

Propositions 2.3.1, 2.3.2, 2.3.4, 2.3.5 and Theorem 2.3.8 tell us that c-proper, SADC
and global product structure are open and closed properties in the C! topology among
PHg(M). In particular this implies that g is c-proper, SADC and has global product
structure. By Theorem 2.2.7 (and Corollary 2.2.9) we get that ¢ is dynamically coher-
ent, center fibered and has global product structure. This ends the proof.

2.4 Leaf conjugacy and proof of Theorem 2.1.14 (Theorem B)

In this section we are going to prove Theorem 2.1.14 (Theorem B in the introduction).
For the proof we’re going to show that center-fibered implies plaque expansiveness.
Then we can conclude by Theorem 1.4.5 and a connectedness argument.
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Proposition 2.4.1. Every g € P’H?[(M) is plaque expansive.

Proof. Take g € PH?(M ). We know from Theorem 2.1.13 that g is dynamically coher-
ent and center fibered. Now take € > 0 and two e-pseudo orbits {x, },cz and {y, }nez
such that:

(i) g(xn) € We(xn11), for every n € Z.
(i) g(yn) € We(Yn+1), forevery n € Z.
(iil) d(xu,yn) <€, forevery n € Z.

Then, we have to prove that xp and vy belong to the same center leaf. To do so, first
take two lifts xp and 7 of x¢ and yo respectively such that d(xp, 7o) < €. Since € is
small enough, we have a unique pair of sequences {x; },cz and {y, }ncz that check
points (i),(ii) and (iii).

Notice that center fibered imply that Hy(3(X7)) = Hg(x,11) and Hg(g(vn)) =
Hg(Yn11). By semiconjugacy we get

A(Hg(xn)) = Hg(8(xn)) = Hg(%n11)

A(Hg(yn)) = Hg(8(¥n)) = Hg(Yu11)

Then {Hg(xy)}nez and {Hg(yu) }nez are orbits of the linear map A : RY¢ — R ¢
and

A" (Hg (%0) — Hg(90)) [l = [|A" (Hg(x0)) — A" (Hg) (40)) || = |[Hg(¥n) — Hg ()]
< [[Hg(%0) — Hf(fo)H + [[Hy(x0) — Hy(yo) |
+ [|Hs(o) — Hg(yo) | <2K* +e

for every n € Z and some constant K* > 0. Since A is hyperbolic, this can happen
if and only if Hg(x0) = Hg(yo). By center-fibered we conclude that yp € Wg(xp) and
therefore yo € Wg(xo) proving that g is plaque-expansive. O

Proof of Theorem 2.1.14. Take g9 and g; diffeomorphisms in the same connected com-
ponent of P?—L?:(M), and a continuous path {g;}c(01) C PH?(M) connecting go and
81

By Theorem 2.1.13 every g; is dynamically coherent and center fibered. Then by
Proposition 2.4.1 every g; is plaque expansive. We can apply Theorem 1.4.5 (Theorem
7.1 in [HPS77]) to every g; and obtain a neighbourhood ¢/ (t) such that every partially
hyperbolic in U(t) is leaf conjugate to g;. Since [0,1] is compact and connected, we
can cover {g;}c[o,1] by a finite union U=}/ (t;). Since leaf-conjugacy is an equivalence
relation we conclude that gy is leaf conjugate to g. ]
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Chapter 3

Some hyperbolicity and robust
transitivity

In this chapter we are going to treat robust transitivity. In the first section we present
a few simple facts about transitivity. In Section 3.2 we introduce the SH-Saddle prop-
erty, and we prove that it is a C!-open condition among partially hyperbolic diffeo-
morphisms. This new definition is a generalization of the SH condition introduced
by E. Pujals and M. Sambarino in [PS06]. This new approach allows us to treat the
symplectic case (in particular geodesic flows), something that the previous definition
couldn’t. In Section 3.3 we state a result that we are going to apply several times in the
whole chapter. In Section 3.4 we are going to apply the previous results to build new
derived from Anosov (DA) examples and prove Theorem C. The novelty of these ex-
amples is that they have mixed behaviour on center leaves, in particular they present a
dominated splitting non coherent with its Anosov part, a difference with its predeces-
sors DA examples. Finally in Section 3.6 we extend the SH-Saddle property for flows
(with emphasis in geodesic flows), and we get a criterion for Riemannian metrics that
guarantees robust transitivity for their corresponding geodesic flows (Theorem D).

3.1 Transitivity

Recall that a diffeomorphism f : M — M is said to be transitive if there is x € M such
that OF (f,x) = M. This definition is simple and easy to understand, however when
it comes to work, it can be a little difficult to deal with. The following proposition

gives an equivalent definition that is more manageable.

Proposition 3.1.1. Given a diffeomorphism f : M — M the following are equivalent:
* f is topologically transitive,
o for every pair of open sets U and V there is N € Z such that fN(U)NV # @.

Proof. If f is transitive, then we have a point x € M such that O*(f,x) = M. This
implies that for every pair of open sets U and V there are positive integers n > m € IN
such that f"(x) € Uand f"(x) € V. Then f""(U) NV # @.

The other equivalence is a little more subtle. Since M is a differentiable manifold,
it has a numerable basis of the topology {B, : n € IN}. Now for every n € IN take the
subset A, = {y € M : f*(y) € B, forsome k > 0}. By hypothesys A, is open and
dense, then the set R = M, >0A; is a residual set. Finally notice that for every x € R

we have w(f, x) = M, which implies that O*(f, x) = M. O

In the same way, we say that a flow ¢; : M — M is transitive if there is a point

x € M such that OF (¢, x) = M. Notice that if for a given T € R™ the diffeomorphism
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f = @1 : M — M is transitive, then the flow ¢ is transitive. This is clear since:

M= J ¢i(x)= | orn(x) € |J @:(x) CM

neN neN teR+

The opposite direction is not true, a simple counterexample is the linear irrational
flow in the torus where every orbit is dense, but the orbits of the time 1 map leaves
invariant some transversal sections. Nevertheless, we obtain the following remark.

Remark 3.1.2. Given a flow ¢; : M — M, if thereis T € R™ such that @7 is transitive as a
diffeomorphism, then the flow ¢; is transitive.

3.2 SH-Saddle property

In this section we introduce the main definition of this chapter. We begin with a few
simple definitions. Let V be a IR-vector space with an inner product. A conein V is a
subset C such that there is a non-degenerate quadratic form B : V — R such that

C={veV:B(v) <0}
Analogously we can express the cone C according to a decomposition V.= E & F:
C = {v=(v&,0F) : |[vel < alloll} 3.1)

for some a > 0. In this case we observe that B(v) = —a?||vr||? + ||vg||>. We are going
to say that the number a in Equation (3.1) is the size of the cone. In some cases we will
note by C, instead of C to make emphasis on the size of C. The dimension of a cone is
the maximal dimension of any subspace contained in the cone.

Recall that for f € PH (M) we have a splitting of the form TM = EF & E & E¢".
We are going to note by ¢ = dimE{. Then given f € PH(M) a d-center cone in x €
M is simply a cone C(x) in E;(x) of dimension d < c¢. We now introduce the main

definitions of this chapter. Recall that
Wi(x,¢) == {y € W(x) :dwf*(x,y) <e}
is the e-ball in W7 of center x and radius ¢ for * € {ss, uu}.

Definition 3.2.1 (SH-Saddle property for unstable foliations). Given f € PH (M) we
say that the strong unstable foliation Wit has the SH-Saddle property of index d < c if there
are constants L > 0, a > 0, Ag > 1 and C > 0 such that the following hold.

For every point x € M, there is a point x* € W (x, L) such that:

1. There is a d-center cone field of size a along the forward orbit of x* which is Df-
invariant, i.e. there exist Cf(f'(x")) C E¢(f'(x")) such that Df(CH(f!(x"))) C
CH(fH1(x")) for every I > 0.

2. ||Df}1,(xu)(v)|| > CAL||v]| for every v € C(f'(x*)) and every I,n > 0.
Notice that condition 1 is equivalent to the following:

1". For every | > 0 there is a splitting Tji(,u) = E (f1(x*)) @ E=(f'(x*)) which is
D f-invariant for the future, and dominated: thereis A > 1s.t. for every /,n > 0

D" [ger (1) [ICA" < NID " [gea (g1
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Remark 3.2.2. In case the strong unstable foliation has SH-Saddle property of index d = c
where ¢ = dimE%, we get the original definition of SH property introduced in [PS06].

Wi (f(x))

FIGURE 3.1: Strong unstable manifold with SH-Saddle property

We can make an analogous definition for the strong stable foliation. In this case,
we ask for the invariance of the cones for the past.

Definition 3.2.3 (SH-Saddle property for stable foliations). Given f € PH(M) we say
that the strong stable foliation Wy has the SH-Saddle property of index d < c if there are
constants L > 0,a > 0, Ag > 1 and C > 0 such that the following hold.

For every point x € M, there is a point x°* € W (x, L) such that:

1. There is a d-center cone field of size a along the backward orbit of x* which is D f~!-
invariant, i.e. there exist C5(f!(x°)) such that Df 1 (C5(f'(x%))) C C3(f'=1(x®)) for
every | <O0.

2. HDfJZ(xs)(v)H > CAy"||o|| for every v € C5(f'(x°))) and every I,n < 0.

Definition 3.2.4 (SH-Saddle property). We say that f € PH (M) has (d1,d2) SH-Saddle
property if the following conditions hold:

LWy has the SH-Saddle property of index d.

2. Wt has the SH-Saddle property of index d».

Remark 3.2.5. Notice that not necessarily we have di + dp = c, in fact in many cases we are
going to have dy 4 dy < c. In some parts of this chapter, for simplicity and when is not needed
we are going to omit the indexes (d1,dy) and we’re just going to say that a partially hyperbolic
diffeomorphism has the SH-Saddle property.

Like in the uniformly or partially hyperbolic setting, the SH-Saddle property is
independent of the Riemannian metric. This is the aim of the next proposition.

Proposition 3.2.6. The SH-Saddle property does not depend on the choice of the Riemannian
metric.
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Proof. First notice that given two Riemannian metrics ||-||; and ||-||> on a compact man-
ifold, there are positive constants & and f such that a||-||; < ||-||2 < B|-]]1-

Now let S C TM be a Df-invariant subbundle with a splitting of the form S =
E @ F and suppose there is a cone C; C S that can be written as

C1 = {v = (vg,vr) : [[oell < alloe[l1}

for some a > 0. Then if we take the cone C; C S defined by

Co = {v = (vg,vF) : |lve|l2 < gavaHz}

a direct calculation shows that C; is D f-invariant if and only if C; is D f-invariant.
Moreover C; is uniformly expanding: ||Df!(v)|;y > CA![|v||; for every v € C; and
I > 0, if and only if C, is uniformly expanding: ||[Df'(v)|l2 > (C/a)A!||v||, for every
v € Cpand [ > 0. This proves that the SH-Saddle property does not depend on the
Riemannian metric. O

As a corollary of the previous proposition we get the following fact.
Proposition 3.2.7. A partially hyperbolic diffeomorphism f has the SH-Saddle property if
and only if f* has the SH-Saddle property for some k € IN.

3.2.1 SH-Saddle property and hyperbolic subsets

Let’s see a different approach of the SH-Saddle property in order to get a better un-
derstanding of what it means. Let f € PH (M) be such that its unstable foliation has
the SH-Saddle property of indexd < candletL > 0,a > 0, Ap > 1 and C > 0 be the
constants given by Definition 3.2.1. We can define the following subset:

Hy 4(f) = {x € M : conditions 1 and 2 of Definition 3.2.1 are satisfied } (3.2)
Then the unstable foliation has the SH-Saddle property of index d if and only if
Hjod(f) NWi(x,L) # @ forevery x € M.

In the same way let f € PH (M) be such that its stable foliation has the SH-Saddle
property of index d and let L > 0,a > 0, Ag > 1 and C > 0 be the constants given by
Definition 3.2.3, then we can define the following subset:

H, 4(f) ={x € M: conditions 1 and 2 of Definition 3.2.3 are satisfied } (3.3)

and the stable foliations has the SH-Saddle property of index 4 if and only if
H) 4(f)NW§(x,L) # @ forevery x € M.
Remark 3.2.8. The sets HY ,(f) are closed subsets of M, for o = +, —.

Now suppose that the unstable foliation of f € PH (M) has SH-Saddle property
of index d < ¢ where ¢ = dimE}. Then we can take the following subset:

A =U{w() 1 x € Hy 4(0)}
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Now observe that the set A? is a hyperbolic subset if ¢ = d but in case ¢ < d is not
necessarily hyperbolic. However, it does have a dominated splitting of the form

TpM=E@F

where dimE = dimE} + (¢ —d), dimF = dimE%" 4 d and the bundle F is uniformly
expanding.

Remark 3.2.9. Notice that despite Aj[ is not hyperbolic, we can associate a stable set VW* (Aj[)
to it. Lets assume for a moment that this stable set is a manifold (this is the “ideal” picture). In
this case the dimension of the stable manifold is smaller or equal to dimE, and we have proved
that WS(A}“) N W}’“(x) # @ for every x € M where dimE + dimEY" < d. In the next
subsection we will see that this non-transverse intersection is robust, and hence it resembles in
a sense to the existence of a blender.

3.2.2 SH-Saddle property is C!-open

In this subsection we are going to prove that the SH-Saddle property is C! open among
PH(M). According to Definition 3.2.4 we only have to prove that having an unstable
manifold with SH-Saddle property 3.2.1, and having a stable manifold with SH-Saddle
property 3.2.3 are C 1 open properties. We are going to focus on the unstable case, since
the stable case is completely symmetric. We begin with a few simple lemmas that only
uses the properties of the C! topology.

Lemma 3.2.10. Suppose that the unstable foliation of f € PH (M) has SH-Saddle property
of index d. Then there is €9 > 0 such that every y € M satisfying d(y, HA+o,d (f)) < eo

has a d-center cone C*(y). Moreover there is 8y > 0 such that if d(y, H;ro 4(f)) < éo then
Df(C*(y)) < C*(f(y))-

Proof. We know that for every x € H}'O ;(f) there is a cone C"(x) which is Df-
invariant. Now for the first part of the lemma just notice that since the family of cen-
ter cones comes from a non-degenerate quadratic form, we can extend this quadratic
form to neighbours by continuity. For the second part just observe that f is uniformly
continuous. [

Since the family of cones varies continuously, the same family of cones in the
lemma above is still invariant for every g sufficiently close to f. Then we obtain the
following.

Lemma 3.2.11. Suppose that the unstable foliation of f € PH(M) has the SH-Saddle
property of index d, and let eg > 0 and 69 > 0 be as in Lemma 3.2.10. Then there
is a Cl-neighbourhood Uy(f) of f such that if ¢ € Up(f) and d(y, Hy ,(f)) < do then

Dg(C"(y)) € C*(g(y))-

Now we are ready to prove the main theorem of this section.

Theorem 3.2.12. Suppose that the unstable foliation of f € PH (M) has SH-Saddle property
of index d. Then there are constants A > 1, L > 0 and a C'-neighbourhood V of f such that,
ifg € V then Hy ,(g) N Wg"(x,L) # @ for every x € M (i.e.: the unstable foliation VWg*
has the SH-Saddle property of index d with constants A > 1 and L > 0).

Proof. Take f € PH(M) such that its strong unstable foliation has the SH-Saddle
property of index d. That means there are constants Ay > 1 and Ly > 0 such that
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Definition 3.2.1 holds. Then we have:
H/To,d(f) N W}m(x, Ly) # @ forevery x € M.

Letey > 0, 5p > 0and Up(f) be as in Lemma 3.2.10 and Lemma 3.2.11. Take ¢ > 0 such
that % =AM > 1. Takee > 0,6 € (0,80) and Uy (f) € Up(f) such that if g € U (f),
d(x,y) < 61 and v € TyM has ||v|| = 1 then:

IDfx(v) — Dgy(w)| < e

where w = Py (v) € T,M is the parallel transport of v from x to y. We can take € > 0
small enough such thatif d(x,y) < 1 and g € U;(f) then:

U DAL gy gng L < ™MDPAE (3.4)
T+c = [[Dgyl 1+c¢ = m{Dgy}

Finally let K™ = sup{||Df (x| : x € M} and K~ = inf{m{Df|pe(x)} : x € M}. We
can assume that K+ and K~ are C!-uniform on a neighbourhood U (f) C Uy (f).
Let my € Z™ be large enough such that (A,)™ > 2 and for any g € Us(f) and any
x € M we have
Wet(8™ (x), Lo) € g™ (Wy"(x,61/4)) (3.5)

Now take my € Z™ sufficiently large, and take A such that
CATZ(KT)™M > Ay > 1 (3.6)

Let Us(f) and &, € (0,01/2) be such that if d(x,y) < & and ¢ € Us(f), then
d(fl(x),8'(y)) < 81, for 0 < j < my.
Finally take Uy (f) such that for every g € Us(f) we have

du(Wg"(x, Lo), Hy, 4(f)) < 62 (3.7)

We claim that every ¢ € V = Uy(f) has unstable manifold with SH-Saddle property
of index d. In fact, we are going to see that ¢* has this property for kg = m; + my, with
constans 2L and A, > 1 (where A, comes from Equation (3.6)). Then we conclude by
Proposition 3.2.7.

To see this, take ¢ € V and x € M. We know there are points xo € HA+0 4(f) and
zg € Wy (x, L) such that d(xg, z5) < &,. Notice that since 5, < § we know there is a
center cone C*(zf}).

Now let v € C"(z4). Since d(xo,z8) < &, we have that d(f/(x)), g/ (z¥)) < & for
0 <j < my. Then we have:

IDfE ()| Ao\
IDg% ()| > W > C <1 +C> = A2 || (3.8)

where w = P,u «(v) is the parallel transport of v from z§ to xi. Now,

1085 (0)| = D8t ey (DSZE @D = (KA o]l = Aalfo]]  (39)

Now by (3.5), we can apply the same argument to W, (gF(z4),L), and we can find
points x; € Hjod(f) and z € Wg”(gk"(zg),ll) such that d(xq,z}) < 6, < €. Then,

there is a center cone C"(z}) and for every vector v € C"(z}) we have HDg’Z(?(v) | >
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Ag||o||. Call y¥ = g~*o(z%). Now, by (3.5) we have that g~ (z%) € Dg" (8" (y1),01/4)
and this implies that

31

5 5
d(yi, x0) < d(yi,yg) +d(yf,x0) < Lo < L+ <&

and there is a d-center cone C*(y} ). Moreover we have that
d(g/(y4), ¢/ (z4)) < &, forevery 0 <j<my
and by applying the same calculations as in (3.8) and (3.9) we have

1D (@) = (A2)? (o] (3.10)

Inductively, we can find sequences {z%},cN, {¥4 }nen and {x, }nen, which verify the
following;:

* Znq € We(8R (), L)

Xy € Hy 4(f)-

° d(z!, x,) < .

© i =g (z).
By the same arguments as above, the distance between y;; and xy is

b, &
4

+...F<51

0
d(yy, xo) <

1
5t

and there is a d-center cone C*(g/(y))) such that Dg(C*(g/(y*)))) C C*(¢*'(y")))
forevery j € {0,...,nko}. Moreover y;; € Wg"(x,2L).
By the same reasons than above, if v € C*(g*(y*)) we have
D85, (@)1 > () o] for every 0.<i+j<n

Finally, if we take y € Wg"(x,2L) as an accumulation point of {y}; }.en we obtain that
there is a d-center cone C*(g'(y)) C E;(gl (y)) such that Dg(C*(g'(y))) € C*(¢"(y))

for every I > 0 and ||Dg/*(v)| > AéHvH, for every v € C*(g'*(y)) and j,1 > 0. O

Since the C!-openess of the SH-Saddle property for stable manifolds is completely
analogous we get the following corollary.

Corollary 3.2.13. The SH-Saddle property is C1-open among PH(M).

We end this section with a key corollary from Theorem 3.2.12 that we’re going to
use for the proof of the main theorem of this chapter.

Corollary 3.2.14. Let f € PH(M) be such that its unstable foliation has the SH-Saddle
property of index d and let A > 1, 51 > 0 and V as in the Theorem 3.2.12. Take g € V,
xt e H/J{ (&) and D" a center disk of dimension d tangent to C.. Then there is N > 0 such
that g"(D") contains a disk W of diameter bigger than 26; for every n > N.

Analogously with the stable foliation.

Proof. Just notice thatif g € V C Uy (f) and d(x,y) < &1 (here U;(f) and &, come from
Equation (3.4)), then every point in D" is expanded by A > 1 for the future in the Cg
direction. Basically diam(g(D")) > Adiam(D") and so eventually by induction we
obtain a center disk with diameter bigger than 24;. O
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3.3 A criterion for openess

In this section we are going to state a result that we are going to apply in many cases.
Roughly speaking it says that given a continuous function between topological spaces
of the same dimension, and such that the fibers (preimages of points) of the funcion
are small enough, then the image contains an open set.

The ideas comes from dimension theory (see for example [HW41]) and basically
says in which conditions a map can not decrease its topological dimension. The ver-
sion we are going to use comes from [L.Z22] which is an improvement from a result of
[BK02] (Proposition 3.2). We begin with a few definitions.

Definition 3.3.1. Suppose f : X — Y is a continuous function between metric spaces. We
say that y € Y is a stable value if there is € > 0 such that if dco(f, g) < € theny € Im(g).

Remark 3.3.2. Let Y = R" and suppose that f : X — IR" has a stable value y, then
Im(f) contains an open set. This is easy to see: take € > 0 from the definition of stable
value, and take a vector v € R? with ||v|| < e. Then the map ¢ : X — R? defined by
g(x) = f(x) — v satisfies dco(f,g) < ||v|| < €. Since y is a stable value, there is a point
x € X such that g(x) = y and this is equivalent to f(x) = y + v. Since v was arbitrary we
get Brn(y,€) C Im(f).

Definition 3.3.3. Given a continuous function f : X — Y and 6 > 0 we say that f is
S—light if for every y € Y the connected components of f~*(y) have diameter smaller than é.

Proposition 3.3.4 (Theorem F in [LZ22]). Givend € IN and r > 0 thereis p = p(d,r) > 0
such that every p-light map f : [—r,7]* — R has a stable value.

