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Abstract: We study the problem of estimating the surface area of the
boundary ∂S of a sufficiently smooth set S ⊂ R

d when the available infor-
mation is only a finite subset Xn ⊂ S. We propose two estimators. The first
makes use of the Devroye–Wise support estimator and is based on Crofton’s
formula, which, roughly speaking, states that the (d− 1)-dimensional sur-
face area of a smooth enough set is the mean number of intersections of
randomly chosen lines. For that purpose, we propose an estimator of the
number of intersections of such lines with support based on the Devroye–
Wise support estimators. The second surface area estimator makes use of
the α-convex hull of Xn, which is denoted by Cα(Xn). More precisely, it is
the (d−1)-dimensional surface area of Cα(Xn), as denoted by |Cα(Xn)|d−1,
which is proven to converge to the (d− 1)-dimensional surface area of ∂S.
Moreover, |Cα(Xn)|d−1 can be computed using Crofton’s formula.

Our results depend on the Hausdorff distance between S and Xn for
the Devroye–Wise estimator, and the Hausdorff distance between ∂S and
∂Cα(Xn) for the second estimator.

Primary 62G05; secondary 62G20.
Keywords and phrases: Crofton’s formula, surface estimation, α-convex
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1. Introduction

1.1. On surface area and length estimation

The estimation of surface areas has been extensively considered in stereology
(see, for instance, [8, 9] and [27]). It has also been studied as a further step in the
theory of nonparametric set estimation (see [32]), and has practical applications
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in medical imaging (see [19]). In addition, the estimation of a surface area is
widely used in magnetic resonance imagining techniques (see [28]).

The three- and two-dimensional cases are addressed in [10], which proposed
parametric estimators when the available data are the distances to S from a
sample outside the set but at a distance smaller than a given R > 0.

The two-dimensional case has many important applications. This is also true
of the three-dimensional case. For instance, surface area is an important biolog-
ical parameter in organs such as the lungs (see, for instance, [40]). The higher
dimensional study is also important, at least from a theoretical point of view,
because in [36] it is shown that the boundary surface plays an important role
as a parameter of a probability distribution, which allows us to apply plug-in
methods. To our knowledge, the only paper that tackles the surface area esti-
mation problem in any dimension, when only “inside” data are available, is [22]
and no convergence rates are given.

When, as in image analysis, one can observe n data points from two distin-
guishable sets of random data-points (one from inside S and the other from
outside S), then the estimation of the surface area of the boundary has been
tackled, for any d ≥ 2, in [19, 21, 29, 32] and [41]. The proposals given in [19, 32]
and [21] aim to estimate the Minkowski content of ∂S. In [21], a very general
convergence result is obtained, and in [19] a convergence rate of order n−1/2d is
obtained under some mild hypotheses, and later on, in [32], a convergence rate
of order (log(n)/n)1/(d+1) is achieved under stronger assumptions. In [29], a very
nice fully data-driven method that is based on the Delaunay triangulation is pro-
posed under an homogeneous point process sampling scheme. The asymptotic
rate of convergence of the variance is given but there is no global convergence
rate because no result is obtained for the bias. Finally, in [41], a parameter-free
procedure that is based on the Voronoi triangulation is proposed and a rate of
convergence of order λ−1/d is obtained under a Poisson Point Process (PPP)
sampling scheme (where λ is the intensity of the PPP).

1.2. Roadmap

When S ⊂ R
d is a compact set, we aim to estimate its surface area; that is, the

(d− 1)-Hausdorff measure of its boundary ∂S.
We propose two surface area estimators, at any finite dimension, when the

available data is only a finite set Xn ⊂ S. In this setting, the two-dimensional
case has mostly been studied. Assuming that Xn is an iid sample, the convex
case was first addressed in [11] (using Crofton’s formula). Later on, under the α-
convexity assumption, [5] obtained the convergence of the α-shape’s perimeter to
the perimeter of the support and the associated convergence rates are derived.
When the data are given by a trajectory from a reflected Brownian motion
(RBM) (with or without drift), a consistency result is obtained in Theorem 4
in [13].

Proposed estimator relies on Crofton’s formula, which was proven in 1868 for
convex subsets of R2 and extended to arbitrary dimensions (see [39]). It states
that the surface area of ∂S equals the integral of the number of intersections
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with ∂S of lines in R
d (see Equations (3) and (4) for explicit versions of Crofton’s

formula for d = 2 and d ≥ 2, respectively).
The first proposed estimator is based on the Devroye–Wise support estimator

Ŝεn(Xn) = ∪n
i=1B(Xi, εn) (1)

see [23], where n is the cardinality of Xn, εn → 0 as n → ∞ and B(Xi, εn)
denotes the closed ball in R

d centred at Xi and of radius εn > 0. By use of
Ŝεn(Xn) and Ŝ4εn(Xn) we propose an estimator of the number of intersection
of a line with ∂S. The reader should be aware that this estimator is not just
a just a plug-in method because (in general) the number of intersections of a
line with ∂Ŝεn(Xn) may not converge to the number of intersections of that line
with ∂S. The main results regarding this estimator are stated in subsection 3.3
where it is proven that this estimator converges at a rate that is proportional
to dH(Xn, S)

1/2 (where dH denotes the Hausdorff distance). This rate can be
improved to dH(Xn, S) when adding a reasonable assumption on the shape of
∂S. These rates are known when Xn is an iid sample, see Corollary 2. The
computational aspects of this estimator are studied in subsection 3.4.

The second uses the α-convex hull support estimator

Cα(Xn) =
⋂

{x:d(x,Xn)≥α}
B̊(x, α)c, (2)

see [37], where B̊(x, α)c denotes the complement of the open ball in R
d centred

at x and of radius α > 0. First we extend the results in [20]. More precisely,
we prove that, in any dimension, the surface area of the hull’s boundary—that
is, |∂Cα(Xn)|d−1—converges to |∂S|d−1. This result is interesting in itself but
in practice it is difficult to compute |∂Cα(Xn)|d−1, especially for dimension
d > 2. However, we will see that by means of Crofton’s formula it can easily be
estimated via the Monte Carlo method. The approach based on the α-convex
hull is introduced in Section 4. A discussion of the rates of convergence is given in
Section 5 and an algorithm based on the Monte Carlo method for the estimator
based on the α-hull is introduced in Section 6.

These results can be applied to many deterministic or random situations to
obtain explicit convergence rates. We focus on two random situations: the case
Xn = {X1, . . . , Xn} of iid drawn on S (with a density bounded from below by a
positive constant), and the case of random trajectories of reflected diffusions on
S. In particular, we provide convergence rates when the trajectory is the result of
a RBM (see [13, 14]). This last setting has several applications in ecology, where
the trajectory is obtained by recording the location of an animal (or several
animals) living in an area S, which is called its home range (the territorial
range of the animal), and Xt represent the position at time t transmitted by
the instrument (see, for instance, [7, 13, 14], and the references therein).

The rate of convergence of the surface area estimator based on Ŝεn(Xn),
when Xn is an iid sample, is of order n−1/2d. This can be improved to n−1/d,
depending on the assumptions on the smoothness of ∂S. With the estimation
of the support that uses the α-convex hull, when Xn is an iid sample, we obtain
a rate of order n−2/(d+1).



3754 C. Aaron et al.

2. Background

2.1. Notations

Given a set S ⊂ R
d, we denote by S̊, S and ∂S the interior, closure and boundary

of S, respectively, with respect to the usual topology of R
d. We also write

diam(S) = sup(x,y)∈S×S ||x − y||. The parallel set of S of radius ε is B(S, ε) =

{y ∈ R
d : infx∈S ‖y − x‖ ≤ ε}.

If A ⊂ R
d is a Borel set, then |A|d denotes its d-dimensional Lebesgue mea-

sure. When A ⊂ R
d is a (d − 1)-dimensional manifold, then |A|d−1 denotes its

(d− 1)-Hausdorff measure.
We denote by Bd(x, ε) (or sometimes just B(x, ε)) the closed ball in R

d, of
radius ε, centred at x, and ωd = |Bd(x, 1)|d. Given two compact non-empty sets
A,C ⊂ R

d, the Hausdorff distance between A and C is defined by

dH(A,C) = inf{ε > 0 : such that A ⊂ B(C, ε) and C ⊂ B(A, ε)}.

The (d − 1)-dimensional sphere in R
d is denoted by Sd−1, while the half-

sphere in R
d is denoted by (S+)d−1; that is, (S+)d−1 = (Rd−1 × R

+) ∩ Sd−1.
Given M a sufficiently smooth (d − 1)-manifold and x ∈ M , the affine tangent
space of M at x is denoted by TxM . When S ⊂ R

d is regular (i.e., compact and

satisfying S = S̊) and has a C1 regular boundary ∂S, then for any x ∈ ∂S we
can define ηx the outward normal unit vector at x; that is, the unit vector of
(Tx∂S)

⊥ such that, for t > 0 small enough, x+ tηx ∈ Sc.
Given a vector θ ∈ (S+)d−1 and a point y, rθ,y denotes the line {y + λθ, λ ∈

R} = y+Rθ. If y1 and y2 are two points in rθ,y, then yi = y+λiθ. With a slight
abuse of notation, we write y1 < y2 when λ1 < λ2.

2.2. Crofton’s formula

In 1868, Crofton proved the following result (see [17]): given a convex set in the
plane, whose boundary is denoted by γ, then its length |γ|1 can be computed
by

|γ|1 =
1

2

∫ π

θ=0

∫ +∞

p=−∞
nγ(θ, p)dpdθ, (3)

nγ(θ, p) being the number of intersections of γ with the line rθ∗,θp, where θ
∗ ∈

(S+)1 is orthogonal to θ, and dpdθ is the two-dimensional Lebesgue measure (see
Figure 1). This result has been generalized to compact (not necessarily convex)
sets in R

d for any d > 2, and also to Lie groups (see [39]).
To introduce the general Crofton formula in R

d for a compact (d − 1)-
dimensional manifold M , let us define first the constant

β(d) = Γ(d/2)Γ((d+ 1)/2)−1π−1/2,

where Γ stands for the well-known Gamma function. Let θ ∈ (S+)d−1. Then,
θ determines a (d − 1)-dimensional linear space θ⊥ = {v : 〈v, θ〉 = 0}. Given
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Fig 1. The function nγ counts the number of intersections of γ with the line rθ∗,θp determined
by θ and p.

Fig 2. The line rθ,y = y + Rθ is shown, where y ∈ θ⊥ and θ ∈ (S+)d−1.

y ∈ θ⊥, let us write nM (θ, y) = #(rθ,y ∩M), where # is the cardinality of the
set (see Figure 2).

It is proven in [26] (see Theorem 3.2.26) that if M is a (d − 1)-dimensional
rectifiable set, then the integralgeometric measure of M (which will be denoted
by Id−1(M), and is defined by the right-hand side of (4)) equals its (d − 1)-
dimensional Hausdorff measure; that is,

|M |d−1 = Id−1(M) =
1

β(d)

∫
θ∈(S+)d−1

∫
y∈θ⊥

nM (θ, y)dμd−1(y)dθ. (4)

The measure dθ is the uniform measure on (S+)d−1 (with total mass 1) and
μd−1 is the (d− 1)-dimensional Lebesgue measure.

2.3. Restrictions on the shape

We will now recall some well-known restrictions that are put on the shape in
the set estimation.
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Definition 2.1. For α > 0, a set S ⊂ R
d is said to be α-convex if S = Cα(S),

where Cα(S) is the α-convex hull of S, defined in (2), replacing Xn by S.

When S is α-convex, a natural estimator of S from a random sample Xn of
points (drawn from a distribution with support S), is Cα(Xn) (see [37]).

Definition 2.2. A set S ⊂ R
d is said to satisfy the outside α-rolling condition if

for each boundary point s ∈ ∂S there exists an x ∈ Sc such that B(x, α)∩∂S =
{s}. A compact set S is said to satisfy the inside α-rolling condition if Sc satisfies
the outside α-rolling condition.

