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Abstract. Using some extensions of a theorem of Heppes on finitely
supported discrete probability measures, we address the problems of
classification and testing based on projections. In particular, when the
support of the distributions is known in advance (as for instance for
multivariate Bernoulli distributions), a single suitably chosen projection
determines the distribution. Several applications of these results are
considered.

1. Introduction

The problem of dimension reduction is of increasing importance in modern
data analysis. In this setting, we address the problem of when we can
efficiently perform some important statistical analysis on high-dimensional
discrete data, such as learning or hypothesis testing.

For supervised classification problems with high-dimensional binary data,
nearest-neighbour or kernel based rules have a poor behaviour, and some
other well-known techniques like Random Forest (Breiman (2001)) or Support
Vector Machines (SVM see Boser et al. (1992)) are alternatives used in
practice. However, as mentioned in Xu et al. (2021), there are just a few
procedures particularly well designed for discrete data (see Needell et al.
(2018); Molitor et al. (2019); Molitor and Needell (2021)). In particular,
Needell et al. (2018) consider a classification rule for binary data, where
the classification rule is updated recursively using projections, but over
hyperplanes determined by subsets of the original coordinates chosen at
random.

In this article, we propose an alternative approach that provides competi-
tive procedures for the two main problems under consideration, hypothesis
testing and learning. It also has potential applications to other statistical
problems, since it provides a general dimension-reduction technique, based
on a bound for the total variation distance between probability measures
in terms of the distances between certain of their lower-dimensional projec-
tions. For example, this idea can be applied to perform clustering or to use
depth functions in lower dimensions, among other applications that are not
considered in the present manuscript.
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Our approach is based on a variant of a theorem of Cramér and Wold
(Cramér and Wold (1936)). According to the original Cramér–Wold theorem,
if P and Q are Borel probability measures on Rd whose projections PL, QL
onto each line L satisfy PL = QL, then P = Q. There are several extensions
of this theorem, in which one assumes more about the nature of the measures
P,Q and less about the set of lines L for which PL = QL. For example, if P
and Q have moment generating functions that are finite in a neighbourhood
of the origin, and if PL = QL for all lines L in a set of positive measure (in a
natural sense), then P = Q. Articles on this subject include Rényi (1952),
Gilbert (1955), Bélisle et al. (1997) and Cuesta-Albertos et al. (2007).

If P and Q are supported on finite sets, then it is even possible to differ-
entiate between them using only a finite set of projections. The following
result is due to Heppes (Heppes, 1956, Theorem 1′). We denote by PH the
projection of a probability measure P onto a general subspace H.

Theorem 1.1. Let Q be a discrete probability measure on Rd whose support
consists of k points. Let H1, H2, . . . ,Hk+1 be subspaces of Rd respectively of
dimensions m1, . . . ,mk+1, such that no two of these subspaces are contained
in a single hyperplane, that is, no arbitrary straight line in Rd can be perpen-
dicular to more than one of the Hi. If P is a Borel probability measure on
Rd such that PHi = QHi, i = 1, . . . , k + 1, then P = Q.

An example of Rényi (1952) shows that a minimum of (k + 1) subspaces
are needed in Theorem 1.1. On the other hand, the ambient dimension d
plays no role in this result, which could just as easily have been formulated
in any separable Hilbert space. We also note that, though Q is assumed
discrete, no such assumption is made about P . This makes the result suitable
for hypothesis testing.

We establish a quantitative version of Heppes’ theorem (see Theorem 2.1
in next section), where we show that the total variation distance between
P and Q is at most the sum of the total variation distances between their
projections. We also prove a refinement of Heppes’ theorem where, if we know
in advance the support of the distribution, then merely one suitably chosen
projection suffices to determine the probability measure (see Proposition 2.3
in the next section). This projection just needs to be chosen to avoid a finite
or countable number of bad directions, and thus almost all directions will be
adequate. In particular, this is the case of multivariate binary distributions,
which will be the focus of part of this paper.

The main results regarding projections are presented in Section 2. In
Section 3 we propose a procedure for learning from projections, and adapt it
for the learning problem for discrete tomography. Next we consider the case
of testing for multivariate binary data in Section 4 and analyze the testing
problem for some well-known distributions for multivariate binary data, an
important problem for many applications (see for instance the nice review on
this problem in Balakrishnan and Wasserman (2018)). Section 5 addresses a
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different problem, namely if we can still say something when we have only
one realization X of a multivariate Bernoulli distribution.

Our results are illustrated with some simulation examples in Section 6
and three real-data examples in Section 7.

We end this section with a remark about possible extensions of our ideas
to continuous distributions. As mentioned above, the starting point of
this article is Heppes’ theorem, which allows us to differentiate between
two finitely supported measures on Rd using only finitely many projections.
For more general measures, it is usually necessary to use an infinite set of
projections (see e.g. Hamedani and Tata (1975)). However, it turns out that
finitely many projections suffice if both P and Q are elliptical distributions
(a class of measures that includes not only Gaussian distributions but also
many other continuous multivariate distributions of interest, including some
with infinite first moments). This result, which may be viewed as a kind
of analogue of Heppes’ theorem for continuous distributions, is discussed in
more detail at the end of the paper.

2. Some variants of Heppes’ Theorem

Given two probability measures P,Q on a measurable space (E,A), we
consider the total variation distance between them, namely

dTV (P,Q) := sup
A∈A
|P (A)−Q(A)|.

Also, given a Borel probability measure P on Rd and a subspace H of Rd,
we write PH for the projection of P onto H, namely the Borel probability
measure on H given by

PH(B) := P (π−1
H (B)),

where πH : Rd → H is the orthogonal projection of Rd onto H.
Clearly, if P,Q are Borel probability measures on Rd and H is a subspace

of Rd, then
dTV (PH , QH) ≤ dTV (P,Q).

In this section we investigate some inequalities going in the opposite sense.

2.1. A quantitative Heppes theorem.
The following result is a quantitative generalization of Theorem 1.1.

Theorem 2.1. Let Q be a discrete probability measure on Rd whose support
contains at most k points. Let H1, . . . ,Hk+1 be subspaces of Rd such that
H⊥i ∩H⊥j = {0} whenever i 6= j. Then, for every Borel probability measure

P on Rd, we have

(1) dTV (P,Q) ≤
k+1∑
j=1

dTV (PHj , QHj ).

