
PEDECIBA Informática
Universidad de la República
Uruguay

Tesis de Maestŕıa en Informática

Security preserving program
translations

Cecilia Manzino

Director Académico y Director de Tesis:
Alberto Pardo

Instituto de Computación
Universidad de la República

Uruguay

2018

2

Tribunal:

Dr. Miguel Pagano (revisor)
Facultad de Matemática, Astronomı́a y Fı́sica
Universidad Nacional de Córdoba
Argentina

Dra. Nora Szasz
Facultad de Ingenierı́a
Universidad ORT Uruguay

Dr. Carlos Luna
Instituto de Computación
Facultad de Ingenierı́a
Universidad de la República

Abstract

The analysis of information flow has become a popular technique for ensur-
ing the confidentiality of data. It is in this context that confidentiality policies
arise for giving guarantees that private data cannot be inferred by the inspec-
tion of public data. Non-interference is an example of a security policy. It is a
semantic condition that ensures the absence of illicit information flow during
program execution by not allowing to distinguish the results of two computa-
tions when they only vary in their confidential inputs. A remarkable feature of
non-interference is that it can be enforced statically by the definition of an in-
formation flow type system. In such a type system, if a program type-checks,
then it means that it meets the security policy.

In this thesis we focus on an important usage of the non-interference
property: its preservation through program translation. We are interested
in analysing techniques that make it possible the development of security-
preserving program translations in the sense of code conversions that produce
non-interfering output programs out of non-interfering input programs. This is
a topic with significant practical relevance as can be seen in, for example, the
context of program compilation: if for certain applications it is essential that
the source code meets the security property, it is even more important that the
corresponding compiled, low-level code, which is the one that will be actually
executed, is also secure.

We pursue a formal methods approach to this topic, performing an anal-
ysis of type-based, security-preserving program translations in the context of
dependently-typed programming. We use Agda, a functional language with
dependent types, as the formalization language. In Agda we represent the
(abstract syntax of the) object languages, their security type systems, as well
as the translations between them. The importance of using Agda resides in
its powerful type system that makes it possible to encode object invariants. In
our case this is reflected in the ability to define the security type systems of
the involved languages in terms of Agda’s inductive families thus reducing the
verification of security preservation by translation to type-checking.

We analyse the formalization of two cases. First, we develop a compiler
between a simple imperative language and a semi-structured machine code.
For each language, we define a sound information flow type system and we
prove that the compiler preserves non-interference. The type systems of both
languages are flow-insensitive in the sense that the security level of program

3

4

variables is not allowed to change during program execution. Second, we
perform the formalization of Hund & Sands security-preserving translation that
transforms programs in a high-level language typable in a flow-sensitive type
system into equivalent high-level programs typable in a flow-insensitive type
system. Since the source language of the compiler coincides with the target
language of Hund & Sands translation, by composing the two components
we get as result a security-preserving compiler for a language with a flow-
sensitive type system.

Contents

1 Introduction 7
1.1 Organization of the thesis . 9

2 A simple security types preserving compiler 11
2.1 Source Language . 11

2.1.1 Syntax . 11
2.1.2 Big-step semantics . 12
2.1.3 Security Type System 13
2.1.4 Implementation . 18

2.2 Target Language . 19
2.2.1 Syntax . 19
2.2.2 Operational semantics 19
2.2.3 Security Type System 20
2.2.4 Implementation . 26

2.3 Compiler . 27
2.3.1 Implementation . 28

2.4 Summary . 29

3 Translation from flow-sensitive to flow-insensitive 31
3.1 Flow-Sensitive Type System . 32
3.2 Agda Implementation . 38
3.3 The translation to flow-insensitive 44
3.4 Summary . 47

4 Conclusions 49

5 Proofs from Chapter 2 51
5.1 Proof of Theorem 2.2 . 51
5.2 Proof of Theorem 2.3 . 53
5.3 Proof of Theorem 2.6 . 55
5.4 Proof of Theorem 2.7 . 56
5.5 Proof of Theorem 2.9 . 59
5.6 Proof of Lemma 2.10 . 61
5.7 Proof of Lemma 2.12 . 62

5

6 CONTENTS

6 Complete code of Chapter 3 67
6.1 Monotony of fixS . 67
6.2 Function fix (used in the While rule) 73

Bibliography 77

Chapter 1

Introduction

The confidentiality of the information manipulated by computing systems has
become of significant importance with the increasing use of applications through
internet. Such applications usually give access to sensitive data and the crit-
ical part is then to assure that they do not leak confidential information to
unautorized third parties.