Following the notation in [25], let Unp(S) be the set of points x ∈ R
d with a

unique projection on S.

Definition 2.3. For x ∈ S, let reach(S, x) = sup{r > 0 : B̊(x, r) ⊂ Unp(S)
}
.

The reach of S is defined by reach(S) = inf
{
reach(S, x) : x ∈ S

}
, while S is of

positive reach if reach(S) > 0.

Remark 1. Throughout this paper, we assume that ∂S is the boundary of a

compact set S ⊂ R
d such that S = S̊. We also assume that S fulfills the outside

and inside α-rolling conditions, and then ∂S is rectifiable (see Theorem 1 in
[42]). From this it follows that Id−1(∂S) = |∂S|d−1 < ∞, which implies (by (4))
that, except for a set of measure zero with respect to dμd−1(y)dθ, any line rθ,y
meets ∂S a finite number of times: n∂S(θ, y) < ∞. From Theorem 1 in [42], it
also follows that ∂S is a C1 manifold, which allows us for each x ∈ ∂S to define
its unit outward normal vector ηx.

For the estimator of the surface area based on the Devroye–Wise estimator,
we will assume that ∂S satisfies a technical hypothesis, which is referred to as
(C, ε0)-regularity.

Definition 2.4. Let Eθ(∂S) = {x ∈ ∂S, 〈ηx, θ〉 = 0}. The image of Eθ(∂S)
by the orthogonal projection onto θ⊥ is denoted by Fθ = πθ⊥(Eθ(∂S)) (which
for non-degenerate cases is a (d − 2)-dimensional submanifold of θ⊥). We also
denote by B(Fθ, ε) its parallel set of radius ε.

We define, for ε > 0,

ϕθ(ε) =
∣∣θ⊥ ∩B(Fθ, ε)

∣∣
d−1

.

• We will say that ∂S is (C, ε0)-regular if for all θ and all ε ∈ (0, ε0), ϕ
′
θ(ε)

exists and ϕ′
θ(ε) ≤ C.

• If ∂S is (C, ε0)-regular for some ε0 > 0, then we will say that ∂S is C-
regular.

Once the rolling balls condition is imposed, we will show through some ex-
amples in Figure 3 that the (C, ε0)-regularity of the boundary is quite mild.

(a) The first set, which is presented in Figure 3, is a unit square with ‘round
angles’. For all θ, Fθ = πθ⊥(Eθ(∂S)) = {x1(θ), x2(θ)} with ||x1(θ) −
x2(θ)|| ≥ 1. Thus, for ε < 1/2, and for all θ, ϕθ(ε) = 4ε and is thus
∂S is (4, 0.5)-regular (in particular 4-regular).
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Fig 3. (a) smooth square

Fig 4. (b) two-dimensional peanut

Fig 5. (c) three-dimensional peanut

(b) The second set, which is presented in Figure 4, is a two-dimensional
‘peanut’ that is made of 4 circular arcs. For all θ and ε small enough,
we have ϕθ(ε) = 2cθε where cθ is the number of connected components
of Fθ, which is less than 6, from which it follows that S has a 12-regular
boundary.

(c) The third set, presented in Figure 5, is the surface of revolution generated
by (b). Here we have that for all θ, Eθ is a one-dimensional manifold with
less than three connected components. The maximal length of a compo-
nent is bounded by L, the length of the maximal perimeter (shown in blue
in the figure). The reach of each Eθ is (uniformly in θ) lower bounded by
α > 0. All of these assertions allow us to claim that ∂S is 6L-regular.
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Fig 6. (d) an ‘infinite wave’ shape

(d) The rolling ball condition is not sufficient to guarantee the (C, ε0)-regularity
of the boundary: this fails if, for instance, S is such that ∂S = S1 ∪ S2 ∪
S3 ∪ S4 (see Figure 6) with:

S1 = {(x, 1 + (500)(x2 − 1)10x5 sin(1/x)), x ∈ [−1, 1] \ {0}} ∪ {(0, 1)};

S2 = {(x,−1− (500)(x2 − 1)10x5 sin(1/x)), x ∈ [−1, 1] \ {0}} ∪ {(0,−1)};
S3 = {(1 + cos(θ), sin(θ)), θ ∈ [−π/2, π/2]};
S4 = {(−1 + cos(θ), sin(θ)), θ ∈ [π/2, 3π/2]}.

It can easily be proven that such a set satisfies the rolling ball condition
for any r0 ≤ 1/80 but ϕ′

0(ε) → +∞ when ε → 0, which implies that ∂S is
not C-regular.

For the Devroye–Wise type estimator, we will also show that the convergence
rate can be quadratically improved if we additionally assume that the number
of intersections between any line and ∂S is bounded from above (this excludes
the case of a linear part in ∂S, such as in Figure 3).

Definition 2.5. Given S ⊂ R
d, we say that ∂S has a bounded number of linear

intersections if there exists an NS such that for all θ ∈ (S+)d−1 and y ∈ θ⊥,
n∂S(θ, y) ≤ NS .

Remark 2. The previous definition can be replaced with a weaker requirement
by asking that ∂S has a bounded number of linear intersections for almost all
lines with respect to μd−1(y)dθ, and the corresponding results remain true.

3. Surface area estimation based on the Devroye–Wise estimator

3.1. A conjecture on the Devroye–Wise estimator

Since the set S is in general unknown, we first propose the natural plug-in idea
of computing |∂Ŝ|d−1, where Ŝ is an estimator of S. There are several kinds
of set estimators, depending on the geometric restrictions imposed on S and
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the structure of the data (see [13, 23] and references therein). One of the most
studied in the literature, which is also universally consistent, is the Devroye–
Wise estimator (see [23]) that was introduced in (1). This all-purpose estimator
has the advantage that it is quite easy to compute the intersection of a line with
its boundary, as follows: Given a line rθ,y, we can compute Yi = ∂B(Xi, εn)∩rθ,y,
and then Zi = {y ∈ Yi, d(y,Xn) ≥ εn}, so we have that, with probability one,

∪iZi = rθ,y ∩ ∂Ŝεn(Xn).

Indeed, suppose, on the contrary, that there exists a z ∈ ∪iZi and z ∈ ˚̂
Sεn , then

we have d(z,Xn) = εn and z ∈ H{Xi, d(Xi, z) = εn} (where H(E) is the convex
hull of E). Thus, there are at least d+ 1 observations on the same hypersphere
of given radius εn, but this event has probability 0 (see [31]).

We conjecture that the plug-in estimator |∂Ŝεn(Xn)|d−1 satisfies the follow-
ing:

1. If εn < dH(Xn, S), then ∂Ŝεn(Xn) does not converge to ∂S and |∂Ŝεn

(Xn)|d−1 does not converge to |∂S|d−1.
2. If εn = dH(Xn, S), then ∂Ŝεn(Xn) converges to ∂S with the best possible

rate but |∂Ŝεn(Xn)|d−1 does not converge to |∂S|d−1 but greatly overesti-
mates it.

3. If εn � dH(Xn, S) and εn → 0, then ∂Ŝεn(Xn) converges to ∂S and
|∂Ŝεn(Xn)|d−1 converges to |∂S|d−1 but we can expect that the rate is
greater than εn (namely ||∂Ŝεn(Xn)|d−1−|∂S|d−1| ≥ O(εn) � dH(Xn, S)).
Indeed, if S fulfills the outside and inside rolling ball conditions, then, for
n large enough, we have that B(S, εn−dH(Xn, S)) ⊂ Ŝεn(Xn) ⊂ B(S, εn),
which in turn gives that ||∂Ŝεn(Xn)|d−1−|∂S|d−1| ≥ O(εn) � dH(Xn, S).

3.2. A surface estimator based on the Devroye–Wise estimator

The aim of this section is to propose an estimator for the surface area based
on the Devroye–Wise support estimator and Crofton’s formula that can attain
a convergence rate of order dH(X, S). The whole procedure is defined for any
set X, but is not necessarily finite because we will apply our estimator to the
case in which X is the trajectory of a Brownian motion. If X is not finite, then
for a given ε > 0, we write Ŝε(X) = B(X, ε). This procedure replaces n∂S(θ, y)
by n̂ε,X(θ, y) introduced in Definition 3.1, and then integrates n̂ε,X(θ, y) as in
Crofton’s formula (see (5)). We will prove that (see Remark 4) by the (C, ε0)-
regularity of the boundary, with probability one, rθ,y is not included in any
(d − 1)-dimensional affine tangent space (tangent to ∂S). Then, n∂S(θ, y) =
2kS(θ, y), where kS(θ, y) is the number of connected components of rθ,y ∩ S.

Definition 3.1. Let ε be a positive real number and X ⊂ S be a set (not neces-
sarily finite). Consider a line rθ,y. If Ŝε(X)∩ rθ,y = ∅, then define n̂ε,X(θ, y) = 0.
If not, then:

• denote by I1, . . . , Im the connected components of Ŝε(X)∩rθ,y. Order this
sequence in such a way that Ii = (ai, bi), with a1 < b1 < · · · < am < bm.
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• If for some consecutive intervals Ii, Ii+1, . . . , Ii+	, for all ai < λ < bi+	

and t = y + λθ ∈ rθ,y, d(t,X) ≤ 4ε, define Ai = (ai, bi+	).
• Let j be the number of disjoint open intervals A1, . . . , Aj that this process

ended with. Then define n̂ε,X(θ, y) = 2j.

To roughly summarize this, we consider the connected components of Ŝε∩rθ,y
and then ‘link or glue’ the ones that are in the same connected component of
Ŝ4ε ∩ rθ,y. In the sequel, we will refer to this process as the gluing procedure.

To gain some insight into the relationship between n̂ε,X(θ, y) and n∂Ŝε(X)
(θ, y),

observe that n̂ε,X(θ, y)≤n∂Ŝε(X)
(θ, y). We also have that n̂ε,X(θ, y)≤n∂Ŝ4ε(X)

(θ, y).

Indeed, let C1, . . . , CK be the connected components of rθ,y∩ Ŝ4ε and note that:

1. For each j there exists an index i such that Ij ⊂ Ci.
2. If d(Ci,X) > ε for all j, then we have that Ij ∩ Ci = ∅.
3. If d(Ci,X) ≤ ε, then there exists an Ij ⊂ Ci and all the Ij such that

Ij ⊂ Ci are glued by the proposed procedure. Thus, there exists a unique
j′ such that Aj′ ⊂ Cj .

Our first proposed estimator is

Îd−1(X, ε) =
1

β(d)

∫
θ∈(S+)d−1

∫
y∈θ⊥

n̂ε,X(θ, y)dμd−1(y)dθ. (5)

Under the assumption that ∂S has a bounded number NS of linear intersec-
tions (see Definition 2.5), we will consider, for a given N0 ≥ NS ,

ÎN0

d−1(X, ε) =
1

β(d)

∫
θ∈(S+)d−1

∫
y∈θ⊥

min(n̂ε,X(θ, y), N0)dμd−1(y)dθ.

3.3. Main results on the Devroye–Wise based estimator.

Theorem 3.2. Let S ⊂ R
d be a compact set fulfilling the outside and inside

α-rolling conditions. Assume also that S is (C, ε0)-regular for some positive
constants C and ε0. Let Xn = {X1, . . . , Xn} ⊂ S. Let εn → 0 be such that
dH(Xn, S) ≤ εn. Then,

Îd−1(Xn, εn) = |∂S|d−1 +O(
√
εn). (6)

Moreover, for n large enough,

|O(
√
εn)| ≤

4Cdiam(S)

3β(d)
√
α

√
εn.

The idea of the proof of Theorem 3.2 consists of proving that our algorithm
allows a perfect estimation of n∂S(θ, y) for the lines that are ‘far enough’ (fulfill-
ing L(ε) for some ε > 0) from the tangent spaces. For the rest of the lines, we will
prove in Corollary 5 that, under (C, ε0)-regularity, the integral of n̂εn,Xn(θ, y)

on the set of these lines, is bounded from above by C ′ε
1/2
n , C ′ being a positive
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constant. Roughly speaking, a line fulfilling condition L(ε) does not meet the
estimator ∂Ŝεn too many times.