The main idea of the proof is embodied in the following lemma, which is
a useful result in its own right.
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Lemma 2.2. Let P,Q and H1, . . . ,Hk+1 be as in the statement of the
theorem. Then
(2)

P ({x})−Q({x}) ≤ max
1≤j≤k+1

(
PHj ({πHj (x)})−QHj ({πHj (x)})

)
(x ∈ Rd).

Proof. Let x ∈ Rd. Since the (k+ 1) sets (x+H⊥j )\{x}, (j = 1, 2, . . . , k+ 1)
are pairwise disjoint, and since Q is supported on a set containing at most k
points, there exists a j such that (x+H⊥j ) \ {x} is disjoint from the support
of Q. Hence

Q(x+H⊥j ) = Q({x}).

We then have

P ({x})−Q({x}) = P ({x})−Q(x+H⊥i )

≤ P (x+H⊥j )−Q(x+H⊥j )

= PHj ({πHj (x)})−QHj ({πHj (x)}).

This establishes (2).
�

Proof of Theorem 2.1. For each j ∈ {1, 2, . . . , k + 1}, let Aj be the set of

x ∈ Rd such that (x + H⊥j ) \ {x} is disjoint from the support of Q. The

proof of Lemma 2.2 shows that ∪k+1
j=1Aj = Rd. Also, if Bj is a Borel subset

of Aj , then (Bj +H⊥j ) \Bj is contained in ∪x∈Aj

(
(x+H⊥j ) \ {x}

)
, which is

disjoint from the support of Q, and hence

Q(Bj +H⊥j ) = Q(Bj).

Now let P be a Borel probability measure on Rd, and let B be an arbitrary
Borel subset of Rd. Set B1 := B ∩ A1 and Bj := B ∩ (Aj \ Aj−1) for
j = 2, . . . , k + 1. Then B1, . . . , Bk+1 is a Borel partition of B such that
Bj ⊂ Aj for all j. Hence

P (B)−Q(B) =

k+1∑
j=1

(
P (Bj)−Q(Bj)

)
=

k+1∑
j=1

(
P (Bj)−Q(Bj +H⊥j )

)

≤
k+1∑
j=1

(
P (Bj +H⊥j )−Q(Bj +H⊥j )

)

=

k+1∑
j=1

(
PHj (πHj (Bj))−QHj (πHj (Bj))

)

≤
k+1∑
j=1

dTV (PHj , QHj ).
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Also, since P,Q are both probability measures, we have

Q(B)− P (B) = P (Rd \B)−Q(Rd \B) ≤
k+1∑
j=1

dTV (PHj , QHj ).

Finally, combining the last two inequalities, we obtain (1).
�

2.2. A Heppes-type result for distributions with pre-determined
support.

If we know in advance the location of the supports of P and Q, rather
than merely their cardinality, then it suffices to use just one judiciously
chosen subspace H. This is even true if P,Q have countable supports, as the
following result shows.

Proposition 2.3. Let P,Q be probability measures on Rd supported on a
countable set E ⊂ Rd. Let H be a subspace of Rd such that H⊥ ∩ (E −E) =
{0}. Then

dTV (P,Q) = dTV (PH , QH).

In particular, PH = QH implies P = Q.

Remark. We can even choose H to have dimension equal to 1. Indeed, this
amounts to ensuring that the hyperplane H⊥ misses the countable set E−E.

Lemma 2.4. Let E be a countable subset of Rd and let H be a subspace of
Rd with the property that H⊥ ∩ (E − E) = {0}. Then the restriction of πH
to E is injective.

Proof. If x, y ∈ E and πH(x) = πH(y), then x − y ∈ (E − E) ∩H⊥ = {0},
so x = y. �

Proof of Proposition 2.3. Let B be a Borel subset of Rd. From the lemma,
we have E ∩B = E ∩ π−1

H πH(E ∩B), so

P (B) = P (E ∩B) = P (E ∩ π−1
H πH(E ∩B))

= P (π−1
H πH(E ∩B)) = PH(πH(E ∩B)),

and likewise for Q. Hence

|P (B)−Q(B)| = |PH(πH(E ∩B))−QH(πH(E ∩B))| ≤ dTV (PH , QH).

It follows that dTV (P,Q) ≤ dTV (PH , QH). The reverse inequality is obvious,
so we have equality. �

A simple illustration of Proposition 2.3. Suppose that we have a
random vector (X1, X2) ∈ R2, with X1 ∼ Ber(p1) and X2 ∼ Ber(p2). In this
case, E = {(0, 0), (1, 0), (0, 1), (1, 1)}. We consider one-dimensional subspaces
H, and we look at the orthogonal projections of the points in the support
E on H, see Figure 1. There are only 4 subspaces (in red in Figure 1) that
do not fulfill the condition H⊥ ∩ (E − E) = {0}, namely those given by
{(x, y) ∈ R2, ax+ by = 0} with (a, b) ∈ {(1, 0), (1, 1), (0, 1), (1,−1)}.
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Figure 1. Illustration of Proposition 2.3.

2.3. Relation with other metrics.
Theorem 2.1 and Proposition 2.3 are expressed in terms of the total

variation metric dTV . For discrete distributions P,Q on Rd, this metric is
also given by

dTV (P,Q) =
1

2

∑
x

∣∣∣P ({x})−Q({x})
∣∣∣

= inf
{
P(X 6= Y ) : (X,Y ) such that X ∼ P and Y ∼ Q

}
.

There are several other commonly used metrics on the space of probability
measures; see Gibbs and Su (2002) for an account of these. We mention one
that will be used in what follows.

The Wasserstein–Kantorovich metric of order p ≥ 1, defined for distribu-
tions on Rd belonging to Lp, is given by

dW,p(P,Q) := inf
{
E(|X − Y |p)1/p : (X,Y ) such that X ∼ P and Y ∼ Q

}
.

For one-dimensional distributions, an equivalent formulation is given by

(3) dW,p(P,Q) =

(∫ 1

0
|F−1(t)−G−1(t)|p

)1/p

,

where F and G stands for the distribution functions of P and Q.
From (Gibbs and Su, 2002, Theorem 4), if P,Q are both supported on a

bounded set E ⊂ Rd of diameter diam(E), then

dW,1(P,Q) ≤ diam(E)dTV (P,Q),

and, if E is finite and dmin(E) denotes the minimum separation between
points of E, then

(4) dW,1(P,Q) ≥ dmin(E)dTV (P,Q).

It follows that, if (Pn) is a sequence of probability distributions all sup-
ported on the same finite set, then Pn converges to P weakly if and only if
dTV (Pn, P )→ 0.
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For the case of discrete tomography problem we will consider Mallow’s
L2-distance between histograms Mallows (1972), based on the Wasserstein
distance given in (3). For histograms, the article Irpino et al. (2006) provides
an exact calculation of this distance by an efficient algorithm.

