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Abstract

Given a sample of a random variable supported by a smooth compact manifold
M ⊂ R

d, we propose a test to decide whether the boundary of M is empty or not
with no preliminary support estimation. The test statistic is based on the maximal
distance between a sample point and the average of its kn-nearest neighbors. We
prove that the level of the test can be estimated, that, with probability one, its power
is one for n large enough, and that there exists a consistent decision rule. Heuristics
for choosing a convenient value for the kn parameter and identifying observations
close to the boundary are also given. We provide a simulation study of the test.

1 Introduction

Given an i.i.d. sample X1, . . . ,Xn of X drawn according to an unknown distribution
PX on R

d, geometric inference deals with the problem of estimating the support, M , of
PX , its boundary, ∂M , or any possible functional of the support, such as the measure
of its boundary, for instance. These problems have been widely studied when PX is
uniformly continuous with respect to Lebesgue measure, i.e. when the support is full
dimensional. We refer to Chevalier (1976) and Devroye and Wise (1980) for prior work
on support estimation, Cuevas and Fraiman (2010) for a review of support estimation,
Cuevas and Rodriguez-Casal (2004) for estimation of the boundary, Cuevas et al. (2007)
for estimation of the measure of the boundary, Berrendero et al. (2014) for estimation
of the integrated mean curvature and Aaron and Bodart (2016) for the recognition of
topological properties having a support estimator homeomorphic to the support. The
lower dimensional case (that is, when the support of the distribution is a d′-dimensional
manifold with d′ < d) has recently gained importance due to its connection with non-
linear dimensionality reduction techniques (also known as manifold learning), as well
as persistent homology. Niyogi et al. (2011) illustrates the link between topology and
unsupervised learning. In Fefferman, et al (2016) a test deciding whether the support
lies near a lower dimensional manifold or not is proposed. In Genovese, et al (2012) or
Genovese, et al (2017) minimax rates for manifold estimation are given under different
hypotheses. In Aamari and Levrard (2017) non-asymptotic bounds for manifold estima-
tion and related quantities such as tangent spaces and curvature are derived. In these
papers the manifolds are supposed without boundary.

Regarding support estimation, it would be natural to think that some of the proposed
estimators (in the full dimensional framework) would still be suitable. For instance, in
Niyogi et al. (2008), assuming that M is smooth enough, it is proved that for ε small
enough, the Devroye–Wise estimator M̂ε =

⋃n
i=1B(Xi, ε) deformation retracts to M

and therefore the homology of M̂ε equals the homology of M (see Proposition 3.1 in
Niyogi et al. (2008)). Considering boundary estimation, it is not possible to directly
adapt the “full dimensional” methods since in this case the boundary is estimated by the
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boundary of the estimator. Unfortunately, when the support estimator is full dimensional
(which is typically the case, as for example in the Devroye–Wise estimator but also for
more recent manifold estimators) this idea is hopeless (see Figure 1).

S

Figure 1: A one dimensional set M with boundary (the two extremities of the line),
sample drawn on M and the associated Devroye–Wise M̂r estimator of M . Note that
∂M̂r is far from ∂M .

As far as our knowledge extends, there are only a few d′-dimensional support estima-
tors, see Aamari and Levrard (2016) or Maggioni, et al (2014); they all require support
without boundary thus the classical plug-in idea of estimating the boundary of the sup-
port using the boundary of an estimator can not be used.

In the lower dimensional case, before trying to estimate the boundary of the support,
one has to be able to decide whether it has a boundary or not. The answer provides
topological information about the manifold that may be useful. For instance, if there is
no boundary, the support estimator proposed in Aamari and Levrard (2016) can be used.
Moreover, a compact, simply connected manifold without boundary is homomorphic to a
sphere, as follows from the well known (and now proved) Poincaré conjecture. When the
test decides there is a boundary, one can naturally want to estimate it, or at least estimate
the number of its connected components, which is an important topological invariant (for
instance the surfaces, i.e. the 2-dimensional manifolds, are topologically determined by
their orientability, their Euler characteristic, and the number of the components of the
boundary). Testing for the presence of boundary can also be useful as a preliminary step
when considering the problem of density estimation on a manifold. Roughly speaking,
when the support is smooth enough and has no boundary, a kernel density estimator
will work. However, when the support has a boundary, a bias appears near to it. In
Berry and Sauer (2014) a correction taking into account the distance to the boundary,
also based on a barycenter moving statistics (calculated with a kernel instead of nearest
neighbors) is proposed. It allows decreasing the bias but may increase the variance and
so should only be performed when necessary, that is, when the support has a boundary.

The aim of the present paper is to provide a statistical test to decide whether the
boundary of the support is empty or not and, when there is a boundary, to provide an
heuristic method to identify observations close to the boundary and estimate the number
of connected components of the boundary.

This paper is organized as follows. In Section 2 we introduce the notation used
throughout the paper. In Section 3 we present the test statistic, the associated theo-
retical results, a way to select suitable values for the parameter kn and perform a small
simulation study. In Section 4 we present an heuristic algorithm that identifies points
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located close to the boundary and estimates the number of connected components of the
boundary. Finally, Section 5 is devoted to the proofs.

2 Notation and geometric framework

If B ⊂ R
d is a Borel set, we will denote by |B| its Lebesgue measure and by B its closure.

Given a set A on a topological space, the interior of A with respect to the underlying
topology is denoted by Å. The k-dimensional closed ball of radius ε centred at x will
be denoted by Bk(x, ε) ⊂ R

d (when k = d the index will be omitted) and its Lebesgue
measure will be denoted by σk = |Bk(x, 1)|. When A = (aij), (i = 1, . . . ,m , j =
1, . . . , n) is a matrix, we will write, ‖A‖ the euclidean norm of A, ‖A‖∞ = maxi,j |aij |
and ‖A‖op the operator norm of A. The transpose of A will be denoted A′. For the case
n = m, we will write det(A) and tr(A) for the determinant and trace of A, respectively.

Given a C2 function f , ~∇f denotes its gradient and Hf its Hessian matrix. We
will denote by Ψd′(t) the cumulative distribution function of a χ2(d′) distribution and
Fd′(t) = 1−Ψd′(t).

In what follows M ⊂ R
d is a d′-dimensional compact manifold of class C2 (also

called a d′-regular surface of class C2). We will consider the Riemannian metric on M
inherited from R

d. When M has a boundary, as a manifold, it will be denoted by ∂M .
For x ∈ M , TxM denotes the tangent space at x and ϕx the orthogonal projection on the
affine tangent space x+ TxM . When M is orientable it has a unique associated volume
form ω such that ω(e1, . . . , ed′) = 1 for all oriented orthonormal bases e1, . . . , ed′ of TxM .
Then if g : M → R is a density function, we can define a new measure µ(B) =

∫

B gdω,
where B ⊂ M is a Borel set. Since we will only be interested in measures, which can be
defined even if the manifold is not orientable, although in a slightly less intuitive way,
the orientability hypothesis will be dropped in the following.

3 The test

3.1 Hypotheses, test statistics and main results

Throughout this paper, X1, . . . ,Xn is an i.i.d. sample of a random variable X whose
probability distribution, PX , fulfills condition P, and the sequence (kn) fulfills condition
K:

P. A probability distribution PX fulfills condition P if there exists a compact, path
connected d′-dimensional manifold of class C2 M and a density function f such
that:

1. ∂M is either empty or of class C2,

2. for all x ∈ M , f(x) ≥ f0 > 0, f is Lipschitz continuous with constant
Kf , and, for all measurable A ⊂ M , PX(A) =

∫

A fω. In the following
f1 = maxx∈M f(x).
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K. A sequence {kn}n ⊂ R fulfills condition K if kn/n
1/(d′+1) → 0 and if kn/(ln(n))

4 →
∞ when d′ > 1 and if kn/

√
n lnn → +∞ when d′ = 1

Definition 1. Given an i.i.d. sample X1, . . . ,Xn of a random row vector X with support

M ⊂ R
d, where M is a d′-dimensional manifold with d′ ≤ d, we will denote by Xj(i) the

j-nearest neighbor of Xi. For a given sequence of positive integers kn, let us define, for

i = 1, . . . , n,

ri,kn = ‖Xi−Xkn(i)‖ ; rn = max
1≤i≤n

ri,kn ; Xi,kn =







X1(i) −Xi
...

Xkn(i) −Xi






; Ŝi,kn =

1

kn
(Xi,kn)(Xi,kn)

′.

where Xj(i)−Xi is a row vector, for all j = 1, . . . , kn. Consider Qi,kn the d′-dimensional

space spanned by the d′ eigenvectors of Ŝi,kn associated to its d′ largest eigenvalues. Let

X∗
k(i) be the normal projection of Xk(i) −Xi on Qi,kn and Xkn,i =

1
kn

∑kn
k=1X

∗
k(i).

Define δi,kn = (d′+2)kn
r2i,kn

‖Xkn,i‖2, for i = 1, . . . , n. Then the proposed test statistic is

∆n,kn = max
1≤i≤n

δi,kn .