Traditional security mechanisms like access control (used to prevent unau-
thorized access to information) and cryptography (used to exchange data
across a non-secure channel) do not provide end-to-end protection of data.
For example, with access control, once the application is authorized to access
certain information there is no control of how that information is used or if it is
propagated. Similarly, with cryptography, once data is decrypted there is no
guarantee about its use.

To complement these security mechanisms, information flow policies come
up into play for establishing guarantees that private data cannot be inferred by
inspecting public data. Among many proposed ones, information flow analysis
[3, 20] is a widely used technique that examines information flows between
inputs and outputs of systems.

Non-interference [7] is an example of an information flow policy. A system
is said to enjoy this property if any variation of confidential data causes no
variation of public data. Non-interference is a semantic condition, with the nice
property that it can be enforced statically by the definition of an information
flow type system that guarantees the absence of illicit information flows during
program execution [6, 22, 20]. Thus, when a program type-checks in such a
type system then it means that it satisfies the security policy. In this setting,
program variables are classified in different categories (types) according with
the kind of information they can store (e.g., public or confidential data). The
advantage of modelling security properties in terms of types is that they can
be checked at compile-time, thus partially reducing or even eliminating the
overhead of checking properties at run-time.

Most of the security type systems are flow-insensitive [20]. These are
type systems in which the security level of the program variables remain un-
changed. This contrasts with security type systems that are flow-sensitive [9,

7

8 CHAPTER 1. INTRODUCTION

17]. In those type systems each variable can have a different security level
at different points of the program. Flow-sensitive type systems are more per-
missive than flow-insensitive ones since they accept a larger set of secure
programs.

In this thesis we focus on the study of a relevant application of the non-
interference property: its preservation through program translation. Our inter-
est is the analysis of program translations that preserve this property in the
sense that they deliver non-interfering programs when they are provided with
non-interfering programs as input. This is a topic with practical relevance, es-
pecially in the context of program compilation: if it is important that the source
code of an application can be proved secure, it is even more important that
the target code generated by compilation satisfies to be secure as well.

We adopt a formal approach to this topic. In this sense, we develop the
formalization of type-based, security-preserving program translations in Agda
[15, 4], a dependently-typed functional language developed at Chalmers Uni-
versity. We formalize in Agda the abstract syntax of the different object lan-
guages, their security type systems, as well as the translation between them.
The importance of using Agda resides in its powerful type system which en-
ables us the encoding of object invariants. In our case this is reflected in the
features Agda provides us to define typed representations of abstract syn-
tax terms (ASTs) of the involved object languages, following the approach of
Sheard [21] and Pasalic and Linger [16]. These are terms that simulaneously
represent ASTs and (their) typing rules in the type system. An interesting con-
sequence of this representation is that it restricts the kind of terms of the object
languages that are representable. In fact, not every AST is representable, but
only those that are well-typed according to the type system of the object lan-
guage. But even more interesting is the effect that this representation has
on functions between typed terms: only functions that provide evidences that
they respect the typing encoded in the manipulated typed terms are accepted.
The positive aspect of this fact is that the verification that this is indeed satis-
fied by a function is reduced to perform type-checking in Agda. In this thesis
we take advantage of this technique to verify that certain program translations
are security preserving.