3. Classification based on projections and discrete tomography

Discrete tomography, a term introduced by Larry Shepp in 1994, focuses
on the reconstruction of binary (black and white) images based on a finite
set of projections of the data, see for instance Gardner et al. (1996).

Let E ⊂ Zd be the domain of the binary images, let N := card(E), and
let F be a subset of E. In this setting we only have access to the information
given on parallel lines orthogonal to certain directions u of the images. More
precisely, given a direction u in the unit sphere, the X-ray of the set F in
direction u provides the number of points in the set on lines parallel to u,
that is, if Lu stands for the line through the origin parallel to u, we are given
the function

(5) Tu(F )(x) := card(F ∩ (x+ Lu)), x ∈ R.

Given a direction u, we estimate Tu(F )(x) based on an histogram built
up from a partition of R B1, . . . , Bm as follows: for x ∈ Bj , define

T̂u(F )(x) := card
{
∪y∈Bj (F ∩ (y + Lu))

}
.

So we have the histogram of the points determined by the binary image of
the points in the direction u, see Figure 2.

Figure 2. Representation of the histogram of the projection
of the data in the direction u.

3.1. An algorithm with random projections. First we consider the
following general classification problem into m classes: given an iid training
sample, Dn = (Xn,Yn) ={(X1, Y1), . . . , (Xn, Yn)} with the same distribution
as (X,Y ) ∈ E × {1, . . . ,m}, we want to classify a new data Xn+1 for which
the label Yn+1 is unknown. Let Pl, l = 1, . . . ,m stand for the unknown
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discrete distributions of X|Y = l and let Pnl be the respective empirical
distributions based on the training sample.

Let η(x) denote the conditional mean of Y given X = x; namely, η(x) =
E(Y |X = x). It is well known that the optimal rule for classifying a single new
datum X is given by the Bayes’ rule, which, for binary classification, reduces
to g∗(X) = I{η(X)≥1/2}. Bayes’ rule for finitely supported distributions to
classify x corresponds to defining

(6)

g∗(x) = Ỹ : = arg max
l=1,...,m

P (X = x|Y = l)P (Y = l)

P (X = x)

= arg max
l=1,...,m

Pl(X = x)P (Y = l)

Pn(X = x)
,

and a plug-in rule is given by

(7) gn(Xn+1,Dn) = Ŷn+1 := arg max
l=1,...,m

Pnl(X = x)Pn(Y = l)

Pn(X = x)
,

which, for the binary classification case, reduces to

(8)
g∗(x) = I{P1(X=x)P (Y=1)>P0(X=x)P (Y=0)};

gn(x) = I{Pn1(X=x)Pn(Y=1)>Pn0(X=x)Pn(Y=0)}.

Since we only have access to the projections of the distributions, our first
approach is to make use of the relation (2). Let Dnlj , l = 1, . . .m, j =
1, . . . k + 1 be the projections of the training sample with label l on the
subspace Hj , and let Xn+1,j be the projection of a new data on Hj . To
simplify the notation, we will consider the binary classification problem,
m = 2.

A possible classification procedure will be to find under which mem-
ber of the family of empirical distributions Pnj , j = 1, . . . ,m the new
data Xn+1 “fits better”. For that purpose, we consider the distributions

P̃j(n+1), j = 1, . . . ,m defined by just adding the data Xn+1 = x to each
one of the j empirical distributions. Next we consider the vector of dis-

tances dTV (Pnj , P̃(n+1)j), j = 1, . . .m and we classify the point Xn+1 into
the class j for which the distance is minimal. We will use this last approach
in what follows. Consistency is shown in the next theorem, where, for nota-
tional simplicity, we consider the binary classification problem, where now
E(Y |X = x) = P (Y = 1|X = x). Let L∗ = P (g∗(X) 6= Y ) be the Bayes risk,
i.e. the risk of the best classifier, and let Ln = L(gn) = P (gn(X,Dn 6= Y |Dn)).
Recall that the classifier is weakly consistent if

E(Ln) = P (gn(X,Dn) 6= Y )→ L∗, as n→∞,

and strongly consistent if

lim
n→∞

Ln = L∗ with probability 1.
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See for instance Devroye et al. (1996) for further details. Since (4) implies
that dTV (Pn0, P0) and dTV (Pn1, P1) converge to zero a.s., it is clear that the
plug-in classification rule given by equation (8) is strongly consistent.

Next we will prove the consistency of the new proposal rule given by:

(9) gn(xn+1) :=

{
1− i, i = 0, 1, if Pni(xn+1) = 0,

I{dTV (Pn1,P̃(n+1)1)<dTV (Pn0,P̃(n+1)0)}, otherwise.

Observe that the new rule (9) does not require us to have any notion of
distance in the space of covariates E.

Theorem 3.1. Let Dn = (Xn,Yn) = {(X1, Y1), . . . , (Xn, Yn)} be an iid
training sample with the same distribution as (X,Y ) ∈ E × {0, 1}. Then the
classification rule given by equation (9) is strongly consistent provided that
the training sample satisfies the condition that Y (x) = 1 for all x such that
P1(x) > P0(x).

Proof. First observe that since the support is finite, if P̃n0(xn+1) = 0 for n
large enough, then P0(xn+1) = 0, so we can replace Pni, i = 0, 1 by Pi in the
top line of (9). Next observe that it suffices to show that, if

(10) I{P1(X=x)>P0(X=x)} = 1,

then limn→∞ I{dTV (Pn1,P̃(n+1)1)<dTV (Pn0,P̃(n+1)0)} = 1 with probability 1.

Since dTV (Pn0, P0) and dTV (Pn1, P1) converge to 0 a.s., the problem
reduces to showing that equation (10) implies that

lim
n→∞

I{dTV (P1,P̃(n+1)1)<dTV (P0,P̃(n+1)0)} = 1

with probability 1.
We only have to consider the case where P0(xn+1) 6= 0. We have

dTV (P1, P̃(n+1)1)→ 0 a.s., while, with probability one,

dTV (P0, P̃(n+1)0) >
1

2

∣∣∣P0(xn+1)− 1

(n0 + 1)

∣∣∣ > P0(xn+1)/4

for all n large enough. �

Since we only have access to the projections of the distributions, we make
use of the bound based on projections given in the inequality (1) and replace
the distances by their bounds.