We will now explain the heuristic behind the test we will propose. It will be proved
that, under conditions P and K we have rn

a.s.−→ 0 (using that the density is bounded from
below and the classic condition kn/n → 0 as in Loftsgaarden and Quesenberry (1965)
where the concept of nearest neighbors was introduced). Consider an observation Xi0

such that d(Xi0 , ∂M) ≥ ri0,kn . The regularity of the manifold and the continuity of the
density given by condition P will imply that the sample {r−1

i0,kn
X∗

1(i0)
, . . . , r−1

i0,kn
X∗

kn(i0)
}

“converges” to an uniform sample on Bd′(0, 1), and then ‖Xkn,i0‖r−1
i0,kn

a.s.−→ 0. It will also

be proved that δi0,kn −→ χ2(d′) in distribution. If ∂M = ∅, all the observations satisfy
d(Xi, ∂M) ≥ ri,kn . Even though the {δi,kn}i are not independent, we will obtain an
asymptotic result for ∆n,kn that involves the χ2(d′) distribution. If ∂M 6= ∅, condition
P (the regularity of the boundary and the fact that the density is bounded from below)
allows us to (lower) bound the probability that X belongs to a neighborhood of the
boundary. With this bound we can ensure a.s. the existence of an observation Xi0

with d(Xi0 , ∂M) = O(ln n/n), and then condition K (kn/(ln n)
4 → +∞) ensures that

d(Xi0 , ∂M) ≪ ri0,kn . Note that this condition is stronger than the usual kn → +∞
as in Loftsgaarden and Quesenberry (1965). The sample {r−1

i0,kn
X∗

1(i0)
, . . . , r−1

i0,kn
X∗

kn(i0)
}

thus “looks like” an uniform sample on a half ball and ‖Xkn,i0‖r−1
i0,kn

a.s.−→ αd′ > 0. The
asymptotic behavior of the test statistic is given in the following four theorems. The first
theorem provides a bound for the level when testing H0 : ∂M = ∅ versus H1 : ∂M 6= ∅
using the test statistic ∆n,kn and rejection region {∆n,kn ≥ tn} for some suitable tn.
The second theorem states that, with probability one, the power of the test is one for n
large enough. The third theorem provides a consistent decision rule.
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Theorem 1. Let kn be a sequence fulfilling condition K. Assume that X1, . . . ,Xn is an

i.i.d. sample drawn according to an unknown distribution PX which fulfills condition P.

The test
{

H0 : ∂M = ∅
H1 : ∂M 6= ∅ (1)

with the rejection zone

Wn =
{

∆n,kn ≥ F−1
d′ (9α/(2e3n))

}

, (2)

satisfies PH0
(Wn) ≤ α+ o(1).

Theorem 2. Let kn be a sequence fulfilling condition K. Assume that X1, . . . ,Xn is an

i.i.d. sample drawn according to an unknown distribution PX which fulfills condition P.

The test (1) with rejection zone (2) has power 1 for n large enough.

Theorem 3. Let kn be a sequence fulfilling condition K. Assume that X1, . . . ,Xn is an

i.i.d. sample drawn according to an unknown distribution PX which fulfills condition P.

For all λ > 6, the decision rule ∂M = ∅ if, and only if, ∆n,kn ≤ λ lnn is consistent for

n large enough.

3.2 Discussion of the hypotheses

The two main hypotheses in this paper consist in the smoothness of the support and
the continuity of the density. These two hypotheses can not be weakened and we now
exhibit examples of manifolds without boundary for which our test fails, the first one
being not smooth enough and the second one with a discontinuous density.

Suppose that d = 2, d′ = 1, X is uniformly drawn on M that has no boundary, but
there exists a corner at the origin with an angle α (see Figure 2). Introduce S = 1

rEY Y ′

where Y = X|{‖X‖ ≤ r}. Then a short calculation gives

S =
cos2(α/2)

3

(

1 0
0 tan(α/2)2.

)

• If α > π/2, the projection direction is “the vertical one”, that can be considered
as a “correct tangent space”. The only problem is that we should rescale by
‖X∗

i −X∗
kn(i)

‖ instead of ri,kn = ‖X∗
i −X∗

kn(i)
‖.

• If α < π/2, the projection direction is “the horizontal one”, this fails in recognizing
the tangent space, and induces a barycentre moving as in the boundary case and
the test will decide falsely that there is a boundary.

The continuity of the density is also necessary: if this is not the case, we may reject
H0 for any support, with or without boundary. In order to see this, consider the circular
support M = {(x, y) ∈ R

2 : x2 + y2 = 1} with a “density” 1/(4π) when x ≤ 0 and
3/(4π) when x > 0. In this case it can be proved that ∆n,kn/kn → 1/2 (considering
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Figure 2: Behaviour when there is an angle at X1. Blue: manifold and observations,
black : estimated tangent space and projections . Red: mean of the projections, dashed
green: the sphere of radius ‖X1 −X11‖ ,centred at X1. Left when α > π/2, the tangent
space is “correct” but not the normalization radius. Right, when α < π/2, the tangent
space is not at all the expected one.

points located near the discontinuity points), which also corresponds to a “boundary-
type” behavior.

The other hypotheses can be weakened by pre-processing the data. For instance, the
intrinsic dimension can be estimated by several existing methods (see Camastra and Staiano
(2016) for a review). Observe that this is costless in terms of sample size dependency.
Even more, there are minimax bounds for dimension estimation (see Kim et al (2017)).

With our approach the assumption that there is no noise, i.e. that the dimension of
the support is lower than the dimension of the ambient space, can not be replaced by a
noisy model in which the support is “around” a lower dimensional manifold. However,
in such a case, performing a preliminary manifold estimation before running our test
(see for instance Genovese, et al (2012) or Aaron et al. (2017)) can be used to overcome
this problem. Even if the manifold estimator is not a d′-dimensional manifold, we may
expect that by imposing stronger conditions on the sequence kn, our approach can work.

Even if, due to Schick (2001), Hein (2005) and Hein (2007) we can avoid assuming
the compactness of the support for some geometrical inference problem we are not sure
that it is possible for the boundary detection case.

Lastly, the C2 smoothness of the whole boundary is not necessary, the existence of a
compact C2 subset of ∂M is enough. When the manifold has a boundary, the hypothesis
f(x) > 0 on M can also be weakened to the usual condition f(x) ≥ ad(x, ∂S)b (for some
positive constants a and b), which change only the convergence rates.

3.3 Numerical simulations and kn calibration

In this section we are going to explain intuitively the underlying idea regarding the
parameter kn. We think that, at least asymptotically, the “optimal” choice of kn should
only depend on d′. Other parameters, such as density variations, or the curvature of the
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manifold, should slow down the convergence rate. That is, we believe that the quality of
p−value estimation asymptotically behaves like Cf,M,dg(n, d

′, k′n). Intuitively, we have
that

1. Under H0:

a. if we let U1, . . . , Uk be an uniform random sample on the d′-dimensional unit
ball, Ukn = (1/kn)

∑kn
i=1 Ui and δUk = (d′ + 2)kn‖Ukn‖2. Then kn should

be large enough to ensure that δUkn is “close enough”, in law, to a χ2(d′)
distribution.

b. On the other hand, kn should be small enough so that, locally, the near-
est neighbors to every sample point behave like an uniform sample on a d′-
dimensional ball.

As can be seen in Figure 3 and Table 1, kn ≥ 10 is sufficient to guarantee 1
a. Regarding 1 b, the greater the curvature of M , or the more variations in the
density, the smaller the kn should be (see Figure 3). When n is large enough, this
still provides a large interval of acceptable values for kn.

2. Under H1:

a. kn should be large enough to ensure the existence of an observation Xi0

such that its kn nearest neighbors “look” like an uniform sample on a half
ball. More precisely, kn should be large enough to guarantee that ri0,kn ≫
d(Xi0 , ∂M).

b. On the contrary, kn should be small enough so that, locally, the nearest
neighbors “look” like an uniform sample on a subsets of the d′-dimensional
ball.

Part 2 b is analogous to part 1 b and does not add more constraints on kn. Considering
2 a, the (only) important parameter is the (d′−1) measure of the boundary. The smaller
this measure is, the larger kn should be. Conversely, if the measure of the boundary is
large, we will have more observations close to it, so the condition ri,kn ≫ d(Xi, ∂M) will
be fulfilled. Due to the well known curse of dimensionality, for small values of n and for
high dimensions, we have more observations located close to the boundary, which has
the following unexpected effect: kn decreases with the dimension.

All this is illustrated in two simulation studies, first for Sd′ = {x ∈ R
d′+1, ‖x‖ = 1}

the d′-dimensional sphere and S+
d′ = {x = (x1, . . . , xd′+1), ‖x‖ = 1, x1 ≥ 0} the d′-

dimensional half sphere. Consider the test with a level α = 5%. For a given d′ ∈
{1, 2, 3, 4, 5} and a given n ∈ {100, 200, 500, 1000, 2000} we estimate e0(k) = PH0

(∆n,k ≥
F−1
d′ (9α/(2e3n))) as the percentage of wrong decisions for samples of size n, uniformly

drawn on Sd′ and e1(k) = PH1
(∆n,k ≤ F−1

d′ (9α/(2e3n))) as the percentage of wrong
decisions for samples of size n, uniformly drawn on S+

d′ . Each time the percentages are
estimated with 200 repetitions of the experiment. The results are presented in Figure
3. For d′ ∈ {1, 2, 3} we observe that e0 can be neglected (for k ∈ [10, 60]) when n ≥ Nd′
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(with N1 = 200, N2 = 500 and N3 = 1000). We propose the following criteria to choose
kn.

1. If {k such that e0(k) + e1(k) ≤ 0.01} 6= ∅ then kn = min{k such that e0(k) +
e1(k) ≤ 0.01}

2. If {k such that e0(k)+ e1(k) ≤ 0.01} = ∅ then choose kn = argmink(e0(k)+ e1(k))

The values of kn are given in Table 1. They are also presented in Figure 3.
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Figure 3: e0 (dashed) and e1 (plain) for different values of n and d′ (from left to right,
increasing values of n in {100; 200; 500; 1000; 2000} and from top to bottom increasing
values of d′ in {1; 2; 3; 4; 5}), the chosen value for kn is indicated by the vertical dashed
line

n = 100 n = 200 n = 500 n = 1000 n = 2000
d′ = 1 30 30 40 40 40
d′ = 2 24 26 28 28 28
d′ = 2 20 24 26 26 26
d′ = 4 18 22 22 24 26
d′ = 5 18 18 20 22 24

Table 1: Proposed values for kn

We also considered the trefoil knot, a torus, a spire and a Moebius ring. The per-
centage of times (over 50000 replicates for each manifold and sample size) where H0 is
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rejected is shown in Table 2 when there is no boundary. In Table 3 it is shown the per-
centage of times (over 50000 replicates) where H0 is accepted when there is a boundary.
As can be seen, the test almost never fails under H1, which is not surprising considering
the way we chose the sequence kn. Under H0 the convergence to an error rate inferior
to 5% depends on the dimension d′ and the curvature of the manifold.

n = 100 n = 200 n = 500 n = 103 n = 2000
S1 0.96% 0.53% 0.37% 0.41% 0.33%
S2 4.01% 1.39% 0.71% 0.38% 0.29%
S3 12.09% 4.81% 1.63% 0.9% 0.95%
S4 20.93% 7.8% 3.08% 2.06% 1.06%

Trefoil 100% 99.93% 12.87% 2.05% 0%
Torus 100% 99.61% 27.46% 4.69% 0%

Table 2: For different samples, the % of times where H0 is rejected when there is no
boundary.

n = 100 n = 200 n = 500 n = 103 n = 2000

S+

1 0% 0% 0% 0% 0%

S+
2 0% 0% 0% 0% 0%

S+

3 0% 0% 0% 0% 0%

S+

4 0% 0% 0% 0% 0%
Spire 0.5% 3.5% 1.5% 2% 5%

Moebius 0% 0% 0% 0% 0%

Table 3: For different samples, the % of times where H0 is accepted when there is a
boundary.

