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Centro de Matemática, Facultad de Ciencias,
Universidad de la República, Uruguay.

Ricardo Fraiman
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Abstract

We tackle the problem of the estimation of the level sets Lf (λ) of the
density f of a random vector X supported on a smooth manifold M ⊂ Rd,
from an iid sample of X. To do that we introduce a kernel-based estimator
f̂n,h, which is a slightly modified version of the one proposed in [45], and
proves its a.s. uniform convergence to f . Then, we propose two estimators
of Lf (λ), the first one is a plug-in: Lf̂n,h

(λ), which is proven to be a.s.

consistent in Hausdorff distance and distance in measure, if Lf (λ) does
not meet the boundary of M . While the second one assumes that Lf (λ)
is r-convex, and is estimated by means of the r-convex hull of Lf̂n,h

(λ).

The performance of our proposal is illustrated through some simulated
examples. In a real data example we analyze the intensity and direction
of strong and moderate winds.

1 Introduction

The statistics of functional data had an exponential growth in the last decades,
being particularly important the impulse given by the early works [41] and [42].
Very different problems have been addressed in recent years, see for instance
the reviews by [8], [21] [1]. Initially the results were concentrated on problems
where the data took values in functional spaces, such as L2, L1 and L∞, and
more generally on Hilbert or Banach spaces. Recently a lot of interest appears
for data in more general spaces (where there is no linear structure on them),
like metric spaces. This is motivated by important practical applications, see
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for instance subsection 8.1. Some relevant examples includes the case of high
dimensional data (see for instance [22], [14]), directional data (see [32], [31]),
cone and cylindric data (see example on subsection 8.1), and random graph data
(see [19]), among others.

In what follows we will consider the case where the data take values on a
Riemannian manifold.

Starting from the pioneer 1945 work of Rao (see [43]), the statistical the-
ory for data valued on a Riemannian manifold has received a lot of interest
because of its important applications. In particular, these techniques may al-
low to avoid the curse of dimensionality when trying to analyze data in a high
dimensional ambient space. Indeed, as mentioned in [24]: “Data belonging to
some m-dimensional compact submanifold M of Euclidean space Rs appear in
many areas of natural science. Directional statistics, image analysis, vector car-
diography in medicine, orientational statistics, plate tectonics, astronomy and
shape analysis comprise a (by no means exhaustive) list of examples”. These
techniques are also applied in medical imaging applications: as it mentioned in
[39] “Examples of manifolds we routinely use in medical imaging applications are
3D rotations, 3D rigid transformations, frames (a 3D point and an orthonor-
mal trihedron), semi- or non-oriented frames [...] , positive definite symmetric
matrices coming from diffusion tensor imaging”.

The estimation of level sets Lf (λ) = {x : f(x) ≥ λ}, where f is an unknown
density function on Rd and λ > 0 is a given constant, has been considered by
many authors; see, for instance, [23], [40], [10], [33] [47], [49] for consistency
results and rates of convergence, while the asymptotic distribution was derived
in [6]. Some relevant applications include mode estimation [34], [40], clustering
([11], [12]) or detection of abnormal behaviour in a system ([15], [3], [2]). How-
ever, this problem is less developed when the underlying density has its support
on a Riemannian manifold. In the following we address the problem of level set
estimation in this setup.

More precisely, given a d′-dimensional Riemannian manifold M ⊂ Rd, where
M is unknown but d′ ≤ d is assumed to be known, the aim is to estimate
Lf (λ) of the density f of a random vector X with support M from an iid
sample X1, . . . , Xn of X. In practice and for large sample sizes, if the intrinsic
dimension of M is unknown it can be first estimated by means of, for instance,
the classical estimator proposed in [30].

Our first proposed estimator is just the plug-in estimator Lf̂n,h(λ), where

f̂n,h is a kernel-based estimator of f with bandwidth h = hn → 0, which is
a slightly modified version of the one proposed in [45]. The almost sure (a.s.)
consistency of Lf̂n,h(λ) requires to prove the a.s. uniform convergence of the

sequence of estimators f̂n,h to f , this is done in Section 4. Regarding density
estimation on manifolds, in [38] L2-consistency is obtained for a kernel-based
density estimator (w.r.t. the L2 norm in M , see Theorem 3.1). There are two
main drawbacks to use that result to our setup, first in [38] it is assumed that
the Riemannian structure in M is known, and second, L2 consistency does not
imply convergence of level sets. For the same estimator, [25] obtain the limit
distribution and the a.s. consistency for the uniform metric. In [28] a different
kernel-based estimator is proposed (similar to the one we will propose), and
convergence in probability is obtained for the uniform metric. It does not assume
that the underlying Riemannian structure is known. All the aforementioned
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results are for manifolds without boundary. Other references that tackle the
density estimation problem for manifolds without boundary are [35] and [29].
For manifolds with boundary point-wise L2 consistency is obtained in [5]. Lastly,
in section 6 we tackle the level set estimation problem but imposing a well
known-shape restriction called r-convexity. In this case the proposed estimator
is the r-convex hull of Lf̂n,h .

2 Roadmap

In Section 3 we introduce the basic notation and the geometric framework used
throughout the manuscript. Section 4 is devoted to prove the a.s. uniform
convergence of f̂n,h to f . In Section 5 we prove that if Lf (λ) does not meet
the boundary of M , Lf̂n,h(λ) converges a.s. in Hausdorff distance as well as in

distance in measure to Lf (λ). We also prove the convergence of its boundaries,
i.e: ∂Lf̂n,h(λ) converges in Hausdorff distance to ∂Lf (λ). If Lf (λ) meets the

boundary of M , we prove that Lf̂n,h(λ) converges a.s. in Hausdorff distance to

Lf (λ). Consistency in the Hausdorff metric of level sets under r–convexity is
shown in Section 6. In Section 7 we provide some simulation results, while in
Section 8 we consider an important application to describe the wind behavior
in Uruguay. All proofs are given in the appendix.