From Theorem 3.2 and Theorem 4 in [18], we can obtain the rate of conver-
gence for the iid case:

Corollary 1. Let S ⊂ R
d be a compact set fulfilling the inside and outside

α-rolling conditions. Assume also that S is (C, ε0)-regular for some positive
constants C and ε0. Let Xn = {X1, . . . , Xn} be the set of observations of an iid
sample of X with distribution PX supported on S. Assume that PX has density
f (w.r.t. μd) bounded from below by some c > 0. Let εn = C ′(ln(n)/n)1/d and
C ′ > (6/(cωd))

1/d. Then, with probability one, for n large enough,

Îd−1(Xn, εn) = |∂S|d−1 +O
((

lnn

n

) 1
2d

)
.

As mentioned in Section 5.2 in [18], if εn = 2maxi minj �=i ||Xi − Xj ||, then
with probability one, for n large enough, εn ≤ 2dH(Xn, S), which together with
Corollary 1, entails that, with the aforementioned choice for εn, our proposal is
fully data driven, for the iid case.

If the number of linear intersections of ∂S is assumed to be bounded by a
constant NS , the use of min(n̂εn , N0) (for any N0 ≥ NS) allows us to obtain
better convergence rates.

Theorem 3.3. Let S ⊂ R
d be a compact set fulfilling the outside and inside

α-rolling conditions. Assume also that S is (C, ε0)-regular for some positive
constants C and ε0, and that the number of linear intersections of ∂S is bounded
by NS. Let Xn = {X1, . . . , Xn} ⊂ S. Let εn → 0 be such that dH(Xn, S) ≤ εn
and N0 ≥ NS. Then,

ÎN0

d−1(Xn, εn) = |∂S|d−1 +O(εn).

Moreover, for n large enough, |O(εn)| ≤ 4C(N0 +NS)εn/β(d).

As before, we give the convergence rate associated to the iid setting and the
RBM hypothesis as two corollaries of Theorem 3.3.

Corollary 2. Let S ⊂ R
d be a compact set fulfilling the inside and outside

α-rolling conditions. Assume also that S is (C, ε0)-regular for some positive
constants C and ε0, and that ∂S has a bounded number of linear intersections.
Let Xn = {X1, . . . , Xn} be the set of observations of an iid sample with distri-
bution PX , supported on S. Assume that PX has density f (w.r.t. μd) bounded
from below by some c > 0. Let εn = C ′(ln(n)/n)1/d and C ′ > (6/(cωd))

1/d.
Then, with probability one, for n large enough,

ÎN0

d−1(Xn, εn) = |∂S|d−1 +O
((

ln(n)

n

) 1
d

)
.

Here again, the choice of εn = 2maxi minj ||Xi−Xj || is suitable but now the
price to pay is the selection of the parameter N0.
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In a more general setting, the conclusion of Theorem 3.3 holds when the set
of points Xn is replaced by the trajectory XT of any stochastic process {Xt}t>0

included in S, observed in [0, T ], such that dH(XT , S) → 0 as T → ∞. Observe
that the estimator ÎN0

d−1(X, ε) is well defined, even when XT is not a finite set
(see Definition 3.1). We will assume that S is bounded with connected interior
and ∂S is C2. This is the case (for example) of some reflected diffusions, and
in particular the RBM. This has recently been proven in Corollary 1 in [13]
for RBM without drift (see also [14] and [15] for the RBM with drift). The
definition of an RBM with drift is as follows: given a d-dimensional Brownian
motion {Bt}t≥0 departing from B0 = 0 and defined on a filtered probability
space (Ω,F , {Ft}t≥0,Px), an RBM with drift is the (unique) solution to the
following stochastic differential equation on S:

Xt = X0 +Bt −
1

2

∫ t

0

∇f (Xs)ds−
∫ t

0

ηXsξ(ds), where Xt ∈ D, ∀t ≥ 0,

where the drift, ∇f (x), is given by the gradient of a function f and is assumed to
be Lipschitz, {ξt}t≥0 is the corresponding local time; that is, a one-dimensional

continuous non-decreasing process with ξ0 = 0 that satisfies ξt =
∫ t

0
I{Xs∈∂S}dξs.

Since the drift is given by the gradient of a function and S is compact, we have
that its stationary distribution has a density bounded from below by a constant.

Corollary 3. Let S ⊂ R
d be a non-empty compact set with connected interior

such that S = S̊, and suppose that S fulfills the outside and inside α-rolling
conditions. Assume also that S is (C, ε0)-regular for some positive constants C
and ε0 and that the number of linear intersections of ∂S is bounded by NS. Let
XT ⊂ S be as before. Then, with probability one, for T large enough,

ÎN0

d−1(XT , εT ) = |∂S|d−1 + o

((
ln(T )2

T

) 1
d

)
,

where εT = o((ln(T )2/T )1/d).

3.4. The algorithm

We will now describe an algorithm to compute n̂ε,Xn(θ, y) for a given (θ, y),
when the input is a finite set of n elements and ε > 0. For a reflected diffusion,
we take Xn ⊂ XT to be a dense enough subset of n points. Observe that this is
not restrictive because XT is stored as a finite set of points in a computer.

1. For each i, compute di := d(rθ,y, Xi) =
√

||Xi − y||2 − 〈Xi − y, θ〉2.
2. Compute the connected components Ii of rθ,y ∩ Ŝε(Xn) according to the

following steps: Initialize the list of the extremes of these intervals by
listz= ∅ and listl= ∅. Then, for i = 1 to n:

• If di = ε, then Ni = 1, �1 = 〈Xi − y, θ〉 and z1 = B(Xi, ε) ∩ rθ,y =
y + �1θ
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• If di < ε, then Ni = 2 and compute �1 = 〈Xi − y, θ〉 −
√
ε2 − d2i and

�2 = 〈Xi−y, θ〉+
√

ε2 − d2i . Then z1 = y+ �1θ and z2 = y+ �2θ such
that {z1, z2} = B(Xi, εn) ∩ rθ,y.

• For j=1 toNi: if d(zj ,Xn)≥ε, do listz=listz∪{zj} and listl=listl∪{�j}.
From the comments at the beginning of subsection 3.1, we know that,
with probability one, listz equals rθ,y ∩ ∂Ŝε.

• Sort listl. With probability one, listl has an even number, 2m, of el-
ements (see the comments at the beginning of subsection 3.2), and
define ai and bi such that �2(i−1)+1 = ai, �2i = bi (which corresponds
to ai and bi in Definition 3.1; i.e. (ai, bi) are the connected compo-
nents of rθ,y ∩ Ŝε(X)).

3 Obtain the a′i and b′i such that I ′i = (a′i, b
′
i) are the connected components

of Ŝ4ε(Xn) ∩ rθ,y by using the same procedure.
4. Lastly, compute n̂ε,X(θ, y), as follows:

initialization n̂ε,Xn(θ, y) = m.
For i = 1 to m− 1:

• If there exists k such that (bi, ai+1) ⊂ I ′k, then:

n̂ε,Xn(θ, y) = n̂ε,Xn(θ, y)− 1.

5. n̂ε,Xn(θ, y) = 2n̂ε,Xn(θ, y).

4. The approach based on the α-convex hull

4.1. The estimator based on the α′-hull assuming the α-rolling ball
condition

In [5], it was proven that in dimension two, under some regularity assumptions,
the length of the boundary of the α-shape of an iid sample converges to the
length of the boundary of the set. The α-shape has the very good property that
its boundary is very easy to compute, and hence so is its surface measure. Unfor-
tunately, we are unsure that the results can be extended to higher dimensions.
Nevertheless, considering the α-convex hull (which is quite close to the α-shape)
allows us to extend the results on the surface measure to any dimension. The
following deterministic theorem states that, for all 0 < α′ < α, the surface mea-
sure of the boundary of the α′-convex hull Xn ⊂ S converges to |∂S|d−1 with a
rate that depends on dH(∂Cα′(Xn), ∂S).

Theorem 4.1. Let S ⊂ R
d be a compact set such that ∂S is a (d − 1)-

dimensional C2 manifold with reach α > 0. Let α′ < α be a positive constant and
let Xn ⊂ S be a finite set such that dH(Xn, S) <

1
2

αα′

α+α′ and dH(∂Cα′(Xn), ∂S) ≤
εn with

εn ≤ min

{
αα′

16(α+ α′)
,

1

(d− 1)α

}
.

Then,
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Fig 7. Points in R
2 and the associated Voronoi diagram.

1. π∂S : ∂Cα′(Xn) → ∂S (where π∂S(x) denotes the projection onto ∂S) is
one to one, and

2.
∣∣|∂S|d−1 − |∂Cα′(Xn)|d−1

∣∣ ≤ (d− 1)
(

3
2α+ 32α+α′

αα′

)
εn(1 + o(1)).

As previously, we can deduce the convergence rates from the deterministic
theorem and results in [5] under the iid assumption.

Corollary 4. Let S ⊂ R
d be a compact set such that ∂S is a (d−1)-dimensional

C2 manifold with reach α > 0. Let Xn = {X1, . . . , Xn} be an iid sample of X
with distribution PX supported on S. Assume that PX has density f (w.r.t. μd)
bounded from below by some c > 0. Suppose α′ < α. Then, with probability one,
for n large enough,

∣∣|∂S|d−1 − |∂Cα′(Xn)|d−1

∣∣ = O
((

ln(n)

n

) 2
d+1

)
.

In this case we do not need the additional hypothesis of (C, ε0)-regularity.
The convergence rate is far better than the one given in Theorem 3.2, where the
price to pay is the computational cost when d increases. Indeed, as detailed in
next section, the computation of the α-convex hull requires us to start by the
computation of the Delaunay complex. With regard to the parameter selection
α′, a fully data driven (but computationally expensive) method is proposed in
[38].

4.2. Computation with the use of Crofton’s formula

Unfortunately, the explicit computation of |∂Cα(Xn)|d−1 is very difficult. How-
ever, from the results in Lemma A.7, we derive that we can make use Crofton’s
formulae and the Monte Carlo method to estimate |∂Cα(Xn)|d−1. This, as we
will see, is based on the fact that the computation of ňα(θ, y) := n∂Cα(Xn)(θ, y)
is feasible. It first requires the computation of the α-convex hull, as well as the
convex hull, of Xn. Recall that the convex hull H(Xn) of Xn is equal to the

intersection of a finite number of half-spaces H(Xn) =
⋂K

i=1 Hi with Hi = {x ∈
R

d, 〈x− yi, ui〉 ≤ 0} for some {y1, . . . , yK} ⊂ R
d and {u1, . . . , uK} ⊂ Sd−1.
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Fig 8. Points in R
2, The associated Delaunay complex and an half space Hc

1

Fig 9. The convex hull of the points (blue) and a ball B+
1

In [24], it is proved for dimension 2 that Cα(Xn)
c is the union of a finite

number of balls and the aforementioned half-spaces but mentioned that the
generalization is not difficult. The centres Oi of these balls and their radii ri are
obtained by computing the Delaunay complex. The computational cost of the
Delaunay complex is the main part of the computational cost of our algorithm,
which is defined as follows:

1. Compute all the Delaunay simplices σi = H({Xi1 , . . . , Xid+1
}); that is,

those such that B̊(Oi, ri) ∩ Xn = ∅ and ∂B(Oi, ri) is the sphere circum-
scribed to Xi1 , . . . , Xid+1

.
2. Sort the indices so that ri are decreasing, and define K ′ = #{ri, ri ≥ α′}.
3. Define B+

i = B̊(Oi, ri) for i ∈ {1, . . . ,K ′}. Clearly, ri ≥ α′ for all i =
1, . . . ,K ′.