4 Empirical detection of points close to the boundary and

estimation of the number of its connected components

A natural second step after deciding that the support has a boundary is to estimate
it, or at least identify observations “close” to it. To get an insight into the topological
properties of the boundary, a third step could be to estimate the number of its connected
components. In this section we will tackle empirically both problems.

4.1 Detection of “boundary observations”

Theorem 1 suggests selecting {Xi : δi,kn ≥ F−1
d′ (9α/(2ne3))} as “boundary observations”.

However, when applying this method with the previously proposed values for kn, it
identifies “too few” boundary observations for d′ = 2. We think that this is due to
the 2e3/9 factor, which deals with the problem of the maximum of dependant variables
but, for a given observation, underestimates probability to be close to the boundary.
Allowing “large” values for α is not sufficient to overcome this problem, as it can be
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observed in Figure 4 where α = 20% is considered. For this reason we will adapt, using
tangent spaces, the method given in Aaron et al. (2017) to detect “boundary balls”.

S+
1 S+

2 spiral Marius
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-1
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Figure 4: Some examples for support with boundary, the associated sample (n = 2000)
is in black, and points that are identified as “close to the boundary” are in red, the
size of the points depending of the associated α, the boundary identification starts with
α = 20% (small red points), and finish with α = 5% (larger red points)

In Aaron et al. (2017), M is d-dimensional and boundary observations are identified
as those with large Voronoi cells (recall that Vor(Xi) = {x : ‖x−Xi‖ ≤ ‖x−Xj‖ ∀j }).
More precisely, define ρi = sup{‖x −Xi‖ : x ∈ Vor(Xi)}. Then boundary observations
are those Xi such that ρi ≥ εn, where εn is a smoothing parameter. Two different ideas
inspired this characterization. The first one was to consider the Devroye–Wise estimator
of the support Ŝεn =

⋃

i B(Xi, εn) (see Chevalier (1976) or Devroye and Wise (1980)),

in which case it is quite intuitive that sample points Xi fulfilling B(Xi, εn) ∩ ∂Ŝ 6= ∅
are close to the boundary. The second one was to look for observations in ∂Cεn , the
εn-convex hull of the sample (see Casal (2007)). These two approaches are in fact
the same, the boundary observations can be easily identified considering the size of
the Voronoi cells (see Figure 5 left side). This can be explained as follows. Choose
εn > dH({X1, . . . ,Xn},M), where dH denotes the Hausdorff distance, suppose that
there exists x ∈ Vor(Xi) with ‖x−Xi‖ > εn, then x /∈ M . Using the fact that Xi ∈ M ,
it follows that there exists t ∈ [Xi, x] ∩ ∂M (because M is d-dimensional) and then
d(Xi, ∂M) ≤ εn (when ∂M is smooth enough we have an even better inequality).

When M has dimension d′ < d, every observation has a large Voronoi cell (this can
be observed considering directions normal to M , see Figure 5 right side). Then the pre-
viously suggested method requires a small adjustment, naturally done using projections
on the tangent space, which can be estimated via local PCA. The idea being to locally lie
in the full dimensional case. More precisely, recalling that Qi,kn denotes estimation via
local PCA of the tangent space at Xi, the tangential boundary observations are defined
as follows.

Definition 2. Xi is a (kn, εn)-tangential boundary observation if

ρi ≡ sup{‖x‖ : x ∈ Qi,kn and ‖x‖ ≤ ‖x−X∗
j(i)‖, ∀ 1 ≤ j ≤ kn} ≥ εn.

As in Aaron et al. (2017), we suggest choosing εn = 2maximinj ‖Xi −Xj‖.
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Figure 5: Left side, d = d′ = 2, 500 points drawn on M = B(0, 1)\B(0, 0.5), observations
and Voronoi cells are presented. Observations with an associated radius larger than 0.3
are highlighted. Right side, d = 2, d′ = 1, 70 points uniformly drawn on a half circle,
all the Voronoi cells are large, but considering the tangential direction (highlighted by
arrows at two points) helps to identify boundary observations.

4.2 Building a “boundary graph”

Once we have identified Ym = {Y1, . . . , Ym} as the set of the centers of the (kn, εn)-
tangential boundary balls, a natural second step is how to estimate ∂M . In this re-
spect, we think that the tangential weighted Delaunay complex (see Aamari and Levrard
(2016)) should work. To prove this is far beyond the scope of this paper. Here, we pro-
pose, as an initial step, an estimator based on a graph with vertices Ym, building edges
between the vertices in such a way that the resulting graph captures the “shape” of
the boundary. To do this, we are going to “connect” each Yi to those Yj such that
‖Yi − Yj‖ ≤ Ri. As usual, the choice of Ri depends on striking a balance. On the one
hand, Ri should be small enough to connect a point only with its neighbors. On the
other hand, Ri should be large enough to allow capturing the global structure of ∂M .
The idea for selecting Ri is based on the following. As ∂M is a (d′ − 1)-dimensional
manifold without boundary, then for all x ∈ ∂M , for r small enough, the projection
onto the space tangent to ∂M at the point x, πx(B(x, r) ∩ ∂M), should be close to
B(x, r) ∩ Tx∂M . As a plug-in version we introduce

1. Zi,r = {Yj : ‖Yj − Yi‖ ≤ r}, the empirical neighborhood of Yi,

2. π̂i(Zi,r) the orthogonal projection onto the (d′ − 1) first axis of a PCA based on
Zi,r.

Naturally π̂i(Zi,r) estimates πx(B(x, r) ∩ ∂M) and so should be close to a (d′ − 1)-
dimensional ball centred at Yi. We quantify this closeness as follows. We say that r is
large enough for i if Yi is in H̊i where Hi is the convex hull of π̂i(ZRi).

Lastly, for all i = 1, . . . , n, choose Ri as the smallest value r that is large enough for
i. This is illustrated in Figure 6.
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Figure 6: Consider the point (0, 0) (the red ∗) in Y and its 9 nearest neighbors. We will
connect (0, 0) to its 5 nearest neighbors.

4.3 Some experiments

To illustrate the procedure introduced we consider the Moebius ring and the truncated
cylinder with a hole in a cap, (see Figure 7). Both are 2-dimensional sub-manifolds of
R
3. The boundary of the first one has one connected component while the boundary of

the second one has three.
As expected, in the cylinder the sample size required to have a “coherent” graph is

higher.
Second, we consider uniform draws of sizes n ∈ {500, 1000, 2000, 4000, 8000, 16000}

on the (d− 1)-dimensional half sphere {x21 + . . .+x2d = 1, xd ≥ 0} ⊂ R
d for d = {3, 4, 5}.

Define d1 = maxx∈∂M mini ‖x−Yi‖ and d2 = maximinx∈∂M ‖x−Yi‖. They are estimated
via a Monte Carlo method, drawing 50000 points on ∂M . For each value of n and d, the
box plot over 50 repetitions of the p-values of the test and the estimations of d1 and d2
are shown in Figures 8, 9 and 10.

5 Proofs

5.1 Proofs under H0 (∂M = ∅)
In this section we give the details of the proofs when ∂M 6= ∅. First we prove that the
empirical distribution of the δi converges to a χ2 distribution, then we prove that the
proposed test has, asymptotically, level α (which proves Theorem 1).

For ease of writing, in what follows, a denotes a general constant that may have
different values and should be understood as “there exists an uniform constant such
that...”.
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Figure 7: Boundary ball detection and associated graph for different sample sizes. In
the first row the Moebius ring and in the second the truncated cylinder with a hole in a
cap. Observations are represented as blue dots while boundary centres are large black
dots. The graph is represented by black lines.
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Figure 8: d = 3, on abscissa 1 : (n = 500, k = 25), 2 : (n = 1000, k = 25), 3 : (n =
2000, k = 30), 4 : (n = 4000, k = 40), 5 : (n = 8000, k = 50), 6 : (n = 16000, k = 50)

First we introduce ξ∗n ≡ (ln(n)/n)1/2d
′

, ξHn ≡ (kn/n)
1/d′ , ξ◦n ≡

√

ln(n)/kn, ρn =
max(ξ∗n, ξ

H

n ) and ξn ≡ max{ξ∗n, ξHn , ξ◦n}. Observe that by condition K, (lnn)2ξn → 0, then

1. the maximum distance from an observation to its knth nearest neighbor converges
(almost surely) to 0, i.e. rn → 0 (this is a consequence of Lemma 1);

2. the local PCA step converges to the projection onto the tangent space (the rate,
ξ◦n, is given in Lemma 3).