Let Dnlj , l = 1, . . .m, j = 1, . . . k + 1 be the projections of the training
sample with label l on the subspace Hj and let Xn+1,j be the projection of a
new datum on Hj .
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Algorithm 1: Classification algorithm for learning from projections.

Input H1, . . . ,Hk+1 ; Dnlj , l = 1, . . .m, j = 1, . . . k + 1 and

Xn+1,j j = 1 . . . k + 1 ;

For each pair (j, l), calculate the empirical distribution of Dnlj , PDnl
j

;

Add the new projected data Xn+1,j to each pair (j, l) of distributions
PDnl

j
and obtain PD(n+1)l

j

;

Calculate db(l) := maxj=1,...,k+1 d(PDnl
j
, PD(n+1)l

j

), for l = 1, . . .m,

where d is a distance between the empirical distributions in R ;
Output Yn+1 = ls = arg minl=1,...m db(l).

Remark. In recent years, there has been a substantial literature on the subject
of robustness for learning algorithms focussing on adversarial perturbations
of the data (adversarial attacks), see for instance Bertsimas et al. (2019);
López-Fidalgo and Wiens (2022), and the references therein. It treats the
question of how changing a small fraction of data at arbitrary positions
affects the learning strategies. Although distinct, this problem is related to
the classical notion of breakdown point in robustness.

Among the kinds of perturbations considered, there are three main different
settings: robustness against uncertainty in covariate features only in the
testing sample, robustness against uncertainty only in labels, and robustness
against uncertainty in covariate features and in the training sample, the last
of these being the wildest. Although this problem is quite far from the central
objective of the present article, it is not difficult to show that algorithm
(9) is robust with respect to these kinds of perturbations. Indeed, from the
proof of Theorem 3.1, one can derive that the procedure will be robust at x
as long as the fraction α of adversarial perturbation points is smaller than
|P (x)−Q(x)|. This condition seems to be mandatory for robustness for any
classification rule from discrete data.

3.2. Discrete tomography: classification without reconstruction. In
discrete tomography, for each F we only have access to the values Tu(F )(xi)
for each direction u on a given grid x = {x1, . . . , xM}. Once again, for
notational simplicity, we consider the case of binary classification. Let Dn =
{Fn,Yn} = {(F1, Y1), . . . , (Fn, Yn)} (the training sample) with the same
distribution as (F, Y ) ∈ E×{0, 1}. Let n1 =

∑n
i=1 Yi and n0 = n−n1 be the

sizes of each class in the training sample. Denote by Fij , j = 1, . . . ni, i = 0, 1,
the data at each class according to its label i. We want to classify a new
data F . Let Tu(F0j) := (Tu(F0j)(x1), . . . , Tu(F0j)(xM )), j = 1, . . . n0, and
Tu(F1j) := (Tu(F1j)(x1), . . . , Tu(F1j)(xM )), j = 1, . . . n1, corresponding to

direction u. Then define T̂u(Fij) as the histogram associated to the points
of Fij projected on the direction u. So, to each discrete tomography and
direction, we associate the corresponding histogram.

We will denote by d the Mallow L2-distance between histograms. Next,
based on this distance, for each direction u we apply the classical k-nearest
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neighbour classification rule and then combine the results for the different
directions u to produce the output. More precisely, we consider the following
algorithm:

Algorithm 2: Classification algorithm for discrete tomography.

Input directions u1, . . . , uk+1 ;

Input “projected” empirical histograms T̂u(Fij) with
j = 1, . . . ni, i = 0, 1 for each direction u ;

Calculate the histogram corresponding to the new data Fn+1;
Let d be a distance between histograms, given the direction u,

determine d
(
T̂u(Fn+1), T̂u(Fij)

)
for j = 1, . . . ni, i = 0, 1;

Fixed a number r of neighbours. By majority vote, the label
Yn+1,u = 0 or 1 is assigned to the new observation by the k-nearest
neighbour rule with k = r. This procedure is performed for each
direction u;

Output Yn+1 = 0 if 1
k+1

∑k+1
s=1 Yn+1,us < 1/2, and Yn+1 = 1 otherwise.

3.3. On the number of projections required in practice. If the sup-
port of the distributions is not known, but only its cardinality k, then both
Heppes’ theorem and our Theorem 2.1 require the use of (k + 1) projections.
Although this value does not depend on the data dimension d directly, in
practice, for high-dimensional binary data, the number of projections may be
very large and therefore computationally hard. According to our experience,
if one takes a sequence of increasing smaller values, the accuracy of the
performance on the testing sample increases up to some point and then
stabilizes. This suggest using a penalized procedure to select the number of
random projections, providing a trade-off between the number of projections
and the accuracy of the procedure.

4. Multivariate binary data

4.1. Notation. Let X = (X1, . . . , Xd) be a random vector such that each
coordinate Xi, i = 1, . . . , d is a Bernoulli random variable, without any
independence assumption about the coordinates Xi. The distribution of X is
called a multivariate Bernoulli distribution and has been studied by several
authors, (see for instance Teugels (1990), Fontana and Semeraro (2018),
Marchetti and Wermuth (2016), Euán and Sun (2020) Dai et al. (2013),
and the references therein), where nice characterizations of the distribution
are given. Also, the simulation problem for this type of distribution for
different correlation structures is addressed in the literature, see for instance
Oman (2009), Huber and Marić (2019), Jiang et al. (2021) and Fontana and
Semeraro (2021).

The random vector X takes values in the space

(11) Ωd := {0, 1}d = {ω = (y1, . . . , yd), yi ∈ {0, 1}, i = 1, . . . , d},
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i.e. the set of d-tuples of zeros and ones, where yi stands for the result of
the i–th trial.

Let ∆d be the set of all possible probabilities on Ωd, i.e.

∆d :=
{

(p1, . . . , p2d) : pi ≥ 0,
2d∑
i=1

pi = 1
}
.

For each probability p ∈ ∆d, given by

{p(ω) : ω ∈ Ωd},

we can derive the law of each Xi, as well as the law of Sd := X1 + . . .+Xd,
which are given by

qi := P (Xi = 1) =
∑

{ω∈Ωd:yi=1}

p(ω),

P (Sd = k) =
∑

{ω∈Ωd:
∑d

i=1 yi=k}

p(ω),

respectively.
Some nice and more explicit formulae are given in Dai et al. (2013), which

can be used to perform a statistical analysis of the data in the case where
we have a sample of iid vectors X1, . . . ,XN with a multivariate Bernoulli
distribution.