The version stated in [L.Z22] is for maps f : [0,1]Y — RY but the proof can be
adapted to maps f : [—7,7]? — RY for a fixed r > 0. Now combining this proposition
and Remark 3.3.2 we have the following corollary.

Corollary 3.3.5. Fixd € N and r > 0, and take the corresponding p = p(d,r) > 0 from
Proposition 3.3.4. Then the image of every p-light map f : [—r,7]* — R? contains an open
set.

3.4 Derived from Anosov revisited

In this section we are going to prove Theorem C. In particular, we are going to build ex-
amples of robustly transitive derived from Anosov diffeomorphisms with any center
dimension and with as many different behaviours on center leaves as desire. In partic-
ular, we are going to build examples with dominated splitting (a necessary condition
according to [BDP03]) that is not coherent with the hyperbolic dominated splitting of
its Anosov part, as in every previous example constructed this way ([Man78],[Shu71],
[BD96] & [BV00], see also [Pot12]).

3.4.1 Robust transitivity for DA diffeomorphisms

Take R? and let p : R? — RY/Z? = T* be the canonical projection. Take A € SL(d, Z)
a hyperbolic matrix and call f4 to the diffeomorphism induced in the torus T¢, i.e.
faop = po A. By aslightly abuse of notation we are going to note f4 = A. Suppose
that A admits a dominated spiltting of the form R? = E5 & E¥* & EY" & E% and call
ES, = E5 ® E% and EY = E4* ® E%". We are going to note by 17 : RY — E4 to the
canonical projections, for o = ws, ss, s, wu, uu, u.
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Now given A as above, let PH 4(T*) be the set
PHA(T) = { fEPH(TY) : f ~ A, dimEY = dimE}, dimEl" = dlmE””}

where f ~ A means the maps are isotopic. Given f € PH(T¢) and a lift f to R?, we
know from Theorem 2.1.8 (see also Remark 2.1.11) that there exist a continuous and
surjective map Hy : R? — R? such that Ao H f=Hyo f The map Hy is Z%-invariant
and therefore it induces a continuous and surjective map hy : T¢ — T¢ such that
hfo f = Aohys. Moreover, the map Hy varies continuously with the diffeomorphism
f in the C%-topology and the distance dco(Hy, Id ;) = dco(hy, Idy) < oo. In particular
we have that dco(Hy, Id) — 0 when f — A in the C? topology (see the proof of
Theorem 2.1.8 for more details).

Notice that we are making an abuse of notation since the map Hy is determined
by f instead of f. But this is not a problem since given two lifts f1 and f2 there is an
integer vector v € Z¢ such that f; — f, = v and this implies that H r, = Hf, +w, where
w=—(A—1d)"(v):

Hpofa(%) = Hp(f(%) +w=H(A(Z) —0) +w
Hflofl(f)—v—l—w:Aonl(f)—v—i—w
= A(Hfl(f)—i—w)—Aw+w—v:Aonz(f)—(A—Id)_l(w)—v
= Ao H(X)

Observe that the matrix A — Id is invertible since A is hyperbolic.
Now given f € PH(T?) and ¥ € R? we are going to call the fiber of X € RY to the
set H '(Hf(%)). By the previous observation given two lifts f1 and f; there is a vector

w € R? such that H r = Hp, + w and this implies that

H'(Hp, (X)) = H; ' (Hp, (X))

and the fiber does not depend on the choice of the lift. As a result we can define the
function size of the fiber

A PHA(TY) xR = Roo by A(f, %) = diam(H; ' (Hf()))-

We also note by
A(f) = sup{A(f, %) : ¥ € RY} (3.11)

to the supremum of sizes within all fibers. Since dco(Hy, Idga) < oo this supremum is
always finite and we get a well defined function A : PH 4(T?) — Ro. Notice that f
is conjugated to A if and only if A(f) = 0.

It’s easy to see that the function A does not depend continuously on f, however
we have an upper semicontinuity property as the following lemma shows.

Lemma 3.4.1. Let f € PH(TY). Then for every € > O there exist 6 > 0 such that: if
deo(f,g) < éthen A(g) < A(f) +e€

Proof. Take f € PHA(T?) and € > 0. Suppose by contradiction that the lemma is
false. Then for every n > 0 there is g, € PHA(T?) with do (gn, f) < 1/n, and
points %, € R? such that d(x,, ) > A(f) + € and Hg, (%) = H,, (yx). We can
assume that x, — ¥ and y, — ¥, and in consequence d(X, ) > A(f) + €. Then by the
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triangular inequality we have

d(Hp(X), Hy(y)) < d(Hp(x), Hp(xn)) +d(Hy (%), Hy, (x2)) + d(Hy, (%), Hg, (Y1)
+ d(Hg, (yn), Hr (yn)) + d(Hf(Yn), Hp (9))
< d(Hf(X), Hy(xn)) +2/n+d(Hs(y), Hp (Yn)) = 0

and this implies H¢(X) = Hf(y). As a result, the points X and y belong to the same
fiber which implies d(X,y) < A(f). But then we have A(f) +¢e < d(x,y) < A(f)
which is a contradiction. O

Now we are ready to prove the main theorem of this section.

Theorem 3.4.2 (Robust transitivity criterion). Let A € SL;(Z) be a hyperbolic matrix
with spliting R = ES @ E%S @ EY" & E4. Take f € PHa(T?) with (d1,d>) SH-Saddle
property where dy = dimES® and dy = dimEY". Then thereis T = T(f) > 0s.t. if A(f) < T
then f is C! robustly transitive. In fact C' robustly topologically mixing.

Proof. Take f € PH(T?) with (d1,d,) SH-Saddle property such that d; = dimE%®
and dy = dimE%". Let V, A > 1 and 4; > 0 be as in Theorem 3.2.12.
Let us define the following constants:

ps = p(dimES, 1)
pu = p(dimEY, )
T = min{ps,pu}

where p(d, r) are given by Proposition 3.3.4. We claim that the theorem holds for this
7 > 0 and for proving this we are going to find a C'-neighbourhood U(f) of f such
that every g € U(f) is transitive.

First observe that since A(f) < 7(f), then by Lemma 3.4.1 applied to € = 7(f) —
A(f) > 0, we know there is 6y > 0 such thatif d~(f,g) < do then A(g) < A(f) +€ =
o(f).

Now take U(f) = VN {g € PHa(T?) : deo(f,g) < do}. We claim that every
g € U(f) is transitive (in fact topologically mixing). By Proposition 3.1.1 in order to
get transitivity for ¢ € U(f), we have to prove that for any two open sets Uy, U, C T?
there is n € Z such that ¢"(U;) N U # @.

Take two points x; € U; and x, € U, and let ny € IN be such that
g "(Ur) D W (g ™" (x1),L) and g™ (Uz) D Wy*(g" (x2),L). Take x°* € Hy'; (g) N
We' (7™ (x1),L) and x* € H)tdz (8) N Wg" (g™ (x2),L) given by (di,d>) SH-Saddle
property.

Now take D° C Wg(x®) a center disk of dimension d; tangent to Ci: and D" C
Wg(x“) a center disk of dimension d; tangent to C¥,. We can take D*, D" small enough
such that D C ¢~ (U;) and D" C ¢"(Uy). Recall that C® and C" are the cones invari-
ant for the past and the future respectively given by SH-Saddle property. Moreover,
C® and C" uniformly expand vectors for the past and the future respectively.

Now take D; = UxeDsW?(x,G) and D, = UxeDqu”(x,G). We can choose 6 > 0
small enough such that D; C g™ (U;) and D, C g™ (Uy). Notice that D; is a disk
of dimension equal to dimE? and D; is a disk of dimension equal to dimE"}. Now by
Corollary 3.2.14 there is 1, € IN such that g7 (D®) contains a disk of diameter bigger
than 247 and ¢"(D") contains a disk of diameter bigger than 24, for every n > n,.
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FIGURE 3.2: Obtaining a disk of diameter bigger than 24;

Now the idea is to use Corollary 3.3.5 applied to the functions I'l° o H; and IT" o H,
to conclude that the images of the sets g~"2(D; ) and ¢"?(D;) by kg contain topological
disks of complementary dimensions and that they have the appropriate inclination.
Then the hyperbolicity of the matrix A will do the mixing, and we can translate this
mixing of A to the diffeomorphism g.

Observe that ¢ € U(f) which implies that A(g) < T and in particular we have that
H, is T-light (see Definition 3.3.3). Moreover we claim the following.

Claim 3.4.3. The function IT° o Hy is T-light when restricted to g "2(Dy) and the function
I1* o Hy is T-light when restricted to § (D).

Proof. We are going to see the case IT° o H, since the other one is symmetric. Now
notice that §"(D;) contains a disk of size bigger than 24, for every n > 1, and the
disk §*(D;) is tangent to a cone C° which is uniformly expanding for the past. Thus
by the semiconjugacy relation Hy 0 ¢ = A o Hy we know that Hg(ﬁ) can not intersect
E', more than once, otherwise there would be different points in IA)E such that their
distance by past iterates of g goes to zero, and this is impossible since the cones C® are
expanding for the past. In consequence the fibers of IT° o Hg have the same size of the
fibers of Hg, and so IT° o H, is T-light restricted to §"2(Dy). O

To sum up, we have a continuous map IT° o H, : g "(D;) — E5 ~ RY™E: such
that its domain g~ (Dy) contains a disk [—d7,0;]4™Ex and by our choice of T we have
that T < p(dimE%, é1). Then just notice that we are in hypothesys of Corollary 3.3.5

and therefore IT° o Hq(g (D)) C E%, contains an open set. The same argument
shows that IT* o Hy (3" (D)) C E' contains an open set.

Since A is a hyperbolic matrix and the topological disks have complementary di-
mensions and with the right inclination, we know there is n3 € IN such that for
every n > n3 we have that A"(Hg(§(D,))) N (Hg(§"2(D1)) + Vi) # @ for some
V, € Z%. This implies that Hg 0 ¢"(§2(D,))) N (Hg(§ ™(D1)) + Vi) # @. Since H,
is at bounded distance to the identity, we know that there is 74 € IN such that for
every n > ny, we have §"(3"2(D3))) N (§"2(D1) + V,,) # @. Then since p : R* — T*
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satisfies p o ¢ = g o p we have that:
@ #g"(8"™(D2))) N g "(Dy) C g" ™M ™ (Up) Ng™ ™" (Uy)
for every n > n4 and this is equivalent to
D # g”+2”1+2”2(u2) N U, foreveryn > ny.

Finally if we take N = ny + 2(n1 + n2) we have that ¢" (U) N U; # @ foreveryn > N
proving that g is topologically mixing. This ends the proof. O

Corollary 3.4.4. Let A € SLy(Z) be a hyperbolic matrix with spliting RY = E$ & E%* @
E%" @& E4 and let f € PH a(T?) with (d1,d») SH-Saddle property where di = dimE%® and
dy = dimE%". If A(f) = O then f is C! robustly transitive.

Proof. Since f has SH-Saddle property, we know that 7(f) > 0. Then we trivially have
A(f) =0 < 7(f) and we conclude by Theorem 3.4.2. O

3.4.2 Derived from Anosov is always SH-Saddle

In this subsection we are going to show that every derived from Anosov diffeomor-
phism has always the SH-Saddle property for a given index (actually the same index
as its linear part). We begin by explaining what we mean with derived from Anosov
diffeomorphisms.

Take A € SL(d, Z) a hyperbolic matrix and suppose that admits a dominated spilt-
ting of the form R? = E5 @ E%* @ E%* & E'4* as in the last subsection. Denote by
di = dimEY® and d> = dimE%".

From now on we are going to consider a partially hyperbolic f : T¢ — T defined
the following way. Take € > 0 and call U = B(0,e) C R?. Take f; : R? — R? an
isotopy such that:

1. f():Aal’ldfl :f
2. filue = Alye, forevery t € [0,1]

3. dimEf = dimE} and dimE¥" = dimE}", for every t € [0,1].

We can assume that € is small enough in order to send f; to the quotient T¥. It is clear
that a diffeomorphism f built this way belongs to PH 4(T?). From now on, we are
going to say that a diffeomorphism satisfying points 1, 2 and 3 is a derived from Anosov
(DA) diffeomorphism.

Lemma 3.4.5. Let f : T¢ — T be a derived from Anosov diffeomorphism (i.e. satisfying
points 1,2 and 3). Then if € > 0 is sufficiently small, f has the (d1,dy) SH-Saddle property.

Proof. Firstby taking an iterate we can suppose that || D fx|gu(y)|| > 4 for every x € T*.
Now take 0 < € < 1/4. Then for every x € T, there is a point z§ € W}‘”(x,l)
such that Wi (z5,1/4) NU = @. Call Dy = wit (z*,1/4). In the same way since
f(Do) = Wi*(f(z¥),1), we can find a disk Dy = W}‘”(zi‘,l/él) C f(Dy) such that
Dy NU = @. Inductively we get a sequence of unstable disks {D, },>0 such that
D,NU = @ for every n > 0 and f (D) C D, (see Figure 3.3 below). Finally the
point x* = ,> f~"(D,) never meets U in the future. Since f is equal to A outside

U we get that the point x* is hyperbolic for the future, and so the unstable manifold
Wit has SH-Saddle property of index d5.
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FIGURE 3.3: Finding a point whose forward orbit never meets /

In the same way we can find a point x° in every strong stable leaf of large 1, such
that the past orbit of x°* never meets U. Once again since f = A outside U, the same
argument as above shows that JV3* has SH-Saddle property of index d;. O

3.4.3 Expansive DA diffeomorphisms

In this subsection we are going to build examples of expansive DA diffeomorphisms
which are partially hyperbolic, but not Anosov. The idea is to introduce an isotopy in a
small neighbourhood of a fixed point p, in order to make the derivative of p (restricted
to a center subbundle) equal to the identity, and keeping the rest of the manifold hy-
perbolic. As a result, these examples will be partially hyperbolic, expansive and not
Anosov. These examples will be used in the next section, as the first step in the con-
struction of the examples of Theorem C.

For the construction of the local isotopies, we are going to use an auxiliary function
that will be used many times.

Lemma 3.4.6. Let b > 0. Then for every € > 0 (arbitrarily small) there exist a function
B:RTU{0} — R such that:

1. Bis C®, decreasing and —e < B'(t)t < 0.
2. Bis supported in [0, €].
3. B(0) =0b.

Proof. Take ry < e. Since the integral for ’ £dt is divergent, we can find a function

supported in [0, o] such that [;° (t)dt = band (t) < ¢ (see Figure 3.4 below). Now
just take B as:

By =b— [ ys)is

This function clearly satisfies the lemma. O
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FIGURE 3.4: Bump function ¢

Along this section we are going to perform different isotopies depending on the
type of local behaviour we are looking for, i.e. increase or decrease the index of a fixed
point, mixing two subbundles, etc. Recall that for our purposes we need the examples
to be expansive, and so the construction has to be made with some care.

Two dimensional center bundle

We begin with the case of a fixed point of saddle type in dimension two. This will be
useful in order to mix two different subbundles. The case when the center bundle is
entirely contracting or expanding will be treated later.

Lemma 3.4.7. Let A € SL(2,Z) and take € > 0 sufficiently small. Then, there exists a
diffeomorphism g : T2 — T? such that:

e g(x) = Ax, for every x € B(0,¢€)°".
* g is expansive.
b Dg() = Id.

Proof. Take a matrix A € SL(2,Z) and suppose the eigenvalues of A are A and y with
0 < A <1 < p. Let E° be the eigenspace associated to A, and let E* be the eigenspace
associated to . Then we have that R*? = E° & E¥. Fix a small € > 0 (sufficiently
small in order to send the map to the quotient) and ry € (0,€). Let B be the function
given by Lemma 3.4.6 for b = 1 — A and its corresponding function ¢, and let B, be
the function given by Lemma 3.4.6 for b = p — 1 and its corresponding function ;.
According to the decomposition R? = E* ¢ E* we define the function g : R?> — R? by
the equation:

8(xy) = (Ax, py) + (Bu(r)x, —pa(r)y)
where r = x? + y2. Notice that if r > r( then ¢(x,y) = A(x,y).



Chapter 3. Some hyperbolicity and robust transitivity 76

In particular Dg(,,y = A for every (x,y) such that x2 +y% > rg. Incase r < ry the
differential is:

Do, — [MFED 2B 2xyE()
(x) —2xyBh(r) = Ba(r) —2y7B5(r)

In particular we have that Dgy = Id and therefore g is not hyperbolic. In case r > 0
we have that

A+ Bi(r) +2x2B5(r) < A+ B1(0) =1
and
= Ba(r) = 27B5(r) > p — B2(0) =1

Now take the family of cones in R?2
C'(x,y) = {(a,b) € R*: |a| < |b]}

We claim that this familiy of cones is Dg-invariant. This is clear if r > r( since g = A,
but for points close to zero (r small) this is not so clear. To prove this, we have to take
a little more care with the funcions 1 and B, (in particular with the functions ¥y, ).

Therefore in order to get invariance of the cones, we have to prove that if (a,b) €
C" then Dg(a,b) = (a1,b1) € C", and this occurs if and only if |a1| < |b1]. By the
equations above we have that:

a1 = a(A+PBa(r) +2x7B(r)) +b (2xyBi(r))
by = a(—2xypy(r)) +b (u— Ba(r) — 24°B5(r))

Now let us first take 0 < r1 < g to be determined and take p > 0 and / > 0 such that
2p + 1 < r1. We define the function ¢; in the following way, like in Figure 3.5 below:

pp—i—l To
2p+1

FIGURE 3.5: Bump function ¢
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(et ) if ref0p]
GER if re(pp+l)
_(p<p+l>)t+( ~N) (i +p) if relpti2otn

Notice that f t)dt = 1 — A. Taking r sufficiently small, we have that 1 (r) < e/r.
In the same way we can take the function ¢, by:

(st ) 7 if re(0,0]
par) =1 b if re(pp+D)
(p(p+l))t+(.u 1)(#*’%) if refp+1,20+1]

In this case [,' ¥2(t)dt = u — 1, and taking ry sufficiently small we have y,(r) < €/r.
Recall that we want to prove that if (a,b) € C" then Dg(a,b) = (a1,b1) € C*, and
this happens if and only if |a;| < |b;|. We will obtain this inequality by studying dif-
ferent cases depending on r (the square of the distance of the point (x, y) to the origin).

Case1: 7 € [0, p].
By our definitions above we have:

Br(r) =1—A— (M) r; and B(r) = — (pgp;%) y

Then we have that:

AP+ 286 () =1 <fm> r22 e (pgp_fl)) '

and in consequence we obtain that a; is equal to:
1—A \ 72 1-A 1-A
ap=a(l— —2x2( >r>—|—b(—2x ()1’)
1 < <p(p+l)> plo+1) I\olo+1)
Since |a| < |b|, by taking absolute value and applying triangular inequality we get:
1—A \ 72 1-A 1-A
ol = (= (rn) 22 (srn) )+ (21 () )
b= W= Gern) 22 Geen) ) T Gy
1-A r
= bl (1-r—) (2 +242-2
H( r<p<p+l)> (2+ ! ‘xyD)

- (o Sty e -sm) oo

where the last inequality holds as long as r + 4x2 — 4|xy| = 5x2 + > — 4|xy| > 0. We
claim that this is always the case: if |xy| = xy we have to show that 5x? +y? — 4xy > 0.
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By solving the second degree equation in y we obtain that

4x + v/ 16x2 — 20x2
y= 5

and this has no real roots. Since for y = 0 we have 5x%2 > 0, we obtain the desire
inequality. The case where |xy| = —xy is completely the same since the discriminant
in the equation above is the same. We conclude that r + 4x? — 4|xy| > 0, and moreover
la1| < |b|ifr > 0.

In the same way we have that:

and then

wpalr) =250 =1+ (L5 ) v (L)

We then have that b; is equal to

oo ) ()5 ()

Since |a| < |b|, taking absolute value and by the triangular inequality we have:

= (H (p?pfl)> 722+2y2 <PZ0_+11)> r> - <2|xy| (P?pjrll» r)
= [ (Hr <p€lp_+11)> (;+2y2—z\xyy))

= 10l (15 (S ) s =l = 1o

where the last inequality holds as long as: r + 4y? — 4|xy| = x> + 5y* — 4|xy| > 0. This
is exactly the same equation we solve above, and thus we conclude that |b;| > |b| and
moreovet, |by| > |b| if r > 0. Then we conclude that |a;| < |b| < |bq].

Case2:r € [p,p+1].
In this case we obtain that ; verifies:

Then we have that:

A+ Bi(r) +25284(r) =1 & (;1?) —r=p) (H) e (H>

therefore a; is equal to:

n=e(1-8 () e () 2 () e (2 (659)
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Since |a| < |b|, taking absolute value and applying triangular inequality we get:

= ot ()0 () a2 (21
(o)
— |p| (1— (;?) (‘2’+(r—p)+2x2—2|xy|)>

|| (1 —~ (L;;‘) (—g +3x° 4y — 2yxy\)> < |b|

where the last inequality holds as long as —§ + 3x? + y* — 2|xy| > 0. Notice that

2., .2 542 4 12
—§+3x2+y2—2|xy|: (—p—l—x Ty )~|—< Yy —2|xy\)

2 2 2

The first term in the right expression is greater or equal to zero since p < r. The second

2 2
. —4 . . . .
term is exactly w, which is exactly the same equation we solve in case 1.

In the same way we have that:

and then we obtain:

We then have that b; is equal to

by =a <2xy <P’:§>) +b <1+‘2) (ﬁj) +(r—p) <Z_+}> +2y° (g))

Since |a| < |b|, taking absolute value and by the triangular inequality we have:

p(n—1 p—1 > u—1>>
b > b (1+8(E= o) (B2 ) 422 (B
ol = "( +2<p+l>+(r p)<p+l>+y (p+l
1

(E+0—p)+2y2- 2\961/!))

-1
_— (1+ (%) (—g+x2+3y2—2|xy|>> > |b]

by the same estimates than above. Moreover we have that |b;| > |b| if r > 0. Then we
conclude that |a1] < |b| < |by].

Case3:r e [p+1,20+1]
This is the simplest case, since we are far enough to zero and so we omit the

calculations.