For a given i ∈ {1, . . . , n}, denote by x0 ≡ Xi, and by x1, . . . , xkn the kn-nearest
neighbors of Xi. Recall that ri,kn = max1≤j≤kn ‖x0 − xj‖ (see Definition 1). For all j ∈
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Figure 9: d = 4, on abscissa 1 : (n = 500, k = 30), 2 : (n = 1000, k = 50), 3 : (n =
2000, k = 50), 4 : (n = 4000, k = 60), 5 : (n = 8000, k = 70), 6 : (n = 16000, k = 70)
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Figure 10: d = 5, on abscissa 1 : (n = 500, k = 50), 2 : (n = 1000, k = 70), 3 : (n =
2000, k = 80), 4 : (n = 4000, k = 90), 5 : (n = 8000, k = 100), 6 : (n = 16000, k = 100)

{1, . . . , kn}, write x∗j for the local PCA projection of xj −x0, and yj for the (orthogonal)
projection onto the tangent space Tx0

M (at the point x0) of xj − x0.
Write δi = (d′ + 2)knr

−2
i,kn

‖(1/kn)
∑

j x
∗
j‖2 and δYi = (d′ + 2)knr

−2
i,kn

‖(1/kn)
∑

j yj‖2.

By Lemma 3, for all i ∈ {1, . . . , n} we have, with probability greater than 1− n−6,

δi =
(d′ + 2)kn

r2i,kn

∥

∥

∥

1

kn

∑

j

yj + Ei,n

( 1

kn

∑

j

yj

)

+
1

kn

∑

j

ej

∥

∥

∥

2

with ‖Ei,n‖op ≤ aξn and ‖ej‖ ≤ aξn‖yj‖2.
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From where it follows that,

δi = δYi +
(d′ + 2)kn

r2i,kn

∥

∥

∥Ei,n

( 1

kn

∑

j

yj

)∥

∥

∥

2
+

(d′ + 2)kn
r2i,kn

∥

∥

∥

1

kn

∑

j

ej

∥

∥

∥

2

+ 2
(d′ + 2)kn

r2i,kn

〈 1

kn

∑

j

yj, Ei,n

( 1

kn

∑

j

yj

)〉

+ 2
(d′ + 2)kn

r2i,kn

〈 1

kn

∑

j

yj,
1

kn

∑

j

ej

〉

+ 2
(d′ + 2)kn

r2i,kn

〈 1

kn

∑

j

ej , Ei,n

( 1

kn

∑

j

yj

)〉

.

So, with probability greater than 1− n−6 for all i, we have δi = δYi + εi,1 with:

|εi,1| ≤ a2ξ2nδ
Y
i +a2ξ2n(d

′+2)knr
2
i,kn+2aξnδ

Y
i +2aξn

√

(d′ + 2)knδYi ri,kn+2a2ξ2n

√

(d′ + 2)knδYi ri,kn .

By Lemma 1 we have P(rn ≥ aρn) ≤ n−7, where rn = maxi(ri,kn). Because ρn ≤ ξn
we have, with probability greater than 1− 2n−6, for all i

|εi,1| ≤ aξnδ
Y
i + aξ2n

√

δYi + aξ4n. (3)

First we will prove that δi → χ2(d′) in distribution. Consider the distribution of the
random variable yj for j = 1, . . . , kn. By Proposition 4 it is the same as the following
mixture law: with probability 1 − pn: zi ≡ yj/ri,kn is drawn according to an uniform
law on Bd′(O, 1 − cri,kn) and with probability pn: zj ≡ yj/ri,kn is drawn according to a
residual law (supported by Bd′(O, 1)) with pn ≤ aρn. Denote by Ki the number of yj
belonging to the uniform part of the mixture (Ki has distribution Binom((1− pn), kn)),
and introduce κn = maxi |(kn −Ki)/

√
kn|. By application of Lemma 2 (with k′n = kn

and qn = aρn, because kn ≪ n1/(d′+1) we have ρn
√
kn ln(n) → 0) we have, for n large

enough:
P(ln(n)κn ≥ a) ≤ n−6. (4)

For ease of writing let us suppose that z1, . . . , zKi are the observations belonging to
the uniform part of the mixture. Consider z∗Ki+1, . . . , z

∗
n i.i.d., uniformly distributed on

Bd′(O, 1). We will write uj ≡ zj if j ≤ Ki, and uj ≡ z∗j if j > Ki. If we define now
ej ≡ zj − z∗j if j > Ki, then

δYi |{rn ≤ aξn} =(d′ + 2)kn

∥

∥

∥

∥

∥

1

kn

Ki
∑

j=1

uj +
1

kn

kn
∑

j=Ki+1

z∗j +
1

kn

kn
∑

j=Ki+1

zj −
1

kn

kn
∑

j=Ki+1

zj

∥

∥

∥

∥

∥

2

=(d′ + 2)kn

∥

∥

∥

∥

∥

1

kn

kn
∑

j=1

uj −
1

kn

kn
∑

j=Ki+1

ej

∥

∥

∥

∥

∥

2

=(d′ + 2)kn

[∥

∥

∥

∥

∥

1

kn

kn
∑

j=1

uj

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

1

kn

kn
∑

j=Ki+1

ej

∥

∥

∥

∥

∥

2

− 2
〈 1

kn

kn
∑

j=1

uj ,
1

kn

kn
∑

j=Ki+1

ej

〉

]

.
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Consider uj/(1−cri,kn) for i = 1, . . . , n, which is an uniform sample on a d′-dimensional
unit ball, and δUi = (d′ + 2)kn‖

∑

j uj/(1− cri,kn)‖2. Then,

δYi |{rn ≤ aξn} = (1− cri,kn)
2δUi + ε2,i with |ε2,i| ≤ a

√

δUi κn + aκ2n. (5)

By Proposition 1, δUi
L−→ χ2(d′) when kn → +∞. This and (4) implies that ε2,i

a.s−→ 0.

From P({rn ≤ aξn}) → 0 we obtain δYi
L−→ χ2(d′). That in turns, by (3) implies that

εi,1
L−→ 0.

Lastly,

δi
L−→ χ2(d′). (6)

Regarding Theorem 1, we need an upper bound for P(maxi δi > t). If we use the
classical rough bound P(maxi δi > t) ≤ nP(δi > t), we get P(maxi δi > t) ≤ nΨd′(t) +
no(1), which is useless because we have no control on the no(1) term. To solve this
problem we aim to get a better upper bound for P(maxi δi > t). This is done using
Theorem 2.4 in Pinelis (1994), which states that for all i = 1, . . . , n

P(δUi > t) ≤ 2e3

9
Fd′(t). (7)

Now the aim is to prove that, conditionally to rn ≤ aξn, (ln n)
1/3 maxi |εi,2| a.s.−→ 0.

First we have

P

(

|εi,2| >
λ

(ln n)1/3

)

≤ P

(

max
1≤i≤n

√

δUi κn ≥ λ

(lnn)1/3

)

.

As

P

(

max
1≤i≤n

√

δUi κn ≤ λ

(lnn)1/3

)

≥ P

(

max
1≤i≤n

√

δUi ≤ λ(lnn)2/3

a
and κn ≤ a

lnn

)

we have

P

(

max
1≤i≤n

√

δUi κn ≥ λ

(lnn)1/3

)

≤ P

(

max
1≤i≤n

√

δUi ≥ λ(lnn)2/3

a
or κn ≥ a

lnn

)

and, finally, by (4) and (7)

P

(

max
1≤i≤n

√

δUi κn ≥ λ

)

≤ n
2e3

9
Fd′

(

λ2(lnn)4/3

a2

)

+ n−6.

From

n
2e3

9
Fd′

(

λ2(lnn)4/3

a2

)

∼ 2e3n

9

exp(−λ2 lnn4/3/(2a2))(λ ln n/2a)d
′−2

Γ(d′/2)
,
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we obtain that
∑

P

(

max
1≤i≤n

√

δUi κn ≥ λ

)

< +∞

so, by Borel-Cantelli’s Lemma, (ln n)1/3 maxi |εi,2| a.s.−→ 0.
Applying exactly same calculus it can be obtained from (lnn)2ξn → 0 and (3) that,

conditionally to rn ≤ aξn maxi δi ≤ maxi δ
U
i + ε3,n with (ln n)1/3ε3,n

a.s.−→ 0. As a result,

P

(

max
1≤i≤n

δi ≥ t
∣

∣

∣

{

{rn ≤ aξn} ∩
{

|ε3,n| ≤ a(ln n)−1/3
}

}

)

≤ 2e3n

9
Fd′

(

t− a(lnn)−1/3
)

.

Introduce tn = tn,α ≡ F−1
d′ (9α/(2e3n)). Notice that tn → +∞ so that we can use

the usual equivalent of Fd′(tn) and get

2e3n

9

e−tn/2(tn/2)
d′/2−1

Γ(d′/2)
→ α when n → +∞.

Now note that 2e3n/9Fd′(xn) → α ⇔ xn = 2 lnn+(d′−2) ln(lnn)+2 ln
(

2e3/(9αΓ(d′/2))
)

+
o(1). Thus:

P

(

max
1≤i≤n

δi ≥ tn

∣

∣

∣

{

{rn ≤ aξn} ∩
{

|ε3,n| ≤ a(ln n)−1/3
}

}

)

≤ α+ o(1).

Lastly, because e.a.s. rn ≤ aξn (which follows from Lemma 1) and because |ε3,n|(ln n)1/3 a.s.−→
0 we have P({rn ≤ aξn} ∩ {|ε3,n| ≤ a(lnn)−1/3}) → 1, and so

P

(

max
1≤i≤n

δi ≥ tn

)

≤ α+ o(1),

which proves Theorem 1. For λ > 6 we have

P

(

max
1≤i≤n

δi ≥ λ ln n

)

≤ an1−λ/2(lnn)d
′/2−1

so that, once again, by the Borel–Cantelli’s lemma, we obtain that if λ > 6,

Under H0: ∆n,kn ≥ λ lnn e.a.s. (8)

5.2 Proofs under H1 (∂M 6= ∅)
The idea of the proof is the following. When ∂M 6= ∅, there exists an observation
Xi0 close enough to the boundary (that is, such that d(Xi0 , ∂M) ≪ ri0,kn). Then
B(Xi0 , ri0,kn)∩M looks like a “half ball”, so that ∆n,kn ≥ δi0,kn ≥ (d′+2)kn(αd′+o(1)) →
∞, αd′ being a positive constant (obtained from Proposition 2).