In concrete, we analyse two program translations. First, we develop a
compiler between a simple imperative language and low-level code of a stack
machine. After defining flow-insensitive, security type systems for both lan-
guages, which we prove sound with respect to the semantic definition of non-
interference, we build corresponding typed representation of the ASTs as
Agda GADTs. We then write the compiler as a function that preserves security
typing when translating programs between the GADTs of the languages. Sec-
ond, we formalize Hund & Sands [9] security-preserving translation in Agda.
This is an interesting security-preserving translation that transforms high-level
programs typable in a flow-sensitive type system into equivalent programs ty-
pable in a flow-insensitive type system. Interestingly, the target language of
this translation coincides with the source language of the compiler described

1.1. ORGANIZATION OF THE THESIS 9

above. Thus, by composing the two components we get as result a security-
preserving compiler for programs typeable in a flow-sensitive type system.

1.1 Organization of the thesis

The rest of the thesis is organized in three chapters.

• In Chapter 2 we present a security-preserving compiler from a simple
imperative high-level language to low-level code.

The chapter is a revised and extended version of the paper “A security
types preserving compiler in Haskel” presented at the XVIII Brazilian
Symposium of Programming Languages (SBLP 2014). In contrast to
this thesis, where we use Agda, in the paper the development of the
compiler is performed in Haskell.

The chapter improves the mentioned paper in two main aspects: it presents
the soundness proof of the involved security type systems, and it cor-
rects some bugs in the formulation of the security type system of the
low-level language with respect to the one showed in the paper.

• In Chapter 3 we present the formalization in Agda of Hund & Sands’
security-preserving translation [9] which transforms secure programs ty-
peable in a flow-sensitive type system to secure programs typeable in a
flow-insensitive type system.

• Chapter 4 concludes the thesis with a summary of the contributions and
with the description of some future work.

Chapters 2 and 3 contain only excrepts of the Agda code. The complete
formalization is available at www.fceia.unr.edu.ar/˜ceciliam/Tesis/codes.

10 CHAPTER 1. INTRODUCTION

Chapter 2

A simple security types
preserving compiler

In this chapter we develop in Agda a correct-by-construction compiler that
preserves the non-interference property. The compiler translates programs
written in a simple imperative language that includes loops and conditionals
to programs in a stack-based low-level language. We define the notion of
non-interference associated to each of these languages and introduce type
systems tailored to check this security policy statically.

By representing the security type systems in terms of Agda GADTs we
are then able to write the compiler as a function that translates terms be-
tween GADTs and has expressed in its type the security-preservation prop-
erty. Working with such a representation of the type systems has the benefit
that the proof of security-preservation is performed automatically by Agda’s
type system.

The chapter is organized as follows. In Section 2.1 we present the source
language of the compiler and show different versions of security type sys-
tems for it. We also describe the encoding of a syntax-directed version of the
security type system as a generalized algebraic data type (GADT) in Agda.
Section 2.2 decribes the target language of the compiler. As for the source
language, we define versions of security type systems for this language and
represent a syntax-directed version in terms of a GADT. Section 2.3 presents
the compiler and a proof that it preserves security typing.

2.1 Source Language

In this section, we introduce the high level language that is used as source
language in our compiler. We start by describing its abstract syntax. Then
we define its semantics and versions of type systems used to enforce secure
information flow within programs. Finally, we show an implementation both of
the syntax and type system in Agda.

11

12 CHAPTER 2. A SIMPLE SECURITY TYPES PRESERVING COMPILER

2.1.1 Syntax

The source language we consider is a simple imperative language with ex-
pressions and sentences defined by the following abstract syntax:

e ::= n | x | e1 + e2

S ::= x := e | skip | S1;S2 | if e then S1 else S2 | while e do S

where e ∈ Exp and S ∈ Stm. Variables range over identifiers (x ∈ Var) whereas
n ranges over integer literals (n ∈ Num).

2.1.2 Big-step semantics

We present a semantics of the language which is completely standard [13].
In the semantics, the meaning of both expressions and statements is given
relative to a state s ∈ State = Var → Z, a mapping from variables to integer
values that contains the current value of each variable.