To sum up, we have proved that the cone C" is Dg-invariant. To finish the proof,
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just take the norm ||(a,b)||; := max{|al, |b|} in R?, then we have that vectors in C* are
expanded for the future: if v = (a,b) € C* then |a| < |b| and thus ||v||; = |b|. Since
Dg(v) = (a1,b1) € C*, this implies that || Dg(v)||1 = |b1| and we have just proved that
] < |b1]. In short, we have that || Dg(v)[|1 > [|o[|1 (moreover ||Dg(y,)(0)[l1 > [[v]l1 if
(x,y) # (0,0)). This proves that g is expansive as we wanted to show. O

Now that we have the map g : R> — R? constructed in Lemma 3.4.7, we can build
a partially hyperbolic example in R* whose center leaves behaves like the map g.

Lemma 3.4.8. Let A € SL(4,Z) be a matrix with four eigenvalues A%, A, y, u** such that
0 < A <A <1< u < p"™and take e > 0. Then there is a partially hyperbolic
diffeomorphism f : T* — T* with a splitting of the form R* = E¥ & E§ & EY", such that
dimE} = 2 and verifies the following:

e f(x) = Ax for every B(0,¢€)".
* f is expansive.
* Dfolg; = Id.
Proof. Let A € SL(4,Z) be a matrix with four eigenvalues A%, A, y, u"* such that:
O<AT <A<TI <<y

We can assume that in the basis given by the eigenspaces associated to the eigenvalues
we have that: A(x,y,z,t) = (Ax, uy, A%z, u*"t). Take the same functions B and f; as
in Lemma 3.4.7 and define the map f : R* — R* by:

f(x,y,2,t) = (Ax, py, A%z, p"t) + p(w) (B1(r)x, —B2(r)y, 0,0)

where p is a bump function supported in [0,€] and w = 2% + 2. If ||(x,y,2,t)|| > €
we have that f = A. For points with ||(x,y,z,t)|| < € the differential of f at a point
(x,y,z,1) is:

A+ p(w) (Bi(r) +2x2B(r)) o(w) (2xypy(r)) 2xzp' (w)Ba(r)  2tzp (w)pa(r)
—p(w) (%xyﬁé(r)) p—p(w) (ﬁz(g) —2y*By(r)) —2y2p’A(§§)ﬁz<r) Zytp’(zg)ﬁz(r)
0 0 O Vuu

In this case the subspace Eji = {(x,y,0,0)} is Df invariant, and it is quite direct to see

that D f|g. is basically Dg like above (we have to deal with the funcion p but is not a
problem). In particular we have that:

10 0 0
01 0 0
Dio=10 0 rs o
0 0 0 Z/llll/l

The strong bundles are not going to be the canonical ones, but if we ask to the strong
eigenvalues A*° and pu"* to be sufficiently far from 1 (and we can do this by iterating
the matrix), the same strong cones for the matrix A are going to be Df invariant. In
consequence Df is hyperbolic outside 0, and therefore f : T* — T* is an expansive
derived from Anosov diffeomorphism. ]
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Remark 3.4.9. The construction in Lemma 3.4.8 can be made with no restriction on the di-
mensions of the strong subbundles (which were one dimensional in the example above). Indeed,
the contruction only uses the isotopy in dimension 2 we made in Lemma 3.4.7, and the domi-
nation of the external strong subbundles.

Higher dimensional center bundle

In the example of Lemma 3.4.8, the center bundle is two dimensional (and it behaves
hyperbolic on the center). Here we are going to treat the case when the center bundle
has dimension bigger than 2. We begin with the case when the center bundle is con-
tractive (every center eiganvalue has modulus smaller than 1), and then we insert this
example as the center leaf of a higher dimensional example like we did before.

Lemma 3.4.10. Let A € My (R) be a diagonal matrix with k eigenvalues such that
O<A << A<l
Then, for every € > 0 there is a diffeomorphism g : R — RF such that:
e ¢(x) = Ax for every x € B(0,¢€)°".
* g s expansive.
* Dgo = Idj k.
Proof. Take a matrix A € My(R) as above. Then the eigenvalues of A verify that:
O< < <A<

Fix € > 0 small, and take A such that Ay < A < 1. In particular A > A; for every

j =1,...,k. Now take a number ¢ € (0,€) such that: ¢ < ﬁ Now, for this

c > 0 take the function B given by Lemma 3.4.6 for b = 1. In particular, the function j
verifies:

e Bis C®, decreasing and —c < p/(t)t < 0.

* Bissupported in [0, €].

°« B(0)=1.

Moreover, we can ask for B to be equal to 1 in a small interval [0,6]. We can always

have this small § > 0, since the integral for fdt is divergent (see the details in the proof

of Lemma 3.4.6). Now we can define the map g; : R¥ — R¥ by

g1(x1, - x) = A(xa, ..o, xi) + B(r) (A = A)xa, .o, (A = Aw)x)

where r = x} 4 - - - + x2. Since supp(B) C [0, €] we have that if ||x|| > € then g; = A.
The differential of g; in a point x is:

)\1 )\_/\1
Dlge=| |+ o + M)

Ak A=A
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where M(x) is the matrix given by

(A—M)x% (}\—/\1)X13262 ()L—/\1)x1xk

A=A A=A o (A=A
M) =2g () | TR Ao e

(/\ - /\k)xlxk ()\ - /\k)xek ‘e (/\ - )\k)x]%

In particular, since 5(0) = 1 we have that D(g1)o = A+ B(0)(Ald — A) + M(0) = AId.
Now take a point x € IR¥ and a vector v € RF, then we have that:

D(g1)x(v) = Av+ B(r)(Ald — A)v+ M(x)v

Assume the vector visequaltov = (a,...,a) € R* for a given a € IR, and denote by
D(g1)x(v) = (ay,...,ax). If we prove that |a;| < |a| for every j = 1,...,k, we obtain
that D(g1)y is a contraction (by taking the norm of the maximum). Let’s take a look at
the first coordinate a1:

0 =a (Al + B(r)(A = A1) + 2B (r) (A — A1) Zk:xlx])

j=1
By taking absolute value, and applying the triangular inequality we obtain:
, k
jar] < la| { |Ar+B(r)(A = A1)| +2[B'(r) (A = A)| ) [x1]
j=1
Notice that 0 < (x; + xj)2 =x?+ x]z + 2x;x; and this implies that 2|x;x;| < X2+ x]z <r.

Now recall that: |B'(r)| < € < i )}:))\\1)7 and in particular we have that

K
21/ (r) (A=A ) [xxj| <1—A
=

This implies that:
|m| <lal (|M+B(r)(A = A1) [+1-2A)

Since B is a decreasing function, we have that 1 = $(0) > () and then:
ja1] < la| (|A+ B(r)(A = A)[+1=A) < a| (]A+ (A = A)[+1=A) = [a]

The exact same calculation shows that |a;| < |a| for every j = 1,...,k. This shows
that D(g1)y is a contraction (for the norm of the maximum) for every x € R* and in
particular, g; is expansive.

Notice that since B(r) = 1 for every r € [0, 5], we have that g;(x) = Ax for every
x € B(0,6). Now take the function h : R¥ — R¥ given by h(x) = (1 — r)x where
r = ||x||> and consider a bump function p : [0, +o0) — R such that:

e o(t) =1foreveryt e [0,0/2].
e p(t) =0forevery t > .

Now we define g : R¥ — R given by the equation:

8(x) = p(r)h(x) + (1 —p(r))g1(x)
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where r = ||x||. The first direct observation is that if || x|| > 6 then g(x) = g1(x) = Ax.
On the other hand, if r = ||x||?> < & then we have that g1 (x) = Ax and therefore

8(x) = p(r)h(x) + (1 = p(r))Ax = [o(r)(1 — 1) + (1 — p(r))Alx

and the function g is radial. Denote by a(r) := p(r)(1 —r) + (1 — p(r))A, then it is
direct to see that

a(r) =p(r)(1=r)+ (1 -p()A=p(r)A-r-A)+A<1—r

As a result g sends every sphere of radius R to a sphere of radius a(R)R which is
strictly smaller than R. This implies that Dgy is a contraction for every x € B(0, ). To
see this, just notice that given x € R* we have that T,R* = T,S I« + (x) where Sy
is the sphere centered at 0 of radius ||x||. The same happens with g(x), i.e. Tg(x)IRk =
To(x)Sa(|x))|x| + (x) and the differential of g at x restricted to this subspace is exactly

Dgx‘TxSHX” = DC(HXH)Id

which is a contraction. The other direction (x) is exactly the same, and therefore Dg, is
a contraction, hence ¢ is expansive. To finish the proof just observe that if r = ||x||> <
5/2 we have that g(x) = (1 — r)x and in particular Dgy = Id. O

As a corollary of the previous lemma, by applying the same trick as in Lemma 3.4.8
(with a suitable bump function) we can embed the example above as the center leaf of
a higher dimensional manifold. We thus obtain the following lemma.

Lemma 3.4.11. Let A € SL(d, Z) with a splitting of the form R? = E5 & E @& E'* s.t.
dimE$ = k and E is the eigenspace associated to the eigenvalues 0 < A; < --- < A < 1.
Then for every € > 0 small, there is a partially hyperbolic diffeomorphism f : T¢ — T4 with
a splitting of the form TTY = EY @ E; © B such that dimE? = dimE¢ for ¢ = ss,c,uu,
and moreover:

e f(x) = Ax forevery x € B(0,¢€)".
e f is expansive.

* Dfoles = Id

3.4.4 Proof of Theorem C

The idea of the proof is to construct the examples by steps. The first step is to apply
the results of the last subsection, i.e. given a matrix A, we introduce an isotopy in a
small neighbourhood of fixed point p in order to make the derivative of p equal to the
identity (when restricted to the center bundle), and keeping the rest of the manifold
hyperbolic. As a result, these examples will be expansive and not Anosov. Then,
since the isotopy is made in a sufficiently small neighbourhood of the fixed point, by
Lemma 3.4.5 we have that this map has the SH-Saddle property. Notice that we can
make these perturbations in as many different fixed points as desire since Lemma 3.4.5
still works for finite fixed points. Then by C! small perturbations we can change the
index of the fixed points as desire by classical Franks Lemma. Finally we obtain robust
transitivity by applying Theorem 3.4.2.

We begin with the case when d = 4 since it is quite direct for our previous results
and illustrates the general ideas. We then prove the general case.
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Proof for cased = 4

Take a matrix A € SL(4, Z) with four eigenvalues A%, A, u, u** such that:
O< AT <A< <<

This induces a splitting of the form R* = E** & E“® ¢ E¥" @ E"* and we take the center
bundle as E¢ = E“® @ E“*. We can assume that in the basis given by the eigenspaces
associated to the eigenvalues we have that:

A(x,y,z,t) = (Ax, py, A%z, u""t)

Moreover, we can assume that the linear Anosov A has four different fixed points:
Fix(A) = {po, p1, p2, p3} (we are making an abuse of notation here, by calling A in-
stead of f4, the induced map in the torus). We just have to iterate the matrix a few
times in order to have four different fixed points.

Now notice that the procedure made in Subsection 3.4.3 works as well. First, for
every fixed point p; (with j = 0,1, 2) take a small neighbourhood U; (notice that we are
not going to perturb p3 since it already has index 2). We can take them small enough to
be disjoint. Second, just notice that the isotopy procedure we made in Lemma 3.4.7 is
only local, and therefore it can be applied in different disjoint neighbourhoods. Hence
the same proof as in Lemma 3.4.8 shows that we can make an isotopy whose support
is contained in Uy U Uy U U in order to get a partially hyperbolic diffeomorphism
f1: T* — T* such that:

e fi(x) = Ax, forevery x € (Up U U; U Uy)".
e f1 is hyperbolic outside Fix(f1) = {po, p1, p2} (thus f1 is expansive).
b D(fl)Pj‘EC(pj) =1d fOI‘j =0, 1,2.

The second item above, shows that f; is expansive and then we have that A(f;) = 0.
The first point shows that f; is SH-Saddle of index (1,1). To see this, we just have to
observe that the same proof of Lemma 3.4.5 shows that f; have the SH-Saddle property
as well. In that proof, the only property we use is the fact that for a point p outside U
and given a small § > 0, there is always a point p; such that

Wit (p1,6) < fOVF*(p,6)) 0 (UF)

and by an induction argument we find a point whose forward orbit never meets U,
and the same happens for the past. By the same arguments, by taking the strong bun-
dles E* and E"* sufficiently contractive and expanding, and taking the neighbour-
hoods U; sufficiently small, we also have this property, i.e. for every point p outside
Up U Uy U Uy, and given a small § > 0, there is always a point p; such that

Wet(p1,6) C fi(WE (p,8)) N (Uo U Uy U Uy)*

Then we can find a point that never meets Uy U U; U U, for the future, and the same
for the past, proving that f; is SH-Saddle of index (1,1).

Now since f; is SH-Saddle we have that 7(f;) > 0, and by expansiveness we
also have A(f;) = 0. Then a direct application of Theorem 3.4.2 shows that f; is C!
robustly transitive. Let’s call ; to the C! neighbourhood of f; such that every h € U
is transitive.
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To end the proof of the theorem, we are going to change the indexes of the fixed
points pp and pj, and to put a complex eigenvalue in p,. First take the two matrixes
By and B; given by:

1-5 0 0 0 1+ 0 0 0
0 1-# 0 0 0 1+7 0 O
Bo=1 ¢ o;7 a0 BT o 0;7 A0
0 0 0 um 0 0 0 um

Then for 7 sufficiently small we have that the matrixes By and By are € close to D(f1),
and D(f1)p, respectively. Now in order to mix the two center subbundles, take the
matrix B, with the form:

a b 0 0
—b a O 0
Ba=14¢ 0 as o0
0 0 0 Huu

where a £ ib are the complex eigenvalues of B;. It is possible to take 2 and b such that
a is close to 1, b is close to 0 (the modulus of a =+ ib can be smaller, bigger or equal to
1 for our purposes). For suitable values of 2 and b we can assure that B; is € close to
D(f1)p,- Then by Franks Lemma [Fra71], there is a diffeomorphism f € U4; such that:

e f(x) = fi(x) forevery x € (UpU Uy UU,)".

° f(Pj) :fl(pj) =pjforj=0,1,2.
¢ Dij =Bjforj=0,1,2

In particular index(pg) = 3 and index(p1) = 1 (recall that index(ps3) = 2). Since
Df,, has a center complex eigenvalue, the center bundle of f can not be decomposed
into two 1-dimensional subbundles. To sum up, the map f : T* — T*is a C! ro-
bustly transitive derived from Anosov diffeomorphism, and verifies all the properties
of Theorem C.

Proof of the general case

For the proof of the general case we proceed like we did above. Let A € SL(d,Z) be a
hyperbolic matrix with a splitting of the form:

R? = E} & E%° & EX" & EY'

where we take as the center bundle to E§, = E%° © EX". Suppose in addition that the
center subbundles E%* and E%" can be decomposed into 1-dimensional subbundles,
ie.:

R =E{QE" G - - QEXQEM G- @ E™ @ EY

where Ef*” is the eigenspace associated to the eigenvalue A for o = s, u. In particular
the eigenvalues verify:

A< A <T <A< <A

In short m = dimE%®, | = dimEY" and k = dimE$ = m + I.

Notice that 0 is a fixed point of A and index(0) = dimES% 4+ m. Now by iterating
the matrix if necessary we can take k = m + | different fixed points of A (here we
are making an abuse of notation once again), Fix(A) = {p1,.-.,Pm, q1,---,4q:1}. For
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every j = 1,...,m take a neighbourhood U; of p;, and for every j = 1,...,[ take a
neighbourhood V; of g;. We can assume that they are small enough to be disjoint.
Like before, we proceed like in Subsection 3.4.3. Notice that the isotopies made in
that subsection were only local. Therefore a direct application of Lemma 3.4.11 implies
that there is a partially hyperbolic diffeomorphism g : T¢ — T? with a splitting of the
form
TT! = EY ® E{° ® E{" & E}"

where dimEY = dimEg for o = ss, ws, wu, uu, and moreover:
e ¢(x) = Axforeveryx € (U3 U---UU, UV U---UV))".
* ¢ isexpansive.
o Dgp].|Ews = Idforeveryj=1,...,m.
* Dgylpen = Id foreveryj=1,...,1

Once again, by taking the neighbourhoods U; and V; sufficiently small, Lemma 3.4.5
implies that ¢ has the SH-Saddle property of index (m,1). The second point above
says that g is expansive, and hence A(g) = 0. Then by Theorem 3.4.2 we have that ¢
is C! robustly transitive. Let I be the C! neighbourhood of g such that every h € U is
transitive, and let € > 0 be such that B-1(g,€) C U.

Now for this €, take m hyperbolic matrixes By, ..., B, which are € close to
Dgp,,--.,Dgp,, and such that index(B;) = dimE} + j. Notice that we can always
have these matrixes since Dgy.[p=s = Id for every j = 1,...,m. In the same way,
take I hyperbolic matrixes Cy, ..., C; which are € close to Dgy,, ..., Dg;,, and such that
index(C;) = dimE} + m + j. Notice that we can always have these matrixes since
ngi’Ewu = Idforeveryj=1,...,1

Finally by applying Franks Lemma [Fra71] once again, we know there is a partially
hyperbolic diffeomorphism f € U with a splitting of the form:

TTY = E¥ ® Ef © Ef"
where dimEj”,' = dimE¢, for ¢ = ss, ¢, uu, and moreover:
e f(x) =g(x) = Axforeveryx € (U U---UU,UV;U---UV))".
* f(pj) =pjforeveryj=1,...,m.
* f(q;) =gjforeveryj=1,...,1L
* Dfy, = Bjforeveryj=1,...,m.
* Dfy,=Cjforeveryj=1,...,1L

In particular we have k 41 fixed points (we are including 0 here) with indexes going
from dimE?; to dimE’; + k. To end the proof we have to mix the center subbundles E};*
and E{"*. To do this, we just have to take another different fixed point p and apply the
same isotopy as in Lemma 3.4.7. We thus obtain our example and this finish the proof
of Theorem C.
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3.5 The Berger-Carrasco-Obata example

As we mentioned in the introduction, in this section we are going to treat an example
introduced by P. Berger and P. Carrasco in [BC14]. The example was introduced origi-
nally as a C? robustly non-uniformly hyperbolic diffeomorphism. Almost every point
has both negative and positive Lyapunov exponents and the center direction (which
is two dimensional) does not admit any dominated splitting, since it has mixing be-
haviour.

Later in [Obal8] it was proved that the example is indeed C? stably ergodic. We
mention here that to obtain ergodicity the author doesn’t use the accessibility prop-
erty. Finally in [CO21] the authors proved that the example is C! robustly topolog-
ically mixing (hence C! robustly transitive). The mixing behaviour along the center
disables the example of having the SH property according to Pujals-Sambarino defini-
tion. However, in this section we are going to see that the example has the SH-Saddle
property of index (1,1).

We mention that we are not going to obtain robust transitivity of the example by a
SH-Saddle argument as above, we are just going to see that the example has SH-Saddle
property, and we hope that this will contribute to the study of this property.

We begin by presenting the example. Let T? = R?/271Z? be the two torus, and
let N > 0 be a positive integer. We consider the standard map given by sy(x,y) =
(2Nsinx + 2x —y,x). Take A € SL(2,Z) a hyperbolic matrix and define for each N
the skew-product fy : T* — T* given by

fn(x,y,z,w) = (sn(x,y) + Pr(AN(z,w)), AN (z,w)) where Py (x,y) = (x,0)

We observe that Dfn|g2x 0y = Dsn. The main theorem in [CO21] says that there is
No > 0 such that for any N > N the map fy is C! robustly topologically mixing.
We are going to deduce from the calculations in their article that it has the SH-Saddle
property of index (1,1).

A simple computation of the characteristic polynomial of Dsy tell us that the
eigenvalues have the form Ncosx + 14 /N cosx(N cosx +2). From here we de-
duce that when x is different from 7t/2 or 37t/2 then Dsy is hyperbolic. Now take
Iy = (—2N—3/10,2N=3/10) and write C = {7/2 + Iy} U {37/2 + Iy}. We take the
bad regions C* = C x S! x T? and C® = S! x C x T? and the good regions G* = T*\ C*
and G° = T* \ C°. In the good regions Dsy is hyperbolic, and since G* and G° are
compact, we have uniform constants, named o7 and 0. Then, if a point belongs to G
then Dsy is hyperbolic, and if a point belongs to G* then, Dsy" is hyperbolic too.

Now for each 6 > 0 we define the horizontal cone of size 6 along the center as
Chr = {v = (vx,vy) € E°: |lvy|| < 6]|vy]|} and the vertical cone of size 6 along the
center as C§" = {v = (vx,v,) € E°: ||vx|| < 0]|vy||}. Fix 6 = N~3/5 then Lemma 2.8 of
[CO21] says that if a point m € G" then the family of center cones are Dsy-invariant
for the future. The same happens for the past in the region G°.

Proposition 3.5.1. The map fyn has (1,1) SH-Saddle property.

Proof. First, Lemma 2.8 of [CO21] gives us the desire family of cones D fy-invariant
to the future and the past. For N > 0 large enough Lemma 3.1 of [CO21] says that
every strong unstable leaf of large greater than L > AN(||Py(e*)|| +3AN)! > 0 has a
point m € Wj’f;" (x, L) such that the forward orbit of m doesn’t meet the bad region, i.e.

fX(m) € G* for every k > 0. This implies that the center behavies hyperbolic to the
future for 11, and this implies that the strong unstable foliation Wg! has SH-Saddle
SS
N

property of index 1. In the same way, we have that the strong stable foliation WV 7
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has SH-Saddle property of index 1. Therefore, fy has SH-Saddle property of index
(1,2). m

3.6 Partially hyperbolic geodesic flows

In this section we are going to adapt the previous techniques from diffeomorphisms
to flows, with particular emphasis on geodesic flows. More precisely, we are going
to give sufficient conditions for a C* partially hyperbolic Riemannian metric to be C2
robustly transitive. Recall that we say that a Riemannian metric is transitive, if its
corresponding geodesic flow is transitive.

In Subsection 3.6.1 we are going to translate the definition of SH-Saddle property
from diffeomorphisms to flows. In Subsection 3.6.2 we state some general results con-
cerning the topological stability of geodesic flows. Finally in Subsection 3.6.3 we give
a criterion to get robust transitivity for partially hyperbolic geodesic flows with SH-
Saddle property, analogous to the one given in Section 3.4 for diffeomorphisms.