More precisely, set εn ≡ a ln(n)/n. We will first prove that for a suitably chosen
constant a, with probability one, for n large enough there exists an Xi0 ∈ ∂M ⊕ εnB ≡
{x : d(x, ∂M) ≤ εn}. Indeed, as ∂M is a compact (d′ − 1)-manifold of class C2, by
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Proposition 14 in Thäle (2008) it has positive reach. Then by Theorem 5.5 in Federer
(1959), for n large enough |∂M ⊕ εnB| = C∂Mεn(1 + o(1)) where C∂M > 0 is a constant
depending only on ∂M .

Thus,

P
(

(∂M ⊕ εnB) ∩ Xn = ∅
)

≤
(

1− f0C∂Mεn(1− o(1)
)n ≤ n−f0C∂Ma+o(1).

If we choose a > (f0C∂M )−1, then as a direct application of the Borel–Cantelli’s lemma,
with probability one, for n large enough, ∃i0, d(Xi0 , ∂M) ≤ εn. Now we are going to
prove that

for all Xi0 ∈ ∂M ⊕B(0, εn), we have ri0,kn ≥ √
εn e.a.s. (9)

This will allow us to apply Proposition 3 part 5, which implies that B(Xi0 , ri0,kn) is
“close” to a half ball.

First we assume n large enough to ensure that εn < 1. Cover ∂M with νn ≤
Bε

(1−d′)/2
n balls, centred at {x1, . . . xνn} ⊂ ∂M with radius

√
εn. Observe that

P

(

∃Xi0 : ri0,kn ≤ √
εn

)

= P

(

∃Xi0 : #
{

B
(

Xi0 :
√
εn
)

∩ Xn

}

≥ kn

)

.

Now, if Xi0 ∈ ∂M ⊕ εnB, then there exists a yi ∈ ∂M such that ‖Xi0 − yi‖ ≤ εn and yi
belongs to some ball B(xr,

√
εn) for r = 1, . . . , νn. Then

P

(

∃Xi0 ∈ ∂M ⊕ εnB : ri0,kn ≤ √
εn

)

≤
νn
∑

i=1

P

(

#
{

B
(

xi, 3
√
εn
)

∩ Xn

}

≥ kn

)

. (10)

Applying Corollary 1 part 1 together with f ≤ f1, we get that there exists a constant
b such that

P

(

#
{

B
(

xi, 3
√
εn
)

∩ Xn

}

≥ kn

)

≤
n
∑

j=kn

(

n

j

)

(

bεd
′/2

n

)j
.

Now from the bounds n!/(n− j)! ≤ nj and
∑n

j=k x
j/j! ≤ xkex/k!, we obtain

P

(

#
{

B
(

xi, 3
√
εn
)

∩ Xn

}

≥ kn

)

≤
n
∑

j=kn

1

j!

(

bnεd
′/2

n

)j
≤

(

bnε
d′/2
n

)kn

kn!
exp(bnεd

′/2
n ). (11)

Finally, (10), (11) and the upper bound on νn imply

P

(

∃Xi0 ∈ ∂M ⊕ εnB, ri0,kn ≤ √
εn

)

≤ Bε(1−d′)/2
n

(

bnε
d′/2
n

)kn

kn!
exp(bnεd

′/2
n ).

If we apply Stirling’s formula, for n large enough

P

(

∃Xi0 ∈ ∂M⊕εnB, ri0,kn ≤ √
εn

)

≤ exp
{

−kn ln(kn)+kn+
1− d′

2
ln(εn)+kn ln(bnε

d′/2
n )+bnεd

′/2
n

}

.
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From kn ≫
√

n ln(n) when d′ = 1 and kn ≫ ln(n) for any dimension d′ > 1, it
follows that

P

(

∃Xi0 ∈ ∂M ⊕ εnB, ri0,kn ≤ √
εn

)

≤ exp
(

− kn ln(kn)(cd′ + o(1))
)

with c2 = 2 and cd′ = 1 when d′ 6= 2.
Then, kn ≫ (ln(n)) ensures that

∑

n

P

(

∃Xi0 ∈ ∂M ⊕ εnB, ri0,kn ≤ √
εn

)

< ∞.

The proof of (9) follows by a direct application of the Borel–Cantelli’s lemma.

For an observation Xi0 such that d(Xi0 , ∂M) ≤ c∂M ln(n)/n, denote by x0 its pro-
jection onto ∂M . Recall that ux0

denotes the unit vector tangent to M and normal to
∂M pointing outward. Now introduce Y = ϕXi0

(X)|{‖X −Xi0‖ ≤ ri0,kn}.
On the one hand, a direct consequence of Proposition 5 is that

E

(

〈Y −Xi0

ri0,kn
,−ux0

〉

)

≥ αd′ − ari0,kn ≥ αd′ − arn.

On the other hand, by Hoeffding’s inequality,

P

(

1

kn

kn
∑

k=1

〈Yk(i0) −Xi0

ri0,kn
,−ux0

〉

− E

(

〈Y −Xi0

ri0,kn
,−ux0

〉

)

≤ −t

)

≤ exp(−2t2kn).

Thus

P

(

1

kn

kn
∑

k=1

〈Yk(i0) −Xi0

ri0,kn
,−ux0

〉

≤ αd′ − arn − (lnn)−1

)

≤ 2 exp(−2kn/(ln n)
2).

Let us denote

Z =
1

kn

kn
∑

k=1

Yk(i0) −Xi0

ri0,kn
and Z∗ =

1

kn

kn
∑

k=1

X∗
k(i0)

−Xi0

ri0,kn
,

by Lemma 4 we have that there exists a sequence ǫ′n such that, with probability greater
than 1− n−6, Z∗ = Z + Ei0,nZ + ǫ′n with ‖Ei0,n‖op ≤ aξn and ‖ǫ′n‖ ≤ aξnri0,n with

ξn = max
(

(lnn/n)1/(2d
′), (kn/n)

1/d′ ,
√

lnn/kn

)

as in previous section, and so with probability greater than 1 − n−6, 〈Z∗,−ux0
〉 ≥

(1− aξn)〈Z,−ux0
〉 − aξnri0,n thus, we have that

P

(

1
√

(d′ + 2)kn

√

δi0,kn ≤ (1− aξn)(αd′ − arn − (lnn)−1)− aξnri0,n

)

≤ 2 exp(−2kn/(ln n)
2)+n−6.
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From kn ≫ (lnn)4, we get
∑

n n(exp(−2kn/(ln n)
2) + n−6) < +∞, so that, by Borel–

Cantelli’s lemma for all i0 such that d(Xi0 , ∂M) ≤ c∂M ln(n)/n, we have

δi0,kn ≥ (d′ + 2)kn((1− aξn)(αd′ − arn − (lnn)−1)− aξnri0,n)
2,

with probability one for n large enough. As by Lemma 1 rn
a.s.→ 0, and because ∆n,kn ≥

δi0,kn we have for all λ < 1,

PH1

(

∆n,kn ≥ (d′ + 2)α2
d′λkn

)

= 1 for n large enough . (12)

Now, observe that kn ≫ (ln(n))4 ensures the existence of an n1 such that for all
n ≥ n1, kn(d

′ + 2)α2
d′/2 ≥ tn,α ∼ 2 lnn, which together with (12) prove Theorem 2.

Similarly, for all λ > 6, PH1
(∆n,kn ≥ λ lnn) = 1 for n large enough and by (8) we

also have PH0
(∆n,kn ≤ λ lnn) = 1 for n large enough, which concludes the proof of

Theorem 3.

5.3 Useful lemmas

We will now give the details of the proofs of the lemmas and propositions used in the
proofs of the main theorems. First we focus on the asymptotic behavior of the “centroid
movement” when considering uniform samples on a ball or on a half ball.

Proposition 1. Let X1, . . . ,Xn be an i.i.d. sample uniformly drawn on B(x, r) ⊂ R
d

and write Xn ≡ 1
n

∑n
i=1 Xi. We have

(d+ 2)n‖Xn − x‖2
r2

L−→ χ2(d). (13)

Proof. Taking (X−x)/r we can assume thatX obeys the uniform distribution on B(0, 1).
If we write X = (X.,1, . . . ,X.,d), then the density of X.,i is

f(x) =
1

σd
σd−1(1− x2)(d−1)/2

I[−1,1](x),

and so

Var(X.,i) =

∫ 1

−1
x2

1

σd
σd−1(1− x2)(d−1)/2dx =

σd−1

σd
B
(

3/2, (d + 1)/2
)

,

where B(x, y) is the Beta function. If we use the fact that σd = πd/2

Γ(d
2
+1)

and that

B(x, y) = Γ(x)Γ(y)
Γ(x+y) , we get

σd−1

σd
B(3/2, (d + 1)/2) =

Γ(d+2
2 )

√
πΓ(d+1

2 )
× Γ(32 )Γ(

d+1
2 )

Γ(d+4
2 )

=
Γ(d+2

2 )Γ(32 )√
πΓ(d+4

2 )
.
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Since Γ(z + 1) = zΓ(z) and Γ(1/2) =
√
π, we obtain that

σd−1

σd
B(3/2, (d + 1)/2) =

√
π 1
2√

π d+2
2

=
1

d+ 2
.

Now, to prove (13), observe that

(d+ 2)n‖Xn‖2 = ‖
√

(d+ 2)nXn‖2 L−→ N(0, Id).

Then, ‖
√

(d+ 2)nXn‖2 L−→ ‖N(0, Id)‖2. Lastly, it is well known that ‖N(0, Id)‖2 L
=

χ2(d).