3 Notation and geometric framework

If B ⊂ Rd is a Borel set, then we denote by |B| its Lebesgue measure and by B
its closure. Given a set A on a topological space, the interior of A with respect
to the underling topology is denoted by Å. The k-dimensional closed ball of
radius ε centered at x will be denoted by Bk(x, ε) ⊂ Rd (when k = d the index
will be omitted), and its Lebesgue measure is denoted by σk = |Bk(x, 1)|. The
Euclidean inner product in Rd is denoted by 〈·, ·〉, while the corresponding norm
in Rd is denoted by ‖ · ‖.

From now on, we assume that M ⊂ Rd is a compact d′-dimensional manifold
of class C2 (also called a d′-regular surface of class C2). We consider the Rie-
mannian metric on M inherited from Rd. If x ∈ M , TxM denotes the tangent
space at x, while ρ(x, y) denotes the geodesic distance between x and y. Given
a set A ⊂ M , we denote Bρ(A, r) = {x ∈ M : ρ(x,A) < r}. For f : M → R,
we denote by ∇f(x) the gradient of f at x ∈M . When M is orientable, it has
a unique associated volume form ω such that ω(e1, . . . , ed′) = 1 for all oriented
orthonormal bases e1, . . . , ed′ of TxM . If g : M → R is a density function, then
we can define a new measure µ(B) =

∫
B
gdω, where B ⊂ M is a Borel set. In

what follows we assume that M is orientable. Given a point x ∈ M , bx is the
geodesic distance from x to the boundary ∂M of M , or is ∞ if ∂M = ∅.

Recall that given two non-empty compact sets A,C ⊂ Rd, the Hausdorff
distance between A and C is defined as

dH(A,C) = max
{

max
a∈A

ρ(a,C), max
c∈C

ρ(c, A)
}
, where ρ(a,C) = inf

c∈C
ρ(a, c).

(3.1)
Given two Borel sets A,B ⊂ M , the distance in measure between them is

dµ(A,B) = µ(A \B) + µ(B \A).
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4 Density estimation

The aim of this section is to prove that f̂h,n, a modified version of the kernel-
based density estimator, denoted by fh,n, proposed in [5], converges uniformly
to the density f when the manifold has a C2 boundary. This auxiliary result,
besides the interest in itself, will be used to prove our main results regarding level
set estimation in the next section. Let us recall the definition of fh,n. We assume
that K is the Gaussian kernel, (however, it can be replaced by any sub Gaussian
distribution, see Remark 2 below); that is, K(‖x‖) = π−d

′/2 exp(−‖x‖2). Let
h = hn → 0; then,

fh,n(x) =
1

nm0(x)hd′

n∑
i=1

K
(‖x−Xi‖

h

)
where m0(x) = π−1/2

∫ bx/h

−∞
exp(−z2)dz,

(4.1)
where bx is the distance to ∂M of the point x ∈M . An important assumption
in [5], requires that the manifold M be “uniformly tangible”, which, roughly
speaking, allows to define the projection onto the boundary of points close
enough to it. More precisely:

Definition 4.1. A d′-dimensional Riemannian manifold M ⊂ Rd is said to be
uniformly tangible if

1. There exists δ > 0 and c > 0 such that R(x, y) := ‖x− y‖/ρ(x, y) > c for
all x, y ∈M , such that ‖x− y‖ < δ.

2. There exists r > 0 such that Nr = ∂M× [0, r) is mapped diffeomorphically
onto its image via the exponential map (x, t)→ expx(tvx) where x ∈ ∂M ,
t ∈ [0, r), and vx is the inward pointing unit normal vector to the boundary.

3. Denote by inj(x) the injectivity radius of a point x (i.e the maximum ra-
dius for which B(0, r) ⊂ TxM is mapped diffeomorphically into M by the
exponential map). Then inf{inj(x) : x /∈ exp(Nr)} > 0.

The following proposition states that this condition holds when M is a com-
pact C2 manifold whose boundary (in case there exists) is also a C2 manifold.
Under this condition there exists a radius rM > 0 such that for any point x
within a uniform geodesic distance rM to the boundary, there exists a unique
closest point on ∂M . Then it can be defined ηx the unit vector pointing in the
direction of the unique closest boundary point. For points farther away than
rM from the boundary, ηx can be chosen arbitrarily.

Proposition 1. Let M ⊂ Rd be a d′-dimensional C2 compact Riemannian
manifold, whose boundary, in case there exists, is a C2 manifold. Then, M is
uniformly tangible.

Equation (5) in [5] states that, if M is uniformly tangible, and h is small
enough the bias of fh,n(x) is

E(fh,n(x))−f(x) = hm1(x)〈ηx,∇f(x)〉+Ox(h2) where m1(x) =
1

2
√
π

exp(−b2x/h2).

(4.2)
Observe that if λ is such that Lf (λ) ∩ ∂M 6= ∅, then if x ∈ Lf , m0(x)→ 1.

This suggest to use the following estimator:
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f̂h,n(x) =
1

nhd′

n∑
i=1

K
(‖x−Xi‖

h

)
, (4.3)

which does not depend on m0(x) or bx.
In order to get the a.s. convergence of Lf̂h,n(λ) to Lf (λ) we need to prove

the following auxiliary result that states the a.s. uniform convergence of f̂h,n to
f .