3.6.1 SH-Saddle property for flows

In this subsection we are going to translate the definitions from diffeomorphisms to
flows. In particular we are going to be interested in geodesic flows.

Recall that a flow ¢; : M — M generated by a vector field X : M — TM is partially
hyperbolic if the tangent bundle TM splits into D¢ invariant continuous subbundles
TM = E* @ E° & (X) @ E"* such that

ID@:(0%)|| < Ags < D@1 (v) || < Ay < [[Dr(v")]| for t >0

for some Riemannian metric ||-|| and some Ass < 1 < Ay, and all unit vectors v*° € E*,
v° € E€ and v** € E¥*,

Definition 3.6.1. Given a partially hyperbolic flow ¢; : M — M, we say that the strong
unstable foliation Wg" has SH-Saddle property of index d < c if there exist T € R such that
the induced partially hyperbolic diffeomorphism f = ¢t has strong unstable foliation i
with SH-Saddle property of index d. Analogously for the strong stable foliation.

In addition, we have the SH-Saddle property for flows.

Definition 3.6.2 (SH-Saddle for flows). We say that a partially hyperbolic flow ¢; : M —
M has the SH-Saddle property of index (dy,dy) if there is T € R such that f = @t has
(d1,d>) SH-Saddle property as a partially hyperbolic diffeomorphism.

Remark 3.6.3. Recall that if ¢; : M — M is a partially hyperbolic flow with dimE(, = c then
f = @1 : M — M is a partially hyperbolic diffeomorphism with dimEjr =c+1

Notice that if two flows ¢, ¢ : R x M — M are C'-close, then their time-T maps
f = ¢(T,-) and g = ¢(T,-) are C'-close diffeomorphisms. In particular Theorem
3.2.12 implies that SH-Saddle property is C! open among partially hyperbolic flows.
We summarize this observation in the following proposition.

Proposition 3.6.4. The SH-Saddle property is C'-open among partially hyperbolic flows.

Proof. Take a partially hyperbolic flow ¢ : R x M — M with SH-Saddle property. By
definition, we have that there is T € R such that the map f = ¢(T,-) has SH-Saddle
property as a partially hyperbolic diffeomorphism. By Theorem 3.2.12 there is a C!
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neighbourhood B of f such that every partially hyperbolic diffeomorphism g € B has
SH-Saddle property. Now just take a sufficiently C! small neighbourhood V of ¢ such
that for every flow ¢ € V, we have ¢(T,-) € B. As a result, every flow ¢ € V has
SH-Saddle property. O

Now since every Riemannian metric has its corresponding geodesic flow, we can
translate the definition of SH-Saddle property to partially hyperbolic Riemannian met-
rics. Recall that a Riemannian metric is said to be partially hyperbolic if its correspond-
ing geodesic flow is partially hyperbolic (see Definition 1.2.6 and Definition 1.2.8).

Definition 3.6.5 (SH-Saddle property for Riemannian metrics). A C*® partially hyper-
bolic Riemannian metric has the SH-Saddle property if its induced geodesic flow has SH-Saddle

property.

Notice that a C?-small perturbation on the metric imply a small perturbation on the
geodesic field, and therefore a C!'-small perturbation on the flow. Then by a similar
argument as above, we get the following proposition.

Proposition 3.6.6. The SH-Saddle property is a C* open property among C* partially hyper-
bolic Riemannian metrics.

Proof. Suppose that g is a C* Riemannian metric such that its geodesic flow ¢?° :
T'M — T'M is partially hyperbolic and has SH-Saddle property. By Proposition 3.6.4
we know there is a Cl-neighbourhood V such that every flow ¢ € )} has SH-Saddle
property. Then we just have to take U a C? neighbourhood of gy in the space of C*
Riemannian metrics such that for every metric ¢ € U, its geodesic flow ¢f € V. ]

3.6.2 Expansiveness and topological stability

We begin this subsection introducing some definitions and well known results con-
cerning expansive geodesic flows. Let ¢; : X — X be a continuous flow on a metric
space (X, d). The flow ¢; is said to be expansive if there exists a constant € > 0 such
that for every x € X we have the following property: if for a given y € X there exists
a continuous and surjective map r, : R — R with r,,(0) = 0 such that

d(@i(x), ¢r,1)(y)) < € forevery t € R

then there exists tp € R such that ¢, (x) = y. We call € the expansivity constant. In other
words, every two different orbits of an e-expansive flow are e-separeted eventually in
time.

We say that a continuous flow ¢; : X — X is topologically stable if there exists a
CO-neighbourhood V of ¢; such that, for every flow iy € V there are continuous and
surjective functions 1 : X — X and r : X x R — R with r(x,0) = 0 such that

hogi(p) = Yr(p.t) oh(p) forevery te R,pe X

From now on and in the rest of this section, every flow would be a geodesic flow,
i.e. ¢; will be the geodesic flow associated to a Riemannian manifold (M, g) and X
will be the unitary tangent bundle T'!M. We remark that the unitary tangent bundle
depends on the choice of the metric, but given two Riemannian metrics g; and &
their unitary tangent bundles Tg}l M and T;zM are diffeomorphic (see Subsection 1.1.2).
Recall that a Riemannian manifold has no conjugate points if the exponential map is
non singular at every point (see also Subsection 1.1.2).
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A fundamental property in hyperbolic dynamics is the existence of stable and un-
stable manifolds. These manifolds have local product structure, and are invariant by
the dynamics. For expansive geodesic flows of Riemannian manifolds without conju-
gate points, we have an analogous result due to R. O. Ruggiero.

Theorem 3.6.7 (Theorem 1 in [Rug97]). Let (M, go) be a C* compact Riemannian manifold
of dimension n with no conjugate points. Let ¢; : T'M — T'M be the geodesic flow on the
unitary tangent bundle and assume that ¢; is e-expansive. Then:

1. for every point 0 € T'M the sets:

Wi(0) = { € T'M: Tim d(¢:(0), ¢:(y)) = O}
W*(0) = {n € T'M: lim d(¢:(6), ¢:(y)) = 0}

are C° submanifolds of dimension n — 1

2. The sets W® and W* give continuous foliations of T'M which induce a local product
structure.

The sets W*(6) and W"(0) are called the stable and unstable sets of 6 respectively.
By local product structure in Point 2 above we mean the following: for every 6 € T'M
there is a local transverse section Z4 of # and a homeomorphism F : (—1,1)2"-1 — 5,
such that:

1. F((—=1,1)"1 x {yo}) is a subset of the connected component of

U @:(W*(F(0,%0))) N Zg
teR

containing F(0, o) for every yo € (—1,1)"!

2. F({xo} x (=1,1)"!) is a subset of the connected component of

U ¢t (W"(F(x0,0))) N Zg
teR

containing F(xo,0) for every xo € (—1,1)""!

The sets
We(0) = [J @r(W*(0)) and W(0) = [J @:(W"(0))
teR teR
are called the center stable and center unstable sets of 0 respectively.
As a consequence of the above result, R. O. Ruggiero proved the following theo-
rem.

Theorem 3.6.8 (Theorem 2 in [Rug97]). Let (M, go) be a C* compact Riemannian manifold
with no conjugate points such that the geodesic flow @i : T'M — T'M is expansive. Then
the set of closed orbits is dense and ¢, is topologically transitive.

The stable and unstable manifolds in the uniformly hyperbolic case allowed us to
have shadowing properties as we saw in Chapter 2. Since we have stable/unstable
sets for expansive flows with no conjugate points, the same shadowing lemma holds
for this kind of geodesic flows. The proof once again is due to R. O. Ruggiero.
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Lemma 3.6.9 ([Rug96]). Let ¢; : T'M — T'M be a geodesic flow of a compact, n-
dimensional manifold (M, g) without conjugate points, such that ¢, is e-expansive. Then,
there exists a C° neighbourhood Ve of ¢; such that every C* flow ; : T'M — T'M in Ve
has the property that given 6 € T'M, there exists 6y € T'M and and increasing surjective
function r : R — R with r(0) = 0 such that d(¢:(60), 1) (0)) < €/2.

The proof of this lemma has basically two ingredients. First the fact that expan-
sive homeomorphisms have stable and unstable sets, and this implies the shadowing
property, similar to the case we saw in Chapter 2. Second the fact that geodesic flows
have no singularities, and thus the manifold can be covered by finite boxes with lo-
cal product structure. This allows the author to bring the shadowing ideas from the
discrete case to the continuous case. For more details the interested reader can see
[Rug96] or references therein (for example [Lew83] or [Pat90]).

As in the discrete case the Shadowing Lemma has important consequences con-
cerning the stability of the systems.

Theorem 3.6.10 ([Rug96]). Let ¢; : T'M — T'M be a geodesic flow of a compact, n-
dimensional manifold (M, g§) without conjugate points. If ¢, is expansive, then it is topologi-
cally stable.

The previous theorem says the following: given ¢; : T'M — T'M a geodesic flow
of a compact manifold (M, g) without conjugate points such that ¢; is e-expansive,
thereis a Co—neighbourhood Ve of ¢; such that, for every flow iy € V. there are contin-
uous and surjective functions i : T'M — T'Mand 7 : T'M x R — R with r(x,0) = 0
such that:

hoi(0) = @rgr) 0 h(0) forevery t €R, 6 € T'M

Remark 3.6.11. Like in the discrete case, we have control of the size of the fibers of the semi-
conjugacy map h above: for every 6 > 0 there is a C° neighbourhood Vs of ¢; such that, for
every flow y; € Vs we have that diam(h='(h(8))) < & for every 6 € T' M.

Notice that topological stability is a weaker notion than structural stability. The
problem is that the function f mentioned above is continuous and surjective, but in
most cases will not be injective. We had the same problem in the discrete case for
diffeomorphisms isotopic to Anosov: we have the semiconjugacy to the linear part
but not a real conjugacy. We are going to solve this problem in the same way: despite
having no trivial fibers, if we are sufficiently close to a fixed Riemannian metric which
is expansive, the fibers of the map h will have small size compared with the size of
the center disks given by the SH-Saddle property. We then conclude by the same
arguments of the previous section for diffeomorphisms.

3.6.3 Proof of Theorem D
Let us recall the statement of the theorem.

Theorem 3.6.12. Let gy be a C* Riemannian metric on a compact differentiable manifold M
with no conjugate points and let ¢; : T'"M — T'M be its geodesic flow. Suppose that ¢; is
expansive with stable sets W*® and unstable sets W". Suppose that in addition ¢, is partially
hyperbolic with a splitting T(T'M) = E* @& E° @ (X) & E*", and it has the SH-Saddle
property of index (dy,dy) where dy = dimW?® — dimE®*® and dy = dimW*" — dimE"". Then
@y is C! robustly transitive (or C* among metrics).

Proof. The idea of the proof is pretty similar to the one of Theorem 3.4.2 for diffeo-
morphisms. The main difference is that here we have an extra dimension given by the
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flow direction, and instead of semiconjugating to the linear part, we semiconjugate to
the original geodesic flow.

Let ¢; : T'M — T'M be the geodesic flow of the metric go. By hypothesys, we
know that there is T € R such that f = @7 : T'M — T'M has the SH-Saddle property
of index (dq, dy). Notice that f is a partially hyerbolic diffeomorphism with a splitting
of the form T(T'M) = EY © Ef @ E}" where EY = E¥, EY* = E" and E} = E° © (X).

Despite having an extra dimension in the center bundle Ef = E° & (X)), since f is

the time T map of a geodesic flow, we have that ||[Df|x)|| = 1. Therefore, the cones
given by the SH-Saddle property are contained in E° (it is imposible to have expansion
or contraction in the X direction).

Since SH-Saddle property is C! open among partially hyperbolic diffeomorphisms
by Theorem 3.2.12, we know there are constants A > 1, L > 0, 6; > O and a Cl-
neighbourhood V of f such that, if g € V then:

Hy, (§)NW(6,L) # @ forevery 0 € T'M
HY, (&) W (0,L) # @ forevery 6 € T'M

Moreover, by Corollary 3.2.14, for every g € V, 6% € Hir,dz (g) and D" a center disk
of dimension d, tangent to Cj,, there is N > 0 such that ¢g"(D") contains a disk W**
of diameter bigger than 24; for every n > N. The same happens with the stable
manifold: forevery g € V,6° € H , (g) and D® a center disk of dimension d; tangent
to Cj;, there is N > 0 such that g7"(D?) contains a disk W of diameter bigger than
261 for every n > N.

By Proposition 3.6.4 and Proposition 3.6.6 we can take a C? neighbourhood V; of
go, and a C! neighbourhood V; of ¢; such that for every ¢ € V,, we have that its
corresponding geodesic flow ; belongs to V, and hence, its time T map belongs to
V. Now let us define the following constants:

ps = p(dimW?,é;)
pu = p(dimW", é)
r = min{p,p}

where p(d, r) are given by Proposition 3.3.4.

According to Theorem 3.6.10 since ¢ is € expansive, there is a C’-neighbourhood
Ve of ¢; such that, for every flow ; € V. there are continuous and surjective functions
h:T'M — T'Mand r: T'M x R — R with 7(x,0) = 0 such that:

hoi(0) = @rr) 0 h(0) forevery t R, 0 € T'M (3.12)

Moreover, we can take V. sufficiently small such that for every flow ¢y € V. we have
that diam(h~!(h(0))) < T for every 6 € T'M (see Remark 3.6.11).

Now take U = Vi N V.. We claim that every flow ¢y € U is transitive. By Proposi-
tion 3.1.1 and Remark 3.1.2 it is enough to prove that there is T > 0 such that for any
two open sets Uy, Uy C T'M there is n € Z such that ¢"(Uy) N Uy # @, where g = .

Now we repeat the argument we did for diffeomorphisms in Theorem 3.4.2.
Take two points 6 € U; and 6, € Uy, and let 1y € IN be such that
g " () D Wg(g ™ (61),L) and g™ () D Wy"(g"(02),L). Take 6° € H, ; (g) N
W (g7™(61),L) and 6" € Hy, (g) N Wg"(g"(62),L) given by (d1,d2) SH-Saddle
property. Now take D° C Wg(6°) a center disk of dimension d; tangent to Cj and
D" C W§(9“) a center disk of dimension d; tangent to Cj,. We can take D°, D" small
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enough such that D° C ¢~ " (U;) and D" C ¢"(U,). Recall that C* and C" are the
cones invariant for the past and the future respectively given by SH-Saddle property.
Moreover, C* and C" uniformly expand vectors for the past and the future respectively.

Now take D; = UgGDsWES(G,(S) and D, = ugepuwgu(e, 5). We can choose § > 0
small enough such that D; C g7 (U;) and D, C g™ (U,). Notice that D is a disk of
dimension equal to dimW?* and D, is a disk of dimension equal to dimW*. Now by
what we mentioned above, there is n; € IN such that ¢~"(D?) contains a disk of size
bigger than 24; and ¢g"(D") contains a disk of size bigger than 26, for every n > ny.

Now we use again Corollary 3.3.5 applied to the functions m* o pohand m opoh
where the funcions 71° and 7t* are the local projections restricted to the local section Xy
given by the local product structure of the flow, and the funcion p is the local projection
from T'M to Z4 (projection given by the flow lines).

Observe that ¢y € U which implies that the semiconjugacy & is T-light (see Defini-
tion 3.3.3). Moreover we have:

Claim 3.6.13. The function 1t° o p o h is T-light when restricted to g~"2(D1) and the function
7t o p o h is T-light when restricted to g"2(D>).

Proof. Let’s see the case 7t° o p o h since the other one is symmetric. Now notice that
¢~ "(Dy) contains a disk of size bigger than 24, for every n > n, and the disk ¢~ (D)
is tangent to a cone C°* which is uniformly expanding for the past. Thus by the semi-
conjugacy relation in Equation (3.12) we know that p o i(D;) can not intersect W"
more than once, otherwise there would be different points in D; such that their dis-
tance by past iterates of g goes to zero, and this is impossible since the cones C°® are
expanding for the past. In consequence the fibers of 77° o p o h have the same size of
the fibers of p o h, and so 7t° o p o h is T-light restricted to g~"2(Dy ). O

Now we are in hypothesys of Corollary 3.3.5 and therefore 7w° o p o h(g~"2(D1)) C
W?® contains an open set. The same argument shows that 77" o p o h(g"2(D,)) C W"
contains an open set. Since the flow ¢; is expansive (and transitive by Theorem 3.6.8)
and the topological disks have complementary dimensions and with the right inclina-
tion, we know there is t; > 0 such that ¢, (h(g"™(D2))) Nh(g~™(D1)) # @. By the
semiconjugacy relation and since # is close to the identity, there is t, € R such that

D # ¥, (8"(D2))) g ™ (D1)

and this implies that

D # Piy1 T, (D2) NP1y (D1) C Yty Ty 4m) (U2) NPy 1p) (U )

which is equivalent to
D # Pp, 42T (ny ) (U2) N Uy

Since the choice of U; and Uy was arbitrary, this proves that ¢ is transitive. O
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Chapter 4

Stable accessibility

In this chapter we prove Theorem E and Theorem F. We begin by introducing the
statements of the results and giving an outline of the proofs of these theorems and the
general structure of the chapter.

4.1 Main results

We fix a compact Riemannian manifold M of dimension d > 4 and an integer r > 2.
Our main result is about the C’-density of the accessibility property for partially hy-
perbolic diffeomorphisms with two-dimensional center which are stably dynamically
coherent and satisfy some strong bunching condition (this bunching condition will be
presented in Section 4.2, as Definition 4.2.5). We will denote by PH’, (M) to the set of
partially hyperbolic diffeomorphisms satisfying this strong bunching condition. We
also denote by PH. (M, Vol) C PH (M) the subset of volume preserving partially
hyperbolic diffeomorphisms.

Theorem E ([LP]). For any partially hyperbolic diffeomorphism f € PH, (M), resp. f €
PH.L(M,Vol), with dim Ef =2, that is dynamically coherent and plaque expansive, and
for any 5 > 0, there exists a partially hyperbolic diffeomorphism ¢ € PH' (M), resp. g €
PH' (M, Vol), with dcr(f,g) < 6, such that g is stably accessible.

In particular, by the work of Burns-Wilkinson [BW10], this implies that for any partially
hyperbolic diffeomorphism f € PH, (M, Vol), with dim E} = 2, that is dynamically coherent
and plaque expansive, and for any 6 > 0, there exists ¢ € PH" (M, Vol), with dcr(f, g) < 6,
such that g is stably ergodic.

One intermediate step is to show that trivial accessibility classes can be broken by
C’-small perturbations. This part of the proof also holds when the center is higher
dimensional and only requires center bunching.

Theorem F ([LP]). For any partially hyperbolic diffeomorphism f € PH' (M), resp. f €
PH' (M, Vol), with dim E} > 2, that is center bunched, dynamically coherent, and plaque

expansive, and for any 6 > 0, there exists a partially hyperbolic diffeomorphism g € PH' (M),
resp. g € PH" (M, Vol), with dcr (f,g) < 6, such that Cy(x) is non-trivial, for all x € M.

Let us briefly summarize the main steps of the proof:

1. we study the structure of local center accessibility classes, i.e., the set of points
which can be attained within some small center disk around a given point, fol-
lowing accessibility sequences with a given number of legs of prescribed size;
in particular, we identify which are the configurations to break in order to make
each accessibility class open;
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2. given a small center disk D, we construct continuous families of local accessibil-
ity sequences at points in D; these families depend on the nature of the center
accessibility class of the base point (which can be zero, one or two-dimensonal),
and allow us to have sufficiently many “degrees of freedom” to create local ac-
cessibility after perturbation;

3. once these families are constructed, we design families of perturbations, local-
ized near one of the corners of the accessibility sequences, and which depend in
a differentiable way on the perturbation parameter;

4. we study the variation of the endpoint of these accessibility sequences once the
perturbation parameter is turned on, and show that for suitable perturbations,
we obtain a submersion from the space of perturbations to the phase space; in
particular, bad configurations in phase space (non-open accessibility classes) cor-
respond to special configurations in the space of perturbations, which can be
broken to create local accessibility;

5. we globalize the argument using spanning families.

Let us say a few more words about the previous points. The details about point (1) are
given in Section 4.3. For partially hyperbolic diffeomorphisms with two-dimensional
center that are center bunched, it is known (by the works of Rodriguez-Hertz [Her05],
Rodriguez-Hertz and Vasquez [HV20] etc.) that center accessibility classes are zero,
one or two-dimensional submanifolds (see Theorem 1.6.4 in Chapter 1). Moreover,
Horita-Sambarino [HS17] have studied the organization of center accessibility classes
within a small center disk all of whose points have non-trivial center accessibility
classes; in particular, they have shown that the set of one-dimensional center accessi-
bility classes of points in the disk forms a C! lamination. In Section 4.3, we go further
in this direction, and investigate the variation of center accessibility classes for pertur-
bations of a given partially hyperbolic diffeomorphism. In particular, we show that if
the center accessibility class of a point x remains one-dimensional after perturbation,
it stays in a certain “cone” around x. This is the part of the chapter where we need the
strong bunching condition (see Definition 4.2.5 below), in order to get some regularity
on the holonomies.

The construction of loops mentioned in point (2) is outlined in Section 4.4. Indeed,
in the subsequent argument, given a point x whose accessibility class is not open, we
need to construct (non-trivial) closed accessibility sequences at x; moreover, we show
that it is possible to construct these loops in such a way that they depend nicely on x.

The details about point (3) are in Section 4.5, and follow the arguments of [LZ22].
Given a point x € M that is non-periodic, we construct a family {7(f)};c[,1) of con-
tractible us-loops at (f, x), and we define a family of perturbations such that the sup-
port of the perturbations is contained in some small neighbourhood of the first corner
of 7(1). By taking the loop sufficiently small, the first return time to the support of
the perturbation can be made arbitrarily large, and we show that it induces a change
of the holonomy along the continuation of (1) for the perturbed diffeomorphisms.
More precisely, by the results of [LZ22], we get a submersion from the space of pertur-
bations to the phase space — here, the local center leaf of x.

The submersion property is sufficient to show that after perturbation, the center
accessibility class of x can be made non-trivial. This part of the proof is explained in
Subsection 4.6.1 and holds in a more general setting, as it does not require the center
to be two-dimensional. When the center accessibility class of x is one-dimensional, by
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point (1), it varies continuously with respect to the diffeomorphism in the C! topol-
ogy. In particular, if the center accessibility class of x were one-dimensional for every
diffeomorphism in a C"-neighbourhood of f, then all those classes would stay in some
cone around the point x; but this is in contradiction with the submersion property for
the family of perturbations we construct. The details of this part are given in Subsec-
tion 4.6.2.