Proposition 2. Let X be uniformly drawn on Bu(x, r) = B(x, r)∩{z ∈ R
d : 〈z−x, u〉 ≥

0} where u is a unit vector. Then,

E

(〈X − x, u〉
r

)

= αd, where αd =

(

Γ(d+2
2 )

√
πΓ(d+3

2 )

)

. (14)

Proof. First assume that r = 1, x = 0 and u = e1 = (1, 0, . . . , 0). The marginal density
of X1 is

fX1
(t) =

2

σd
σd−1(1− t2)(d−1)/2

I[0,1](x),

so

E(X1) =

∫ 1

0
2
σd−1

σd
x(1 − x2)d−1dx =

σd−1

σd

Γ(1)Γ(d+1
2 )

Γ(d+3
2 )

=
Γ(d+2

2 )
√
πΓ(d+3

2 )
= αd.

For a general value of r, x and u, define Y = Au(X−x)/r where Au is a rotation matrix
that sends u to (1, 0, . . . , 0) (with r > 0). Then Y is uniformly distributed on Be1(0, 1)
and so (14) holds.

Now we aim to make explicit how close to an uniform sample on a ball or a half ball
are the nearest neighbors statistics as n → +∞. First we detail some consequences of
the regularity of M and ∂M . For x ∈ M we denote by NxM the normal space at x. For
x ∈ ∂M we denote by ux the unit normal outer vector to ∂M , that is, ‖ux‖ = 1, ux ∈
TxM∩Nx∂M and for all ε > 0 there exists an rε such that ‖y−x‖ ≤ rε ⇒ 〈 y−x

‖y−x‖ , ux〉 ≤ ε
. Write ϕx : M → x+ TxM for the orthogonal projection onto the affine tangent space.
Let Jx(y) be the Jacobian matrix of ϕ−1

x and Gx(y) =
√

det(J ′
x(y)Jx(y)).

Proposition 3. Let M ⊂ R
d be a compact C2 d′-dimensional manifold with either

∂M = ∅ or ∂M is a C2 (d′ − 1)-dimensional manifold. Then, there exists an rM > 0
and cM > 0 such that for all r ≤ rM ,

1. for all x ∈ M , ϕx is a C2 bijection from M ∩ B(x, r) to ϕx

(

M ∩ B(x, r)
)

for all

r ≤ rM .
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2. For all x ∈ M and y ∈ x+TxM such that ‖x− y‖ ≤ rM , |Gx(y)−1| ≤ cM‖x− y‖.

3. For all x, y ∈ M such that ‖x − y‖ ≤ rM , ‖ϕx(y) − y‖ ≤ cM‖x − ϕx(y)‖2 ≤
cM‖x− y‖2.

4. For all x ∈ M , if d(x, ∂M) ≥ r, then

B(x, r − cMr2) ∩ (x+ TxM) ⊂ ϕx(B(x, r) ∩M) ⊂ B(x, r) ∩ (x+ TxM).

5. For all x ∈ M with d(x, ∂M) ≤ r2, write x∗ for its projection onto ∂M and define

H−
x = {y : 〈y − x, ux∗〉 ≤ −cMr2} and H+

x = {y : 〈y − x, ux∗〉 ≤ cMr2}. Then,

H−
x ∩B(x, r− cMr2)∩ (x+TxM) ⊂ ϕx(B(x, r)∩M) ⊂ H+

x ∩B(x, r)∩ (x+TxM).

Proof. 1. When the manifold has no boundary, this result is classic (see, for instance
Lemma 16 in Maggioni, et al (2014)), but, as far as our knowledge extends, it has not
been proved when M has a boundary.

It only has to be proved that there exists a radius ρM,0 > 0 such that all the ϕx

restricted to M ∩ B(x, ρM,0) are one to one. Proceeding by contradiction, let rn → 0,
xn, yn and zn be such that {yn, zn} ⊂ B(xn, rn) and ϕxn(yn) = ϕxn(zn). Since M is
compact, we can assume that (by taking a subsequence if necessary) xn → x ∈ M . Put
wn ≡ (yn − zn)/‖yn − zn‖ → w. Since ϕxn(yn) = ϕxn(zn), we have wn ∈ (TxnM)⊥.
Since M is of class C2, we have w ∈ (TxM)⊥. Let γn be a geodesic curve on M that
joins yn to zn (there exists at least one since M is compact and path connected). As M
is compact and C2, it has an injectivity radius rinj > 0. Therefore (see Proposition 88 in
Berger (2003)), if we take n so large that rn ≤ rinj/2, we may take γn to be the (unique)
geodesic which is the image, by the exponential map, of a vector vn ∈ TynM . The Taylor
expansion of the exponential map shows that wn = vn/‖yn − zn‖ + o(1). Then, taking
the limit as n → ∞, we get w ∈ TxM , which contradicts the fact that w ∈ (TxM)⊥.

As a conclusion, there exists an r0 such that for all x ∈ M , ϕx is one to one from
M ∩B(x, r) to ϕx

(

M ∩B(x, r)
)

(then the existence of an r1 such that for all x ∈ M and
r ≤ r1, ϕx is one to one and C2 is easily obtained).

2 and 3. For all x ∈ M there exist k functions Φx,k : ϕx

(

M ∩ B(x, r1)
)

− x → R

such that

ϕ−1
x : ϕx

(

M ∩B(x, r1)
)

→ M ∩B(x, r1)

x+











y1
...
yd′

0d−d′











7→ x+











y
Φx,d′+1(y)

...
Φx,d(y)











The compactness of M together with its C2 regularity allows us to find a (uniform) radius
r2 such that all the Φx,k are C2 on ϕx(M ∩B(x, r2)). Note that as ϕx is the orthogonal
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projection, we have, for all x and k, that ∇0Φx,k = 0. Once again the smoothness
and compactness assumptions guarantee that the eigenvalues of the Hessian matrices
H(Φx,k)(0) are uniformly bounded from above by some λM > 0.

Thus, first

‖ϕ−1
x (y)− y‖2 =

d−d′
∑

k=1

(Φx,d′+k(y − x))2 ≤ (d− d′)λM‖x− y‖4 + o(||x− y||4), (15)

and then there exist a c3 and r3 such that for all (x, y) ∈ M ×ϕx(M ∩B(x, r2)) such
that ‖x− y‖ ≤ r3,

‖ϕ−1
x (y)− y‖ ≤ c3‖x− y‖2. (16)

Second:

Jx(y) =











Id′

∇yΦx,d′+1
...

∇yΦx,d











=











Id′

O(‖y‖)
...

O(‖y‖)











and Jx(y)
′Jx(y) = Id′ +O(‖y‖).

This, together with the differentiability of the determinant, implies that there exist a
c4 > 0 and r4 > 0 such that for all x, y ∈ M fulfilling ‖x− y‖ ≤ r4,

|Gx(y)− 1| ≤ c4‖x− y‖.

4. Only the first inclusion has to be proved: the second one is obvious. Introduce r̃ =
min{r1, r2, r3, 1/c3}. Proceeding by contradiction, suppose that there are r, x and y such
that 0 < r ≤ r̃, x ∈ M , d(x, ∂M) > r, y ∈ B

(

x, r(1− c3r)
)

∩ TxM and y /∈ ϕx

(

B(x, r) ∩
M
)

. As x ∈ ϕx(B(x, r) ∩M), the segment [x, y] intersects ∂(ϕx

(

B(x, r) ∩M
)

). Let z ∈
[x, y]∩∂ϕx

(

B(x, r)∩M
)

. On the one hand, we have ‖x−z‖ < ‖x−y‖ ≤ r(1−c3r). On the
other hand, since ϕ−1

x is a continuous function, ∂ϕx

(

B(x, r)∩M
)

= ϕx

(

∂(B(x, r)∩M
)

),
and, because d(x, ∂M) > r, one has that ∂ϕx

(

B(x, r)∩M
)

= ϕx(M ∩∂B(x, r))). Then,
there exist a z0, ||x− z0|| = r, and ϕx(z0) = z. Now by (16),

r2 = ‖x− z‖2 + ‖z − z0‖2 < r2(1− c3r)
2 + c23r

4 = r2 − 2c3r
3(1− c3r) ≤ r2,

which is a contradiction. Then there exist a c5 and r5 such that for all r ≤ r5 and for
all x ∈ M with d(x, ∂M) > r,

B(x, r − c5r
2) ∩ (x+ TxM) ⊂ ϕx(B(x, r) ∩M) ⊂ B(x, r) ∩ (x+ TxM). (17)

5. Sketch of proof. Suppose that ∂M 6= ∅. For each x∗ ∈ ∂M write ϕ∗
x∗ for the affine

projection on x∗ + Tx∗∂M . First note that for all y we have ϕ∗
x∗(y) = ϕx∗(y) − 〈y −

x∗, ux∗〉ux∗ . Thus, by the triangle inequality, |〈y−x∗, ux∗〉| ≤ ‖ϕ∗
x∗(y)−y‖+‖ϕx∗(y)−y‖.
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Recall that ∂M is of class C2 and take y ∈ ∂M . Then by applying (17) (to M and
∂M) we have that there are r6 and c6 such that for all x∗ ∈ ∂M and for all y ∈ ∂M
with ‖x∗ − y‖ ≤ r6, |〈y − x∗, ux∗〉| ≤ c6‖x∗ − y‖2. Thus, for all r ≤ r6/2 and for all x
with d(x, ∂M) ≤ r6/2, and denoting by x∗ the projection of x onto ∂M , we have

∂M ∩B(x, r) ⊂ B(x, r) ∩
{

y : |〈y − x∗, ux∗〉| ≤ c6‖x∗ − y‖2
}

.