4. Compute the faces of the boundary of the α′-shape (see [24]), which are
the fi = H({Xi1 , . . . , Xid}) such that there exists a unique j ≥ K ′ + 1
such that fi ⊂ σj .
Also compute Ωi (resp. ρi), which is the center (resp. radius) of the sphere
circumscribed to Xi1 , . . . , Xid in the plane spanned by Xi1 , . . . , Xid .
Now we have two different cases:

(a) fi is a face of ∂H(Xn); that is, there exists j′ such that fi ⊂ Hj′ .
Then, define wi = uj′ .
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Fig 10. The convex hull of the points (blue) and all the B+
i

Fig 11. The convex hull of the points, all the B+
i and the boundary faces (green)

(b) fi is not a face of ∂H(Xn), thus there exists j′ ≤ K ′ such that
fi ⊂ σj′ . Then, define wi = (Oj −Oj′)/||Oj − Oj′ ||, with j ≥ K + 1
such that fi ⊂ σj .

Define B−
i = B̊(Ωi +

√
α2′ − ρ2iwi, α

′). Then,

Cα′(Xn)
c =

(⋃
i

Hc
i

)
∪

(⋃
i

B−
i

)
∪

(⋃
i

B+
i

)
. (7)

To simplify notation, we write Cα(Xn)
c =

⋃
i Bi. Observe that if the line rθ,y is

chosen at random (w.r.t. dμd−1dθ), with probability one, then we have rθ,y∩∂Bi,
which contains less than three points.

Initialize list=∅. Then,
for each i,

• compute rθ,y ∩ ∂Bi.

• For all z ∈ rθ,y ∩ ∂Bi, if for all j z /∈ B̊j , then do list=list∪{z}.
then ň(θ, y) = #list.

5. Discussion of the rates of convergence

In Corollary 4, we obtained the same convergence rate as the one provided in [5]
for d = 2, which is conjectured as suboptimal. As mentioned in [5], if the mea-
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Fig 12. The convex hull of the points, all the B+
i , the boundary faces (green) and two B−.

B−
1 correspond to case (a) and B−

2 corresponds to case (b).

sure of the symmetric difference between S and an estimator Ŝn is bounded by
εn, then we can only expect that plug-in methods allow us to estimate |∂S|d−1

with a convergence rate εn. Thus, in the iid setting, the estimator defined by
(6) (respectively (7) to (9)) can be seen as ‘optimal’ relative to the use of the
Devroye–Wise support estimator (respectively, the α-convex hull support es-
timator) because they achieve the best possible convergence rates for those
estimators. This is nevertheless far from being optimal: the minimax rate is

conjectured to be n− d+3
2d+2 , which is the minimax rate for the volume estimation

problem (see [6]), and in [34] it is proved that the minimax rate is the same
for the volume estimation problem and the surface area estimation problem (at
least in the image setting, which usually extends to the iid setting). Unfortu-
nately, attaining this optimal rate for the surface area estimation problem is
much more involved, even in the easier setting with data uniformly drawn in S
and Sc with perfect identification. No estimator attaining this rate has yet been
proposed.

6. Integralgeometric estimations via a Monte Carlo method and
numerical experiments

To estimate the surface area with a Monte Carlo method, we propose the fol-
lowing classical procedure. Generate a random sample θ1, . . . , θk that is uni-
formly distributed on (S+)d−1. For each i = 1, . . . , k, draw a random sample
ℵi = {yi1, . . . , yi	} that is uniformly distributed on [−L,L]d−1 ⊂ θ⊥i , independent
of θ1, . . . , θk, where L = maxj=1,...,n ||Xj ||. Then, the estimators are given by

ˆ̂
I
(	,k)
d−1 (∂S) =

(2L)d−1

β(d)

1

�k

k∑
i=1

	∑
j=1

n̂εn,Xn(θi, y
i
j) (8)

ˆ̂
I
(	,k,N0)
d−1 (∂S) =

(2L)d−1

β(d)

1

�k

k∑
i=1

	∑
j=1

min(n̂εn,Xn(θi, y
i
j), N0) (9)
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ˇ̌I
(	,k)
d−1 (∂S) =

(2L)d−1

β(d)

1

�k

k∑
i=1

	∑
j=1

ňr(θi, y
i
j). (10)

7. Simulation study

The performance of (8) and (10) is illustrated through a simulation study. We
consider the sets

S(d, r) = Bd(O, 1) \ B̊d(O, r) for d = 2, 3, r = 0.5, 0.6, 0.7, 0.8 and 0.9.

On each set, we draw n = 50, 100, 200, 500, 1000, 2000 and 4000 iid random
vectors supported on S(d, r), whose common distribution is X = RZ, where R
is a real valued random variable uniformly distributed on [1 − r, 1] and Z is a
random vector (independent of R) that is supported on the (d− 1)-dimensional
sphere.

For (8), we computed the parameter εn as follows: for each sample point we
calculate the distance to its closest point in the sample, and we choose εn as
the third quantile of these n distances. For (10), we estimated the parameter α
with the data-driven estimator proposed in [38]. Roughly speaking, “the largest
value of α compatible with the α-convexity assumption” is chosen.

We choose k = 4000 and � = 1, at equation (8) and the same for (10).

To illustrate the convergence without the bias of the Monte Carlo step we
compare our estimator with the Crofton based surface area estimation on the
true (unknown) set based on the same line sample. More precisely, for each
example (given by a dimension d, a radius r, a sample size n and an experiment
number i) we draw Xn as previously explained and 4000 values of (θj , yj) (i.e
4000 lines) and then compute:

EDW
i (d, n) :=

∑4000
j=1 (n̂ε,Xn(θj , yj)− n∂Sr (θj , yj))∑4000

j=1 n∂Sr (θj , yj)
(11)

and

ECH
i (d, n) :=

∑4000
j=1 n̂∂Cα(Xn)(θj , yj)− n∂Sr (θj , yj)∑4000

j=1 n∂Sr (θj , yj)
(12)

In Figure 13 we show, for each d and r, the results of the proposed method
based on 57 experiment replications. Black curves represent results for r-convex
hull based surface area estimator. We present here the evolution of the extremal
values of the error given by (12) and (11) (dots), the 5% and 95% quantiles
(dashed), the 25%, 50% and the 75% quantiles (plain). The convergence towards
0 (blue line) can be observed. In red we present the same curves for the case
of the Devroye-Wise based estimator. As expected due to theoretical results,
convergence is quicker for the r-convex hull estimator than for the Devroye-
Wise based surface area estimator (same curves, in red). This is particularly
clear when r0 ≥ 0.7.
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Fig 13. We show in each panel results based on 57 replications of (11) (red) and (12) (black),
for different values of d and r. Varying n ∈ {50, 100, 200, 500, 1000, 2000, 4000}. Dots are
extremal values, dashed 5% and 95% quantiles, and plain lines 25%, 50% (median) and 75%
quantiles.

Appendix A

A.1. Proofs of Theorems 3.2 and 3.3

Sketch of the proofs of Theorems 3.2 and 3.3

The idea is to consider separately two subsets of the set of lines that intersect
∂Ŝεn(Xn):

1. If a line rθ,y = y + Rθ is ‘far enough’ (fulfilling condition L(ε) for some
ε > 0, see Definition A.1) from the tangent spaces, then our algorithm
allows a perfect estimation of n∂S(θ, y), see Lemma A.5.

2. Considering the set of lines that are not ‘far enough’ from the tangent
spaces (denoted by Aεn(θ)), see Definition A.1), Corollary 5 states that,
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under (C, ε0)-regularity, the integral of n̂εn,Xn(θ, y) on Aεn(θ) is bounded

from above by C ′ε
1/2
n , where C ′ is a positive constant. Theorem 3.3 states

that the previous bound can be improved to C ′εn, under (C, ε0)-regularity,
if ∂S has a bounded number of linear intersections.

A.1.1. Condition L(ε)

We now define the two sets of lines to be tackled separately. The lines that are
‘far’ from an affine tangent space and the lines that are ‘close to being tangent’
to ∂S. More precisely, recall that the unit outer normal vector ηx at x is well
defined under the rolling ball hypothesis (see Remark 1). Now we define

TS = {x+ (ηx)
⊥ : x ∈ ∂S},

the collection of all the affine (d− 1)-dimensional tangent spaces.

Definition A.1. Let ε ≥ 0. A line rθ,y = y + Rθ fulfills condition L(ε) if y
is at a distance larger than 4ε from all the affine hyper-planes w + η⊥ ∈ TS
satisfying 〈η, θ〉 = 0; that is, for all x ∈ ∂S such that 〈ηx, θ〉 = 0 we have that
d(y, x+ η⊥x ) > 4ε

For a given θ, we define

Aε(θ) =
{
y ∈ θ⊥ : ||y|| ≤ diam(S) and rθ,y does not satisfy L(ε)

}
.

Remark 3. Notice that �θ(y) = minx∈Eθ(∂S) d(y, x+η⊥x ) is well defined because
Eθ is compact and x �→ ηx is a continuous function, due to the regularity
of ∂S. Moreover, if y ∈ θ⊥, then �θ(y) = d(y, Fθ); and consequently for all
t ∈ (0, d(y, Fθ)/4), rθ,y satisfies the condition L(d(y, Fθ)/4− t).

A.1.2. Some useful lemmas

Lemma A.2. Let S be a compact set fulfilling the outside and inside α-rolling
conditions. Let rθ,y be a line that fulfills condition L(0) and rθ,y∩∂S �= ∅. Then,
rθ,y intersects ∂S in a finite number of points.

Proof. Because S fulfills the outside and inside α-rolling conditions, Theorem 1
in [42] implies that for any x ∈ ∂S, the affine (d− 1)-dimensional tangent space
Tx∂S exists. If rθ,y fulfills L(0), then rθ,y is not included in any hyper-plane
tangent to S. Suppose that ∂S ∩ rθ,y is not finite. Then, by compactness, one
can extract a subsequence t′n ∈ ∂S ∩ rθ,y that converges to y′ ∈ ∂S ∩ rθ,y.

1. Because t′n and y′ are in rθ,y, we have that, for all n, (t
′
n−y′)/||t′n−y′|| =

±θ.
2. Because t′n and y′ are in ∂S, which is a (d−1)-dimensional C1 manifold (see

Theorem 1 in [42]), and t′n → y′, we have limn→+∞(t′n − y′)/||t′n − y′|| ∈
Ty′∂S (see Definition 4.3 in [25]).
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These two facts imply that θ ∈ Ty′∂S, which contradicts the assumption that
rθ,y is not included in any hyper-plane tangent to S.

Lemma A.3. Let S ⊂ R
d be a compact set fulfilling the outside and inside

α-rolling conditions. Let ε > 0 be such that ε < α/4 and ν = 2[2ε(α − 2ε)]1/2.
For any line rθ,y fulfilling condition L(ε) and rθ,y ∩ ∂S �= ∅, we have that
rθ,y meets ∂S at a finite number of points t1, . . . , tk, where ti+1 − ti ≥ 2ν
for all i = 1, . . . , k − 1. Consequently, if ε < α/4, then k = #(rθ,y ∩ ∂S) ≤
diam(S)ε−1/2/(4

√
α).

Proof. If a line fulfills condition L(ε), then it fulfills condition L(0). Conse-
quently, the fact that rθ,y intersects ∂S in a finite number of points follows from
Lemma A.2. Let us denote by t1 < · · · < tk the intersection of rθ,y with ∂S.

Let us denote by ηti and ηti+1 the outer normal vectors at ti and ti+1, re-

spectively. We have two cases: the open interval (ti, ti+1) ⊂ Sc or (ti, ti+1) ⊂ S̊.
Let us consider the first case (the proof for the second one is similar).

Because (ti, ti+1) ⊂ Sc and S fulfills the inside α-rolling condition on ti,
there exists a z ∈ S such that ti ∈ ∂B(z, α) and B(z, α) ⊂ S. In particular,
B(z, α) ∩ (ti, ti+1) = ∅, which implies 〈ηti , θ〉 ≥ 0.

Reasoning in the same way but with ti+1, we get 〈ηti+1θ〉 ≤ 0. Given that
rθ,y is not included in any tangent hyperplane, we have that 〈ηti , θ〉 > 0 and
〈ηti+1 , θ〉 < 0.