The details about point (5) are given in Section 4.7, where we explain how to glob-
alize the arguments in order to verify the accessibility property, through the notion
of spanning family of center disks, as in [DW03] (see Subsection 4.7.1). In Subsection
4.7.2, given some small center disk in the family, we explain how by a C"-small per-
turbation, it is possible to make the center accessibility class of each point in the disk
non-trivial. One difficulty is that the perturbation used to break trivial center accessi-
bility classes may create new trivial classes in other places (at points with non-trivial,
but very small center accessibility classes). The idea to bypass this difficulty is to take
two families of us-loops which we can perturb “independently”, in order to increase
the codimension of “bad” situations for which the center accessibility class of some
point in the disk would be trivial. Once all classes in the disk are non-trivial, we have
to make a further perturbation to make all these classes simultaneously open. One
important step in the argument is the aforementioned result (inspired by the work of
Horita-Sambarino [HS17]) that within the center disk, one-dimensional center acces-
sibility classes vary C!-continuously both in perturbation space and phase space. In
particular, if the center disk is chosen sufficiently small, then the set of tangent direc-
tions associated to one-dimensional classes (even for small perturbations of the dif-
feomorphism f) stay in a small cone that is uniform in the points of the disk. Thanks
to the submersion property, we can then choose a perturbation for which each point x
in the center disk will have a point y in its center accessibility class lying outside this
cone, which forces the accessibility class of x to be open. There again, one difficulty
is to check that the perturbations we make preserve the accessibility classes which
were already open. Repeating the same argument for each center disk in the spanning
family, we thus construct a C"-small perturbation of f that is accessible.

4.2 Preliminaries

In this section we introduce some definitions, preliminaries and well known results
that we will use along the chapter. Some of these preliminares were already intro-
duced in Chapter 1, but we also introduce them in this section in order to make the
chapter self-contained.

Recall that given a compact Riemannian manifold M of dimension m > 3, we say
that a diffeomorphism f : M — M is partially hyperbolic if there exists a nontriv-
ial D f-invariant splitting TM = E}; © E; © E} of the tangent bundle and continuous

functions A, A7, AT, A, : M — RT with
A <1<Ay  A<AZ <AF <Ay 4.1)
such that for any (x,v) € TM, it holds

IDxf (@) < As(x)[o]], ifv € Ex(x)\ {0},
A @l < IDxf @) <AL ()], ifv e Ef(x)\ {0},
Au()[Joll < [Dxf (), if v € Ef(x) \ {0}.
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For any integer ¥ > 1, we denote by PH' (M) the set of all partially hyperbolic
diffeomorphisms of M of class C"; we also denote by PH' (M, Vol) C PH'(M) the
subset of volume preserving partially hyperbolic diffeomorphisms.

In the rest of this chapter, we fix an integer r > 1 and we consider a partially
hyperbolic diffeomorphism f € PH'(M). We will denote ds := dimE} and d, :=
dim E%. Recall that the strong bundles E% and E} are uniquely integrable to continuous
foliations Wi and Wy respectively, called the strong unstable and strong stable foliations.

4.2.1 Dynamical coherence, plaque expansiveness

Recall from Section 1.4 that a partially hyperbolic diffeomorphism f is dynamically
coherent if the center-unstable bundle EZ* := Ef @ Ef and the center-stable bundle EY* :=
Ef @ E} integrate respectively to foliations W*, W, called the center-unstable foliation,
resp. the center-stable foliation, where W}‘ subfoliates W}“, while Wji subfoliates WJES.
In this case, the collection W} obtained by intersecting the leaves of Wi* and Wi is a
foliation which integrates E¢, and subfoliates both JCf and W¢; it is called the center
foliation.

In the following, for any * € {s,c,u,cs,cu}, we denote by dW}« the leafwise dis-
tance, and for any x € M, for any € > 0, we denote by Wi (x,¢) := {y € Wi(x) :
dW; (x,y) < ¢} the e-ball in W5 of center x and radius e.

It is an open question whether dynamical coherence is a C'-open condition. A
closely related property is plaque expansiveness.

Definition 4.2.1 (Plaque expansiveness). We say that f is plaque expansive (see [HPS77,
Section 7]) if f is dynamically coherent and there exists ¢ > 0 with the following property:
if (Pn)n>0 and (qn)n>0 are e-pseudo orbits which respect W such that A(pn,qn) < € for all
n >0, then g, € WJE( pn)- It is known that plaque expansiveness is a C'-open condition (see
Theorem 7.4 in [HPS77]).

The following result is due to Hirsch-Pugh-Shub.

Theorem 4.2.2 (Theorem 7.1, [HPS77], see also Theorem 1 in [PSW12]). Let us assume
that f is dynamically coherent and plaque expansive. Then any § € PH'(M) which is
sufficiently C'~close to f is also dynamically coherent and plaque expansive. Moreover, there
exists a homeomorphism b = bhe: M — M, called a leaf conjugacy, such that b maps a

f-center leaf to a g-center leaf, and b o f(W(-)) = g o h(WE(+)).

4.2.2 Holonomies

Let us assume that the diffeomorphism f is dynamically coherent. Let x; € M and
let x, € M be sufficiently close to x;.! By transversality, there exist a neighbourhood
Uy of xy within W (x1) and a neighbourhood U, of x; within W;”(xz) such that for

any z € Uj, the local stable leaf through z intersects U/, at a unique point, denoted by

H} 1 v (2) € Uy We thus get a well defined local homeomorphism
;/xl’xZZ U — U C ;M (XQ),

called the stable holonomy map. Note that as a consequence of dynamical coherence,
if xa € Wiy, .(x1), then the image of the restriction H; | W () 1O the center leaf

1In the rest of the chapter, all the constructions will be local.
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Wi (x1) is contained in the center leaf W§(x2). Unstable holonomies are defined in a
similar way, following local unstable leaves.

Definition 4.2.3 (Center bunching). We say that f € PH(M) is center bunched if the
functions As, A7, AT, Ay in (4.1) can be chosen such that

max(Ag, (A,) 1) < =& (4.2)

Theorem 4.2.4 (see [HPS77] and Theorem B in [PSW12]). If f € PH*(M) is dynami-
cally coherent and center bunched, then local stable/unstable holonomy maps between center
leaves are C when restricted to some center-stable/center-unstable leaf and have uniformly
continuous derivatives.

Indeed, the authors prove that the strong stable/unstable foliation is C' when re-
stricted to a center-stable/unstable leaf. However, from their proof, it is not clear how
the holonomies HJS‘,XLXz’W}Joc(Xl)’ resp. H?/xlrxz‘wff,loc(xl) vary in the C!-topology with
the choices of the points x; and x; € Wj;,loc(xl), resp. Xy € W}‘IIOC(m). This question
is investigated in Obata’s work [Oba], where it is shown that under some stronger
bunching condition, these holonomy maps vary continuously with the choices of the

base points x1, x2.

Definition 4.2.5 (see [Obal). For any integer r > 1, we denote by PH. (M) the set of all
partially hyperbolic diffeomorphisms f € PH" (M) such that, for some 6 € (0,1),

m(Dxfles)  [Dxflll
IDxflesll © m(Dxfles)
IDxfles || < m(Dxf!E;)m(Dxf\E;)e,
IDxflegll - 1D f|esl|® < m(Dsf |y).

HDxf’E}HQ < < m(Dxf|E;)9,

Note that any diffeomorphism f € PH. (M) is automatically center bunched.

Theorem 4.2.6 (Theorem 0.3 in [Oba]). Assume that f € PHE(M). Then, for x = s, u, the
family {H} ., ’W}/loc(x ) }xle M, 1w (51 is a family of C' maps depending continuously in

the Ct-topology with the choices of the points x1 and x; € W} Joc (X1)-

4.2.3 Accessibility classes

A f-accessibility sequence is a sequence [x1,...,Xx] of k > 1 points in M such that for
any i € {1,...,k — 1}, the points x; and x;;1 belong to the same stable or unstable
leaf of f. In particular, the points x; and x; can be connected by some f-path, i.e., a
continuous path in M obtained by concatenating finitely many arcs in W; or W¢. We
will refer to the points x1, .. ., x as the corners of the accessibility sequence [xy, ..., x].

For any point x € M, we denote by Accy(x) the accessibility class of x. By definition,
it is the set of all points y € M which can be connected to x by some f-path. We also
let

Cy(x) := cc(Accr(x) N Wi(x, 1), x)

be the connected component containing x of the intersection of the accessibility class
of x and the local center leaf through x. Similarly, for any e > 0, we let Cs(x,¢) :=
cc(Accr(x) N W;(x,s),x). By definition, accessibility classes form a partition of M.
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We say that the diffeomorphism f is accessible if this partition is trivial, i.e., the whole
manifold M is a single accessibility class; we say that f is stably accessible if the diffeo-
morphisms which are sufficiently C!-close to f are accessible.

Moreover, given any f-accessibility sequence ¢ = [x1,...,x¢], we let
Hyy i Wi ioe(x1) = W) 1o (xk) be the holonomy map obtained by concatenating the
local holonomy maps along the arcs of 7, i.e.,

Hf,:=H/}' o---oH} (4.3)

o f/xk—l/xk f/xlleI

where forj € {1,...,k — 1}, %; € {s,u} is such that x;; € W;j(xj).
The next lemma is elementary; it follows from the local product structure and the
continuous dependence of the invariant foliations with respect to the diffeomorphism.

Lemma 4.2.7 (Continuation of accessibility sequences). Let v = [xo, x1,..., x| bea f-
accessibility sequence, for some integer k > 0. Then there exist a neigbourhood O of xo and a

Cl-neighbourhood U of f such that for any point x € O, and for any diffeomorphism ¢ € U,

there exists a natural continuation v*€ = [x,xy%,...,x.%] of y for x and g. Indeed, the

g-accessibility sequence y*3 is defined as

xf’g = H;?x,xl(x);

X8 . pr* X8Y.
xz T Hg/xfg/xz <x1 )’

X8 . ¥k X8 .
x,°:=H X
k g,xi’fl,xk( k—l)’

here, for each j € {0,...,k — 1}, we let *; € {s,u} be such that x;, € W;/(x]'). Moreover,
¥*8 depends continuously on the pair (x, g).

Definition 4.2.8. Given a point x € M and an integer n > 2, a 2n us-loop at (f,xo) is a
f-accessibility sequence v = [Xo, X1, X2, ..., Xon] € M2+ with 2n legs such that

X1 € W}l,loc(xo)/
X2 € Wi ioe(x1), - ..
ce. Xop—1 € W?,loc(xzn—z) N WJE,SIOC(XO),
Xop 1= H},infl,x(xznfl) € W;,IOC(XO).
We define 2n su-loops accordingly (with x1 € W . (xo) etc.).
The length of a 2n us-loop v = [xo, X1, X2, . . ., X2n] € M?"*1 is defined as
n—1
() := dwy(x0, 1) + ) [de,(xZifl/xZi) + dyyu (x2i, x2i+1)} + dyes (Xan—1, %0)-
i=1
Moreover, we say that the us-loop <y is
* closed, if x, = xo;
e trivial, if xo = x1 = X2 = -+ - = X2y,
* non-degenerate, if x1 is distinct from the other corners xg, X2, . .., X2n.

We also denote by 7 the 2n su-loop ¥ = [Xan, Xon—1,--.,%2,%1,%X0] € M>"Lat (f,x2,).
Finally, given an integer m > 2 and a 2m us-loop ' = [xo, X7, ..., %5, ] at (f,x2n), the
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concatenation «yy' of vy and ' is the 2(m + n) us-loop vy = [x0,X1,..., Xon, X, ..., X5,,]

at (f, XO).

Definition 4.2.9. Given x € M and n > 2, a one-parameter family v = {y(t) =
[x,x1(t), ., X2u(t)] }1c01) of 2n us-loops at (f,x) is said to be continuous if for any
i=1,...,2n, themap t — x;(t) is continuous. We define £(7y) := sup,c(o 1 £(7(t))-

4.2.4 Structure of center accessibility classes

Let M be a compact Riemannian manifold of dimension d > 4. Let r > 2 be some
integer, and let f € PH' (M) be a partially hyperbolic diffeomorphism with dim E$ =
2 that is center bunched and dynamically coherent.

By Theorem 4.2.4, for * = s,u, the *-holonomy maps are C! when restricted to
a Wi" leaf; by Cl-homogeneity arguments, this allowed [Her05; HV20] to obtain a
classification of center accessibility classes.

Theorem 4.2.10 ([Her05; HV20]). For any point x € M, and for any sufficiently small
e > 0, the local center accessibility class C f(x, €) can be either

* trivial, i.e., reduced to a point;
* aone-dimensional submanifold of W (x);

* open; in this case, Acc f(x) is also open.

In the following, for any subset . C M, we let

. F?((y) = {x € & : Cg(x) is trivial };
. F}(Y) := {x € . : C¢(x) is one-dimensional};
* () :=THS)UTH(S).

In particular, .7 \ T'¢(.) is the set of points x € . whose accessibility class Acc(x) is

open. When . = M, we abbreviate T?[(y ), T}(Y ), T f(y ) respectively as T?[, T }, Ty

4.3 Variation of one-dimensional center accessibility classes

In this section, given an integer r > 2, we prove that the set of one-dimensional
center accessibility classes varies continuously in the C! topology with respect to
f € PH,(M). The idea of the proof is similar to Proposition 2.19 from [HS17] where it
is proved that for a fixed partially hyperbolic diffeomorphism, and for a given center
disk, the one-dimensional accessibility classes form a Cl-lamination. To prove this,
we have to see that for a given x € M, the direction T,C(x) varies continuously with
respect to f in the C! topology.

Let us fix an integer r > 2. We denote by .%# C PH. (M) the set of C" dynam-
ically coherent, plaque expansive, partially hyperbolic diffeomorphisms with two-
dimensional center which satisfy the bunching condition in Definition 4.2.5. Let
f € #. By center bunching, for x = s,u, forany x € M,y € Wy, (x), the holon-

omy map Hf . is C! when restricted to the leaf 1o .(x). For any C! neighbourhood
U of f, we will denote by U7 thesetU? :=UNZ.
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In the following, we will need to have uniform control of the differential of the

holonomies H fy N two ways:

* with respect to the points x, y (in the same stable/unstable manifold);

¢ when the diffeomorphism f is replaced with another C" partially hyperbolic dif-
feomorphism in a C!-neighbourhood of f.

This is the content of the next lemma.

Lemma 4.3.1 (See [Oba], and also [Bro; BW]). Let f € .%. Then there exists a C!
neighbourhood U of f such that for x = s,u and U7 = U N F, the family of C' maps
{Hg,x,ylng) }eeuz xe M,yeWs (x) depends continuously in the C' topology with the choices of

the points x,y and of the map ¢ € U7 .

Remark 4.3.2. In fact, Obata [Oba] shows that for x = s, u, the family of holonomy maps
{Hj;,x,y’W}(x)} *EM,yEW (x) depends continuously in the C' topology with the choices of the
points x,y, when f is dynamically coherent and satisfies a strong bunching condition. For our
purpose, we also need to have a uniform control with respect to the diffeomorphism g in a C!-
small neighbourhood of f. It is indeed possible as the estimates in [Oba] are written in terms
of the functions as in (4.1) controlling the growth rates along the different invariant bundles,
which depend continuously on the map g in the C* topology.

The holonomy map associated to some accessibility sequence is obtained by com-
posing the holonomy maps between two consecutive corners (recall (4.3)). By the
previous lemma, we thus have:

Corollary 4.3.3. Let f € .F, and let v = [x1,x2, ..., x| € MF be a f-accessibility sequence
for some integer k > 1. We take a small neighbourhood O C M of x1 and a C* neighbourhood
U of f such that for any x € O and for any g € U, the continuation v*8 = [x,x,%,.. ., x,%]
of 7y starting at x given by Lemma 4.2.7 is well defined.

Then, the family of C' maps {Hg,’yx'g|W§(x)}er, geus depends continuously in the ct

topology with the choices of the point x € O and the map ¢ € U7 .

For any point x € M and any subset ¥ C .7, we let % (x) C ¥ be the subset
of maps f for which the center accessibility class Cf(x) is one-dimensional. For any
f € %(x), and for any sufficiently small 6,& > 0, we let €¢(x,0,¢) C Wi(x) N B(x,¢)
be the set of points in the e-ball B(x, ¢) centered at x which belong to (the image by the
exponential map of) the cone of angle 6 around T,C¢(x), i.e.,

Cr(x,0,¢e) :=exp, {y € TeM : Z(y, TxCy(x)) < 0} N B(x,e). (4.4)
The main result of this section is the following:

Proposition 4.3.4. Take f € % and x € M such that C¢(x) is one-dimensional, i.e., f €
F1(x). Then, for every 6 > 0 there exists a C' neighbourhood U of f such that for every
g € U (x), the angle at x between Cr(x) and Cq(x) satisfies

Z(TyCr(x), TCq(x)) < 6.
Moreover, there exists g > 0 such that for any g € U;” (x) and e € (0, ¢9), it holds

Cq(x,e) C E¢(x,0,¢).
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FIGURE 4.1: Variation of 1-dimensional center accessibility classes.

The idea of the proof consists in showing some “uniform" homogeneity of one-
dimensional center accessibility classes Cg(x) of all maps ¢ € U7, for a sufficiently
small C! neighbourhood U of a fixed f € .Z. Indeed, the tangent spaces at two points
x,y in the same center accessibility class are naturally related through the differential
of the holonomy map along an accessibility sequence connecting x to y. Since every-
thing we are doing here is local, we are able to compare angles and norms of vectors in
different tangent spaces, using trivialization charts as follows. Recall that 4 := dim M,
and that we denote d; := dim Ef, d, := dim E}‘.
Lemma 4.3.5 (see Construction 9.1, [LZ22]). There exist Cz-uniform constants h =
h(f) > 0and C = C(f) > 1 such that for any x € M, there exists a C" volume preserving
map ¢ = ¢y (—h,h)* — M such that ¢(Oga) = x and

L Wi(x, B) C (=5, B2 x {0} H) € p((—F F)2 x {0}+H) C We(x, h);

2 |l¢llcz < G

3. D$(0,IR? x {Ogay+as }), DP(0,{Og2} x R x {Oga }), Dg(0, {Ogasa, } X R%) are
respectively equal to ES ( ), ?(x), <(x);

4. forany y € ¢((—h,h)?), ID(¢p~1),: E¢(y) — R? has determinant in (Eil,f),
where T1°: RY ~ R? x R%*% — R is the canonical projection;

5. for any { > 0, there exists a C'-uniform constant h; = h;(f) € (0,h) so that if
h € (0,hg), then for any y € ¢p((—h,h)?), the norm of IT°(D¢p~1),,: Eji“(y) — R?is
smaller than (.

In the following, we will denote by T1S the map T1 := 10 ¢y 1: M — R2.

Before giving the proof of Proposition 4.3.4, let us state an elementary lemma and
introduce a notation. Let a: [0,1] — M be a C! arc of M and given € > 0, consider
an € tubular neighbourhood .4, ¢ of a. This tubular neighbourhood is diffeomorphic
to [0,1] x [—¢,€]?1. We identify points in .4 with pairs (t,s), where t € [0,1] and
s € [—€,€]?!. We call the boundary {0} x [—¢,e€]?"! the left side of 4, and we call
the boundary {1} x [—¢,€]?" ! its right side. We denote by ¢: .44 — a the projection

& (t,s) — a(t).
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Lemma 4.3.6. With the notation above, given 6 > 0, there exists € > 0 such that if
B:[0,1] — e isa Ct curve in Nye from the left to the right side, then there exists some
(t,s) = B(F) with f € [0, 1] such that the angle between « and p satisfies

Z(a(t), B(F)) < 6.

Proof of Proposition 4.3.4. Let us show the first part. Suppose by contradiction that for
some 17 > 0, there exists a sequence (g,)n>0 € -Z ™ of maps such that g, — f in the C!
topology, with g, € % (x) and

Z(TiCy(x), TxCq, (x)) > 7, foralln > 0. (4.5)

Since C f(x) is one-dimensional, for some integer n > 2, there exists a 2n us-loop
v = [x,x1,...,%2,]) at (f, x) such that x, # x. By shrinking the size of the legs, we
get a one-parameter family {7 (t) = [x, x1(), ..., x21(t)] }s[0,1) of 211 us-loops at (f, x),
where (1) = 7 and (0) is trivial. By Lemma 4.2.7, there exists a C! neighbourhood
U of f such that for any ¢ € U and for any t € [0,1], there exists a one-parameter
family {78 (t) = [x,x75(t), ..., x5 (t)] }1e(o,1) Of 211 us-loops at (g, x) such that *$(0)
is the trivial loop. We also denote ag: t — x,% () € Cg(x).

For each pair (g,t) € U x [0,1] we have the corresponding holonomy map Hg, =

Hgﬂx’g(f)|w§,1oc(x): We toc (%) = We 1 (x). Given some small i > 0, and assuming that

U is sufficiently small, then for every map g € U7, we take a C! chart Prg: (—h,h)? —

2o .(x) as in Lemma 4.3.5; as center leaves vary continuously with respect to g in
the C! topology, the map ¢ — ¢»,, depends continuously on g in the C! topology.
After replacing Hé with ¢ ; ° Hét, o ¢x,g, We can compare angles and norms of vectors
for diffeomorphisms in a neighbourhood of f; by a slight abuse of notation, we will
still denote this map by Hé for simplicity. By Corollary 4.3.3, and by compactness of

[0,1], we deduce that the family of holonomy maps { Hy } (t.g)cl01)xzi# 18 uniformly cL.

tg
In particular, for any § > 0, there exists a C! neighbourhood U; of f such that for

Uy" :=UsN.Z,itholds

sup  ||DHg — DHf| < ¢. (4.6)
(tg)el01]xUZ

Therefore, for every 6 > 0, there exist 69 > 0, po > 0 such that for g € L{(gf and for
any t € [0,1], if y € Wy, (x) is such that d(x,y) < po and if the vectors v,w € R?
satisfy Z(v, w) > 6, then we have

Z(DyHg(v), DyHg(w)) > do. (4.7)

As invariant manifolds depend continuously on the diffeomorphism g € U/ 5? , for
any g > 0, there exists p(ep) > 0 such that for any y € B(x,p(€p)), for any t € [0,1]
and forany g € U 3’? (taking a smaller ¢ if necessary), it holds

d(Hp(x),E(Hy(y))) < €o. (4.8)

Since the center accessibility class C¢(x) is C!, the map Cs(x) 3 z — T:Cy(x) is con-
tinuous, hence, if €9 > 0 is chosen sufficiently small, then for any t € [0,1], ¢ € U, 527,
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and y € B(x,p(ep)), we have

5
(T Cr (0), Tgtaay ) () < 5 (4.9)

Now we argue as in Proposition 2.19 of [HS17]. For 6 = 7 (recall (4.5)) we take &y =
J0(0) > 0asin (4.7) and we set 6 := %0 > 0.