4.2. Testing when we have an iid sample of high dimensional binary
data. Suppose now that we are given a random sample {X1, . . . ,XN}, where
Xi = (Xi1, . . . , Xid)}, for i = 1, . . . , N , and we want to perform some testing
problems regarding this sample. This problem becomes difficult for high-
dimensional data. However, several important problems fall into this category.
This is the case, for instance, if we have a set of individuals N and for each of
them Xij represents the result of a given medical test (positive or negative),
image analysis, or in marketing studies, among many others.

In this setting, since the support of the distributions is known in advance,
we can make use of Proposition 2.3, which reduces the problem to checking
a single projection on a appropriate subspace H. This will be particularly
important in the case where we only have access to the projections of the
data, as considered in the next sections.

First we choose a one-dimensional subspace fulfilling the condition in
Proposition 2.3.

One-sample problem: Given an arbitrary model P0, and and a sam-
ple {X1, . . .XN}, where Xi = (Xi1, . . . , Xid), for i = 1, . . . , N , let
P0H be the projection of P0 on H, and let PNH be the empirical
distribution of the projections of the sample on H.

Then, the problem of testing (P = P0) vs (P 6= P0), reduces to
testing (PH = PH0) vs (PH 6= PH0), which can be handled using
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the Kolmogorov–Smirnov test or the Cramer–von-Mises test, among
other possibilities.

For instance, for the Kolmogorov–Smirnov test, letKS(PNH , PH0) :=
supx ‖FNH(x)− FH0(x)‖, the Kolmogorov distance between the one-
dimensional distribution functions of PNH and PH0. Reject the null
assumption at level α if KS(PNH , PH0) > cα.

The Kolmogorov–Smirnov test for discrete data has been analyzed
by several authors. See for instance Conover (1972) and Dimitrova
et al. (2020). In the latter article, a software package is available to
calculate the exact critical value cα for discrete distributions.

Two-sample problem: Given two samples {X1, . . .XN}, {Y1, . . .YM}
with distributions P and Q respectively, we want to test (P = Q) vs
(P 6= Q). Let PNH be the empirical distribution of the projections of
the first sample on H, and let PMH be the empirical distribution of
the projections of the second sample on H.

Again the problem reduces to testing if (PH = QH) vs (PH 6= QH),
which can be handled using the two-sample Kolmogorov–Smirnov
test or the Cramer–von-Mises test, among other possibilities.

In this case, we consider the Kolmogorov distance between the two
empirical distribution functions, i.e., KS(PNH , PH0) := supx ‖FNH(x)−
FMH(x)‖, and reject the null assumption at level α ifKS(PNH , PMH) >
cα.

Some practical examples, like testing for the Poisson–Binomial distribution,
are considered in Section 6 below.

5. Bernoulli series distributions and their sums

5.1. Background.
The problem we want to analyze in this section is whether we can still say

something when we have only one realization X of a multivariate Bernoulli
distribution. In particular, we are interested in characterizing the law of the
sum Sd for different distributions p ∈ ∆d, in particular those for which the
law of Sd is close to a Binomial distribution B(d, 1/2) with parameters d
and 1/2.

Let Ld(p)(k) = P (Sd = k). Given ε > 0 let

(12) ∆(d; ε) :=
{
p ∈ ∆d : max

0≤k≤d
|Ld(p)(k)−B(d, 1/2, k)| ≤ ε

}
,

the set of probabilities p ∈ ∆d which are uniformly close to B(d, 1/2).
Next we choose at random a probability measure p ∈ ∆d according to the

normalized Lebesgue measure µ on the simplex ∆d, which is related to the
notion of physical entropy.

In this setting, we have the following result of Chevallier (2010).
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Theorem 5.1 ((Chevallier, 2010, Theorem 1)). There exists a constant
A ≤ 2 such that

(13) µ(∆(d; ε)) ≥ 1− A
√
d

ε22d−1

and

(14) µ
(
{p ∈ ∆d : sup

I⊂{1,...,d}
|Ld(p)(I)−B(d, 1/2, I)| ≤ ε}

)
≥ 1− Ad5/2

ε22d−1
.

Remarks.

1) Observe that, since we are choosing at random a probability measure
p ∈ ∆d according to the normalized Lebesgue measure on the simplex
∆d, the mean value E(Sd) = d/2.

2) Even for moderate d, the bound is very close to 1, and the results
are uniform. For instance, if d = 30 and ε = 0.01, the right hand
side of (13) is greater than 0.99979, and for (14), if d = 50 and
ε = 0.01, the bound is greater than 0.9999. For most probability
distributions p ∈ ∆(d, ε), the distribution of Sd will be much the
same, and so little information can be derived from its distribution.
In other words, with high probability the distribution of Sd will be
very close to B(d, 1/2) if we choose at random the joint distribution
p of the random variables X1, . . . , Xd. This means that the class of
probabilities p which are not close to the B(d, 1/2) is very small.

3) However the set of “rare” distributions p contains some well-known
structured distributions. For instance if the random variables Xi

are iid Bernoulli with common parameter q 6= 1/2, the law of Sd is
not close to the B(d, 1/2). Moreover, if the random variables are
independent but with different parameters,

p(w) =
∏

{yi=1,1≤i≤d}

qi
∏

{yi=0,1≤i≤d}

(1− qi), w ∈ Ωd,

then the law of Sd is a Poisson–Binomial distribution, given by

P (Sd = k) =
∑
A∈Λk

∏
i∈A

qi
∏
j∈Ac

(1− qj),

where Λk is the family of all subsets of {0, 1, . . . , k}. This typically
is also far from B(d, 1/2). For instance, this will be the case if

q̄ := E(Sd)/d = 1
d

∑d
i=1 qi 6= 1/2, where qi = P (Xi = 1).

What if we assume that E(Sd) = d/2?
Even if E(Sd) = d/2, from Theorem 1 in Ehm (1991) we have that the total

variation distance dTV (·, ·) between the Binomial(d, 1/2) and the Poisson
Binomial distribution is larger than∑d

j=1(qj − 1/2)2

31d
,
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which will not be small except for the case where all but a vanishing fraction
αd of the qj are very close to 1/2.

From a statistical point of view we have to be very careful when dealing
with high-dimensional binary data, if the data are not independent. Indeed,
in contrast to the case where we have a Binomial(d, q) distribution, where
we have a sample of size d of iid Bernoulli(q) random variables, we have
only one sample of the distribution p in a high-dimensional binary space.
However, these results provide an excellent way to perform some statistical
tests for important applications. Indeed, we can use these results for testing
if the distribution of Sd has some structure, which in terms of our setting
will correspond to be in the set of “rare” distributions.