Taking now an x with d(x, ∂M) ≤ r2 gives

ϕx(∂M ∩B(x, r)) ⊂ ϕx(B(x, r) ∩
{

y : |〈y − x, ux∗〉| ≤ c7r
2
}

)

⊂ ϕx(B(x, r)) ∩ ϕx(
{

y : |〈y − x, ux∗〉| ≤ c7r
2
}

))

Clearly ϕx(∂M ∩B(x, r)) ⊂ B(x, r) ∩ (x+ TxM).
Recall that, as ∂M is a compact C2 manifold it has a positive reach (see Proposition

14 in Thäle (2008)). Let us denote by c the reach of ∂M , so for all (x∗, y) ∈ (∂M)2 we
have from Theorem 4.8 part 7 in Federer (1959).

|〈y − x∗, ux∗〉| < ‖y − x∗‖2
2c

. (18)

Notice now that for all y ∈ ∂M ∩B(x, r) we have y ∈ ∂M ∩B(x∗, r + r2), and

|〈ϕx(y)− x, ux∗〉| ≤ |〈ϕx(y)− y, ux∗〉|+ |〈y − x∗, ux∗〉|+ |〈x∗ − x, ux∗〉|

thus
|〈ϕx(y)− x, ux∗〉| ≤ ‖ϕx(y)− y‖+ |〈y − x∗, ux∗〉|+ |〈x∗ − x, ux∗〉|.

Equations (16) and (18) entails,

|〈ϕx(y)− x, ux∗〉| ≤ c3||x− y||2 + ‖y − x∗‖2
2c

+ ‖x∗ − x‖.

Recall that ‖x − y‖ ≤ r and ‖x − x∗‖ ≤ r2, then |〈ϕx(y) − x, ux∗〉| ≤ r2
(

c3 + (1 +
r)2/(2c) + 1

)

.
Lastly, we proved that there exists c7 such that,

ϕx(∂M ∩B(x, r)) ⊂ B(x, r) ∩ (x+ TxM) ∩
{

y : |〈y − x, ux∗〉| ≤ c7r
2
}

.

Now, when r ≤ r1, we have ∂ϕx(M ∩ B(x, r)) = ϕx(∂(M ∩ B(x, r))) = ϕx(∂M ∩
B(x, r)) ∪ ϕx(M ∩ ∂B(x, r)) As in the proof of previous part, we easily obtain

∂ϕx(M ∩B(x, r)) ⊂ (x+ TxM) ∩
{

y : |〈y − x, ux∗〉| ≤ c7r
2
}

∪ (B(x, r) \ (B(x, r − c3r
2))

Thus, arguing on the basis of connectedness arguments, we have:

(x+ TxM) ∩
{

y : 〈y − x, ux∗〉 ≤ −c7r
2
}

∩B(x, r − c3r
2) ⊂ ϕx(M ∩B(x, r))

⊂ (x+ TxM) ∩
{

y : 〈y − x, ux∗〉 ≤ −c7r
2
}

∩B(x, r) (19)
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or

(x+ TxM) ∩
{

y : 〈y − x, ux∗〉 ≥ c7r
2
}

∩B(x, r − c3r
2) ⊂ ϕx(M ∩B(x, r))

⊂ (x+ TxM) ∩
{

y : 〈y − x, ux∗〉 ≥ c7r
2
}

∩B(x, r) (20)

Because ux is the normal outer vector to ∂M we have (19) and not (20). The choice
of (19) comes from the orientation of ux∗ .

Recall the change of variables formula

V ⊂ B(x, r0,M ) ⇒ PX(V ) =

∫

V ∩M
fdω =

∫

ϕx(V )
f(ϕ−1

x (y))Gx(y)dy. (21)

Corollary 1. Let X1, . . . ,Xn be an i.i.d. sample of X, a random variable whose dis-

tribution PX fulfills condition P. Then, there exist positive constants rM , A, B and C
such that if r ≤ rM , then

1. for all x ∈ M , Ard
′ ≤ PX(B(x, r)) ≤ Brd

′

.

2. For all x ∈ M such that d(x, ∂M) ≥ r,
∣

∣PX(B(x, r))− f(x)σd′r
d′
∣

∣ ≤ Crd
′+1.

Proof. For any r ≤ rM and any x ∈ M ,

PX(B(x, r))≤f1

∫

ϕx(B(x,r)∩M)
Gx(y)dy.

Thus by Proposition 3, part 2 we have

PX(B(x, r)) ≤ f1σd′r
d′(1 + cMr). (22)

For any r > 0 let us consider first x ∈ M such that d(x, ∂M) ≥ r/2. Then

PX(B(x, r)) ≥ PX(B(x, r/2)) ≥ f0

∫

ϕx(B(x,r/2)∩M)
Gx(y)dy.

Since r ≤ 2rM , applying Proposition 3 parts 2 and 4 we obtain

PX(B(x, r)) ≥ f0σd′(r − cMr2)d
′

(1− cMr). (23)

Let x ∈ M such that d(x, ∂M) ≤ r/2, let x∗ be the projection of x onto ∂M , then we
have

PX(B(x, r)) ≥ PX(B(x∗, r/2)) ≥ f0

∫

ϕx∗(B(x∗,r/2)∩M)
Gx∗(y)dy.

Since r ≤ 2rM , applying Proposition parts 2 and 5, we obtain

PX(B(x, r)) ≥ f0

(σd′

2
(r)d

′ − cMσd′−1r
d′+1

)

(1− cMr). (24)
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Lastly, part 1 is a direct consequence of (22), (23) and (24).

To prove part 2, assume r ≤ rM . From the Lipschitz hypothesis on f , we get

∣

∣

∣

∣

∣

PX(B(x, r))− f(x)

∫

B(x,r)∩M
dω

∣

∣

∣

∣

∣

≤ rKf

∫

B(x,r)∩M
dω.

By (21),
∫

B(x,r)∩M dω =
∫

ϕx(B(x,r)∩M)Gx(y)dy. Applying Proposition 3 part 2 there
follows

∣

∣

∣

∣

∣

∫

B(x,r)∩M
dω −

∫

ϕx(B(x,r)∩M)
dy

∣

∣

∣

∣

∣

≤ cM,1r

∫

ϕx(B(x,r)∩M)
dy.

By Proposition 3 part 4,

∣

∣

∣

∣

∣

∫

B(x,r)∩M
dω −

∫

B(x,r)∩TxM
1dy

∣

∣

∣

∣

∣

≤
∫

(B(x,r)\B(x,r−cM,2r2))∩TxM
dy + cM,1r

∫

B(x,r)∩TxM
dy.

This implies

∣

∣

∣
PX(B(x, r))− f(x)σd′r

d′
∣

∣

∣
≤ rKf

(

σd′r
d′(1− (1− cM,2r)

d′)
)

+

f(x)
(

σd′r
d′(1− (1− cM,2r)

d′) + cM,1σd′r
d′+1

)

.

Thus, the choice of any constant C1 > σd′(Kf + f1dcM,2 + cM,1) allows us to find a
suitable R1.

This in turns implies the following lemma.

Lemma 1. Let X1, . . . ,Xn be an i.i.d. sample of X, a random variable whose distri-

bution PX fulfills condition P. Introduce ρn =
(

2A−1
(

(ln(n)/n)1/2 + kn/n
))1/d′

where

A is the constant introduced in Corollary 1. Then P (rn ≥ ρn) ≤ n−7, where rn was

introduced in Definition 1.

Proof. Let us introduce the random variables Zi ≡ #{{X1, . . . ,Xi−1,Xi+1, . . . ,Xn} ∩
B(Xi, ρn)}. Zi follows a binomial distribution. We can bound P(rn ≥ ρn) ≤

∑

i P(Zi ≤
kn). Put pi = PX(B(Xi, ρn)). By Corollary 1 part 1, we have kn/n ≤ pi. Then, by
Hoeffding’s inequality, P(ri,kn ≥ ρn) = P(Zi − npi < kn − npi) ≤ exp(−2n(kn/n− pi)

2),
from which it follows that P(rn ≥ ρn) ≤

∑

i exp(−2n(kn/n−pi)
2). Using again Corollary

1 and the definition of ρn, we obtain

P(rn ≥ ρn) ≤ n exp
(

− 2n
(

kn/n + (ln(n)/n)1/2
)2)

≤ n−7,

which concludes the proof.
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Now that we have guaranteed that rn → 0, the following proposition will make
explicit how close the projection of the sample onto the tangent space of kn-nearest
neighbors is to an uniform random sample on a d′-dimensional sphere when the manifold
M has no boundary.

Proposition 4. Let X be a random variable whose distribution PX fulfills condition P

with ∂M = ∅. For each x0 ∈ M , put Y1 = ϕx0
(X) the projection onto the tangent space

and Y = Y1|{‖X − x0‖ ≤ r}. Then there exists a constant a > 0 such that if r is small

enough, Y
L
= Z, where Z has a mixture law with density gx0

= (1 − p)gu + pgv where

gu is the density of a random variable uniformly distributed on Bd′(O, r − cr2), gv is a

density supported by Bd′(O, r), and p ≤ ar.

Proof. Observe that X|{‖X − x0‖ ≤ r} has density fx0
(x) = f(x)

PX(B(x0,r))
IM∩B(x0,r). By

Corollary 1 part 2, for r small enough,

f(x)

f(x)σd′rd
′

(

1 + Cr
f0σd′

)IM∩B(x0,r) ≤ fx0
(x) ≤ f(x)

f(x)σd′rd
′

(

1− Cr
f0σd′

)IM∩B(x0,r).

The random variable Y has density gx0
(x) = fx0

(ϕ−1
x0

(x))Gx0
(x)IBx0

, where Bx0
=

ϕx0

(

M ∩B(x0, r)
)

. By Proposition 3, |Gx0
(x)− 1| ≤ cMr, and so

1− cMr

σd′rd
′

(

1 + Cr
f0σd′

)IBx0
≤ gx0

(x) ≤ 1 + cMr

σd′rd
′

(

1− Cr
f0σd′

)IBx0
.

Note that by Proposition 3 we have

B

(

x0, r
(

1− cMr
)

)

∩ (x0 + Tx0
M) ⊂ Bx0

⊂ B
(

x0, r
)

∩ (x0 + Tx0
M).

Put B−(x0, r) ≡ B
(

x0, r(1− cMr)
)

∩ (x0 + Tx0
M), and define

p ≡ (1− cMr)d
′+1

(

C

f0σd′
r + 1

)−1

.

Observe that gx0
is a density and has the property that gx0

(x) ≥ pgu(x), gx0
(x) = 0 if

‖x− x0‖ > r, and p = O(r). This concludes the proof.