Theorem 4.1. Under the hypotheses of Proposition 1. Let X be a random
vector with support M whose density f is assumed to be C4. Let h → 0 such
that nhd

′+3/ log(n)→∞ when n→ +∞; then,

sup
x∈Mn

|f̂h,n(x)− f(x)| = o(h/cn) a.s.

for any sequence of closed subsets Mn ⊂ M such that cn/h → ∞, where cn =
infx∈Mn

ρ(x, ∂M) > 0.

The following result is more restrictive, but a better rate of convergence is
obtained, (it holds in particular when ∂M = ∅) since the theorem does not
allows the compact set M0 to depend on n. This is proven in the same manner
as Theorem 4.1,

Theorem 4.2. Under the hypotheses of Theorem 4.1. Let h→ 0 and βn →∞
such that βnh

2 → 0, nhd
′
/(β2

n log(n))→∞; then,

βn sup
x∈M0

|f̂h,n(x)− f(x)| → 0 a.s.

for any closed subset M0 ⊂M such that infx∈M0
ρ(x, ∂M) > 0.

Remark 1. As a consequence, taking βn = nα and h = n−γ we derive that we
can reach βn = nα for any α < 2/(d′ + 4).

Remark 2. The explicit expression for m0 and m1 given in (4.1) and (4.2)
respectively, strongly rely on the gaussianity of the kernel. If this assumption
is removed, the expressions are much more involved, see [5]. Observe that the
proposed estimator (4.3) does not require the computation of m0 or m1, but the
proofs of Theorems 4.1 and 4.2 uses them as auxiliary tools. However, the same
rate of convergence is obtained in Theorems 4.1 and 4.2 if the gaussian kernel
is replaced by any Lipchitz kernel fulfilling K(‖z‖) ≤ C1 exp(−C2‖z‖2), with a
subgaussian density function, i.e. fulfilling P(‖X‖ > t) ≤ C1 exp(−C2‖t‖2), for
all t and, for some positive constants C1, C2, where X is a d′-dimensional vector
with density K(‖z‖).

5 Level set estimation

Level set estimation is an important problem with many applications in statis-
tics, such as in hierarchical clustering, binary classification, outliers detection,
functional neuroimaging, and bioinformatics among many others. References
are given in the introduction. In our setup we consider this problem when the
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distribution of the data is supported on a smooth Riemannian manifold M ⊂ Rd
which as mentioned in the introduction covers important applications that in-
cludes directional data, cone and cilindrical data, high dimensional data and
random graph data. In what follows we state our main asymptotic results.

Once we prove the a.s. uniform convergence of the estimator f̂n,h to f we
are ready to state our main results. The first one (Theorem 5.1) tackle the
case in which Lf (λ) does not meet the boundary of the manifold. For this case
we obtained not only the a.s. convergence in Hausdorff distance of the level
set estimator Lf̂n,h(λ), but also the convergence of its boundary, as well as the

convergence in measure. As usual in level set estimation, we require that the
boundary of ∂Lf (λ), which is {f = λ} because we assume that f is a continuous
function, does not contain a plateau at level λ, see the discussion on condition
f1) in Theorem 1 in [9]. The proof is based on Theorem 4.2.

Theorem 5.1. Let M and f as in Theorem 4.1. Assume that the level λ > 0
fulfills that for all x such that f(x) = λ, there exists an, bn → x such that
f(an) > λ and f(bn) < λ and ∂Lf (λ) ∩ ∂M = ∅. Then, with probability one,

1. dH(∂Lf̂n,h(λ), ∂Lf (λ))→ 0;

2. dH(Lf̂n,h(λ), Lf (λ))→ 0;

3. If, moreover, ∇xf 6= 0 for all x such that f(x) = λ, dµ(Lf̂n,h(λ), Lf (λ))→
0.

If the underlying level set Lf (λ) meets the boundary of the manifold, then
we have the following result, whose proof is based on Theorem 4.1.

Theorem 5.2. Let M and f be as in Theorem 4.1. Assume that the level
λ > 0 fulfills that for all x with f(x) = λ, there exists aj → x, aj ∈ M̊ , such
that f(aj) > λ for all j. Then,

dH
(
Lf̂n,h(λ), Lf (λ)

)
→ 0, a.s.

6 Manifold level set estimation under r-convexity

In what follows we consider the level set estimation problem when we assume
that the level set is r-convex set in the manifold.

In Euclidean space, a set A is said to be r-convex (for some r > 0) if
A = Cr(A), where Cr(A) is the r-convex hull of A; that is, the intersection
of the complements of all open balls of radius r that does not meet A. This
is a natural generalization of convexity (the half spaces are replaced by balls),
and it has been widely studied in set estimation literature (see, for instance,
[49, 48] [44] and [36]). Additionally, as is pointed out in [44], this concept
“is closely related to the notion of alpha-shapes that arises in the literature
of computational geometry”; see [18]. Departing from the idea of r-convexity,
several generalizations have been given (see, for instance, [7]). If the underlying
space is not Euclidean space but is rather any Riemannian manifold M endowed
with the geodesic distance ρ, then the natural generalization is to replace the
Euclidean balls with geodesic balls. According to this idea, given r > 0, we will
say that a set A ⊂ M is r-convex if it is equal to its r-convex hull in M , that
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is, the intersection of the complement of all open geodesic balls of radius r that
does not meet A.

Theorem 6.1. Under the hypotheses of Theorem 5.2, assume also that the level
sets Lf (λ) is r-convex and Lf̂n,h(λ) is r-convex a.s., for some r > 0. Then,

dH
(
Cr({Xi : f̂h,n(Xi) > λ}), Cr({Xi : f(Xi) > λ})

)
→ 0, a.s.

and
dH
(
Cr({Xi : f̂h,n(Xi) > λ}), Lf (λ)

)
→ 0 a.s.