The semantics of expressions is given in terms of an evaluation function
E : Exp→ State→ Z defined by induction on the structure of expressions:

E[[n]] s = N[[n]]
E[[x]] s = s x
E[[e1 + e2]] s = E[[e1]] s + E[[e2]] s

where N : Num → Z is a function that associates an integer value to each
integer literal.

For statements, we define a big-step semantics whose transition relation is
written as 〈S, s〉 ⇓ s′, meaning that the evaluation of a statement S in an initial
state s terminates with a final state s′. The definition of the transition relation
is presented in Figure 2.1.

Notice that the language does not contain boolean expressions. In fact,
the condition of an if as well as a while statement is given by an arithmetic
expression. According to the semantics, the condition of an if statement is
true when it evaluates to zero, and false otherwise. The same happens with
the condition of a while.

2.1.3 Security Type System

We assume that each variable has associated a security level, which states
the degree of confidentiality of the values it stores. A type environment Γ :
Var→ SType maps each variable to a security type.

For simplicity, in this thesis we consider just two security levels, low and
high, corresponding to public and confidential data, respectively, but the whole
development can be generalized to a lattice of security levels ordered by their
degree of confidentiality. As usual low ≤ high.

We assume that the security level of each variable is maintained unchanged
during program execution. A language with this characteristic is said to be flow

2.1. SOURCE LANGUAGE 13

〈x := e, s〉 ⇓ s[x 7→ E[[e]] s] 〈skip, s〉 ⇓ s

〈S1, s〉 ⇓ s′ 〈S2, s′〉 ⇓ s′′

〈S1;S2, s〉 ⇓ s′′

E[[e]] s = 0 〈S1, s〉 ⇓ s′

〈if e then S1 else S2, s〉 ⇓ s′
E[[e]] s , 0 〈S2, s〉 ⇓ s′

〈if e then S1 else S2, s〉 ⇓ s′

E[[e]] s = 0 〈S, s〉 ⇓ s′ 〈while e do S, s′〉 ⇓ s′′

〈while e do S, s〉 ⇓ s′′
E[[e]] s , 0

〈while e do S, s〉 ⇓ s

Figure 2.1: Big-step semantics of statements

insensitive. We write xL (xH) to mean a variable with low (high) security level
and refer to it as a low (high) variable.

Non-interference is a property on programs that guarantees the absence
of illicit information flows during execution. A program satisfies this security
property when the final value of the low variables is not influenced by a varia-
tion of the initial value of the high variables. This property can be formulated
in terms of the semantics of the language. Let us say that two states s and
s′ are L-equivalent, written s �L s′, when they coincide in the low variables,
i.e., s xL = s′ xL for every low variable xL ∈ Var. In other words, L-equivalent
states are indistinguishable to a low observer (i.e. to an observer that can only
inspect public data).

Definition 2.1 (Non-interference source language). A program S ∈ Stm is
non-interfering when, for any pair of L-equivalent initial states, if the execution
of S starting on each of these states terminates, then it does so in L-equivalent
final states:

NIS(S) df
= ∀si, s′i . si �L s′i ∧ 〈S, si〉 ⇓ s f ∧ 〈S, s′i〉 ⇓ s′f =⇒ s f �L s′f

This definition of non-interference is termination-insensitive in the sense
that it does not take into account non-terminating executions of programs.

Nowadays it is well-known that non-interference can be enforced statically
by the definition of an information-flow type system in which security levels are
used as types and referred to as security types. This started with the work of
Volpano et al. [22, 23]. Figures 2.2 and 2.3 present two alternative security
type systems for our source language. The difference between them is that
the system in Figure 2.3 is syntax-directed.

Expressions For typing expressions in the system of Figure 2.2 we use a
judgement of the form ` e : st, where st ∈ {low, high}. Rule expH states that

14 CHAPTER 2. A SIMPLE SECURITY TYPES PRESERVING COMPILER

Expressions

` e : high
expH

xH < Vars(e)

` e : low
expL

Statements
` e : low

[low] ` xL := e
assL

[pc] ` xH := e
assH

[pc] ` skip
skip

[pc] ` S1 [pc] ` S2

[pc] ` S1;S2
seq

` e : pc [pc] ` S1 [pc] ` S2

[pc] ` if e then S1 else S2
if

` e : pc [pc] ` S

[pc] ` while e do S
while

[high] ` S

[low] ` S
sub

Figure 2.2: Security Type System with subsumption (Source Language)

any expression can have type high. On the contrary, rule expL specifies that
the only expressions that can have type low are those that do not contain high
variables.