If, for some i, ti+1−ti < 2ν, then, by Theorem 3.8 in [16], there exists a curve
γ : [0, 1] → ∂S such that γ(0) = ti, γ(1) = ti+1 and d(γ(t), rθ,y) ≤ 4ε for all
t. We also have the inside and outside α-rolling conditions, which implies that
x �→ ηx is Lipschitz (see Theorem 1 in [42]). From 〈ηti , θ〉 > 0 and 〈ηti+1 , θ〉 <
0, it follows that there exists a s0 ∈ (0, 1) such that 〈ηγ(s0), θ〉 = 0, which
contradicts the hypothesis that y is at a distance larger than 4ε from all the
(d − 1)-dimensional hyperplanes tangent to S. This proves that ti+1 − ti ≥ 2ν
for all i = 1, . . . , k − 1.

Lemma A.4. Let S ⊂ R
d be a compact set fulfilling the outside and in-

side α-rolling conditions, with a (C, ε0)-regular boundary. Then, for all ε ≤
min{ε0, α}/4,∫

θ∈(S+)d−1

∫
y∈Aε(θ)

n∂S(θ, y)dμd−1(y)dθ ≤ 2C
diam(S)√

α

√
ε.

Moreover, if ∂S has bounded number of linear intersections, then∫
θ∈(S+)d−1

∫
y∈Aε(θ)

n∂S(θ, y)dμd−1(y)dθ ≤ 4CNSε. (13)

Proof. Observe that

∫
θ∈(S+)d−1

∫
y∈Aε(θ)

n∂S(θ, y)dμd−1(y)dθ
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=

∫
θ∈(S+)d−1

∫ 4ε

	=0

∫
{y∈θ⊥:d(y,Fθ)=	}

n∂S(θ, y)dμd−2(y)d�dθ.

According to Remark 3 if y ∈ θ⊥ : d(y, Fθ) = �, then, for all t ∈ (0, �), rθ,y
fulfills L(�/4− t). From the proof of the previous lemma, it follows that for any
y ∈ θ⊥ with d(y, Fθ) = � and � < 4ε, and any t ∈ (0, �/4)

n∂S(θ, y) ≤ diam(S)(�/4− t)−1/2/(4
√
α).

Hence, with t → 0 we obtain n∂S(θ, y) ≤ diam(S)(�)−1/2/(2
√
α), from which:

∫
θ∈(S+)d−1

∫ 4ε

	=0

∫
{y∈θ⊥:d(y,Fθ)=	}

n∂S(θ, y)dμd−2(y)d�dθ =

≤
∫
θ∈(S+)d−1

∫ 4ε

	=0

∫
{y∈θ⊥:d(y,Fθ)=	}

1

2
diam(S)(α�)−1/2dμd−2(y)d�dθ

≤
∫
θ∈(S+)d−1

∫ 4ε

	=0

1

2
diam(S)(α�)−1/2

∫
{y∈θ⊥d(y,Fθ)=	}

dμd−2(y)d�dθ

≤
∫
θ∈(S+)d−1

∫ 4ε

	=0

1

2
diam(S)(α�)−1/2|

{
y ∈ θ⊥ : d(y, Fθ) = �

}
|d−2d�dθ.

By the definition of ϕθ,∣∣∣{y ∈ θ⊥ : � ≤ d(y, Fθ) ≤ �+ d�
}∣∣∣

d−1
= ϕθ(�+ d�)− ϕθ(�).

From the (C, ε0)-regularity of ∂S and the mean value theorem we obtain∣∣∣{y ∈ θ⊥ : d(y, Fθ) = �
}∣∣∣

d−2
≤ sup

ε∈(0,4ε0)

ϕ′
θ(ε) ≤ C,

which implies

∫
θ∈(S+)d−1

∫
y∈Aε(θ)

n∂S(θ, y)dμd−1(y)dθ ≤
∫
θ∈(S+)d−1

∫ 4ε

	=0

C
1

2
diam(S)(α�)−1/2d�dθ ≤ 2C

diam(S)√
α

√
ε.

By applying exactly the same reasoning, under the hypothesis of the bound-
edness of the number of linear intersections for ∂S, we get∫
θ∈(S+)d−1

∫
y∈Aε(θ)

n∂S(θ, y)dμd−1(y)dθ ≤
∫
θ∈(S+)d−1

∫ 4ε

	=0

CNSd�dθ ≤ 4CNSε.

Remark 4. If in the proof of Lemma A.4 we take � = 0, then we obtain that
the measure of the set of lines belonging to some half-space tangent to ∂S is 0.
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Lemma A.5. Let S be a compact set fulfilling the outside and inside α-rolling
conditions. Let Xn = {X1, . . . , Xn} ⊂ S. Let εn → 0 be such that dH(Xn, S) ≤
εn. Let rθ,y = y + Rθ be any line fulfilling condition L(εn). Then, for n large
enough so that 4εn < α, n∂S(θ, y) = n̂εn,Xn(θ, y).

Proof. Throughout this proof, we will use the following notation when rθ,y ∩
∂S �= ∅. Let t1 < . . . < t2k be the intersection of rθ,y with ∂S. This set is finite
due to Lemma A.2 and is an even number because condition L(εn) is fulfilled.
In addition, [t2(i−1)+1, t2i] ⊂ S for all i = 1, . . . , k and (t2i, t2i+1) ⊂ Sc for all
i = 1, . . . , k − 1.

First, we will prove that

n̂εn,Xn(θ, y) ≥ n∂S(θ, y). (14)

If rθ,y ∩ ∂S = ∅, then inequality (14) holds. Assume rθ,y ∩ ∂S �= ∅. We will
now prove that

if (ti, ti+1) ⊂ Sc, then: ∃s ∈ (ti, ti+1) such that d(s, S) > 4εn. (15)

Because S fulfills the inside α-rolling condition on ti, there exists a zi ∈ S such
that ti ∈ ∂B(zi, α) and B(zi, α) ⊂ S. Since B(zi, α) ∩ (ti, ti+1) = ∅, it follows
that 〈ηti , θ〉 ≥ 0 (recall that ηti = (ti − zi)/α and ti+1 − ti = ||ti+1 − ti||θ).
Reasoning in the same way but with ti+1, 〈ηti+1 , θ〉 ≤ 0. By condition L(εn), we
obtain

〈ηti , θ〉 > 0 and 〈ηti+1 , θ〉 < 0. (16)

Suppose that for all t ∈ (ti, ti+1) we have d(t, ∂S) ≤ 4εn. Take n large enough so
that 4εn < α. Because S fulfills the outside and inside α-rolling conditions, by
Lemma 2.3 in [33], ∂S has positive reach greater than α. Then, by Theorem 4.8
in [25], γ = {γ(t) = π∂S(t), t ∈ (ti, ti+1)}, the orthogonal projection onto ∂S of
the interval (ti, ti+1) is well defined and is a continuous curve in ∂S. By Theorem
1 in [42], the map from ∂S to R

d x �→ ηx is Lipschitz. Thus, t �→ 〈ηγ(t), θ〉 is a
continuous function of t for all t ∈ (ti, ti+1), which, together with (16), ensures
the existence of an s ∈ (ti, ti+1) such that d(s, γ(s)) ≤ 4εn and θ ∈ η⊥γ(s), which

contradicts the assumption that rθ,y fulfills condition L(εn). This proves (15).
From (15), we easily obtain (because s ∈ Sc and Xn ⊂ S) that

if (ti, ti+1) ⊂ Sc, then: ∃s ∈ (ti, ti+1) such that d(s,Xn) > 4εn. (17)

To conclude (14) let us write, for i = 1, . . . , k, I ′i = [t2(i−1)+1, t2i] for the

connected components of S∩rθ,y. Since dH(Xn, S) < εn, S ⊂ Ŝεn(Xn). Then, for
i = 1, . . . , k, there exists a j such that I ′i ⊂ Ij , Ij being a connected component

of Ŝεn ∩ rθ,y. Note now that (17) ensures that, for all i �= i′, if I ′i ⊂ Ij and

I ′i′ ⊂ Ij′ then Ij′ and Ij are not in the same connected component of Ŝ4εn(Xn)
thus they are not glued, and then n̂εn,Xn(θ, y) ≥ n∂S(θ, y).

Next, we will prove the opposite inequality,

n̂εn,Xn(θ, y) ≤ n∂S(θ, y). (18)
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Assume first rθ,y ∩ ∂S �= ∅. Consider t∗ ∈ (ti, ti+1) ⊂ Sc and t∗ ∈ Ŝεn(Xn).

Equation (18) will be derived from the fact that (t∗, ti+1] ⊂ Ŝ4εn(Xn) ∩ rθ,y or

[ti, t
∗) ⊂ Ŝ4εn(Xn) ∩ rθ,y and thus the connected component of Ŝεn(Xn) ∩ rθ,y

that contained t∗ is glued with the one that contains [ti−1, ti] or with the one
that contains [ti, ti+1].

Introduce ψ(t) : (ti, ti+1) → R defined by ψ(t) = d(t, ∂S). Consider the
points t ∈ (ti, ti+1) such that d(t, ∂S) < α, and let pt ∈ ∂S be such that
||pt − t|| = d(t, ∂S). By item (3) in Theorem 4.8 in [25], ψ′(t) = 〈ηpt , θ〉.

Let Xj be the closest observation to t∗ (recall that because t∗ ∈ Ŝεn(Xn), we
have ||Xj − t∗|| ≤ εn). Now, because there exists a point p∗ ∈ [t∗, Xj ] ∩ ∂S, we
obtain that ψ(t∗) ≤ εn and, because rθ,y fulfils L(εn), 〈ηpt∗ , θ〉 �= 0.

Assume that, for instance, 〈ηpt∗ , θ〉 < 0. Then, ψ(t∗) ≤ εn and ψ′(t∗) < 0.
Suppose that there exists a t′ ∈ (t∗, ti+1) such that ψ(t′) ≥ εn and consider
t′′ = inf{t > t∗, ψ(t′) ≥ εn}. Then for all t ∈ (t∗, t′′), we have ψ(t) ≤ εn < α,
and thus ψ is differentiable on this interval (using again item (3) of Theorem 4.8
in [25]). From the fact that ψ(t′′) ≥ ψ(t∗) and ψ′(t∗) < 0 we deduce that there
exists a t̃ ∈ (t∗, t′′) such that ψ′(t̃) = 0, which contradicts L(εn) because ψ(t̃) ≤
εn. To summarize, we have shown that if 〈ηpt∗ , θ〉 < 0, then for all t ∈ (t∗, ti+1)

we have that d(t, ∂S) ≤ εn, and thus (t∗, ti+1) ⊂ Ŝ2εn(Xn) ⊂ Ŝ4εn(Xn).
Symmetrically, if 〈ηpt∗ , θ〉 > 0, then (ti, t

∗) ⊂ Ŝ2εn(Xn) ⊂ Ŝ4εn(Xn).
Thus, we now have that if rθ,y ∩ ∂S �= ∅, then n̂εn,Xn(θ, y) ≤ n∂S(θ, y).
Now we are going to prove that for a line rθ,y fulfilling condition L(εn) we

cannot have rθ,y ∩ ∂S = ∅ and n̂εn,Xn(θ, y) > 0. Reasoning by contradiction,
upon assuming that rθ,y ∩ ∂S = ∅ and n̂εn,Xn(θ, y) > 0, we have that 0 <
min{||x−y||, x ∈ rθ,y, y ∈ S} ≤ εn. Now the regularity condition also gives that
if this minimum is realized for x∗ and y∗, then we have y∗ ∈ ∂S and θ ∈ Ty∗∂S,
which contradicts condition L(εn).