Since g, — f, we can take n large enough so that g, € U f and such that the
arc {ag, x(t)}ic(o1) is @ curve that crosses Az, ¢, from the left to the right side. Set
B = ag, x. Note thatif t € [0,1] is such that B(t) € Az, , ¢, then

Span(f(t)) = DyH} (T<Cq, (x)). (4.10)
Then, by (4.5), (4.7), (4.9), (4.10), we deduce that for any t € [0, 1],

Z(B(), Te(p(r)Cr(x)) = £(DxHg, (TxCg, (x)), Te(aay, x))Cr (%))

> Z(DxHg, (TeCg, (x)), Tr()Cr (%)) = £(Taty () C (%), Teag, () Cr (%))

= Z(DxHg, (T:Cy, (x)), DxH(TeCr(x))) = £(Tap, (x)Cr (%), Teaay, (x))Cr (%))
do

> 50 - E — 5,

which contradicts Lemma 4.3.6.

910 = 0 0) 5

Clz)

L)

FIGURE 4.2: Tangent spaces to C¢(x), resp. Cq, (x) at {(B(t)), resp. B(t).

The proof of the second part of the proposition is similar. We know from the pre-
vious part that given 6 > 0 there is a C! neighbourhood U of f such that for every
g € U (x), it holds Z(T:Cy(x), TsCg(x)) < 6. Now we want to see the variation
of the leaves at uniform (small) scale. Let us then suppose by contradiction that
there are sequences g, — f and x, — x such that x, € Cg,(x, 1)\ €s(x,6,1). By
Lagrange Mean Value Theorem, this implies that there is v, € an( p n) such that
Z(Ty,Cq, (x), TxC¢(x)) > 0. Take &g = 6(6) > 0, o > O sufficiently small, and
n > 0 sufficiently large such that g, € U‘f , Yo € B(x,p(€0)), and such that the
curve Bi: t — Hén (yn) crosses A, e, from the left to the right side. Now we ar-
gue as above, the only difference being that the role of the “big angle” is played by
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Z(Ty,Cq, (x), TxCy(x)) instead of Z(TCq, (x), TxCy(x)): for any t € [0,1], it holds

Z(B1(t), Te(py(1))Cr(x)) = 4(DynHt (Ty, Co, (X)), Te(mae, () Cr (%))
> 4(Dyn (Tyncgn(x)) Cr (%)) = £(That ) Cr (%), T, (9 5 (%))
= Z/(Dy,Hy, (Ty,Cq, (x)), Dfo(Tfo( %)) = £(Tht () Cr (), Teag, (x)) Cr (%))

>5Q—E:5,

which again contradicts Lemma 4.3.6. This concludes the proof. O
As it will be used in the proof, let us recall the following result of [HS17]:

Proposition 4.3.7 (Corollary 2.21, [HS17]). Let C be a center disk of f such that C N\T9 = @.
Then the set F}(C ) of points with 1-dimensional center accessibility classes in C admits a C'
lamination whose leaves are the manifolds C¢(y) NC,y € F}(C ).

4.4 Construction of adapted accessibility loops

Let r > 2, and let us consider a partially hyperbolic diffeomorphism f € PH'(M)
with dim EJCC > 2 that is center bunched, dynamically coherent, and plaque expansive.
In this section, given a point x € M, we build suitable loops starting at x which will
later be used to construct perturbations to break non-open accessibility classes. The
loops which we construct will depend on whether the accessibility class of the point x
is already open or not. In fact, although the accessibility class of x is a homogeneous
set, when working with specific families of loops with a prescribed number of legs of a
certain size, the set of points which we can reach from x moving along these loops may
not exhibit the global structure of the accessibility class (for example, if the class of x
is open, to be able to reach any point in a neighborhood of x, we may need to consider
very long accessibility paths instead of local ones), which leads us to the following
definitions.

Fix a subset .¥ C M. For any ¢ > 0, we let f’?(ﬂ, o) be the set of all points
x € ¥ whose center accessibility class is locally trivial in the following sense: for any
4 us-loop v = [x,x1,x2,x3,x4] at (f,x) such that () < 10720, we have x4 = x. We
also set f?((Y) = Uge(oll)f?(y, o). When . = M, we abbreviate 1:9((5’, (7),1:?(5”)
respectively as f?f (0), fjof.

The next lemma explains how to construct closed us-loops at points x whose center
accessibility class is (locally) one-dimensional; it will be useful later to show that after
a C"-small perturbation, the accessibility class of x can be made open.

Lemma 4.4.1. There exist C>-uniform constants oy = oo(f) > 0, Ko = Ko(f) > 0 such
that for any o € (0,00), for any point xo € Ty \T}(0), if ¢ = ¢x, is the chart given by

Lemma 4.3.5, then for any point x € F} N ¢(B(Ora, 580)), there exists a non-degenerate
closed us-loop yx = [x,x1,...,%9,x] at (f,x) such that

1. l(yy) <0

2. B(z1,Ko0) N {z,22,...,20} = @, where z = ¢~ (x), and z; = ¢~ 1(x;), for each
integeri=2,...,9;

3. the map T'r N ¢(B(Oga, If—ooa)) S X > Yy is continuous.
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Proof. Fix some small o > 0, let xy € F} \ f?( o), and let 0’ € (55, 557). By definition,
there exists a non-degenerate 4 us-loop y = [xo, x1, X2, X3, X4] such that

* x| € W?(Xo),with %/ < dW}l(XO,xﬂ < 0;
® Xy € ste(xl), with %, < dW}(xl,xz) < (T’;

* X3:= H}‘,lex()(xz) € Wi(x2,0') N W (x0,07);

. = Hj . ., (x3) € Wi(x3,0) N Wi (xo, '), with x4 € C¢(x) \ {xo}.

frx3,x0

FIGURE 4.3: Construction of a non-degenerate closed us-loop.

As Cf(xp) is one-dimensional, for the chart ¢ = ¢y, given by Lemma 4.3.5, we
can assume that ¢ (Cs(x0,0)) = (—p1,02) X {Oga-1} = (—p1,p2), with p1, 02 > 0,
xo ~ 0,and x4 ~ p € (0,p2). By varying the size of the legs, we can construct a
continuous family {7 (t) = [xo, x1(t), x2(t), x3(), x4(t)] }te[%p] of non-degenerate 4 us-
loops at (f, xo) such that x4(t) ~ t € [§,p].

Let us take x5 € Wi(xo, 7\ Wi (xo, g) and to € [5,p) close to p. As in Lemma
4.2.7, we let 1 (tg) = [x}, x}, x5, x5, ;] be the natural continuation of «(tp) starting
at x6 in place of xo. Since Wi"(x) = W (x4) = W;“(xo), we can also define {x{} :=

fx o (X1) € Wi (X)) N Wf loe(%0), and we set Y 1= [xo, x{, ¥}, ..., x5]. In particular,
x5 € C¢(x,0), and x5 ~ p’ for some p’ € (0,p). As x5 = x4(p’), we can concatenate

the 4 us-loop ¥(p') at (f, x) with the 6 us-loop 7/ at (f, x5) to produce a closed 10 us-
loop vy, := Y v(0") at (f,x0). By construction, 7y, is non-degenerate, and we have

¢ (’)/xo) <0
Let us check that d(x], x1(p")) > g5 provided that o is taken sufficiently small. By

definition, we have dW;(xo, xp) € [g0o- 200)- Since we work in a o-neighbourhood of
xo, and as the map z — E? (z) is Holder continuous (see [PSW12]), we deduce that
the distance between the unstable bundles at any two points z; € W}‘(x(’), 0), zp €
W} (x0,0) is at most &109, for two C2-uniform constants 6 = 6(f) > 0, & = é(f) > 0.
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Integrating the discrepancy along the unstable arcs from x, to x}] and from xg to x1(p’)
yields
/ / / ~ 0 o 5 r1+0
d(xy,x1(0")) > d(x),x0) — E20° X 0 > G0 20

for some constant ¢; > 0. We conclude that d(x], x1(p")) > gl provided that ¢ is
chosen sufficiently small, i.e., ¢ € (0,0p), for some C?-uniform constant oy = op(f) >
0. Moreover, by construction, B(x1, 1§5) N {0, X2, X3, x4} = @. Similarly, we have
B(x}, 55) 1 {x0, X, x4, ¥y, 32} = @ and B(x1(p'), ) ({0, %2(0'), xs(p'), xa(p')} =
@.

Let us now explain how this construction can be performed for points x near x
whose center accessibility class is also one-dimensional. By Lemma 4.2.7, for any
point x € M which is sufficiently close to xo, and for any ¢ € [§, p], the us-loop 7(t)
admits a natural continuation (7y(t))*f =: ¥*(t) thatis a 4 us-loop at (f, x). Moreover,
the map t — §*(t) is continuous. Similarly, the 6 su-loop 7’ has a natural contin-
uation (7")%f = [x,(x})*/,..., (x5)*f]. The point (x})*/ depends continuously on
x, hence we can choose a continuous map p’(+) such that p’(x9) = p’ and such that
the endpoint of ¥*(o’(x)) coincides with the endpoint (x)*f of (7')*/. In particular,
the continuations ()%, ¥*(o’(x)) depend continuously on x. We conclude that the

closed 10 us-loop 7y := (7" )*/¥*(p'(x)) at (f, x) depends continuously on the point
x in a small neighbourhood of xj. In particular, for x sufficiently close to xo, we have
l(yy) < 0. O

Actually, given a small center disk D, we will need to construct closed us-loops
at points x € D whose center accessibility class is not open, i.e., either zero or one-
dimensional. Let us introduce some notation. Fix some small ¢ > 0. Forany x € I'; =
1"?( U 1"}, we let

o letTs(x):= f‘?((a), and n(x) :=2,if x € f?(a);

e otherwise, let [¢(x) := F} \ f?(a), and n(x) :=5,ifx € F} \ f?[(cr).

Lemma 4.4.2. There exist C*-uniform constant K = K(f) € (0,1), & = &(f) > 0 such that
for any integer ko > 1,% for any o € (0,), and for any point xg € T 7 there exists a continuous
map T'¢(x0) N Wji(xo, Ko) > x = ¥ such that v* = {¥*(t) = [x, xi(t),. --/xfn(t)]}te[o,l}
is a continuous family of 2n us-loops at (f,x), with n := n(xg) € {2,5}, £(v*) < 0, such
that v*(0) is trivial, and for any integer k € {1,...,ko}, 'yx(%) is a non-degenerate closed
us-loop.

Proof. Letko > 1be some integer. Let op = 0p(f) > 0, Ko = Ko(f) > 0be as in Lemma
441, leth = h(f) > 0and ¢ = ¢x,: (=h,h) — M be given by Lemma 4.3.5, set
& = &(f) := min(h,0p) > 0, and take some small o € (0, 7).

We consider a point xg € Ty and set n := n(xp) € {2,5}. We distinguish between
two cases.

(1) If xp € 1:?((7), then there exists a non-degenerate closed 2n us-loop ¥ =
[x0, X1, X2, X3, X0] at (f,xo) with n = 2, £(}) < § and B(z1,Koo) N {Ora, 22,23} = O,
where z; := ¢~ !(x;), for i = 1,2,3. By decreasing continuously the size of the
legs of ¥, we obtain a family of 21 us-loops {(t) = [xo, x1(t), x2(t), x3(), X0] } te[01]
at (f,xo) such that ¢(0) is trivial and (1) = 9. Moreover, by choosing the
map t +— () carefully, we can ensure that for any k € {1,...,ko}, it holds

2We will apply this lemma with kg = 1 or 2 in the following.
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B(zl(,f) %g) ﬂ{ORd, z(E -)z (ko)} = @, where zl(kk) = 49*1((x1-)(%)), fori =
1,2,3, andd(21 k—)) > Oagforallk/e{1,...,k0}\{k}.

For any pomt x € TY ( ) WS (x0) with d(Oga, ¢~ (x)) < If—g(r and for t € [0,1],
let v*(t) = [x, x7(t), x ( ), x3(t), x ]be the closed 21 us-loop whose corners are:

o x{(t):= H;rlxx (t )( Xx) € Wfloc( )ﬂW]CinC(M(t))?
° xé‘(t) = Hjc,xic(t),xZ(t)(xT(t)) € W},loc(ﬁ( ) ﬂWfloc( 2(t));
o X() = HY ) (55(0) € Wi (35(5) N WSS ().

We let 7* be the continuous family v* := {7*(#) };c(o1)- If ¢ is sufficiently small, then
(y*) < o, and for any k € {1,...,ko}, v (kk) is a non—degenerate closed us-loop
at (f,x). Letz§ := ¢~'(x), and z¥(& o) = 1(( N(E )) fori = 1,2,3. Arguing as
in the proof of Lemma 44.1, we have B(z5(£), o) n{z5,23(&£), (&)} = @, and

d(zll(l ,Z‘O ),z ( ,’:; ) > 5k o, forall k' € {1,.. ko} \ {k}, provided that ¢ is sufficiently
small.

(2) Otherwise, we have xy € 1“]1( \ f?((r). By Lemma 4.4.1, after possibly taking Kj
smaller, then for any point x € I'y N chf,loc(XO) such that d(Ogq4, ¢ 1(x)) < If—ga, there
exists a non-degenerate closed 21 us-loop yx = [x, X1,...,X2,-1,x] at (f,x) withn =5,
{(7x) < §, such that the map I'; N ¢(B(Ogs, 1207)) 3 x — 7 is continuous, and such
that B(z}, Koo) N {z8,23,...,25, 1} = @, where z§ := ¢~ 1(x), and z7 := ¢! (x¥), for
each integeri=1,...,2n — 1.

By decreasing continuously the size of the legs of v, keeping x2,,_1(t) € Wf (x)
and letting xp,(t) = H}/xzn_l(t),x(xh,l(t)), we obtain a continuous family ¥ =
{r(t) = [x,x{(t),...,x3,(t)] }1ejoq) of 2n us-loops at (f, x) such that ¥(0) is trivial,
Y*(1) = vy, and £(7*) < 0.

Moreover, by choosing carefully the map t — *(t), we can ensure that for any
integer k € {1,...,ko}, 7"(%) is a non-degenerate closed us-loop at (f,x). Indeed,
as in the proof of Lemma 4.4.1, we consider a one-parameter family (¥ (f));c(o1] of 4
us-loops at (f, x) such that 7*(0) is the trivial loop and such that the first corners of
¥*(t) and ¥*(#') are distinct for t # ' € [0,1]. We can also perform the same con-
struction as in Lemma 4.4.1 in order to obtain a closed 10-us loop y*(t) at the times
t =1, kokol,koko ,...,%, and such that B(zi‘( ), KO(T) N {ZO’ZZ(kO) ,2’2‘”71(%)} =

@, where we let zx(k) = gb*l((x?‘)(%)), for i = 1,...,2n — 1, and such that

1

A(E5(E),21(E)) > Ko forall K € 1, Ko} \ (k) -

We will also need to construct certain us/su-paths for all points in a small center
disk. Take f € .# and let ¢ > 0 be small. We assume that for some point xo € M, and
some constant K > 0, it holds x ¢ f?:(a), for all x € W¢(xo, Ko). Fix 6 > 0 small. By

Proposition 4.3.7 and Proposition 4.3.4, there exists a C! neighbourhood U of f such
that for any ¢ € 7 and for any x € g Wi (xo, Ko ), it holds

I1.C,(x,100) C & (4.11)

3For instance, we choose the map t + xi(t) € W}‘loc(xo) in such a way that d(z1(t),z1(t')) =
d(Oga,z1) - [t —F'], forall t, ' € [0,1].
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where ¢ C RR? is the cone of angle 6 centered at O, and I15: M — R? is the map
in Lemma 4.3.5 for f. In the following, we let ¢’ := (R*\ 47) U {OR: }, we denote by
€,", €, the two components of the set ¢ \ {Og:}, and let €7 := €, U {0}, ¢~ :=
¢, U{Og2}. Assume that €, resp. ¢~ is the top, resp. bottom component in Figure
4.4.

Lemma 4.4.3. Take f, xo, 0, 6, U as above, and let €, €, and €~ as defined above. After
possibly taking K smaller, there exist continuous maps W;(xo,K(T) > x = 9{,7; such

that for any x € Wi(xo,Ko), vi = [x,a3,...,wi], resp. 73 = [x,83,...,w3], is a non-
degenerate closed 10 us-loop, resp. 10 su-loop at (f, x) such that £(7y}), £(y3) < o, such that
the endpoints wi = Hyx(x), w3 = Hqy(x) satisfy

(Iwi, I5wy) € (€T x€7)U (€™ x€T),
and such that for x = 1,2, for some C?-uniform constant K, > 0, we have
B(a?,Ri0) N {z} = @, for any corner z # o of 7. (4.12)

Proof. Asxg € I';\T}(0), there exists a non-degenerate 4 us-loop v = [xo, x1, X2, X3, 4]
with £(y) < o and x4 € Cf(x0) \ {x0}. By shrinking the size of the legs, we construct
a continuous family {y(t) = [xo, x1(t), x2(t), x3(), X4(t)] }sc[o,1) of non-degenerate 4
us-loops at (f, xp) such that ¢(0) is trivial and (1) = 7.

Assuming that K > 0 is sufficiently small, the family {y(¢) };c[o,1] extends to a con-
tinuous map W}C((xo,Ka) 5 x = 9" = {7*(t) }+¢[01] such that for each x € W}(xo, Ko),
and for each t € [0,1], v*(t) = [x, x{(¢), x5(¢), x3(t), x;(t)] is a 4 us-loop at (f, x), and
7*(0) is trivial. Moreover, up to reparametrization, there exists ¢ > 0 such that for
each x € W}(xo, Ko), it holds

(4.13)
denoting by 7 the connected component of % \ {Og: } containing Il (x4). Moreover,
after possibly changing the parametrization by ¢, we can also assume that for all x €
W;(xo, Ko), we have

1 1
uw(x¥ > -
dyy (x§(), %) = 750, forallt e [4,1] (4.14)

Now, as in Lemma 4.4.1, we take x;, € Wj}(xo) such that ﬁa < dW;(xo, xg) < ﬁa.
Forany t € [0,1],let () = [yo(t),...,ya(t)] be the natural continuation of y(t) start-
ing at yo(t) = xg in place of xo. As W (y4(t)) = Wi (x4) = Wi"(x0), we may also de-
fine {ys(£)} 1= Wiy (ya(£)) OV (x0), and set 7, (6) 1= [¥o,yo(t), -, ya(t), ys(1)].
In the same way, for each point x € W;(xo, Ko), welet vi(t) = [x,y5(t),...,yi(t)] be
the continuation of . (t) starting at x given by Lemma 4.2.7.

For each (x,t) € Wi (xo, Ko) x [0,1], we denote by 7*(t) the continuation of F(%)
starting at xj(#) as in Lemma 4.2.7, and by concatenation, we obtain the 10 us-loop
Yi(t) == ()T () = [x,a{(t),...,wi(t)]. If o is sufficiently small, x{, is very close to
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xo, and by (4.13), for any x € W;(xo, Ko), it holds

m(wf(3)) 260, i) €.

Since the set {wf(t)}c(o1) of endpoints is connected, its image under I1§ has to
cross the cone ¥ = ¥T U% . We then let t* € [0,1] be the smallest t € [0,1]
such that I (wy(t)) € 47; we also denote by 7{ = [x,a],...,w]] the 10 us-loop
Y(H) = () ¥ (t), with af := af (#) and wy = w{(t*). In particular, we have
IT{(wy) € €; without loss of generality, we assume that I (w{) € €.

Y A !
T (af (1) s : ! &
____________ Vol !
S b mer)
L (W} (1)) )
T -
¢ T Ope 85 ]
;,'
%)*

FIGURE 4.4: Construction of the loop 7.

For each s € [0,1], we also denote by 75(s) = [x,a5(s),..., w3 (s)] the 10 su-loop
obtained by taking the continuation of ] (s) starting at x in place of wy (s). In this case,
arguing as above, we see that for certain values s € [0,1], it holds I (w5 (s)) € €~;
we then let s* € [0, 1] be the largest s € [0, 1] with that property, and we define the 10
su-loop 73 := 73 (s¥), with 95 = [x,a3,..., W3], and TT{(w}) € €.

Besides, (4.12) follows from arguments similar to those in Lemma 4.4.1, using
(4.14), and since x|, was chosen such that dW} (x0,x() > 2%0. O

4.5 A submersion from the space of perturbations to the phase
space

As above, we consider a partially hyperbolic diffeomorphism f € PH' (M), r > 2,
with dim E > 2 that is center bunched, dynamically coherent, and plaque expansive.
In Subsection 4.5.1, we recall some general results from [LZ22] about random pertur-
bations and the changes those perturbations induce on certain holonomy maps. In
Subsection 4.5.2, we construct a family of perturbations and show how the results of
the previous part can be applied to the particular setting we are interested in.

4.5.1 Random perturbations

As in [LZ22], we will use the following suspension construction to show that certain
holonomy maps are differentiable with respect to the perturbation parameter. The
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idea is to incorporate the perturbation parameter into a higher dimensional partially
hyperbolic diffeomorphism, which, under some assumptions, is still dynamically co-
herent and center bunched.

Definition 4.5.1 (C" deformation). Let I > 1 be some integer, and let U be an open
neighbourhood of {0} in R1. A C" map f: U x M — M satisfying f(0,") = f and
f(b,-) € PH'(M) forall b € U is called a C" deformation at f with [-parameters.
We associate with f the suspension map T(f) defined by

T=T(f):UxM—=UxM, (bx)— (bf(bx)), (4.15)

and we denote f, := f(b,-). If in addition f, € PH"(M,Vol) for all b € U, then f is said to
be volume preserving.