5.2. Testing when we have only one high-dimensional binary da-
tum.

Given a sample X1, . . . , Xd of Bernoulli random variables, let Sd =∑d
i=1Xi and let 0 < α < 1. We start by fixing ε such that

(15) 1− 2
√
d

ε22d−1
≥ 1− α/2.

For α = 0.01 and ε = 0.01 this will hold for any d ≥ 26, for ε = 0.005 for any
d ≥ 28 and for ε = 0.001 for any d ≥ 36.

We consider as the null assumption that the distribution p is not rare, i.e.
that it belongs to the set ∆(d, ε), a set that satisfies

(16) µ(∆(d; ε)) ≥ 1− α/2,

and next we look if the observed value for Sd is very atypical for a B(d, 1/2).
Because of the definition of ∆(d, ε), a conservative test of level α can be

performed, rejecting the null assumption if

(17) Sd /∈ [l, r],

where P (B(d, 1/2) /∈ [l, r]) ≤ α/2.
Rejecting from the right ray or from the left ray will have different impli-

cations in some applications.
In case that we reject the null hypothesis, we would like to characterize in

some way the rare distribution, but it will not be possible with just a single
sample of the vector of binary data. In order to do so, we need to have an
iid (or at least mixing) sample of the binary vectors.

5.3. Testing for rare distributions.

We proceed as follows. For each vector Xi let Sid =
∑d

j=1Xij the sum
of the coordinates of the vector Xi, i = 1, . . . N . For each k = 0, . . . , d, we
consider the empirical probability given by

(18) PN (k) :=
1

N

N∑
l=1

I{Sld=k}.
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From the Hoeffding inequality (Bennett (1962); Hoeffding (1963)), we can
derive that, for any t > 0,

(19) P (|PN (k)− P (S1d = k)| > t) ≤ 2 exp(−2Nt2),

and so, from the union bound,

(20) P
(

max
0≤k≤d

|PN (k)− P (S1d = k)| > t
)
≤ 2(d+ 1) exp(−2Nt2).

Now we are ready to derive a conservative level-α test for the null hypothesis

H0: the distribution p is not rare.

This can be obtained from inequalities (13) and (19) or (20), rejecting the
null assumption when:

(21) |PN (k)−B(d; 1/2, k)| > a,

where a is chosen to satisfy the inequalities (22) and (23) below, and where
k is the observed value. Indeed, we have that

P
(∣∣∣PN (k)−B(d; 1/2, k)

∣∣∣ > a
)

≤ P
(∣∣∣PN (k)− P (S1d = k)

∣∣∣ > a/2
)

+ P
(∣∣∣P (S1d = k)−B(d; 1/2, k)

∣∣∣ > a/2
)
.

The first term on the right hand side will be smaller than α/2 provided that
N and a are chosen so that

(22) exp(−2Na2) < α/2,

while the second one will be smaller than α/2 if d and a are chosen so that

(23)
8
√
d

a22d−1
< α/2.

An easy calculation leads to

(24) a = max

{√
− log(α/2)

2N
,

d1/4

2(d−5)/2
√
α

}
.

For instance, if d = 20, N = 200 and α = 0.05, then a = max(0.052, 0.086).
For d ≥ 30 the second term is negligible (< 0.0018), and the bound is driven
by the first term.

6. Simulations

6.1. Example 1: Binary data classification. We generate two different
multivariate Bernoulli distributions in dimensions d ∈ {5, 10, 15, 20}. Both
distributions have marginals Bernoulli(1/2). In one of them, the components
are independent, while, for the other one, we consider correlated components
with a parameter Cor taking values in the set {0.1, 0.3, 0.5, 0.7, 0.9} for each
different scenario.

We generate 200 observations for each class and 25% of them are used for
the testing sample. The data are generated as indicated in Park et al. (1996).
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Table 1. Average misclassification errors for each scenario
in the Example 6.1 over 1000 replicates. Standard errors are
reported in brackets.

mean RF N-S-W RP10000

(sd) Dimension
Corr. 5 10 15 20 5 10 15 20 5 10 15 20

0.1
46.7 46.9 46.5 46.1 46.2 47.2 47.7 46.8 46.6 47.4 46.5 45.8
(5.0) (5.1) (5.2) (5.2) (5.1) (5.5) (5.0) (5.0) (4.6) (5.0) (5.1) (4.6)

0.3
34.8 32.7 32.0 31.7 36.0 33.3 32.6 31.5 35.4 34.0 31.7 31.8
(4.9) (4.4) (4.3) (4.2) (5.3) (4.2) (4.4) (4.1) (4.8) (4.5) (5.3) (4.5)

0.5
24.5 19.6 18.8 17.9 24.7 20.7 19.2 18.3 24.8 20.2 19.3 17.6
(4.7) (3.9) (3.7) (3.2) (4.7) (3.9) (4.2) (4.6) (5.1) (4.0) (3.7) (3.7)

0.7
17.1 10.1 7.4 6.9 17.5 10.8 9.1 8.5 17.2 10.7 9.1 8.5
(3.7) (2.9) (2.7) (1.9) (3.7) (3.2) (2.9) (3.0) (3.9) (2.8) (3.2) (2.8)

0.9
9.7 3.9 3.3 3.0 9.7 4.5 2.8 2.5 9.7 3.9 2.8 2.2
(3.0) (2.1) (1.5) (1.2) (3.1) (2.5) (1.8) (1.6) (3.0) (2.0) (1.8) (1.6)

The distances between the empirical distributions Pni,i,ul and Pni+1,i,u are
calculated according to the statistic DTS, given for instance in Dowd (2020).

Next we apply Algorithm 1 to perform the classification. In all cases we
use 100 one-dimensional projections. For each of the considered scenarios,
100 replicates are performed. The misclassification error of Random For-
est, Needell et al. (2018) (denoted as N-S-W method) considering L = 3
“levels”, and our proposal are given in Table 1, while the boxplots of the
misclassification errors of our proposal are reported in Figure 3 for different
numbers of projections. One can see that, when the correlations of the
second group become higher, the distributions are “further apart”, and the
misclassification error becomes smaller. Also, we observe that, when the
dimension of the space is higher, the algorithm performs better.
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Figure 3. Boxplots of the misclassification errors for each
scenario based on 100 replications.