7 Simulation results

To assess the performance of our proposal, we will perform a simulation example
with two scenarios. In the first one, we consider a distribution on the positive
cone of covariance 2 × 2-matrices, which is a three dimensional manifold when
endowed with the Riemannian structure given below. In the second one, we
compare our density estimator with the one proposed in [26], which is specially
designed for spherical data. Also, as illustrative examples, we consider the
torus with the metric inherit from R3 and the two dimensional half-sphere in
R3. In the first case we consider two distributions: the first is unimodal and the
second is a mixture of distributions. In the last case we considered a Von-Mises
distribution.

7.1 Positive-definite matrices

Let us denote by (Pd, g) the set of positive-definite d × d-covariance matrices.
Given two matrices A,B ∈ Pd, the geodesic curve joining A and B is

γ(s) = A1/2(A−1/2BA−1/2)sA1/2 for all s ∈ [0, 1].

The geodesic distance is given by dg(A,B) = ‖ ln(A−1/2BA−1/2)‖, where ‖ · ‖
is the Hilbert–Schmidt norm.

We consider, for d = 2, the Wishart distribution W2(Σ,m) on P2 with
parameters m = 10 and Σ = (1/4)I2. An easy way to obtain a matrix S with
this distribution is to define S = X1X

′
1 + · · · + XmX

′
m, where X1, . . . , Xm is

an iid random sample of a multivariate Gaussian distribution with mean 0 and
covariance matrix Σ.
As is well-known, (P2, g) can be represented as a cone in R3. In Figure 1, we
show the projections of a sample of size 1000, drawn from a Wishart distribution
with m = 10 and Σ = (1/4)I, together with the convex hull of the λ level set
LW(λ) (in blue) and the convex hull of the level set estimator LŴn,h

(λ) (in red)

for λ = 0.03 and h = 0.55. The Hausdorff distance between the level sets in
this case is R3 is 0.325. In Table 1, we report the mean, median, and standard
deviation, over 100 replications of the Hausdorff distance (dH) between both
sets for different sample sizes n ∈ {1000, 5000, 10000, 20000}. The parameter h
is chosen following the proposal in Appendix B of [5].

7



n h dH
1000 0.55 0.3388 [0.3286] (0.0616)
5000 0.4 0.2326 [0.2313] (0.0266)

10000 0.35 0.2114 [0.2110] (0.0267)
20000 0.3 0.1909 [0.1872] (0.0235)

Table 1: Mean over 100 replications for the Hausdorff distance between the true
level set LW(λ) and the estimator LŴn,h

(λ) for λ = 0.03. Between [] and () the

median and standard deviation respectively.

7.2 The torus

In the torus T2 = S1×S1, we consider the multivariate von Mises distribution,
denoted by MVM(µ, κ,∆). The density at θ ∈ T is given by

f(θ;µ, κ,∆) =
1

Z(κ,∆)
exp{κ>c(θ) + s(θ)∆s(θ)/2},

where µ ∈ T2 (this parameter is called mean), κ ≥ 0 ∈ Rd (concentration
parameter), ∆ = (λi,j) is a symmetric matrix on Rd×d with null diagonal entries
(λi,i = 0 for all i ∈ {1, . . . , d}), and Z(κ,∆) is a normalization constant. The
functions ci and si are defined by ci(θ) = cos(θi−µi) and si(θ) = sin(θi−µi) for
all i ∈ {1, . . . , d}. In Figure 2 (left-hand panel), we show (in yellow) a sample
of size 2000 from a MVM1(µ1, κ1,∆1) distribution with

µ1 = (π/2, 0), κ1 = (20, 20), ∆1 =

(
0 1
1 0

)
. (7.1)

In the right panel of Figure 2, we show (in yellow) a sample of size 2000 from a
mixture law given by

0.4MVM1(µ2, κ1,∆1) + 0.6MVM2(µ3, κ1,∆1), (7.2)

where µ2 = (π/2, 0) y µ3 = (π/2, π/4) . In all cases, we consider λ = 0.8
and bandwidth h = 0.2. The boundary of the theoretical level set is shown in
red, while the boundary of the estimator is shown in magenta.

The Hausdorff distances between the theoretical curve and the estimated
curve are 0.066 and 0.107.

7.3 The half-sphere

Finally, we considered the sphere S2 ⊂ R3 endowed with the Riemannian metric
inherited from R3. The sample is drawn from a the mixture of two von Mises–
Fisher distributions given by

f(x, µ, κ) = C(κ)eκµ
>xIS2(x), (7.3)

where κ ≥ 0 and µ ∈ S2 are the concentration and directional mean parameters,
respectively. C(κ) is the normalizing constant; see [31].

The mixture is given by,

f0(·) = 0.5f (·, v1/‖v1‖, 40) + 0.5f (·, v2/‖v2‖, 40) . (7.4)
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Figure 1: Projections of a sample of size 1000 drawn from a Wishart distribution
with m = 10 and Σ = (1/4)I, together with the convex hull of the λ level set
(in blue) and the convex hull of the level set estimator (in red), for λ = 0.03
and h = 0.55.

with v1 = (−1,−0.3, 0.2) and v1 = (−1, 0.3, 0.2). Let X = (X1, X2, X3) ∈ S2

with distribution f0, we consider the truncated random vector Xtr = XIS2
+

,

where S2
+ = S2 ∩ {(x1, x2, x3) ∈ R3 : x3 ≥ 0}.

In Figure 3, we show (left-hand panel) a sample of size n = 1000 on S2
+ of Xtr

, together with the estimated level set (in red ) and the true level set (in blue)
at λ = 1.1. In the right-hand panel, we show the stereographic projections of
the sample and the estimators. The Hausdorff distance between the theoretical
curve and the estimated (on the stereographic projections) curve is 0.019.