Definition 4.5.2 (Infinitesimal C" deformation). Let I > 1 be an integer. A C" map
V:R! x M — TM is called an infinitesimal C" deformation with [-parameters if

1. foreach B € R!, V(B,-) is a C" vector field on M;
2. foreach x € M, B+~ V(B, x) is a linear map from R! to T, M.

Remark 4.5.3. Given I > 1, an infinitesimal C" deformation V with I-parameters, and some
small € > 0, we associate with V a C" deformation at f with [-parameters, denoted by f, which
is defined by A

f(b,x) == Fyp,) (L f(x)), V(bx)eUxM,

where U = B(0,e) C R! and for any B € R/, Fv,): R x M — M denotes the C"

flow generated by the vector field V(B,-). In this case, we say that f is generated by V.
If in addition V (B, -) is divergence-free for each B € R, then f is volume preserving as in
Definition 4.5.1, and we say that V is volume preserving.

Lemma 4.5.4 (Lemma 4.11 in [LZ22]). Let I > 1 be some integer, let U C R! be an open
neighbourhood of {0}, and let f: U x M — M be a C" deformation at f with I-parameters. If
U is chosen sufficiently small, then the map T = T(f) is a C" dynamically coherent partially
hyperbolic system for some T-invariant splitting

Ty (U X M) ~ TyU & TyM = E}(b,x) ® E7(b, x) © E7(b, x),
forall (b,x) € U x M. Moreover, for any (b, x) € U x M, we have
E7(b,x) = {0} & Ef, (x), Wr(b,x) = {b} x Wy (x),  forx=u,s,
and
E7(b, x) = Graph(vs(x,-)) @ Ef, (x), (4.16)

for a unique linear map vy(x, -): Tyl — E?’;(x) = Ej}b(x) @ E;b(x).

If in addition f is center bunched, then, after reducing the size of U, u/s-holonomy maps
between local center leaves of T (within distance 1) are C' when restricted to some cu / cs-leaf,
with uniformly continuous, uniformly bounded derivatives.

Let I > 1 be some integer, let i/ C R! be some small neighbourhood of {0} in R/,
let f: U x M — M be a C! deformation at f with [-parameters, and let T = T(f).

Definition 4.5.5 (Lift of a us/su-loop). For any point x € M, for any integer n > 2, and
for any 2n us/su-loop vy = [x, X1, ..., X2 at (f,x), we define the lift of 7y as

4 :=1[(0,x),(0,x1),...,(0,x24)].
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In particular, by Lemma 4.5.4, 4 is a 2n us/su-loop at (T, (0, x)).

Remark 4.5.6. In the following, we will mostly consider us-loops; for that reason, we will
state the technical lemmas needed for the proof only for us-loops, but similar results hold for
su-loops as well.

Similarly to Lemma 4.2.7, given a point x € M and a us-loop at (f,x), we can
define a natural continuation for the C! deformation f with I-parameters we consider:

Definition 4.5.7. Let x € M, let n > 2, we say that v+ = {y(t) =
[, x1(), - - -, X20(t)] }1e[o,1] i @ continuous family of 2n us-loops at (f, x) if for each t € [0,1],
v(t) is a 2n us-loop, and for eachi =1, ...,2n, the map t — x;(t) is continuous. Given such
a family, for any t € [0,1], we let §(t) be the lift of y(t) as above. Then by continuity,
there exists a C2-uniform constant 6 = §(T,y) > 0 such that B(0,6) C U, and for any
(b,y,t) € W5((0,x),8) x [0,1], for some constant i = h(T,y) > 0, the following intersec-
tions exist and are unique:

o {0,277 (1)} = Wi ((0,9), 1) W ((0,x1(t)), h);
{(b, 27 (1)} := Wi oo (b, 277 (8)), 1) W ((0,2x2(8)), ..
A, 20 (D)} = Wi (b, 5575 (5), ) WL ((0,), B);

{0, 252(5)} = Wi oo (b, 8371 (£),h) VW5, ((0,), ).

We thus have a continuous family of 2n us-loops at ( fy, y), denoted by {5 (t) }1e01):

V() =y, 22V (8),..., 22 (1), Vte[o1].

n

We define the map
~ WE((0,x),8) x [0,1] — WE(0,x),
=9(T,x,7): T T A 4.17
i w(XV){ (byt) = Hrzoby) = 080w). &
Forany (b,y) € W5((0,x),5), we thus get a map = (T, x,):
p(by,-) = mup(b,y, )2 [0,1] — W, (), (4.18)

where 1tp: U X M — M denotes the canonical projection.

Definition 4.5.8. Let I > 1 be some integer. For any infinitesimal C" deformation with
I-parameters V: Rl x M — TM, we define

supp(V) := {x € M | 3B € R such that V(B, x) # 0}.

Given an open neighbourhood U of {0} in R, and a C" deformation at f with I-parameters
f:U x M — M, we define

supp(f) := {x € M | 3b € U such that f(b,x) # f(x)}.

We introduce the following definitions in order to control return times of a map to
the support of a deformation; they are motivated by the fact that for very large return
times, it is possible to achieve a good control on how certain holonomies change after
perturbation.
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Definition 4.5.9. For any subsets A,B C M, and for « € {4, —}, we define

R(f,A,B):=inf{n > 0| f"(A)NB#Qor f "(A)NB # Q};
R.(f,A,B):=inf{n > 1| f*"(A) N B # O}.

We abbreviate R(f, A, A), R«(f, A, A) respectively as R(f, A), R«(f, A). Similarly, for a ct
deformation f: U X M — M of f, and for x € {+, —}, we set

R(f,A,B) :==inf{n >0|3becUs.t f(b,-)"(A)NB #Qor f(b,-)"(A)NB # @},
R.(f,A,B) :==inf{n >1|3becUs.t f(b,-)"(A)NB # D},

and we abbreviate R(f, AA), R*(f, A, A) respectively as R(f, A), R*(f, A).

In the following, most of the time*, we restrict ourselves to the case of deformations
with 2-parameters, i.e., we take a small neighbourhood & C R? of {02}, we let fux
M — M be a C! deformation at f with 2-parameters generated by an infinitesimal C!
deformation with 2-parameters V: R?2 x M — TM, and we set T = T(f).

Definition 4.5.10 (Adapted deformation). Let x € M, let n > 2 be some integer, and let
v =[x,x1,...,%2] be a2n us-loop or su-loop at (f,x) with £(y) < ¢ for some small o > 0.
Given two constants C, Ry > 0, we say that an infinitesimal C" deformation V is adapted to

(,)//0'/ C/RO) lf
1. 0|0V |m + 19V m < C;

2. R(f,{z},supp(V)) > Ro forz = x,x2,..., Xon;
3. Re(f,{x1},supp(V)) > Ry.

Proposition 4.5.11 (see Proposition 5.6, [LZ22]). For any C,x > 0, there exist C*-uniform
constants Ry = Ro(f,C,x) > 0and ko = xo(f,C,«) > 0 such that the following is true.

Let x € M, let n > 2 be some integer, and let y = [x, X1, ..., X2,4] be a 2n us-loop at (f, x)
of length o > 0 such that there exists an infinitesimal C" deformation V that is adapted to
(7,0,C, Ro). In the following, we denote by B = (By, B) an element of Told ~ R?. Assume
that forall z € {x,x2, ..., X2, }, we have

Dg(m.V(B,z)) =0, (4.19)
while
|det (B — Dg(n.V(B,x1)))| > «, (4.20)

where rt.: TM — E% denotes the canonical projection.
Then, the map

-. Tou — E;(XQn),

o B +— #A.DHr4(B+ vo(x, B)),
satisfies

det = 2 Ko,

where 7 is the lift of y for T, and 7tc: EF.(0, x2n) = Graph(vo(x2n, -)) @ E§(x2n) — Ef(x20)
denotes the canonical projection.

“Except in Subsection 4.7.2 where deformations with 4-parameters are needed.
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4.5.2 Construction of C" deformations at f
In the following, we assume that dim EJC[ = 2. Recall that TT¢: R? ~ R? x R%tds — R2
is the canonical projection, and that IS is the map IS := T o ¢y 1: M — R2.

Lemma 4.5.12. Let K = K(f) € (0,1), & = &(f) > 0 be as in Lemma 4.4.2. Then,
for any Ry > O, for any integer ko > 1, for any o € (0,5), and for any point xo € T'f
satisfying Ry (f, B(xo,100)) > Ry,’ there exists an infinitesimal C" deformation at f with
2ko-parameters V: R%*0 x M — TM such that supp(V) C B(xo,100),° and there ex-
ists a continuous map T¢(xq) N W;(XO,KO') > x — 9" such that v* = {y*(t) =
[, x}(t), ..., x5, (t)] }1e (o) is @ continuous family of 2n us-loops at (f, x), withn := n(xp) €
{2,5}, (v*) < o, such that y*(0) is trivial, and for any integer k € {1, ..., ko}, we have:

1. 'yx(k%) is a non-degenerate closed us-loop;
2. V is adapted to (yx(%),a, C, Ry), for some C2-uniform constant C = C(f, ko) > 0;
3. forany z € {x, xg(%), .. .,xé‘n_l(k%)}, it holds
Dg(mt.V(B,z)) =0,
and there exists a 2-dimensional vector space E C R such that

det (E; > B DB(nCV(B,xi‘(:O))))‘ > %,

for some C2-uniform constant & = %(f) > 0, where 7t.: TM — E% denotes the canon-
ical projection.

Wi(o)

FIGURE 4.5: Localization of the perturbations.

Actually, we will apply Lemma 4.5.12 with kg = 1 or 2 in the following. The
construction in the proof of Lemma 4.5.12 is adapted from [LZ22].

5Recall Definition 4.5.8 and Definition 4.5.9.
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Proof of Lemma 4.5.12. Let Ry > 0, and let kg > 1 be some integer. Let K = K(f) €
(0,1),7 = o(f) > 0be as in Lemma 4.4.2, and take some small o € (0,7).

We consider a point xg € I's such that R+ (f, B(xo,100)) > Ro, and setn := n(xo) €
{2,5}. Weleth = h(f) > 0and ¢ = ¢y,: (—h,h)? — M be given by Lemma 4.3.5.

For each x € T'¢(x0) N Wji(xo, Ko) welet v* = {7*(t) = [x,x{(t), .-, %3, ()] }1epo
be the continuous family of 2 us-loops at (f, x) constructed in Lemma 4.4.2.

For each integer k € {1,...,ko}, we let z; = (z{,z},2}) = ZTO(%) € (—h,h)4 =
(—h,h)? x (—h,h)% x (—h,h)%. We define a collection of functions and vector fields
as follows.

Foreach 1 < j < 2, let Uj: (—3,%)% x (=4, 1)%™ x (—3,5)% — R be a com-
pactly supported c* dlvergence -free vector field such that Uj; restricted to (— 5, 15)% X
(—15, 15)% x (=1, 1)% is equal to the constant vector ej, where e1 .= (1,0,0,...,0) €
R? and e = (0,1,0,...,0) € R?. Moreover, we can assume that U]- satisﬁes
|Ujllcr < Cs for some constant C. = C.(d) > 0.

For any x, € R2, x, € R%, x;, € R%, for any A¢, Ay, As > 0, and for any z, €
R?,z, € R%,z, € R%, we set:

Aeurds (Zc/ Zy, Zs) = (xc + AcZe, Xy + AuZy, Xs + /\sZs)-

Xc,Xu,Xs

Foranyj € {1,2},any x, € R%, we let U]‘-fxu : (—h,h)* — R be the vector field

KU’,%U,KU

-1
uzxu = u] (AO]RZIXUIOJRdS) ’

The support of U7, is contained in

(= 505e) (et (= ggrgg®) < (= 5050)

Moreover, for any zc € (— E)U, %0)2, for any z, € x, + (_%”koal %U)du and for any
Zs € ( 15<‘7 (7) , it holds

u](‘ixl, (Zc/Zu, Zs) =e.
We set

Vi, = Do(Uf,,).

The vector field V7, is divergence-free and satisfies:
[0V v + 1V, I < Co, 4.21)

for some C2-uniform constant Cy = Cy (f, ko) > 0.
Let V: R%o x M — TM be the infinitesimal C" deformation defined as

V(B, ) = (BMV{TZ? + lelvgzﬁ{) + (BLZVKZE + B2,2V20/—Z§1) + -4
+ (Bl,ko—lvfz;:o_l + Bz,ko_lvgzzo_l) + (Bu, V{fz,k,o + By, Vz‘fzi,o), (4.22)

for all B = Zk 1 Bixttok—1 + Bojug € R%0, where (u ) ; 01 denotes the canonical basis
of R%%o,
By definition, the map V is linear in B. Moreover, by (4.21), (4.22), it holds

7100V p + 10V || < C, (4.23)
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with C := 2koCo > 0.

As ((y*) < 0, we have supp(V) C B(xo,100), and for any integer k € {1,...,ko},
it holds xg(%),xg‘(%),...,xé‘n_l(%) € B(xo,100), for all x € T¢(xp) N Wj?(xo,K(f).
Recall that by assumption, we have

R=(f, B(x0,100)) > Ro. (4.24)

By (4.23) and (4.24), we conclude that V is adapted to (y* (%), o,C,Ro).
By construction, for any z € {x,x} (%), R (% }, it holds

Dgp(7.V(B,z)) =0,

and .
det (Ec > B Da(meV (B,21(:)))) | > &,
0
for some C2-uniform constant & = #(f) > 0, where E; := Span(uy_1,uy) C R,
and 7.: TM — Eji denotes the canonical projection. O

Corollary 4.5.13. For any integers ko > 1,r > 2, for any 6 > 0, there exist C2-uniform con-
stants Ky = Ko(f) € (0,1), 39 = 60(f, ko) > 0, Ry = Ro(f, ko) > 0and 5y = 5o(f,1,6) >
0 such that for any o € (0,0), for any point xo € T satisfying R+ (f, B(xo,1007)) > Ro,
there exists a C" deformation f : B(Ogaxy, d0) X M — M at f with 2ko-parameters generated
by an infinitesimal C" deformation V: R%*0 x M — TM, such that supp(f) C B(xp,100),°
and there exists a continuous map T ¢(xo) N chf(xo, Koo) > x — 7%, such that

Looy* = {y"(t) = [x,x{(t),..., %3, (t)] }1e(0) 15 a continuous family of 2n us-loops at
(f,x) as in Lemma 4.5.12, with n := n(xy) € {2,5}, {(v*) < o, such that v*(0) is
trivial, and for any integer k € {1,...,ko}, v* (%) is a non-degenerate closed us-loop;

2. let T = T(f), let ¢y := ¢(T,x,7") be the map defined in (4.18), let TIS: M —
IR? be the map given by Lemma 4.3.5, and for k € {1,...,ko}, let ®X): (b,x)
IS (b, x, k%) ; then, the map

o, { B(Ogens o) x (T(x0) N Wi (w0, o)) = R0

(b,x) (q)(k)(b’x))kzl,...,ko

is continuous; besides, for any x € T¢(xg) N W}(xo, Koo), ®(-,x) is C!, and

‘det Db‘b:() (q>(l X)) ‘ > kO/
for some C?-uniform constant &y = %(f, ko) > 0;
3. dor(f, fp) < 0, forall b € B(Ogaxy, b0), where f, := f(b,-) € PH'(M).

Proof. Fix two integers kg > 1and r > 2. Let Ky := K(f) > 0,5 := &(f) > 0,C =
C(f, ko) > 0and & = &(f) > 0 be the constants given by Lemma 4.5.12, and let Ry :=
Ro(f, C, ®) > 0, k0 := xo(f, C, &) > 0 be the constants given by Proposition 4.5.11.
Giveno € (0,7), we consider a point xo € I's such that R+ (f, B(xo, 100), B(xo,100)) >
R, and set n := n(xo) € {2,5}.

6Recall Definition 4.5.8.
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We let V: R%0 x M — TM be the infinitesimal C" deformation at f with 2ko-
parameters given by Lemma 4.5.12. Take a point x € T¢(xp) N W;(xo,lzoo) and let
7= {r*(t) = [x,x{(t),...,x3,(t)] }1c01) be the continuous family of 2n us-loops at
(f,x) given by Lemma 4.5.12. Recall that the map x — 7~ is continuous. Let f be
the C" deformation at f with 2-parameters generated by V, and let T = T(f). By the
properties of V in Lemma 4.5.12, we have supp(f) C B(xo, 100).

For any t € [0,1], let §°(t) be the lift of v*(¢) for T, and let us denote by
fic: EZ(0,x) = Graph(vo(x,-)) ® E}(x) — E;(x) the canonical projection. Fix an inte-

gerk e {1,...,ko}. Welet Egk) be the map defined as

o [ RR~E — Ej(x),
x B+ ADHyp . (B +w(x,B)).

ko

[x]

By points (2)-(3) of Lemma 4.5.12, and by Proposition 4.5.11, it holds
det 2| > xo. (4.25)

Let ¢, := (T, x,9*) and ¢, := Py be the maps defined in (4.17)-(4.18), and let
I1$: M — R? be the map given by Lemma 4.3.5. Let § > 0 be such that § < §(T, %)
forall x € T¢(xp) N W}(xo, Koo), with 6(T,v*) > 0 as in Definition 4.5.7. Let

o . WE((0,%0),6) — R?, )
(b,x) — HSyx(b, x, 1)

Asx — y¥is continuous, the maps x — ¢, and @) are continuous as well.
For each x € T'¢(xp) N W}(xo, Koo), and for each B € R? ~ Ej, we have

DY (0, B+ vo(x, B)) = DILtmDHy g ) (B + vo(x, B))
0

— DIT¢ [ﬁcDme(%) (B+vo(x, B)) + vo(x, B)}, (4.26)

where @gck) = ®®(.,x), and 7mp: R?2 x M — M denotes the projection onto the sec-
ond coordinate.

By Lemma 4.3.5 there exists a constant D > 0 such that for { > 0 small, if ¢ €
(0,hz(f)), then for any x € T¢(xo) N Wi (xo, Koo) and for any B € R?, it holds

IDTT;vo(x, B) || < DZ||B]|. (4.27)

If £ > 0 is sufficiently small (depending only on o), then for any ¢ € (0,5), with
0o := min(, hz(f)) > 0, and for any x € T¢(xg) N We(xo, Ko0), by (4.25)-(4.26)-(4.27),
we deduce that

1
|det Dy|p—o (@1 |5,)| > 5 K0,

k
which concludes the proof of point (2), for & := (%K()) S}

Finally, point (3) is a direct observation. O



Chapter 4. Stable accessibility 118

4.6 Local accessibility

Let us fix an integer r > 2, and let us consider f € .#, where as before, & C PH', (M)
is the set of C" dynamically coherent, plaque expansive, partially hyperbolic diffeo-
morphisms with two-dimensional center, which satisfy some strong bunching condi-
tion as in Definition 4.2.5.

In this section, we show that it is possible to make the accessibility class of any non-
periodic point open by a C"-small perturbation. First, we explain how to break trivial
accessibility classes, and then, we show how to open one-dimensional accessibility
classes, based on some transversality arguments.

4.6.1 Breaking trivial accessibility classes

Proposition 4.6.1. For any non-periodic point xo € M, for any 6 > 0, and for any o > 0,
there exists a partially hyperbolic diffeomorphism ¢ € F such that dcr(f,g) < 6 and such
that xo & f“g(a) ; in particular, the center accessibility class Cy(xo) is at least one-dimensional.

Proof. Take a non-periodic point xop € M. Fix some small § > 0, let kg := 1, and let
dy = 0o(f,1) >0, Rg = Ro(f,1) > 0and &y = by(f,r,6) > 0 be the constants given by
Corollary 4.5.13. As xg is non-periodic, then for o € (0, 0p) sufficiently small, it holds
R4 (f, B(xp,100)) > Ry. Assume that xy € 1:?(((7) (otherwise there is nothing to prove).

By Corollary 4.5.13, for n := n(xg) = 2, there exist a continuous family

v =7 ={7(t) = [xo, x1(t), x2(t), x3(t), X0] }1c[o1) (4.28)

of 4 us-loops at (f, xp) such that ¢(7y) < o, v(0) is trivial, (1) is a non-degenerate

closed 4 us-loop, a C" deformation f: B(Ogz2,00) x M — M at f with 2-parameters, so
that supp(f) C B(xo,100), and such that the map

@y, B(Oge,60) 2 b+ T54(b, x0,1) (4.29)

is C! and satisfies
|det Dy |p—o®x,| > o, (4.30)

for some C2-uniform constant &y = &% (f,1) > 0. Recall that in (4.29), TIS: M — R? is
the map defined in Lemma 4.3.5, T = T(f), and ¢ = (T, x0, ¥).

Moreover, by Definition 4.5.7, for all b € B(Og2,dp) and all ¢+ € [0,1], we have
P(b,xo,t) € Wjib(xo) N Accy, (x0) = Cy, (x0), where f}, := f(b,-). Besides, (4.30) implies
that the map ¢ (-, xo, 1) is a submersion in a neighbourhood of O, hence

(-, x0,1) " {x0} N B(Ogz, 61) = {Or, },

for some sufficiently small 6; € (0,4p). Fix b € B(Ogz,61) \ {Og2} such that ¢ := f;, €
ZF;wehave (b, xg,1) € Cg(xp) \ {x0}, and [0,1] > t = 9(b, xo,t) € C¢(xp) is a non-
trivial g-path connecting xg to ¢ (b, x, 1) # xo within C¢(xp). In particular, xo ¢ fg(a) ;
in fact, by Theorem 4.2.10, Cg(xo) is at least one-dimensional. Moreover, by point (3)
of Corollary 4.5.13, we have dcr (f, g) < J, which concludes the proof. O

4.6.2 Opening one-dimensional accessibility classes

The following result shows that local accessibility can be achieved near non-periodic
points after a C"-small perturbation.
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Proposition 4.6.2. For any non-periodic point xo € M, and for any 6 > 0, there exists
a partially hyperbolic diffeomorphism ¢ € F such that dcr(f,g) < 0 and such that the
accessibility class Accg(xo) is open.