6.2. Example 2: Classification of discrete Tomography by using
distances between histograms. In this example we generate a set of
“phantom images” using two different random patterns. In the first scenario,
the first sample (of size 200) each image is built with 5 circles of centers
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(2, 2), (−2, 2),(2,−2),(−2,−2) and (0, 0) with a normal random radius with
mean 1 and standard deviation 1/10. The second sample (of size 200) is built
up in the same way, but adding a circle centred at (0, 2) and with a normal
random radius with mean 1/2 and standard deviation 1/10 (see Figure 4).
The points that define the image are in a equi-spaced grid at distance 0.05.
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y

Figure 4. Representation of an image of each group in
scenario 1.

For the second scenario, the first sample is equal to that of the first
scenario. Now the second sample consists on 5 circles with centres (2, 2),
(−2, 2),(2,−2),(−2,−2), (0, 0) and random radius with mean 1.2 and standard
deviation 1/10, see Figure 5.

The value k for the k-NN is the one that minimizes the misclassification
error in the testing sample (k = 21).
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Figure 5. Representation of an image of each group in
scenario 2.
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75% of the samples are considered for the training sample and the rest for
the testing sample. We use Algorithm 2 with 100 projections at random in
each case.

For each direction we project the points of the image and build up an
histogram. Given a testing sample using kNN , we observe the proportion of
neighbours at each group. If the average over all directions of the proportions
of each group is greater for group 1, then the image is classified as being
from group 1, otherwise is classified as from group 2. As mentioned above,
the distance between the histograms is calculated as indicated in Irpino et al.
(2006), i.e., using the Mallow distance in L2.

The misclassification rate in the testing sample are 2.55% and 6% in
scenarios 1 and 2 respectively.

6.3. Example 3: A test for binary data. We consider a sample of
Bernoulli vectors just as in section 4.2, {X1, . . .X200} where Xi = (Xi1, . . . , Xid)},
for i = 1, . . . , 200, with d = 8, and all marginals Xj ∼ Bernoulli(1/2) for all
j.

The testing problem is the following: under the null assumption, the
components of the vector are independent, i.e.

P0(X1 = j1, . . . , Xd = jd) =
(1

2

)d
, j1, . . . , jd ∈ {0, 1}.

Under the alternative the data are simulated using the odds ratio

ORij =
P (Xi = 1, Xj = 1)P (Xi = 0, Xj = 0)

P (Xi = 0, Xj = 1)P (Xi = 1, Xj = 0)
= γ,

with γ ∈ [1, 3] if i 6= j and +∞ if i = j. The larger the value of γ, the further
the alternative is from the null.

The data are projected into k ∈ {1, 10, 50, 100, 500} random directions

u1, . . . , uk. The testing statistic is given by KS(γ) = 1
k

∑k
j=1KS(PNuj , PH0).

The distribution of the statistic under the null is obtained by Monte Carlo.
The power function is obtained using 1000 replicates as a function of γ, see
Figure 6.

Observe that, with just 50 projections, for γ ≥ 1.75 the power of the test
is greater than 73%. The simulations were performed using the R package
mipfp, see Barthélemy and Suesse (2018).

6.4. Example 4: Test for Poisson-Binomial. Next we consider the case
of Poisson-Binomial Sd distributions with d ∈ {50, 100, 200, 500, 1000}, i.e.
the sum of d independent Bernoulli random variables with different parame-
ters. The d probability parameters of the distribution are generated from a
Beta distribution with parameters γ1 ∈ [2, 4] and γ2 = 2. If γ1 = γ2, then

1

d
E (Sd) =

1

d

d∑
i=1

qi ≈
γ1

γ1 + γ2
=

1

2
,

for d large enough.
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Figure 6. Estimated power function for γ ∈ [1, 3] for differ-
ent number of projections.

As indicated in Section 5.2, the power of the test is estimated via Monte
Carlo for each value of d as a function of γ1, see Figure 7. The behaviour
becomes better when increasing the dimension d, while the problem becomes
easier by increasing γ1.
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Figure 7. Power function for γ1 ∈ [2, 4].
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7. Real-data examples

In this section three examples with real data are exhibited. In both cases
the data are a set of binary vectors and Algorithm 1 is performed.

7.1. Example 5. The data describe the diagnostic of Cardiac Single Proton
Emission Computed Tomography (SPECT) images. Each patient is classified
into one of two categories: normal and not normal. The database has
267 images called SPECT corresponding to each patient, “that measures
radioactive counts that represent perfusion in the LV muscle in a specified
ROE” (regions of interest) resulting 22 regions of interest, see Kurgan et al.
(2001).

The images are processed and transformed into a vector of dimension 44
of continuous variables. Later on, this pattern is processed again to obtain a
binary vector of dimension 22 for each patient.

The sample is split into 80 observations for the training sample and 187
for the testing sample. The database is available from the UCI repository1.

We apply Algorithm 1 to classify the data using different numbers of
random projections (k ∈ {5, 10, 20, 50, 100, 500, 1000, 10000}).

The procedure is replicated 100 times at each scenario and the boxplots
of the misclassification rates are given in Figure 8.
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Figure 8. Boxplot of the misclassification rates obtained
from the testing sample for different numbers of random
projections.

The performance of the method that we propose (denoted by RPk) is
compared with two classical classification methods (Random Forest and
SVM) and in particular with the proposed methodology for binary data in
N-S-W (with L = 3). Table 2 shows the confusion matrices obtained in the
test sample for each method. The misclassification rates obtained from the
testing sample are 23%, 24.1%, 19.3% and 18.4% for Random Forest, SVM

1https://archive.ics.uci.edu/ml/datasets/spect+heart

https://archive.ics.uci.edu/ml/datasets/spect+heart
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Table 2. Confusion matrices (in percentages) in the test
samples of binary classifications. Here 0 is normal and 1 and
is not normal.

Labels
Random Forest SVM N-S-W RP10000

0 1 0 1 0 1 0 1

Pred.
0 5.9 2.1 0 6.4 1.6 0 5.3 2.7 0 5.1 2.9
1 20.9 71.1 1 22.5 69.5 1 16.6 75.4 1 15.5 76.5

,N-S-W, and RPk respectively. Therefore, in this example, methods designed
for discrete data perform better than some general classification methods.
In addition, the N-S-W and RPk methods have similar behaviour.