7.4 The two dimensional sphere

To asses the performance of (4.3) and compare it with the density estimator
proposed in [26] (which will be denoted by f̃n), specially designed for spherical
data, we considered a Von-Mises distribution in S2, whose density is given by
(7.3), with parameters κ = 40 and µ = (0, 0, 1). Four sample sizes where
considered: n ∈ {500, 1000, 5000, 10000} and the whole procedure was repeated
100 times. For each replication the bandwidth h for our estimator was selected
as the one minimizing ‖f̂n − f‖∞ := supx∈S2 |f̂n(x)− f(x)| on a grid of values,

whereas the parameter κ in [26], was selected as the one minimizing ‖f̃n− f‖∞
on a grid of values. The mean over 100 replications is shown in Table 2, while
between [] and () we report the median and standard deviation respectively.
The results are very encouraging. The performances of both estimators are
very similar, with a slightly better behaviour of f̃n for n = 500, 1000 while for
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Figure 2: Left-hand panel: a sample of size 2000 from a MVM1(µ1, κ1,∆1)
distribution with µ1, κ1 and ∆1 given in (7.1). Right-hand panel: a sample of
size 2000 from the mixture law given in (7.2). In both cases, the data are shown
in yellow, whereas the boundary of the true level sets is shown (in red) together
with the estimated boundary (in magenta).

n = 5000, 10000 f̂n outperforms f̃n slightly.

n ‖f̂n − f‖∞ ‖f̃n − f‖∞
500 1.1067 [1.0640] (0.2983) 1.1062 [1.0664] (0.2992)

1000 0.9651 [0.9596] (0.2079) 0.9631 [0.9601] (0.2092)
5000 0.6282 [0.6155] (0.1329) 0.6285 [0.6118] (0.1327)

10000 0.5262 [0.5018] (0.0910) 0.5358 [0.5164] (0.0915)

Table 2: Mean over 100 replications for ‖f̂n − f‖∞ and ‖f̃n − f‖∞. Between []
and () the median and standard deviation respectively.

8 A real data example: extreme and non-extreme
winds in Uruguay

As an example of real-data on a manifold, we will study the behavior of ex-
treme and non-extreme winds, measured at the meteorological station located
in the international airport of Carrasco, Montevideo Uruguay. The aim is to
characterize the direction of these winds, with respect to the time period at
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Figure 3: Left-hand panel: A sample of size 1000 from the mixture of two
von Mises–Fisher distributions given in equation (7.4). Right-hand panel: the
stereographic projections of the sample and the level sets. In both cases, the
estimator is shown in red, while the true underlying level set is shown in blue.

which the data were obtained (divided in two groups, corresponding to cold or
hot seasons respectively). The data are stored as points in a cylinder C (i.e,
C = S1×R+), with two parameters, the wind intensity a ≥ 0 (in m/s), and the
wind direction (θ ∈ [0, 2π)), see Figure 6. The angles are measured clockwise,
with zero located at North. The original database consisted of 149040 wind
measures obtained between the dates 01/01/2000 and 31/12/2016. However,
we ignored some missing data (0.86% in total) and we will study separately
extreme and moderate (non-extreme winds).

The intensities recorded are the average of the horizontal component of the
wind in the last ten minutes of each hour, while the directions recorded are the
average of the directions, also in the last ten minutes of each hour hour. Gust
are not recorded (sudden increases in the instantaneous wind,that exceed the
average wind in more than 5 m / s.)
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8.1 Extreme winds

At large scale there exists two kinds of wind: the synoptic extreme wind, which
are produced by the passage of cold or warm fronts, with intensive convective
activity, and the extreme non-synoptic winds, produced by extratropical cy-
clones associated with low and high pressure systems (see [16]). Extreme winds
are not classified according to the casuistry of the phenomenon. According to
[17], extreme maximum speeds are considered to be those that exceed 22 m/s,
because this is the threshold at which different kind of risks for buildings and
the population can exist. Measures below this threshold were removed. This is a
typical procedure in the theory of extreme winds, and is called peak over thresh-
old, (POT). We obtained 256 measure above this value, 39.8% correspond to
the warm period and 60.2% to the cold period. The mean intensities are similar
in both periods (29.40 and 29.38 for the warm and cold period respectively). In
Figure 4, we show the estimated marginal densities of the extreme wind speed
in every period and their boxplots. As it can be observed, there is no evident
significant difference between them.

However, if we take into account the direction of the wind, the situation is
different. Figure 5 shows the circular histograms of the marginal wind directions
for the two periods of time considered. As it is seen, extreme winds in the warm
period come more frequently from direction SW and SSW, with a strong trend
to the south. At the cold period they come from the SW also, but with a
trend to the West. This is also supported with the results obtained with the
estimation of the level sets at each period.

Figure 6 shows at left the extreme winds on the cylinder and at right the
estimation of four level sets for each period considered plot together, as it was
proposed in Section 4. The chosen levels where those containing 90%, 75%, 50%
and 25% of the data. As it can be seen most of the extreme winds in the cold
period comes from SW and W, and most of the extreme winds in the warm
period comes from S and SW.

As can be seen in Figure 6, there is a shift in the direction of the extreme
winds in the cold period with respect to the warm period in all level sets. In
addition, the shapes of the level sets are quite different. For the 90% level set we
found in both cases two connected components, which are more separated for
the warm period than for the cold period. The small component in the warm
period is centered around the North-East, while the small component in the
cold period is centered around East. In addition, the 10% of the extreme winds
with intensity above 40 m/s are located at very different directions in the cold
period and in the warm period. In Table ?? we provide the mean values for
intensity and direction for each of the chosen level sets and for each period.