Lemma A.6. Let S ⊂ R
d be a compact set fulfilling the outside and inside

α-rolling conditions. Let Xn ⊂ S and suppose εn → 0 is a sequence such that
dH(Xn, S) ≤ εn, while rθ,y = y + Rθ and A1, . . . , Ak are the sets in Defini-
tion 3.1, Ai = (ai, bi) for i = 1, . . . , k. Now suppose that the sets are indexed in
such a way that a1 < b1 < a2 < . . . < bk. Then, for all i = 2, . . . , k, we have
that ||ai − bi−1|| > 3

√
εnα and for all i = 1, . . . , k, ||bi − ai|| > 3

√
εnα, for n

large enough so that 3
√
αεn < α/2, which implies

n̂εn,Xn(θ, y) ≤
diam(S)

3
√
α

ε−1/2
n .

Proof. Assume by contradiction that for some i, ||ai − bi−1|| ≤ 3
√
εnα. By

construction, [bi−1, ai] ⊂ Ŝεn(Xn)
c ⊂ Sc. Because ai and bi are on ∂Ŝεn(Xn),

we have d(ai,Xn) = d(bi−1,Xn) = εn.
The projection πS : [bi−1, ai] → ∂S is uniquely defined because ∂S has reach

at least α and d(t, ∂S) ≤ d(t, ai) + d(ai, ∂S) ≤ ||ai − bi−1|| + d(ai,Xn) for all
t ∈ (bi−1, ai), ||ai− bi−1|| ≤ 3

√
εnα < α/2 and d(ai, ∂S) ≤ εn ≤ α/2. Moreover,

πS is a continuous function.
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Fig 14. ||ai − bi−1|| ≥ 2
√

(α− εn)2 − (α− �)2, where � = d(x0, πS(x0)).

Hence maxx∈[bi−1,ai] ||x − πS(x)|| ≥ εn − dH(S,Xn), and the maximum is
attained at some x0 ∈ [bi−1, ai]. First, we show that ||x0 − πS(x0)|| ≥ 3εn.
Indeed, suppose by contradiction that for all t ∈ (bi−1, ai), d(t, ∂S) ≤ 3εn.
Then, d(t,Xn) ≤ 4εn, which contradicts the definition of the points ai and bi.
The fact that ||x0 − πS(x0)|| ≥ 3εn > d(ai, S) = d(bi−1, S) guarantees that
x0 ∈ (bi−1, ai) and that η0, the outward unit normal vector to ∂S at πS(x0), is
normal to θ.

Let z0 = πS(x0)+η0α. Observe that d(ai, S) ≤ εn and d(bi−1, S) ≤ εn. From
the outside α-rolling condition at πS(x0), ||x0−πS(x0)|| ≤ α and using the fact
that η0 is normal to θ, we have (see Figure 14)

rθ,y ∩ B(z0, α− εn) ⊂ [bi−1, ai],

which implies, see Figure 14, that ||ai− bi−1|| ≥ 2
√
(α− εn)2 − (α− �)2, where

� = d(x0, πS(x0)). Therefore,

||ai − bi−1|| ≥ 2
√

(�− εn)(2α− �− εn). (19)

If we bound � ≥ 3εn and use the fact that � = o(1), which follows from
� ≤ ||bi−1 − ai||+ εn ≤ 3

√
εnα+ εn, then we get, from (19),

||ai − bi−1|| ≥ 2
√
2εn(2α− �− εn) = 2

√
4εnα(1 + o(1))) = 4

√
αεn(1 + o(1)),

and for n large enough this contradicts ||ai−bi−1|| ≤ 3
√
αεn. Then, the number

of disjoint intervals Ai is bounded from above by diam(S)/(3
√
εnα). The proof

that for all i = 1, . . . , k, ||bi − ai|| > 3
√
εnα follows the same ideas, we will

give a sketch of the proof. Let bi > ai (recall that we ordered the points a1 <
b1 < . . . < ak < bk) be such that ||ai − bi|| ≤ 3

√
εnα. Proceeding as before,



3776 C. Aaron et al.

maxx∈[ai,bi] ||x − πS(x)|| ≥ 3εn and it is attained at some x0 ∈ (ai, bi). Let
z0 = πS(x0) − η0α, with η0 being the outward unit normal vector to ∂S at
πS(x0). Then rθ,y ∩ B(z0, α) ⊂ [ai, bi] since [ai, bi] /∈ B(z0, α) and B(z0, α) ⊂ S.
From rθ,y ∩B(z0, α) ⊂ [ai, bi] it follows as before that ||ai− bi|| ≥ 4

√
εnα, which

is a contradiction.
Finally, n̂εn,Xn(θ, y) ≤ diam(S)/(3

√
εnα).

Corollary 5. Let S ⊂ R
d be a compact set fulfilling the outside and inside

α-rolling conditions and with a (C, ε0)-regular boundary. For n large enough so
that 3

√
αεn < min(α/2, ε0), we have

∫
θ

∫
y∈Aεn (θ)

n̂εn,Xn(θ, y)dμd−1(y)dθ ≤ C
diam(S)

3
√
α

√
εn.

A.1.3. Proof of Theorem 3.2

Without loss of generality, we can assume that 0 ∈ S. Recall that for θ ∈
(S+)d−1, Aεn(θ) is the set of all y ∈ θ⊥ such that ||y|| ≤ diam(S) and rθ,y does

not fulfill L(εn). First, from Lemma A.5, we have that ||∂S|d−1 − Îd−1(X, ε)| is
bounded from above by

1

β(d)

∫
θ∈(S+)d−1

∫
y∈Aεn (θ)

|n̂εn,Xn(θ, y)− n∂S(θ, y)|dμd−1(y)dθ,

which is bounded from above by

1

β(d)

∫
θ∈(S+)d−1

∫
y∈Aεn (θ)

n̂εn,Xn(θ, y)dμd−1(y)dθ+

1

β(d)

∫
θ∈(S+)d−1

∫
y∈Aεn (θ)

n∂S(θ, y)dμd−1(y)dθ.

Now, by Corollary 5 and Lemma A.4, we get that

||∂S|d−1 − Îd−1(X, ε)| ≤
7Cdiam(S)

3β(d)
√
α

√
εn,

for n large enough.

A.1.4. Proof of Theorem 3.3

The proof of Theorem 3.3 is basically the same as the previous one. Since N0 ≥
NS Lemma A.5 ensures that, for all ry,θ not in Aεn(θ), min(n̂(θ, y), N0) =
n∂S(θ, y), for n large enough that 4εn < α. Thus, we still have, for n large
enough, ||∂S|d−1 − ÎN0

d−1(∂S)| is bounded from above
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1

β(d)

∫
θ∈(S+)d−1

∫
y∈Aεn (θ)

n∂S(θ, y)dμd−1(y)dθ+

1

β(d)

∫
θ∈(S+)d−1

∫
y∈Aεn (θ)

N0dμd−1(y)dθ.

Now, by applying (13) for the first part and a similar calculation for the
second part, we get that

||∂S|d−1 − ÎN0

d−1(∂S)| ≤
4C(NS +N0)

β(d)
εn, (20)

for n large enough.

A.1.5. Proof of Corollary 3

By Corollary 1 in [15], we know that, with probability one, for T large enough,
dH(XT , S) ≤ εT → 0, where εT = o((ln(T )2/T )1/d). Let Xn = {Xt1 , . . . , Xtn}
be a discretization of XT such that ti − ti−1 = T/n and tn = T . Put εn =
dH(Xn, S), then εn ≥ εT . It is clear that, for a fixed T , εn decreases to εT as
n → ∞. To emphasize the dependence on the set, we will write ÎN0

d−1(∂S,Xn)

for the estimator based on Xn, and ÎN0

d−1(∂S,XT ) for the estimator based on XT

(both defined using Definition 3.1). Then, by (20), to prove Corollary 3 it is
enough to prove ÎN0

d−1(∂S,Xn) → ÎN0

d−1(∂S,XT ) as n → ∞, for arbitrary fixed T .
Fix θ and y. It is clear that n̂(θ, y)(∂S,Xn) → n̂(θ, y)(∂S,XT ) as n → ∞, and
so Corollary 3 follows by the dominated convergence theorem, using the fact
that min{n̂(θ, y), N0} ≤ N0.

A.2. Proofs for the estimator based on the α-hull

Theorem 4.1 will be easily obtained from the two following geometric lemmas
and Theorem 3 in [37].

Here, we need to introduce some new notation. If f is a function, then ∇f (x)
denotes its gradient and Hf its Hessian matrix. Given two sets C,D ⊂ R

d, we
write C ≈ D if there exists an homeomorphism between C and D. In what
follows, M ⊂ R

d will be a compact set, and C2 a (d − 1)-dimensional manifold
(with or without boundary). Then for all x in M , there exists an rx > 0 such
that either

i) for all r ≤ rx, B̊(x, r) ∩M ≈ B̊d−1(0, 1), or
ii) for all r ≤ rx, B̊(x, r) ∩M ≈ B̊d−1(0, 1) ∩ {(x1, . . . , xd−1) : x1 ≥ 0}.
The set of points satisfying condition i) constitute int(M), while the set of

points satisfying ii) constitute ∂M . We have that ∂M is a (d− 2)-dimensional
manifold without boundary and, as a consequence, |∂M |d−1 = 0.

Given a point x ∈ M , NxM = {v ∈ R
d : 〈v, u〉 = 0, ∀u ∈ TxM} is the 1-

dimensional orthogonal subspace. If M is a manifold as before, and ∂M = ∅, we
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define for any compact set E ⊂ M (E is not necessarily a manifold) its interior
int(E) = {x ∈ E : ∃rx such that for all r ≤ rx, B̊(x, r) ∩ E ≈ B̊d−1(0, 1)}. We
have int(E) is a manifold (without boundary and, when is not empty int(E) has
the same dimension as M).

Lemma A.7. Let S ⊂ R
d be a compact set fulfilling the inside and outside α-

rolling conditions. Let α′ < α be a positive constant. Let Xn = {X1, . . . , Xn} ⊂ S
be such that:

i. dH(∂Cα′(Xn), ∂S) ≤ εn with εn < αα′

2(α+α′) (notice that we then have εn ≤
α′/2 and εn ≤ α/4).

ii. dH(Xn, S) <
1
3

αα′

α+α′ note that 1
3

αα′

α+α′ ≤ α′

3

Then,

1. there exist C1(Xn), . . . , CK(Xn) such that:

(a)
⋃K

i=1 Ci(Xn) ⊂ ∂Cα′(Xn)

(b) |∂Cα′(Xn) \ (
⋃K

i=1 Ci(Xn))|d−1 = 0

(c) Ci(Xn) is a C2 (d− 1)-dimensional manifold

(d) Ci(Xn) ∩ Cj(Xn) = ∅ when i �= j

for all x ∈
⋃K

i=1 Ci(Xn), there exists a η̂x, the unit normal (to ∂Cα′(Xn)),
a vector pointing outward (with respect to Cα′(Xn)) from x that satisfies

〈η̂x, ηπ∂S(x)〉 ≥ 1− 2(α+ α′)

αα′ εn.

2. π∂S : ∂Cα′(Xn) → ∂S the orthogonal projection onto ∂S is one to one.
3. ∂Cα′(Xn) ≈ ∂S

Proof. Let us prove first that there are no isolated points in ∂Cα′(Xn). Indeed,
suppose by contradiction that there exists x is an isolated point of ∂Cα′(Xn);
that is, there exists r > 0 such that B(x, r)∩∂Cα′(Xn) = {x}. By connectedness
of B(x, r) \ {x} we have either B(x, r) \ {x} ⊂ Cα′(Xn)

c or B(x, r) \ {x} ⊂
Cα′(Xn). The second case contradicts x ∈ ∂Cα′(Xn) because Cα′(Xn) is a close
set. Thus, we have B(x, r) \ {x} ⊂ Cα′(Xn)

c. Let us introduce x∗ = π∂S(x),
then ||x− x∗|| ≤ εn. Let us denote η∗ = ηx∗ . Since ∂Cα′(Xn) ⊂ S, x ∈ S, then
by definition of x∗, x+ ||x− x∗||η∗ = x∗. Let us introduce O = x∗ − αη∗. From
the inner rolling ball property, B(O,α) ⊂ S. Let us define y = x−min(r, εn)η

∗.
From y ∈ Cα′(Xn)

c it follows that there exists Oy such that ||Oy − y|| < α′ and
B(Oy, α

′) ∩ Xn = ∅. From dH(Xn, S) < α′ we have ||Oy − O|| > α, and thus
[O,Oy] ∩ ∂B(O,α) �= ∅. Let us define z = [O,Oy] ∩ ∂B(O,α), then z ∈ S and
B(z, (α′ + α− ||Oy −O||)) ∩ Xn = ∅. We will prove that α′ + α− ||Oy −O|| ≥
dH(Xn, S), which is a contradiction.