7.2. Example 6. In Grisoni et al. (2019), consensus machine learning al-
gorithms are used to predict the binding to the androgen receptor AR. We
quote from Grisoni et al. (2019):

“The nuclear androgen receptor (AR) is one of the most relevant biological
targets of Endocrine Disrupting Chemicals (EDCs), which produce adverse
effects by interfering with hormonal regulation and endocrine system func-
tioning. The nuclear androgen receptor (AR), whose gene is located on the X
chromosome, is expressed in a wide range of tissues and plays a fundamental
biological role in bone, muscle, prostate, adipose tissue, and the reproductive,
cardiovascular, immune, neural, and hemopoietic systems. AR is one of the
target receptors of the so-called Endocrine Disrupting Chemicals (EDCs),
exogenous compounds able to disturb hormonal regulation and the endocrine
system functioning, thereby producing adverse effects in humans and wildlife.
EDCs can interact directly with a given nuclear receptor and perturbate or
modulate downstream gene expression, but they can also have direct effects
on genes and epigenetic impact. Disruption of AR-mediated processes can
cause irreversible consequences in human health. For example, some chemi-
cals, like pesticides (e.g., DDT), disrupt male reproductive development and
function by inhibiting androgen-receptor-mediated events. Recently, machine
learning (ML) and computer-aided techniques have shown to be useful for
modeling nuclear receptor modulation of chemicals at different levels, such
as drug discovery and design and testing prioritization campaigns.”

The dataset, which is available at the UCI repository2, contains agglutinate
(positive) and no negative agglutinate molecules. 150 of each type are taken
as training sample and 45 of each type as testing sample. Each molecule
is represented by 1024 binary molecular fingerprints, that is, a 1024 length
sequence of 0s and 1s, see Grisoni et al. (2019); Piir et al. (2021).

The boxplots of the misclassification errors are given in Figure 9 for
different numbers of random projections.

2https://archive.ics.uci.edu/ml/datasets/QSAR+androgen+receptor

https://archive.ics.uci.edu/ml/datasets/QSAR+androgen+receptor
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Figure 9. Boxplots for the misclassification errors at the
testing sample for different number of random projections.

Considering 1000 projections, the performance of the classification in each
class is evaluated through three indices in the test sample:

Sensitivity: Sn = TP
TP+FN = 0.97

Specificity: Sp = TN
TN+FP = 0.72

Non-Error Rate: NER = Sn+Sp
2 = 0.845,

where TP and TN stand for the misclassification errors in each class. These
results correspond to the median values over 100 replicates. We observe that,
with respect to the results obtained in Grisoni et al. (2019), we get a slightly
smaller value for the specificity, but better results for the sensitivity and the
non-error rate.

7.3. Example 7: The MNIST database. This example is similar to
Example 2, but with real data. The base has a set of handwritten digits and
is available in http://yann.lecun.com/exdb/mnist/. The digits have been
size-normalized and centered in a fixed-size image. Each image is represented
by a matrix of 28× 28 = 784 pixels. Each pixel takes an integer value from 0
to 255 (grey scale). The labels form the components of a vector representing
the digit shown in the image. In this work the image is dichotomized to 1–0
(black and white respectively). If the pixel is above 100 on the grey scale we
associate 1 to it, and otherwise 0. As an illustration, between the sample of
digits 3, 4 and 9 in a test sample, the classification is performed (as in the
Example 2). In Figure 10, three dichotomized images of each of these digits
are shown.

The training sample size is 758, 736, 757 and the test sample size is 252,
246, 252 for digits 3, 4 and 9 respectively. The value k = 19 (for the k-NN)
and 100 random projections are considered. The confusion matrix of the
binary classification in the test sample are reported in Table 3.

Therefore, the overall prediction errors are 5.4%, 3.2% and 7.6% in the
test sample for the classifications of digit pairs 3-4, 3-9 and 4-9 respectively.

http://yann.lecun.com/exdb/mnist/
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1

Figure 10. Representation of dichotomized sample images:
three digits 3 (first row), three digits 4 (second row) and three
digits 9 (third row).

Table 3. Confusion matrices in the test samples of binary classifications.

Labels
3 4 3 9 4 9

Prediction
3 248 23 3 243 7 4 230 17
4 4 223 9 9 245 9 16 235

8. Conclusions

We provide some new statistical techniques to treat discrete high-dimensional
data, based on some extensions of Heppes’ theorem, in particular a quantita-
tive version of Heppes’ theorem that bounds total variation distance between
two probability measures in the high-dimensional space by the sum of the
total variation distances between their projections.

We show that, if we know in advance the supports of the distributions
(which is the case, for instance, of multivariate Bernoulli distributions), then
it suffices to consider just one projection, provided that the direction is
chosen to exclude a certain finite or countable set of bad directions, which
are well determined.

Using the preceding results, we develop a new procedure for learning based
on projections, and we adapt it to the case of discrete tomography, where we
only have access to information related to the projections in a certain family
of directions.

We also address the problem of testing for multivariate binary data, in
particular for some well-known models like the Poisson-Binomial model. Our
approach can be used for many other different problems for high-dimensional
discrete data, for example: the Dirichlet-multinomial distribution, the mul-
tivariate hypergeometric distribution, the multivariate Pólya–Eggenberger
distributions, and the negative multinomial distribution, among others (see
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Johnson et al. (1997)). We further analyze the case where we only have one
realization of a multivariate Bernoulli distribution.

Lastly, we perform a small simulation study and analyze three real-data
examples. The results obtained are quite encouraging.

We conclude this article with a brief discussion of the potential extension
of these ideas to continuous distributions. As mentioned in the introduction,
in order to distinguish between general continuous distributions, it is usually
necessary to use an infinite set of projections (see e.g. Hamedani and Tata
(1975)). However, there is at least one case where finitely many projections
will suffice. A Borel probability measure P on Rd is called elliptical if its
characteristic function has the form

φP (ξ) = eiµ·ξψ(ξTΣξ) (ξ ∈ Rd),
where Σ is a real positive semi-definite d× d matrix, µ is a vector in Rd, and
ψ : [0,∞)→ C is a continuous function. Examples of elliptical distributions
include multivariate versions of Gaussian, Student, Cauchy, Bessel, uniform
and logistic distributions. The following theorem is a summary of results
established in Fraiman et al. (2022).

Theorem 8.1. Given d ≥ 2, there exists a set L of (d2 + d)/2 lines in Rd
with the following property: if P,Q are elliptical distributions on Rd such
that PL = QL for all L ∈ L, then P = Q. No smaller set of lines will do.

Theorem 8.1 leads to the derivation statistical tests for equality of elliptical
distributions. This program is carried out in Fraiman et al. (2022). An
interesting avenue for further exploration, suggested by one of the referees,
would be to combine the two cases already studied (discrete and elliptical) to
develop tests for distributions that are discrete distributions with weak noise,
for example, vector sums of discrete distributions and elliptical distributions
with small variance.
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