8.2 Moderate winds

Uruguay is currently one of the countries with the largest presence of wind
energy in its electricity supply. Today almost 700 wind turbines are distributed
in about thirty public and private parks. Uruguay occupies the second place in
the world with 40.1% of wind generation. Analyzing the behavior of moderate
winds is important in many aspects in particular for wind energy generation.
In this subsection we replicate the previous analysis for the case of non-extreme
winds, which corresponds to intensities below 22 m/s.
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Figure 6: Left-hand panel: the data on the cylinder C, in sky-blue the data
points corresponding to the cold period. Right-hand panel: the cylindrical
coordinate map of data and the level sets for each period.

Direction Intensity
90% 200 28.92

(57.54) (2.76)
75% 214 29.29

(24.99) (2.78)
50% 214 29.00

(17.22) (2.38)
25% 212 29.04

(10.96) (1.84)

Direction Intensity
90% 220 28.88

(53.14) (3.28)
75% 236 28.93

(32.92) (3.06)
50% 247 27.99

(17.30) (1.94)
25% 241 27.65

(8.23) (1.66)

Table 3: Mean value and standard deviation for the direction and the intensity,
for each level set. Left: warm period. Right: Cold period.
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Figure 7: Left-hand panel: the cylindrical coordinate map of data and the level
sets for the warm period. Right-hand panel: the cylindrical coordinate map of
data and the level sets for the cold period.
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Direction Intensity

90% 126 9.04
(87.92) (3.72)

75% 100 8.89
(63.85) (3.50)

50% 99 8.98
(40.83) (2.96)

25% 119 9.49
(13.94) (2.64)

Direction Intensity

90% 163 8.08
(109.01) (3.27)

75% 151 (7.74)
(111.44) (2.95)

50% 131 7.53
(113.19) (2.59)

25% 92 7.41
(102.48) (2.12)

Table 4: Non-extreme winds. Mean value and standard deviation for the di-
rection and the intensity, for each level set. Left: warm period. Right: Cold
period.

In Figure 9 we show the estimated marginal densities of the non-extreme
wind speed at every period and their boxplots, as can be seen they are quite
similar. Figure 10 shows the circular histograms of the marginal wind direc-
tions for the two periods of time considered. As can be seen, the directions of
non-extreme winds in the warm period corresponds more frequently with ESE
direction, with a strong trend to the south. During cold period the main direc-
tions corresponds to NNE. This is also supported by the results obtained with
the estimation of the level sets at each period.

Figure 11 shows the four level sets for each period considered, as proposed
in Section 4. The chosen levels where those containing 90%, 75%, 50% and 25%
of the data. As can be seen the directions of most of the non-extreme winds in
the cold period corresponds to SW and W, while those of the extreme winds in
the warm period corresponds to directions S and SW (see Figure ?? and Table
??).
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Figure 11: Non-extreme winds. Left-hand panel: the level four sets for cold
period. Right-hand panel: the four level sets for the warm period.
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Appendix

Proof of Proposition 1
From Proposition 14 in [46] ∂M and M have positive reach. Denote by

reach(M) the reach of M , (it is also known as the condition number, see [20]).
By point 4 in Lemma 3 , in [20] R(x, y) = ‖x − y‖/ρ(x, y) is bounded away
from zero if ‖x− y‖ < reach(M)/2. Since reach(∂M) > 0 w.r.t. to the intrinsic
metric in M , (see remark 12 in [46]), M admits a normal collard Nr. Since
M \ exp(Nr) is compact and of class C2 the injectivity radius on M \ exp(Nr)
is bounded away from zero, from where it follows that M is uniformly tangible.

Proof of Theorem 4.1
Let us bound

sup
x∈Mn

|f̂n,h(x)− f(x)| ≤ sup
x∈Mn

|f̂n,h(x)− fn,h(x)|+

sup
x∈Mn

|fn,h(x)− E(fn,h(x))|+ sup
x∈Mn

|E(fn,h(x))− f(x)| = A1 +A2 +A3

First we prove that h−(1+δ)A2 → 0 a.s., for all δ < 1/2. We will follow the
same ideas used in [25]. First, we define the random variables

Vj(x) =
1

m0(x)
K
(‖x−Xj‖

h

)
− 1

m0(x)
E
[
K
(‖x−Xj‖

h

)]
and let Sn(x) =

∑n
j=1 Vj(x). Observe that from (8.2), m0(x) > 1/2 for all x

and n large enough (independent of x). Because K is bounded, it follows that
|Vj(x)| ≤ C2 for all x. Let βn = h−(1+δ) → ∞, where δ < 1/2, then from
Bernstein’s inequality,

sup
x∈Mn

P
(
βn

1

nhd′
|Sn(x)| > ε

)
≤ 2 exp

(
− ε2

4C2
2

nhd
′

β2
n

)
(8.1)

For n large enough fixed, we consider a finite collection of balls Bi = B(pi, h
γ)

centered at pi ∈ Mn, with γ > d′ + 1 such that βnh
γ−d′−1 → 0, and Mn ⊂

∪li=1Bi. Because Mn is compact and γ > d′ + 1, l ≤ C3h
−γ .

sup
x∈Mn

1

nhd′
|Sn(x)| ≤ max

1≤j≤l
sup
p∈Bj

1

nhd′
|Sn(x)−Sn(pj)|+ max

1≤j≤l

1

nhd′
|Sn(pj)| = I1+I2

Because K is Lipschitz, βnI1 ≤ C4βnh
γ−(d′+1) → 0 for some positive constant

C4. Then I1 < ε/2 for n large enough. From (8.1) we get that for n large enough

P
(
βn sup

x∈Mn

1

nhd′
|Sn(x)| > ε

)
≤ P

(
βnI2 >

ε

2

)
≤ 2C3h

−γ exp
(
− C5nh

d′

β2
n

)
,

C5 being a positive constant. Now from Borel-Cantelli’s lemma, together with
condition nhd