Proof. Letus consider a non-periodic point xg € M. Letkg := 1, and let oy = dy(f,1) >
0, Ro = Ro(f,1) > 0 be the constants given by Corollary 4.5.13. As xg is non-periodic,
we can fix o € (0, ) such that R+ (f, B(xo,100)) > Ro.

Assume by contradiction that Accs(xo) is stably not open in the C" topology. In
other words, by Theorem 4.2.10, for some é; > 0, and for every diffeomorphism g €
PH,(M) such that dcr(f,g) < 01, we have xg € I'q. Fix some small 6 € (0,01). By
Proposition 4.6.1, there exists a C" diffeomorphism fy € .F with dc(f, fo) < § such
that xo & f?o (%)- In particular, by our choice of 6, we have x( € F}O \ f?[o (£)- Besides,
there exists d, € (0,3) such that for any diffeomorphism g satisfying dcr (fo, §) < 62,
we have ¢ € .Z, and xg € Fé \ fg(u). In particular, with the notations in Section 4.3,
U7 = U (x), where U is a &-neighbourhood of fy in the C" topology.

By Corollary 4.5.13, for n := n(xg) = 5, there exist a continuous family

v =" = {v(t) = [xo,x1(t), x2(t), ..., x10(t)] }1efo ) (4.31)

of 10 us-loops at (fo, xo) such that £(y) < o, v(0) is trivial, (1) is a non-degenerate
closed 10 us-loop, a C" deformation f: B(Ogz,00) X M — M at fy with 2-parameters,
with 8o = 6o(fo,7,6) > 0, so that for the map I, : M — R? defined in Lemma 4.3.5,

T = T(f), and v = ¢(T, x0,7v"), the map ®,,: B(Og,0) > b I15 (b, x0,1) is C,
and for some constant &) = %o(f,1) > 0, it holds

|det Db|b:0q)xo| > K. (4.32)

Fix some small & > 0. It follows from the previous discussion and Proposition
4.3.4 that for &y € (0,00), &g > 0 sufficiently small, then for all b € B(Op2,dp), the
diffeomorphism f, := f(b, -) satisfies f, € U (xo), and

Cfb(xO,Eo) C %fo(xo,O,eo), (4.33)
where €7, (x0,6,¢0) is as in (4.4). Let us set
CK(XQ, 9) = H;O (Cffo (XO, 9, 80)) .

By Definition 4.5.7, and since (0, xo,1) = xo,” for 51 € (0,6) sufficiently small,
we have (b, xo,1) € Cy, (x0,€0), for all b € B(ORe,41), and by (4.33), we deduce that

Dy, (B(Oge,61)) C 15 (Cy, (x0,€0)) C €(x0,6).

On the one hand, by the definition of the cone %(xo,0), we have R?\
@, (B(Og2, 1)) D Ap for some straight line A through the origin Og.. But on the other
hand, it follows from (4.32) that ®y,(B(0g:,01)) contains an open neighbourhood of
Oge, a contradiction. By Theorem 4.2.10, we conclude that for some b € B(Og, &),
Accy, (xo) is open; moreover, by construction, g := fj, € F satisfies

der(f,8) < dcr(f, fo) +dcr(fo, fo) < g+g =9,

7Recall that (1) is a closed 10 us-loop at ( fo, xp)-
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which concludes the proof. ]

4.7 (C’-density of accessibility

In this section, we conclude the proof of our main results stated in Section 4.1. As
above, we fix an integer » > 2, and let f € .#, where & C PH. (M) is the set of C”
dynamically coherent, plaque expansive, partially hyperbolic diffeomorphisms with
two-dimensional center, which satisfy some strong bunching condition as in Defini-
tion 4.2.5. Our goal is to conclude the proof of our main result (Theorem E):

Proposition 4.7.1. For any 6 > 0, there exists a partially hyperbolic diffeomorphism g € .7
with der(f,g) < 6 such that g is stably accessible.

4.7.1 Spanning c-families

For the proof of Proposition 4.7.1, we combine ideas from the last section with some
global argument; this is done by means of spanning families of center-disks; this no-
tion was already present in the work of Dolgopyat-Wilkinson [DW03] and is also used
in [LZ22].

Definition 4.7.2 (c-disk). For each x € Mand o > 0,C = WJE(x, 0) is called the center

disk of f (or c-disk of f for short) centered at x with radius o. We set o(C) := o, and for any
6 € (0,1], we also define 6C := W;(x, 00).

Definition 4.7.3. A collection of disjoint center disks D = {Cy, ...,Cj} is called a family of
center disks for f (or c-family for f for short). In addition, we set

(D)= inf (e(C)}, 7(D) = sup(e(C)).

Given 0 € (0,1) and k > 1, we say that D is a (6, k)-spanning c-family for f if

M= J | Accs(x,k),

CeD xebC

where Accy(x,k) denotes the set of all points y € M which can be connected to x by a f-
accessibility sequence with at most k legs of length less than one.

Given any subset C C M, and o > 0, we set (C,0) := {x € M|d(x,C) < c}. Given
o > 0and a c-family D = {Cy,...,C;} for f, we set

We say that D is o-sparse if for any two distinct C,C' € D, (C,0), (C',0) are disjoint.
Any c-family for f is o-sparse for some o > 0.

Proposition 4.7.4 (Corollary 6.2, [L.Z22]). Assume that f € PH' (M) is dynamically co-
herent, plaque expansive, and that the fixed points of f* are isolated for all k > 1. Then for
every R > 1, there exist C'-uniform constants N = N(f,R) > 0,p = p(f,R) € (0,?71)
and ¢ = o(f,R) > 0 such that the following is true. For all diffeomorphism g sufficiently
Cl-close to f, there exists a (%, 4)-spanning c-family Dy for g with at most N elements such
that
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1. 5 <r(Dg) <HDg) <R ;

2. ’Dg is O-sparse;
3. R+(g (Dg,ﬁ)) > R.

Moreover, the map ¢ — Dy can be chosen to be continuous.

4.7.2 Density of diffeomorphisms with no trivial accessibility class (proof
of Theorem F)

The following result strengthens Proposition 4.6.1.

Proposition 4.7.5. There exist C>-uniform constants &1 = &1 (f) > 0, K1 = K1 (f) € (0,1)
and Ry = Ry(f) > 0 such that for any 6 > 0, for any o € (0,51), for any point xo € M
satisfying Ry (f, B(x0,100)) > Ry, there exists a partially hyperbolic diffeomorphism g € F
such that der(f, ) < 6 and such that for some &' = &§'(xo,g) > 0, we have x ¢ I9(0),
forall x € Wji(xo,KN) and for all h € F with d-1(g,h) < &'. In particular, the center

accessibility class Cy(x) of each point x € W]C((xo, Ky0) is at least one-dimensional.

Remark 4.7.6. In order to deal with all the points in a given center disk, the idea is to increase
the codimension of “bad” configurations; this is done by considering two 4 us-loops at each
point in the center disk, and show that we can construct a perturbation in such a way that for
each of those points, at least one of the endpoints of the 4 us-loops is not the original point.

Proof. Fixsomesmalld > 0, letky := 2,and let K; := Ko(f) € (0,1), 51 := 60(f,2) >0,
Ry := Ro(f,2) > 0and & := &(f,r,6) > 0 be the constants given by Corollary
45.13. Let us take ¢ € (0,07), and let us consider a point xy € T?(U) satisfying
R (f, B(xp,100)) > Ry.

By Corollary 4.5.13, for n := n(xg) = 2, there exists a continuous map IN"?((U) N
W;(xo,Kla) > x — 7% such that v* = {7*(t) = [x,x](t),x3(t), x5 (t), x| }cpoq) 15 @
continuous family of 4 us-loops at (f, x), with £(*) < o, such that ¢*(0) is trivial, for
k=12, ,),x(%) is a non-degenerate closed us-loop, and there exists a C" deformation
f: B(Ogs,81) x M — M at f with 4-parameters, so that supp(f) C B(xo,100), and
such that the map

o. { B(Ops, 1) % (T?(U)OW;(xO,K10)> & R*=R?xR2
(b,x) = (®V(b,x),d® (b, x))

is continuous and satisfies
]det Db’b:O (CD(, x)) ’ > Ko,

for some C2-uniform constant %y = ®%(f,2) > 0. Recall that IT;: M — R? is the map
given by Lemma 435, T = T(f), ¥» = ¢(T,x,7*), and ®®) (-, x) := Ty (-, x, §), for
k=1,2.

By Lemma 4.2.7, we can extend the map x — 7¥ = {7*(t) };c[,1 to all the points
x € Wi(xo, Ky0) (note that for x € Wi(xo, Kyo) \f?,(a), the us-loops 7*(3), v*(1) may
not be closed). Considering the associated maps ¢, = ¢(T,x,7*) and ®H) (-, x) =
TS, (-, x, %), for k = 1,2, we can thus extend ® to a map

®. B(Ogs, 01) x Wi(xo,Kio) — R*=R*x R?
' (b,x) — (@D (b,x), @3 (b,x))
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such that .
|det Dy oo (®(-,x))| > 5.

Take § > 0 suitably small, and let

- WE((0,%0),6) — R6=R?xR?xR?
‘ { (b,x) = (TI5(x), @M (b, x), @) (b, x)).

For any point x € W;(xo, Ky0), the map ®(-, x) is a submersion, and thus, the map ¥
is uniformly transverse to the diagonal

Yo :={(z,2,2) : z € R*} C R®.

Therefore, ¥ ~1(Xo) is a submanifold of codimension 4. Let 7p: W2((0,x0),0) — R4,
(b,x) — b. Letb € B(Ogs,01) \ (¥~ 1(Xo)), and let g := f, := f(b,-
for any x € Wi(xo,Ki0), we have ¥((b,x)) ¢ Zo, ie., ¢x(b,x,3) €
¥x(b,x,1) € Cg(x) \ {x}. We conclude that x ¢ ['9(c).

Actually, the same holds for any diffeomorphism # that is sufficiently C!-close to
8- Indeed, for any x € Wi(xo, Ki0), let v, 7% be the 4 us-loops at (g,x) coming
from (%), 7*(1), with respective endpomts ¥x(b,x, %), ¥x(b,x,1). For any diffeo-

morphism & which is C!-close to g, we let 'yl Yy ! be the respective continuations of
i, 73 given by Lemma 4.2.7, and we set

Y(h,x):= (H;(X),H;Hh”{,h(X),HiHh/y;,h(X)).
By our choice of b, and by compactness, there exists ey > 0 such that

d(q’(g,x),Zo) =d(¥(b,x),Xo) > €,

forall x € ch(xo, Ky0). Thus, there exists &' > 0 such that for any diffeomorphism h
with di (g, h) < ¢, and for any x € Wi (xo, Ky0), it holds

d(F (h,x),Zo) > %0 > 0.

Therefore, Hh,ﬁ,h(x) € Cu(x) \ {x} or ng,h(x) € Cpu(x) \ {x}, so that x ¢ T9(0),
which concludes the proof. O

We can now give the proof of Theorem F.

Corollary 4.7.7. There exists a C*>-uniform constant &1 = 01(f) > 0 such that for any

€ (0,01), and for any § > 0, there exists a partially hyperbolic diffeomorphism ¢ € F
such that der(f,g) < 0 and such that for some (45,4)-spanning c-family Dy for g, it holds
x ¢ FO( ), for all C € Dy, and for all x € C In particular, the center accessibility class
Cq(x) of each point x € M is non-trivial.

Proof. Fix some small § > 0. By Kupka-Smale’s Theorem (see for instance [Kal97]),
C’-generically, periodic points are hyperbolic. Therefore, without loss of generality,
we can assume that the fixed points of f k are isolated, for all k > 1.

Letd; = 31(f) > 0,K; = Ky(f) € (0,1) and R; = Ry (f) > 0be the constants given
by Proposition 4.7.5. For R > max(Ry,1),let N = N(f,R) > 0,5 = p(f,R) € (0,R )
and ¢ = 0(f,R) > 0 be the constants given by Proposition 4.7.4. Then, there exists
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a constant ¢, € (0,0) such that for any diffeomorphism g with dai(f,g) < ¢, there
exists a (45,4)-spanning c-family D, for ¢ with at most N elements such that the map
g Dg is continuous, and

p <r(Dg) <7(Dy) < R D, is o-sparse; R+(g (Dg,@)) > R.

Take ¢ € (0,min (&1, {5)), and let z1,2,...,z4, £ > 1, be a finite collection of points
such that for any diffeomorphism g with dx1(f, g) < ¢, we have ¢ € .#, and

CeDy 20

¢
U iC c Wi (zi, Kyi0) C (Dg,100). (4.34)
i=1
As o € (0,51) and Ry (f, B(z1,100)) > R;, we can apply Proposition 4.7.5 to get a
diffeomorphism f; € .# such that for some &; € (0,0'(z1, f1)), it holds Bcr(f1,67) C
Ber(f,6)),and x ¢ T (0), for all x € Wi (z1, Ki0) and for all i € Bcr(f1,64).

Similarly, as R (f1, B(z2,100)) > Ry, we can apply Proposition 4.7.5 to get a dif-
feomorphism f, € .# such that for some &, > 0, it holds Bcr(f2,685) C Ber(f1,07) C
Bcr(f,6)),and x ¢ I(0), forall x € W}(zz, Ky0) and for all h € Bcr(fa,8%); in fact, as
Bcr(f2,85) C Ber(f1,67), wehave x ¢ I'(0), forall x € WJE(zl,chr) UWE(z2, Ky0).

Recursively, we thus obtain a diffeomorphism ¢ = f; € .% such that dcr(f,g) <
dy < 6 and such that x ¢ I[9(c), for all x € We(z,Kio) U -+ UWi(z, Kio). By
(4.34), we conclude that for each C € Dg, and for each x € ZI—OC, we have x ¢ fg((r). In
particular, as Dy is a (45, 4)-spanning c-family for g, the center accessibility class C,(x)
of each point x € M is non-trivial. O

Remark 4.7.8. In fact, Corollary 4.7.7 also holds when the center dimension dim Efis larger
than 2. Indeed, the proof relies on the submersion from the space of perturbations to the phase
space — here, some center leaf — constructed in Lemma 4.5.12 and Corollary 4.5.13, which can
be carried out also when dim EJC, > 2.

4.7.3 Density of accessibility (proof of Theorem E)

In this part, we conclude the proof of Proposition 4.7.1 (Theorem E). Let us start with
the following result, which strengthens Proposition 4.6.2.

Proposition 4.7.9. There exist C2-uniform constants o, = d»(f) > 0, Ky = K»(f) € (0,1)
and Ry = Ro(f) > 0 such that for any 6 > 0, for any o € (0,52), for any point xo € M
satisfying Ry (f, B(xo,100)) > Ry, there exists a partially hyperbolic diffeomorphism ¢ € F
such that dcr(f, g) < 6 and such that for some 6" = 6" (xo,g) > 0, it holds Accy(xp) D
B(xo, Kp0), forall h € & withdx (g, h) < 6",

Proof. Fix some small § > 0. Let &1 = &1(f) > 0, K3 = Ki(f) € (0,1) and Ry =
Ri(f) > 0 be the constants in Proposition 4.7.5. Let xp € M be a point satisfying
R+ (f,B(x0,100)) > R, forsome R > Ry and ¢ € (0,01), and take K € (0,K7). Then,
by Proposition 4.7.5, there exists a partially hyperbolic diffeomorphism f; € .# such
that der(f, i) < § and such that for some &' € (0,4), we have x ¢ I%(c), for all
x € B(xp,Ko) and for all § € .7 with dci(f1,8) < 6.

In the following, for any x € F‘é N W}l (xo, KU), we denote by IT5: M — R? the
map in Lemma 4.3.5 for the diffeomorphism f;. By Proposition 4.3.7 and Proposition
4.3.4, if ¢’ is sufficiently small, then for any ¢ € . with di(f1,g) < ¢ and for any
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X € 1"; N chfl (xo0, KO’), it holds
T15C,(x,100) C %), (4.35)

for some cone %] centered at Ogz; as in Section 4.4, we let ¢ := (R?*\ %7) U {Og2}, and
let €, ¢~ be the closures of the two connected components of ¢\ {Og:}. For any
x € W}l(xo,KU), we let 7 = [x,af,...,w]], resp. 73 = [x,a3},...,w}] be the non-
degenerate closed 10 us-loop, resp. non-degenerate closed 10 su-loop at (f1, x) given
by Lemma 4.4.3 for f; in place of f, with

(I5wi, Iw3) € (€7 xE€7)U (€ x€7). (4.36)

In the following, we will define a new deformation f obtained by considering
infinitesimal deformations localized near the points aj and a3 for x € W}l(xo, Ko).
Arguing as in Lemma 4.5.12, for * = 1,2, we can construct an infinitesimal C" defor-
mation at f; with 2-parameters V, : R> x M — TM such that supp(V,) C B(xo,100),
and such that for some constants C > 0, & > 0, we have: for any x € W;] (xo, Iza),

1. V, is adapted to (73,0, C, ﬁ);
2. for any corner z # af of 7, it holds
Dg(m.Vi(B,z)) =0,
where 77.: TM — E/i denotes the canonical projection, and

k
det DB(nCV*(B,xi‘(k—O)))‘ > f.

Indeed, for x = 1,2, as the map Wjil (xo, EU) > x — v{ is continuous, and by (4.12),
we can construct the infinitesimal deformation V, such that the supp (V) is localized
around the set {a} }, of the first corners of the loops 7.

Let then V: R* x M — TM be the infinitesimal C" deformation defined as

V(B,.) e 31V1(') + BZVZ(‘), VB = (Bl, BZ) e ]RZ > ]RZ.

In particular, V satisfies supp(V) C B(xp,100), for any x € %3 (xo,Kor), V is adapted

to (71,0, C, ﬁ) and (73,0, C, ﬁ), and for any corner z # af, a3 of 1, 73,
Dgp(n.V(B,z)) =0,
while for E1 := R? x {Og2}, E2 := {Og2} x R?, we have

det (E. > B Dp(mV(B,a2)))| > 7 *=12 (4.37)

For some small &; > 0, let us consider the C" deformation f: B(Ogs,8;) x M — M
at f; with 4-parameters generated by the infinitesimal C" deformation V. As before,
for any b € B(ORs,61), we set fp := f (b,-). By (4.35), if 41 and o are sufficiently small,
then for all b € B(Ogs,61), and for all x € Xy(0) := T}b N Wjil (x0, Iza), it holds

T15C, (x,100) C G (4.38)
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Let T = T(f) be as in (4.15). We denote by 47, 45 the respective lifts of 7§ and 3
for T according to Definition 4.5.5. By (4.37), thanks to Proposition 4.5.11, and arguing
as in Corollary 4.5.13, we obtain:

Lemma 4.7.10. The map

B(Ogs, 61) X W} (x0,Ko) — R*=R?x R?
D
(b,%) = (T05Hz5(b, %), TTsHa 55 (b, )

satisfies
| Dyly=0® (-, x) = Dplp=o® (-, y)| < p(0),  Vx,y € W (x0,Ko), (4.39)

for some function p: Ry — Ry such that lil’% p(c) = 0, and there exists k > 0 such that for
o—

any x € W (xo, Ko), it holds
|det Dy|p—o (P(-, x))| > «. (4.40)

Indeed, for x = 1,2, since the map Wjil (xo, KU) 5 x > 7} is continuous, it follows
from Lemma 4.3.1 and Corollary 4.3.3 that the partial derivatives of the holonomies
Hr4: with respect to b are uniformly close, for all x € W}l (x0, Ko). Hence, by the

definition of ®, and by Proposition 4.5.11, the maps {®(-, x)}, W (1n,Ro) AT uniform
submersions, which gives (4.39) and (4.40). 1

By (4.36), for each x € WJCH (xo, KU), we have
D0,x) € (¢ xE€)U(E x€T).

Let us denote by ST, resp. S~ the set of all points x € W (x0, Ko) such that ®(0, x) €
G x €, resp. D(0,x) € €7 x €, s0 that STUST = W (xo,Kor). By (4.39)-(4.40),
there exists a perturbation parameter b € B(Ogs, d1) such that

H;HT/% (b,X) S cg:— =%" \ {O]Rz}r forall x € S+,

[I5Hr45(b,x) € 6. =€ \{Oge}, forallxe S .

AsSTUS™ = Wjil (xo0, KU), we deduce that for each x € Wjil (xo0, KU),

either H;HT/%(I?, x) é 651, or H;HT,%C(b, x) §é Clo”].

By (4.38), we deduce that X;,(0) = @, i.e., F}b = @. Therefore, by Theorem 4.2.10, the

accessibility class Accy, (x) of each point x € W (xo, Ko) is open. Moreover, if 4 is
sufficiently small, then by construction, the diffeomorphism g := f; satisfies

der(f,8) < dcor(f, f1) +dor(fi, fo) <9,

which concludes the proof of Proposition 4.7.9. O

Proof of Proposition 4.7.1. Fix § > 0 arbitrarily small. Let 7 = d2(f) > 0, K = Kx(f) €
(0,1) and R, = Ry(f) > 0 be the C>-uniform constants given by Proposition 4.7.9. By
Proposition 4.7.4, there exist C'-uniform constants N = N(f,R;) > 0,0 = p(f,Ry) €
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(0,R; ') and & = (f, Ry) > 0 such that for all diffeomorphism g sufficiently C!-close
to f, there exists a (;5,4)-spanning c-family D, for ¢ with at most N elements such
that

1. p <r(Dg) <7(Dg) < RyY;
2. Dy is o-sparse;
3. Ri(g, (Dg,ﬁ)) > Rz.

and such that the map g — D, is continuous. Let o € (0, {; min(d»,7)). By compact-
ness, we can take a finite collection of points xy, ..., x,; € M such that

1 " - _
%Df cu:= iL:J1 B(xi,KzU) C (Df,O’).

Note that x; € M satisfies R+ (f, B(x;,100)) > Ry, for each i € {1,...,m}. Therefore,
we can apply Proposition 4.7.9 inductively to get a partially hyperbolic diffeomor-
phism g € .Z such that der(f,g) < 6 and such that Acce(x;) D B(x;, Kyo), for all
i € {1,...,m}. By connectedness of the disks in Dy, each center disk in the family
21*on is contained in a single accessibility class for g. Moreover, if J is sufficiently
small, and by continuity of the map & — Dy, each center disk in the family 5D, is
contained in a single accessibility class for g. As D, is a (ﬁ,él)-spanning c-family for
g, we deduce that g is accessible, as wanted. O
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