Proposition 5. Let X be a random variable whose distribution PX fulfills condition P

with ∂M 6= ∅. For each x0 ∈ M with d(x0, ∂M) ≤ r2, put Y1 = ϕx0
(X) the projection

onto the tangent space and Y = Y1|{‖X − x0‖ ≤ r}. Then there exists a constant

a > 0 such that if r is small enough, Y
L
= Z, where Z has a mixture law with density

gx0
= (1− p)gu + pgv where gu is the density of a random variable uniformly distributed

on Bd′(O, r − cr2) ∩ {x, 〈x,−ux∗

0
〉 ≥ cr2}, gv is a density supported by Bd′(O, r) and

p ≤ ar.
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The proof is similar to the previous one and is left to the reader.
In the proofs of Theorems 1 and 2 we also needed to control the number of points in

the mixture that are drawn with the non-uniform random variable. This is done with
the following lemma.

Lemma 2. Suppose Tn  Binom(k′n, qn) with qn
√

k′n ln(n) → 0 and k′n/(ln(n))
4 →

+∞.

Then, for all λ > 0, for all b > 0, and for n large enough, nP
(

ln(n)Tn/
√

k′n > λ
)

<
n−b.

Proof. By Bernstein Inequality we have

P

(

Tn

k′n
≥ qn +

√

2qnu

k′n
+

u

k′n

)

≤ e−u

then

P

(

Tn lnn
√

k′n
≥
√

k′nqn ln(n) +
√

2qnu(lnn)2 +
u lnn
√

k′n

)

≤ e−u.

Thus, taking u = λ
√

k′n/(2 ln n) and considering n large enough to ensure

√

k′nqn ln(n) +

√

2qnλ
√

k′n(lnn) ≤ λ/2,

which is possible according to the condition
√

k′nqn ln(n) → 0, we have:

P

(

Tn lnn
√

k′n
≥ λ

)

≤ exp

(

−λ

√

k′n
2 lnn

)

≤ exp

(

−(lnn)

(

λ

√

k′n
(ln n)4

))

Lastly, the results follows from k′n/(ln(n))
4 → +∞, taking n large enough to ensure

λ
√

k′n/(ln n)
2 ≥ b+ 1.

We have proved that the projection of the kn nearest neighbors onto the tangent space
is close to an uniform draw. The following proposition quantifies how this (unknown)
projection is close to the estimation via a local PCA.

Proposition 6. Let X1, . . . ,Xn be an i.i.d. sample in R
d of a law whose support is

included in the unit ball. Let Ŝn = 1
n

∑

iX
′
iXi and S = E(X ′X). Then

i. P(‖Ŝn − S‖∞ > s) ≤ 2d2 exp(−s2n/2);

ii. If, moreover, Xi is uniformly drawn in the unit ball, then

P

(

‖Ŝn − 1

d+ 2
Id‖∞ > s

)

≤ 2d2 exp(−s2n/2)

and there exist a and s0 such that for all s < s0, P(‖Ŝ−1
n − (d + 2)Id‖∞ > as) ≤

2d2 exp(−s2n/2) for n large enough.
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Proof. Part i is a direct consequence of the application of Hoeffding’s inequality: for all
i, j we have P(|Ŝn − S|i,j > s) ≤ 2 exp(−s2n/2). Part ii is a consequence of part i (for
uniformly drawn S = (d+ 2)−1Id) and of the differentiability of matrix inversion (close
to the identity matrix).

The following result provides the uniform convergence rate of the local PCA to the
tangent spaces. Write Md(R) for the space of d× d matrices with coefficients in R. Let
Id′,d ∈ Md(R) be the block matrix

Id′,d =

(

Id′ 0
0 0

)

.

For a symmetric matrix S ∈ Md(R), put S = QS∆SQ
′
S, with ∆S diagonal with

(∆S)1,1 ≥ (∆S)2,2 ≥ . . . ≥ (∆S)d,d and QS the matrix containing (by columns) an
orthonormal basis of eigenvectors. Write PS,d′ = QSId′,dQ

′
S , that is, the matrix of the

orthogonal projection on the plane spanned by the d′ eigenvectors associated to the d′

largest eigenvalues of S. Note that PId′,d,d
′ = Id′,d

Lemma 3. Let X1, . . . ,Xn be an i.i.d. sample drawn according to a distribution PX

which fulfills condition P, with ∂M = ∅. Denote by ϕ̃Xi the linear projection onto the

tangent space at Xi and by ϕ̂Xi the linear projection onto the estimation of the tangent

space via local PCA. With probability greater than 1−n−6 for n large enough, there exist

a constant a and a matrices Ei,n with ‖Ei,n‖op ≤ a(
√

ln(n)/kn + ρn) such that, for all i
and all y ∈ B(Xi, ρn) we have:

‖ϕ̂Xi(y)− (Id − Ei,n)ϕ̃Xi(y)‖ ≤ a
(

√

ln(n)/kn + ρn

)

‖ϕ̃Xi(y)‖2.

Proof. By Proposition 6, for all i, P
(

‖r−2
i,kn

Ŝi,kn − r−2
i,kn

Σi‖∞ ≥ t
)

≤ 2d2 exp(−t2kn/2),

where Σi = E(Y ′Y | ‖Y ‖ ≤ ri,kn) with Y = X −Xi and Ŝi,kn is as in Definition 1. Then

P
(

∃i : ‖r−2
i,kn

Ŝi,kn − r−2
i,kn

Σi‖∞ ≥ t
)

≤ n2d2 exp(−t2kn/2).

Now if we apply the Borel–Cantelli lemma with t = 4
√

ln(n)/kn, we get that, with
probability one, for n large enough,

P

(

∃i, ‖r−2
i,kn

Ŝi,kn − r−2
i,kn

Σi‖∞ ≥ 4
√

ln(n)/kn

)

≤ 2d2n−7. (25)

Denote by Pi the matrix whose first d′ columns form an orthonormal basis of TXiM ,
completed to obtain an orthonormal base of Rd. By Lemma 1, since kn/n → 0, we have
ρn → 0 and, for n large enough, combining Proposition 3 parts 3 and 4 and (21), there
exists a c such that for n large enough

P

(

for all i :
∥

∥

∥
r−2
i,kn

Σi − (d′ + 2)−1P ′
i Id′,dPi

∥

∥

∥

∞
≤ cρn|{rn ≤ ρn}

)

= 1. (26)

Now, (25), (26) and Lemma 1 give that, for n large enough,
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P

(

∃i,
∥

∥

∥
r−2
i,kn

Ŝi,kn − (d′ + 2)−1P ′
i Id′,dPi

∥

∥

∥

∞
≥ 4
√

ln(n)/kn + cρn

)

≤ (2d2 + 1)n−7.

Thus, by usual inequality on the norms,

P

(

∃i,
∥

∥

∥r−2
i,kn

Ŝi,kn − (d′ + 2)−1P ′
i Id′,dPi

∥

∥

∥

op
≥ 4d−1

√

ln(n)/kn + cd−1ρn

)

≤ (2d2 +1)n−7.

Suppose now that, for all i we have
∥

∥

∥r−2
i,kn

Ŝi,kn − (d′ + 2)−1P ′
i Id′,dPi

∥

∥

∥

op
≤ 4d−1

√

ln(n)/kn + cd−1ρn

By previous equation and Lemma 19 in Arias-Castro et al. (2017) we have that, for all i

‖ϕ̃Xi − ϕ̂Xi‖op ≤
√
2(d′ + 2)

d

(

4
√

ln(n)/kn + cρn

)

(27)

Now suppose that rn ≤ ρn, which according to Lemma 1 it happens with probability
greater than 1 − n−7. Consider y ∈ M ∩ B(Xi, ρn) −Xi. Introduce Ei,n the matrix of
the application ϕ̃Xi − ϕ̂Xi and ΦXi,k the function introduced in the proof of points 2 and
3 in Proposition 3, we get

y =











ϕ̃Xi(y)
ΦXi,d′+1(ϕ̃Xi(y))

...
ΦXi,d(ϕ̃Xi(y))











so ϕ̂Xi(y) = ϕ̃Xi(y) +Ei,nϕ̃Xi(y) + Ei,n











0d′

ΦXi,d′+1(ϕ̃Xi(y))
...

ΦXi,d(ϕ̃Xi(y))











and so, for all i, there exists Ei,n a matrix such that,

‖Ei,n‖op ≤
√
2(d′ + 2)

d

(

4
√

ln(n)/kn + cρn

)

.

Then,

‖ϕ̂Xi(y)− (Id − Ei,n)ϕ̃Xi(y)‖ ≤ (d− d′)λM

√
2(d′ + 2)

d

(

4
√

ln(n)/kn + cρn

)

‖ϕ̃Xi(y)‖2

That concludes the proof.

Lemma 4. Let X1, . . . ,Xn be an i.i.d. sample drawn according to a distribution PX

which fulfills condition P. For a given λ > 0, introduce In(λ) = {i : d(Xi, ∂M) ≤
λ(lnn)/n, ri,kn ≥

√

d(Xi, ∂M)}. Denote by ϕ̃Xi the linear projection onto the tangent

space at Xi and by ϕ̂Xi the linear projection onto the estimation of the tangent space

via local PCA. With probability greater than 1 − n−6 for n large enough, there exist a

constant a and a matrices Ei,n with ||Ei,n||op ≤ a(
√

ln(n)/kn + ρn) such that, for all

i ∈ In(λ) and all y ∈ B(Xi, ρn) we have:

||ϕ̂Xi(y)− (Id − Ei,n)ϕ̃Xi(y)|| ≤ a
(

√

ln(n)/kn + ρn

)

||ϕ̃Xi(y)||2.
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Proof. The proof is exactly the same as the previous one, the only difference being now
that, up to a change of basis, r−2

i,kn
Σi is no longer close to (d′ + 2)−1Id′,d, but rather to

a diagonal matrix with an eigenvalue (d′ + 2)−1 eigenvalues of order d′ − 1 and βd′ > 0
eigenvalue of order 1.
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