′
/(β2

n log(n))→∞, it follows that βnA2 → 0 a.s.
To bound A3, first we use that the term Ox(h2) can be bounded indepen-

dently of x, from above by C1h
2 for some constant C1 > 0 (see the proof of

Theorem 3.1 in [5]). Let cn = infx∈Mn
ρ(x, ∂M). Now if we bound m1(x) ≤

(1/(2
√
π)) exp(−c2n/h2) and using that ‖∇f(x)‖ ≤ C, then it follows from (4.2)

that A3 is of the order o(h).
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To bound A1 observe that f̂h,n(x) = m0(x)fn,h(x),

sup
x∈Mn

|f̂n,h(x)− fn,h(x)| ≤ sup
x∈Mn

|m0(x)− 1| sup
x∈Mn

fn,h(x)

From bx ≥ cn > 0 for all x ∈Mn it follows that

|m0(x)−1| = 1√
π

∫ +∞

bx
h

exp(−z2)dz ≤ 1√
π

∫ +∞

cn
h

exp(−z2)dz ≤ h

2cn
√
π

exp
(
− c

2
n

h2

)
(8.2)

To bound supx∈Mn
fn,h(x), we proceed as we did with A3, and it follows

that
βn sup

x∈Mn

|fn,h(x)− E(fn,h(x))| → 0 a.s.

so it is enough to bound |E(fn,h(x))|, but we have proven that supx∈Mn
|E(fn,h(x))−

f(x)| → 0. Then, because f is continuous and M is compact, it is bounded. So,
for n to be large enough, supx∈Mn

|E(fn,h(x))| < 2 supx∈M f(x) < ∞. Finally,
we have proven that

A1 = sup
x∈Mn

|f̂n,h(x)− fn,h(x)| = o(h/cn).

Proof of Theorem 5.1
Let us prove point 1, because Lf (λ)∩ ∂M = ∅, we can take δ > 0 small enough
such that Lf (λ) ⊂ Mδ, then condition M1 in [9] is fulfilled in Mδ; that is,
Bρ(x, r) is connected for all x ∈Mδ and for all 0 < r < δ. BecauseM is compact,
condition f2 in [9] is fulfilled. Then, Theorem 4.2, and Theorem 2 in [9] entails
that dH(∂Lf̂n,h(λ), ∂Lf (λ))→ 0. To prove 2, observe that Theorem 2.1 in [33]

implies that dH(Lf̂n,h(λ), Lf (λ)) → 0 (observe that ∂Lf (λ) = {x : f(x) = λ}).
Finally, to prove point 3, observe that if ∇xf 6= 0 for all x : f(x) = λ, then
∂Lf (λ) = {x : f(x) = λ} is a d′-1,dimensional submanifold of M , and then
µ(∂Lf (λ)) = 0, then point 3 is a consequence of Theorem 2 in [13], which still
holds for any metric space.

Proof of Theorem 5.2
Let εn → 0 such that εn/h→∞ and define the sequence of sets Mεn = {x ∈

M : ρ(x, ∂M) ≥ εn}, observe that Mεn is compact for all n, then

dH
(
Lf̂n,h(λ), Lf (λ)

)
≤ dH

(
Lf̂n,h(λ), Lf̂n,h(λ) ∩Mεn

)
+

dH
(
Lf̂n,h(λ) ∩Mεn , Lf (λ) ∩Mεn

)
+ dH

(
Lf (λ) ∩Mεn , Lf (λ)

)
= I1 + I2 + I3.

To prove that I2 → 0 a.s. let us denote γn = supx∈Mεn
|f̂h,n(x)− f(x)|, then

Lf (λ+ γn) ∩Mεn ⊂ Lf̂h,n(λ) ∩Mεn ⊂ Lf (λ− γn) ∩Mεn .

Then I2 ≤ supx∈Lf (λ−γn)∩Mεn
ρ(x, Lf (λ + γn) ∩Mεn) =: Rn. To prove that

Rn → 0 assume by contradiction that there exists δ > 0 and xn ∈ Lf (λ− γn)∩
Mεn such that δ < ρ(x, Lf (λ + γn) ∩Mεn). We can assume that xn → x0 and
for all n, δ/2 ≤ ρ(x0, Lf (λ + γn) ∩Mεn). If f(x0) > λ there exists Nx0

such

21



that f(z) > λ for all z ∈ Nx0
, fix ε < δ/2 and z ∈ Nx0

with ρ(x0, z) < ε and
n large enough such that z ∈ Mεn , then for n large enough z ∈ Lf (λ + γn),
which is a contradiction. Then, f(x0) = λ. Fix aj with ρ(x0, aj) < δ/2 and
f(aj) > λ, then for n large enough f(aj) > λ+ γn and aj ∈Mεn which is again
a contradiction. This proves that Rn → 0 and then I2 → 0.

Let us prove that I1 → 0 a.s., as n→∞. Because Lf̂n,h(λ)∩Mεn ⊂ Lf̂n,h(λ),

it follows that,

dH
(
Lf̂n,h(λ), Lf̂n,h(λ) ∩Mεn

)
= sup
x∈Lf̂n,h (λ)

ρ(x, Lf̂n,h(λ) ∩Mεn).