Because x ∈ Cα′(Xn) we have ||Oy−x|| ≥ α′. Let us write Oy = y+aη∗+ bw
with ||w|| = 1 and w ∈ (η∗)⊥, by ||Oy − x|| ≥ α′ and ||Oy − y|| < α′ it quickly

comes that a2 + b2 ≤ (α′)2 and a ≤ min(r,εn)
2 .
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Now

||Oy −O||2 = (α−min(r, εn)− ||x− x∗||+ a)2 + b2

≤ (α−min(r, εn)− ||x− x∗||)2 + 2a(α−min(r, εn)− ||x− x∗||) + (α′)2

≤ (α+ α′ −min(r, εn)− ||x− x∗||)2 − 2(α′ − a)(α−min(r, εn)−||x− x∗||)

Thus, ||Oy −O|| is bounded from above by

≤ (α+ α′ −min(r, εn)− ||x− x∗||)
√
1− 2

(α′ − a)(α−min(r, εn)− ||x− x∗||)
(α+ α′ −min(r, εn)− ||x− x∗||)2

≤ α+ α′ −min(r, εn)− ||x− x∗|| − (α′ − a)(α−min(r, εn)− ||x− x∗||)
(α+ α′ −min(r, εn)− ||x− x∗||)

and

α+α′ − ||Oy −O|| ≥ (α′ − a)
α−min(r, εn)− ||x− x∗||

α+ α′ −min(r, εn)− ||x− x∗||

α+ α′ − ||Oy−O|| ≥ (α′ − εn/2)(α− 2εn)

α+ α′ ≥ αα′

α+ α′
3

8
>

1

3

αα′

α+ α′ > dH(Xn, S)

As announced, this leads to a contradiction.
From (7) it follows that, for some N ,

∂Cα′(Xn) =

N⋃
i=1

(
∂Bi \

N⋃
j=1

Bj

)
.

Here, the Bi are balls of radius ri larger than α′ or half-spaces (by abuse of
notation, if Bi is an half-space we will put ri = +∞).

Our first step consists in proving that:

1. If x ∈ ∂Cα′(Xn) \Xn, then for all i such that x ∈ ∂Bi \
⋃N

j=1 Bj , we have
ri = α′.

2. If x ∈ ∂Cα′(Xn) ∩Xn, then there exists an i such that x ∈ ∂Bi \
⋃N

j=1 Bj

ri = α′.

We define Si = ∂Bi \
⋃N

j=1 Bj .
Suppose that x ∈ ∂Cα′(Xn) \Xn. Consider first the case x ∈ ∂Bi = S(Oi, ri)

with ri ≥ α′. If ri > α′, then be introducing Ωi = x + (α′/ri)(Oi − x) =
Oi+(ri−α′)(x−Oi)/ri we have that B(Ωi, α

′)∩Xn ⊂ (B̊(Oi, ri)∪{x})∩Xn = ∅.
Hence, d(Ωi,Xn) > α′, and by continuity, there exists a t > 0 so small that
d(Ωi + (t/ri)(x − Oi),Xn) > α′, that is, B(Ωi + (t/ri)(x − Oi), α

′) ⊂ Cα′(Xn)
c

and so x ∈ ˚Cα′(Xn)c. This is impossible. To conclude this first step, if x ∈
∂Cα′(Xn) \ Xn with x ∈ ∂Bi = S(Oi, ri), then ri = α′.
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Fig 15. x ∈ ∂Cα′ (Xn), x∗ = π∂S(x), Oi = x + α′η̂x,i and O∗ = x∗ − αηx∗ . Observe that

B̊(Oi, α
′) ∩B(O∗, α) �= ∅ by (24)

Second, consider the case x ∈ Bi with Bi = {z, 〈z − yi, ui〉 > 0} where ui is
a unit vector. We can conclude, similarly, on introducing Ωi = x + α′ui, that
B(Ωi, α

′) ∩Xn = ∅ and B(Ωi − tui, α
′) ⊂ Cα′(Xn)

c (for some positive but small

enough t) and so x ∈ ˚Cα′(Xn)c.
If x ∈ ∂Cα′(Xn)∩Xn, then by the preliminary result, there exists a sequence

(xk) in ∂Cα′(Xn) \ {x} with xk → x. Because Xn is finite, it follows that for k
large enough, xk ∈ ∂Cα′(Xn) ∩ X

c
n. Because the number of possible Si is finite,

we can extract from (xk) a sequence (x′
k) such that there exists a Si = ∂Bi such

that for all k, x′
k ∈ Si making k → +∞, and then we have x ∈ Si.

Our second step consists in proving that if there exists an x ∈ ∂Bi \ (
⋃

j Bj),
then

〈η̂x,i, ηπ∂S(x)〉 ≥ 1− 2(α+ α′)

αα′ εn, (21)

where η̂x,i =
Oi−x
α′ and x∗ = π∂S(x). Observe that from the first step we know

that Bi = B̊(Oi, α
′). Write ηx∗ for the outward (from S) unit normal vector of

∂S at x∗ and O∗ = x∗ − αηx∗ .
Note first that

B̊(Oi, α
′) ⊂ Cα′(Xn)

c and B(O∗, α) ⊂ S. (22)

Introduce y∗ = [O∗, Oi]∩∂B(Oi, α
′) and y = [O∗, Oi]∩∂B(O∗, α) (see Figure 15).

Then, from the second inclusion in (22), we get y ∈ S, and from the first inclusion
in (22) we get d(y, Cα′(Xn)) ≥ ||y − y∗||. Then, ||y − y∗|| ≤ εn, which in turn
implies

α+ α′ − ||Oi −O∗|| ≤ εn. (23)

From x∗ = π∂S(x) we get that x
∗ = x+ �ηx∗ where � = ||x−x∗|| ≤ εn. Then,

Oi = O∗ + (α− �)ηx∗ + α′η̂x,i and

α+ α′ − ||Oi −O∗|| = α+ α′ −
√

(α′)2 + (α− �)2 + 2α′(α− �)〈η̂x,i, ηx∗〉

= α+ α′ −
√

(α′ + α− �)2 − 2α′(α− �)(1− 〈η̂x,i, ηx∗〉)
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≥ �+
α′(α− �)(1− 〈η̂x,i, ηx∗〉)

α+ α′ − �
≥ α′α(1− 〈η̂x,i, ηx∗〉)

2(α+ α′)
, (24)

where in the first inequality of the last line we bounded A
√
1− 2B/A2 ≤ A(1−

B/A2) = A−B/A, and in the last inequality α− � ≥ α/2, thus, combined with
Equation (23), we can conclude the proof of Equation (21).

As the third step, we will now conclude the proof of assertion 1. Note that if
Bi is a ball (and not an half-space), then ∂Bi ∩Bc

j = ∂Bi ∩ Pi,j where Pi,j the
following closed half space.

Pi,j =

{
Bc

j if Bj is an open half space

{x : ||x−Oi||2 − r2i ≤ ||x−Oj ||2 − r2j} if Bj = B̊(Oj , rj).

Thus, Si = ∂Bi

⋂(⋃
j Bj

)c

= ∂Bi

⋂ (⋂
j �=i B

c
j

)
= ∂Bi ∩ Hi, where Hi is a

convex polygon.
Put Ci(Xn) = (∂Bi ∩ H̊i) \ Xn. We are going to prove that Ci(Xn) satisfies

conditions (a), (b), (c) and (d) of assertion 1. First note that (a) is obvious by
construction.

Suppose x ∈ ∂Cα′(Xn)\Xn. By the first step, we know that there exists a Bi0

which is a ball of radius α′ such that x ∈ Si0 and thus we are in the situation
where x ∈ ∂Bi0 ∩Hi0 with Hi0 a convex polygon. If now x ∈ ∂Cα′(Xn)\Xn but
x /∈ ∪Ci(Xn), then we must have x ∈ ∂Bi0 ∩ ∂Hi0 . This gives

∂Cα′(Xn) \
( ⋃

i

Ci(Xn)
)
⊂ Xn

⋃ ( ⋃
i,ri=α′

∂Bi ∩ ∂Hi

)

and thus |∂Cα′(Xn) \
( ⋃

i Ci(Xn)
)
|d−1 = 0, which proves (b).

We will now prove that if i �= j and Bi and Bj are two balls, then (∂Bi ∩
H̊i)∩ (∂Bj ∩Hj) = ∅. Suppose by contradiction that (Si ∩ H̊i)∩ (Sj ∩Hj) �= ∅,
then ||x − Oi||2 − r2i < ||x − Oj ||2 − r2j and ||x − Oi||2 − r2i ≥ ||x − Oj ||2 − r2j ,
which is a contradiction. Thus, if Ci(Xn) and Cj(Xn) are both non-empty, then
we have that Bi and Bj are two balls, and if i �= j, Ci(Xn)∩Cj(Xn) = ∅, which
proves (d).

This also proves that if x ∈ Ci(Xn), then there exists an rx > 0 small enough
so that ∂Cα′(Xn) ∩ B(x, rx) = ∂Bi ∩ B(x, rx). Thus, ∂Cα′(Xn) ∩ B(x, rx) is a
C2, (d− 1)-dimensional manifold. Moreover, the tangent space at x is given by
(x−Oi)

⊥. Also, the unit normal (to ∂Cα′(Xn)) vector (Oi−x)/||x−Oi|| is well
defined, and points outwards to Cα′(Xn). This concludes the proof of (c) and
also the proof of 1).

The proof of 2) follows the same ideas used to prove Theorem 3 in [1]. We
are going to give the main steps of the proof (adapted to our case).

We first prove the subjectivity. For any x∗ ∈ ∂S, we introduce O∗ = x∗−αηx∗

and x = x∗−2εnηx∗ . From the inside and outside α-rolling conditions it follows
that S has reach α > 0, and so π∂S([x, x

∗]) = x∗, where we used that 2εn < α.
To prove that x ∈ Cα′(Xn) we proceed by contradiction. If x /∈ Cα′(Xn), then
there exists an O with ||O − x|| ≤ α′ and B̊(O,α′) ⊂ Cα′(Xn)

c.
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Let u = (O−x)/||O−x||, y = [O∗, O]∩∂B(O∗, α) and y∗ = [O∗, O]∩∂B(O,α′),
and therefore ||y − y∗|| ≤ εn, which implies

α+ α′ − ||O −O∗|| ≤ εn. (25)

But now

α+ α′ − ||O −O∗|| = α+ α′ + ||(α− 2εn)ηx∗ + u||O − x||||
= α+ α′ −

√
||O − x||2 + (α− 2εn)2 + 2||O − x||(α− 2εn)〈u, ηx∗〉

= α+ α′ −
√
(||O − x||+ α− 2εn)2 − 2||O − x||(α− 2εn)(1− 〈u, ηx∗〉)

= α+ α′ − (||O − x||+ α− 2εn)

√
1− 2||O − x||(α− 2εn)(1− 〈u, ηx∗〉)

(||O − x||+ α− 2εn)2

≥ α+ α′ − (||O − x||+ α− 2εn)

(
1− ||O − x||(α− 2εn)(1− 〈u, ηx∗〉)

(||O − x||+ α− 2εn)2

)

≥ 2εn + α′ − ||O − x||+ ||O − x||(α− 2εn)(1− 〈u, ηx∗〉)
(||O − x||+ α− 2εn)

≥ 2εn,

where the last inequality follows from ||O − x|| ≤ α′ and 2εn < α. This contra-
dicts Equation (25). Thus, x ∈ Cα′(Xn). From the outside and inside α rolling
condition (which implies α-convexity, see [20]) it follows that,

Cα′(Xn) ⊂ Cα(Xn) ⊂ Cα(S) = S.