Suppose by contradiction that I1 does not converge to 0 a.s., then there
exists δ > 0 such that with positive probability there exists xn ∈ Lf̂n,h(λ) such

that ρ(xn, Lf̂n,h(λ) ∩Mεn) > δ. Because M is compact, we can assume that

there exists x ∈M such that xn → x (by taking a subsequence if it is necessary),
with positive probability. Observe that x ∈ ∂M because xn ∈ M \Mεn and

εn → 0. Now let us prove that f(x) ≤ λ (recall that f̂h,n(xn) ≥ λ). Suppose
that f(x) > λ, then there exists a neighbourhood Bx on M , of x, such that
f(z) > λ for all z ∈ Bx. Observe that for all n large enough Bx ∩Mεn 6= ∅,
then for all y ∈ Bx ∩Mεn , f̂h,n(y) ≥ λ because supx∈Mεn

‖f̂h,n(x)− f(x)‖ → 0
a.s. But then we can choose a sequence yn ∈ Bx ∩Mεn with yn → x such that

f̂h,n(yn) ≥ λ. So ρ(xn, Lf̂n,h(λ) ∩Mεn) ≤ ρ(xn, yn) ≤ ρ(xn, x) + ρ(x, yn) → 0,

which contradict that δ < ρ(xn, Lf̂n,h(λ) ∩Mεn). This proves that f(x) ≤ λ.

Observe that f̂h,n(xn) = m0(xn)fh,n(xn) ≥ λ. We will prove that fh,n(xn)→
f(x) ≤ λ a.s., which is a contradiction because m0(xn)→ 1/2. Let us bound,

|fh,n(xn)−f(x)| ≤ |fh,n(xn)−E(fh,n(xn))|+|E(fh,n(xn))−f(xn)|+|f(xn)−f(x)|

and |fh,n(xn) − E(fh,n(xn))| ≤ supx∈M |fh,n(x) − E(fh,n(x))|. Now the con-
vergence supx∈M |fh,n(x) − E(fh,n(x))| → 0 a.s., is proved following the same
ideas used to prove that A2 → 0 as in the proof of Theorem 4.2). Regarding the
second term, we also bound |E(fh,n(xn))−f(xn)| ≤ supx∈M |E(fh,n(x))−f(x)|,
which converges to 0 following the same ideas used to prove A3 → 0 in Theorem
4.2. Finally, f(xn)→ f(x) because f is a continuous function.

To prove that I3 → 0 as n→∞ assume by contradiction that this is not true,
then there exists δ > 0 and a sequence xn such that f(xn) ≥ λ, xn ∈ M \Mεn

and ρ(xn,Mεn ∩ Lf (λ)) > δ. Because εn → 0, there exists a subsequence of xn
(which will be denoted xn for ease of writing), such that xn → x ∈ ∂M . Because
f is continuous f(x) ≥ λ. If f(x) > λ, then there exists Nx a neighborhood
of x such that for all y ∈ Nx ∩ Mεn f(y) ≥ λ. Let us choose yn → x and
yn ∈ Nx ∩ Mεn , then δ < ρ(xn,Mεn ∩ Lf (λ)) ≤ ρ(xn, yn) → 0, which is a
contradiction. The other case is f(x) = λ, let aj → x such that f(aj) > λ for
all j. For all j, we can choose n(j) → ∞ as j → ∞, such that aj ∈ Mεn(j)

.
Then

δ < ρ(xn(j),Mεn(j)
∩Lf (λ)) ≤ ρ(xn(j), an(j)) ≤ ρ(xn(j), x)+ρ(x, an(j))→ 0 as j →∞.

Proof of Theorem 6.1
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Let us denote Xn = {X1, . . . , Xn}, then

dH
(
Cr({Xi : f̂h,n(Xi) > λ}), Cr({Xi : f(Xi) > λ})

)
≤

dH
(
Cr(Xn ∩ Lf̂h,n(λ)), Lf̂h,n(λ)

)
+

dH
(
Lf̂h,n(λ), Lf (λ)

)
+ dH

(
Lf (λ), Cr(Xn ∩ Lf (λ))

)
= A+B + C.

From Theorem 5.2, B → 0 a.s. Because Lf (λ) is r-convex, Xn ∩ Lf (λ) ⊂
Cr(Xn ∩ Lf (λ)) ⊂ Lf (λ) and then,

C ≤ dH(Xn ∩ Lf (λ), Lf (λ))→ 0 a.s., as n→∞.

Regarding A, observe that A = supx∈Lf̂h,n(λ)
ρ(x,Cr(Xn ∩ Lf̂h,n(λ))). Let us

proceed by contradiction, assume that with positive probability A does not
converge to 0, then there exists a sequence xn ∈ Lf̂h,n(λ) and δ > 0 such

that δ < ρ(xn, Cr(Xn ∩ Lf (λ))) for all n > n0. Because M is compact, there
exists a convergent subsequence of xn (which we will denote xn) such that
xn → x. Because B → 0, it follows that f(x) ≥ λ but with positive probability
δ/2 < ρ(x,Cr(Xn ∩ Lf̂h,n(λ))) for all n large enough. If f(x) > λ, then there

exists η > 0 such that for all z ∈ Bρ(x, η) f(z) > λ. Let us take 0 < η < δ/2,

then with probability one, for n large enough f̂h,n(z) > λ for all z B(x, η). Let us
take n large enough such that dH(Xn∩Lf (λ), Lf (λ)) < η, then Xn∩B(x, η) 6= ∅
but then ρ(x,Cr(Xn∩Lf̂h,n(λ))) < η which is a contradiction. The case f(x) = λ

is proved in the same way, let aj such that f(aj) > λ and 0 < η < δ such that for

all z ∈ Bρ(aj , η) f(z) > λ. Let n be large enough such that f̂h,n(z) > η for all
z ∈ B(a, η) and dH(Xn∩Lf (λ), Lf (λ)) < η. Again ρ(x,Cr(Xn∩Lf̂h,n(λ))) < η,

which is a contradiction.
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