Then, if x∗ ∈ ∂S then x∗ ∈ ∂Cα′(Xn) or x∗ ∈ Cα′(Xn)
c. In both cases, there

exists a z ∈ (x, x∗) and z ∈ ∂Cα′(Xn), such that π∂S(z) = x∗.
We now prove the injectivity. Suppose by contradiction that there are x1, x2

∈ ∂Cα′(Xn) such that π∂S(x1) = π∂S
(x2) = y. Write �i = d(xi, ∂S), for i =

1, 2. Because Cα′(Xn) ⊂ S, we have xi + �iηy = y and thus x1 = x2 + (�2 −
�1)ηy and |�2 − �1| ≤ εn (because for i ∈ {1, 2}, �i ≥ 0 and �i ≤ εn, due to
dH(∂S, ∂Cα′(Xn)) ≤ εn). Suppose that �2 ≥ �1. From the first step together with
Equation (21), we know that there exists an Oi such that B̊(Oi, α

′) ⊂ Cα′(Xn)
c,

||x2 − Oi|| = α′ and 〈u, ηy〉 ≥ 1 − 2(α + α′)/(αα′)εn with u = (Oi − x2)/α
′.

Then

||x1 −Oi||2 = (�2 − �1)
2 + α2′ − 2α′(�2 − �1)〈u, ηy〉

≤ (�2 − �1)
2 + α2′ − 2α′(�2 − �1) +

4(α+ α′)

α
(�2 − �1)εn

≤ α2′ − (�2 − �1)

(
2α′ − 4(α+ α′)

α
εn − (�2 − �1)

)

≤ α2′ − (�2 − �1)

(
2α′ −

(
4(α+ α′)

α
+ 1

)
εn

)
.

The condition εn ≤ αα′

4(α+α′) guarantees 2α′ − (4(α + α′)/α + 1)εn > 0 thus, if

�2 > �1, then x1 ∈ B̊(Oi, α
′), which is impossible (recall that B̊(Oi, α

′) ⊂ Cc
α′
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and that x1 ∈ Cα′(Xn)). Thus, by contradiction, �1 = �2 and x1 = x2, which
concludes the proof of injectivity.

Finally, we prove 3. Since reach(∂S) ≥ α and dH(∂Cα′(Xn), ∂S) ≤ εn < α,
π∂S , restricted to ∂Cα′(Xn), is continuous (see [25]). The continuity of π−1

∂S :
∂S → ∂Cα′(Xn) follows from the same ideas used to prove the injectivity of
π∂S : we provide a sketch of the proof. It follows from reach(∂S) ≥ α that
π−1
∂S (x) = x− �(x)ηx with �(x) ≥ 0. In addition, x �→ ηx is a continuous function

(see Theorem 1 in [42]). It remains to be proved that � is a continuous function.
If this is not the case, then we can find sequences (yn) ⊂ ∂S and (y′n) ⊂
∂S, both converging to some y ∈ ∂S), such that �(yn) → �1 and �(y′n) →
�2. We can conclude exactly as in the proof of injectivity that we can take
x1,n = yn − �(yn)ηyn and x2,n = y′n − �(y′n)ηy′

n
making n → +∞. We thus have

∂S ≈ ∂Cα′(Xn), which proves assertion 3, and thus concludes the proof of the
lemma.

Lemma A.8. Suppose that M is a C2, bounded (d − 1)-dimensional manifold
with positive reach α. Let πM denote the projection onto M and M̂ be a C2,
(d− 1)-dimensional manifold such that

1. πM is one to one from M̂ to M ,
2. for all x ∈ M̂ we have ||x− πM (x)|| ≤ ε1 and 〈η̂x, ηπM (x)〉 ≥ 1− ε2.

Then, if ε1(d− 1)α ≤ 1 and ε2 ≤ 1/8, we have

(1− 3ε1α− 32ε2)
d−1
2 ≤ |M̂ |d−1

|M |d−1
≤ (1 + 3ε1α+ 32ε2)

d−1
2 . (26)

Proof. Let p ∈ M and denote by (e1, . . . , ed−1) an orthonormal basis of TpM
and complete it with ed a unit vector of NpM . A neighbourhood of p in M can

be parametrized by ϕ(x) = x+ f(x)ed =
∑d−1

1 xiei + f(x1, . . . , xd−1)ed where

x =
∑d−1

1 xiei belongs to a neighborhood of p and ∇f (p) = 0, see for instance
Proposition 3, point 1, in [2].

Consider now the surface element (of M) ds(p) = dx1 . . . dxd−1. Its image by
π−1
M on the surface element (of M̂) is given by

dŝ(p) =
√
det(Jπ−1

M
(p)′Jπ−1

M
(p))dx1 . . . dxd−1.

The rest of the the proof consist in giving bounds for det(Jπ−1
M

(p)′Jπ−1
M

(p)). We

have that π−1
M (ϕ(x))=x+�(x)n(x) where n(x)=(−∂f/∂x1, . . . ,−∂f/∂xd−1, 1)∈

NxM , which gives that

Jπ−1
M

(p) =

(
Id−1 − �(p)Hf (p)

∇	(p)

)
.

The reach condition gives that ||Hf (p)||op ≤ α (see Proposition 6.1 in [30]) and
�(p) = ||π−1

M (p) − p|| ≤ ε1 so that we just have to bound ||∇	(p)||. Note that,
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for j = 1, . . . , d− 1, we have

tj = ej +
∂�

∂xj
(p)ed − �(p)

(
d−1∑
1

∂2f

∂xi∂xj
ei

)
∈ Tπ−1

M (p)M̂.

Note that ηp = ±ed and introduce η̂π−1
M (p). Since t1, . . . , td−1, η̂π−1

M (p) is an

orthogonal basis of Rd, we have that

ed =

d−1∑
i=1

〈ed,
ti

||ti||
〉 ti
||ti||

+ 〈ed, η̂π−1
M (p)〉η̂π−1

M (p),

which implies

1 =

d−1∑
i=1

〈ηp,
ti

||ti||
〉2 + 〈ηp, η̂π−1

M (p)〉2.

Thus, by condition 2, we have |〈tj , ed〉| = |〈tj , ηp〉| ≤
√
2ε2||tj ||, which implies∣∣∣∣ ∂�

∂xj
(p)

∣∣∣∣ ≤ √
2ε2||tj || ≤

√
2ε2

(
1 +

∣∣∣∣ ∂�

∂xj
(p)

∣∣∣∣ + ε1(d− 1)α

)
.

From this, we get ∣∣∣∣ ∂�

∂xj
(p)

∣∣∣∣ ≤
√
2ε2(1 + ε1(d− 1)α)

1−
√
2ε2

.

So, Jπ−1
M

(p)′Jπ−1
M

(p) = Id−1 + E with E a symmetric matrix with

||E||op ≤ 2ε1α+ ε21α
2 +

(√
2ε2(1 + ε1(d− 1)α)

1−
√
2ε2

)2

,

thus we finally obtain the inequality

(1− 3ε1α− 32ε2)
d−1 ≤ det

(
Jπ−1

M
(p)′Jπ−1

M
(p)

)
≤ (1 + 3ε1α+ 32ε2)

d−1
,

which concludes the proof.

A.2.1. Proof of Theorem 4.1

Theorem 4.1 follows now from the previous lemmas.
Let εn = dH(∂Cα′(Xn), ∂S) and Si = π∂S(Ci(Xn)), where the Ci(Xn) are

the sets introduced in Lemma A.7, we have that, for all i: dH(Si, Ci(Xn)) ≤ εn.
Due to Lemma A.7, we also have

1. |∂S|d−1 =
∑

i |Si|d−1 and |∂Cα′(Xn)|d−1 =
∑

i |Ci(Xn)|d−1.

2. for every i and all x ∈ Ci(Xn), 〈η̂x, ηπ∂S(x)〉 ≥ 1− 2(α+α′)
αα′ εn.
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Thus, by Lemma A.8 we also have, for all i:

(
1− 3αεn − 64(α+ α′)

αα′ εn

) d−1
2

≤ |Ci(Xn)|d−1

|Si|d−1
≤

(
1+3αεn+

64(α+ α′)

αα′ εn

) d−1
2

.

We then introduce A = 3α+ 64(α+α′)
αα′ , summing all the terms in the inequal-

ities

(1−Aεn)
d−1
2 |Si|d−1 ≤ |Ci(Xn)|d−1 ≤ (1 +Aεn)

d−1
2 |Si|d−1,

gives

(1−Aεn)
d−1
2 |∂S|d−1 ≤ |∂Cα′(Xn)|d−1 ≤ (1 +Aεn)

d−1
2 |∂S|d−1.

which concludes the proof.

A.2.2. Proof of Corollary 4

We only need to check that the conditions of Theorem 4.1 are fulfilled, with
probability one, for n large enough. In [18] it is proved that dH(Xn, S) ≤
O((lnn/n)1/d e.a.s. so, with probability one for n large enough it is upper

bounded by 1
3

αα′

α+α′ . In [37] it is proven that, with probability one for n large

enough, dH(∂Cα′(Xn), ∂S) ≤ εn ≤ c(lnn/n)2/(d+1) for some given explicit con-
stant c. Since Cα′(Xn)

c is a finite union of balls and affine half-spaces—that is,

Cα′(Xn)
c =

⋃N1

i=1 Ei with Ei = B̊(Oi, ri) or Ei = {z ∈ R
d, 〈uj , z〉 > ai}—, it

follows that

∂Cα′(Xn) =
⋃
i

(
∂Ei

⋂( ⋃
j �=i

Ej

)c)
.

Now define the Fj as the connected components of the sets ∂Ei

⋂
(
⋃

j �=i Ej)
c.

Then, the Fj are closed manifolds of dimension dj ≤ (d − 1), and are com-
pact since Fj ⊂ Cα′(Xn), which is compact. Finally, because ∂Cα′(Xn) is a
(d − 1)-dimensional manifold, we must have ∂Cα′(Xn) = ∪j,dj=d−1Fj (i.e., the
lower dimensional Fk are included in ∪j,dj=d−1Fj). This concludes the proof of
Corollary 4.
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[19] Cuevas, A., Fraiman, R., and Rodŕıguez-Casal, A. (2007). A nonparametric

approach to the estimation of lengths and surface areas. Ann. Statist. 35(3)
1031–1051. MR2341697

[20] Cuevas, A., Fraiman, R., and Pateiro-López, B. (2012). On statistical prop-
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[35] Korostelëv, A.P. and Tsybakov, A.B. (1993). Minimax Theory of Image
Reconstruction. Springer-Verlag, Berlin. MR1226450

[36] Penrose M.D. (2021). Random Euclidean coverage from within. preprint:

https://www.ams.org/mathscinet-getitem?mr=2058139
https://www.ams.org/mathscinet-getitem?mr=2341697
https://www.ams.org/mathscinet-getitem?mr=2977397
https://www.ams.org/mathscinet-getitem?mr=3066384
https://www.ams.org/mathscinet-getitem?mr=3772767
https://www.ams.org/mathscinet-getitem?mr=0579432
https://www.ams.org/mathscinet-getitem?mr=0713690
https://www.ams.org/mathscinet-getitem?mr=0110078
https://www.ams.org/mathscinet-getitem?mr=0257325
https://www.ams.org/mathscinet-getitem?mr=2797845
https://www.ams.org/mathscinet-getitem?mr=2383768
http://eio.usc.es/pub/pateiro/files/thesis_beatrizpateirolopez.pdf
https://www.ams.org/mathscinet-getitem?mr=2431300
https://www.ams.org/mathscinet-getitem?mr=2549435
https://www.ams.org/mathscinet-getitem?mr=1780751
https://www.ams.org/mathscinet-getitem?mr=1226450


3788 C. Aaron et al.

arXiv:2101.06306
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