The type system for expressions shown in Figure 2.3 is syntax-directed. It
uses a judgement of the form `sd e : st. According to this system, the security
type of an expression is the maximum of the security types of its variables.
We denote by max st st′ the maximum of two security types st and st′. Integer
numerals are considered public data.

The rules for expressions remain unchanged if, instead of simply two se-
curity types, we considered a generalization in which the security level of vari-
ables belong to a lattice of security levels.

Statements The goal of secure typing for statements is to prevent improper
information flows at program execution. Information flow can appear in two
forms: explicit or implicit.

An explicit flow is observed when confidential data are copied to public
variables. For example, the following assignment is not allowed because the
value of a high variable is copied to a low variable.

yL := xH + 1

On the other hand, an assignment like the following is authorized, since copy-
ing the content of a low variable to high variable does not represent a security
violation.

xH := yL

2.1. SOURCE LANGUAGE 15

Expressions

`sd n : low `sd x : Γ(x)

`sd e : st `sd e′ : st′

`sd e + e′ : max st st′

Statements

`sd e : st st ≤ Γ(x) pc ≤ Γ(x)

[pc] `sd x := e
asssd

[pc] `sd S1 [pc] `sd S2

[pc] `sd S1;S2
seqsd

`sd e : st [max st pc] `sd S1 [max st pc] `sd S2

[pc] `sd if e then S1 else S2
ifsd

`sd e : st [max st pc] `sd S

[pc] `sd while e do S
whilesd

[pc] `sd skip skipsd

Figure 2.3: Syntax-directed Security Type System (Source Language)

Implicit information flows arise from the control structure of the program. The
following is an example of an insecure program where an implicit flow occurs:

if xH then yL := 1 else skip

The reason for being insecure is because by observing the value of the low
variable yL on different executions we can infer information about the value of
the high variable xH. This is a consequence of the assignment of a low variable
in a branch of a conditional upon a high variable. Due to situations like this it
is necessary to keep track of the security level of the program counter in order
to know the security level of the context in which a sentence occurs. On the
other hand, a program like this:

if yL + 2 then zL := zL + 1 else xH := xH − 1

is accepted because the final value of the public variable yL only depends on
the initial value of the yL and zL.

The type system for statements shown in Figure 2.2 is based on similar
systems given in [22, 20]. In that system, the typing judgement has the form
[pc] ` S and means that statement S is typable in the security context pc.
Observe that the system includes a subsumption rule (sub) which states that if
a statement is typeable in a high context then it is also typeable in low context.
As a consequence of this rule the system is not syntax-directed.

We then reformulate the type system to turn it syntax-directed. This gives
rise to the system shown in Figure 2.3. The typing judgement in this new
system has the form [pc] `sd S.

16 CHAPTER 2. A SIMPLE SECURITY TYPES PRESERVING COMPILER

Rule asssd states that assignments to low variables can only be done in low
context while assignments to high variables can be performed in any context.
Explicit flows are prevented by this rule by the restriction st ≤ Γ(x).

The rules ifsd and whilesd impose a restriction between the security level
of the condition and the branches (of the conditional) or the body (of the
while). As a consequence, if the condition is high then the branches (of
the conditional) or the body (of the while) must type in high contexts, since
max high pc = high, for any pc. This restriction prevents implicit flows.

Consider the following code that contains an implicit flow from a high vari-
able to a low variable:

if xH then xL := 1 else xL := 2

This code is clearly insecure because from inspecting the value of the variable
xL we can infer if xH was equal, or not, to 0. The restriction of the rule that is
violated by this statement is the one that states that the security level of the
branches of a conditional must be high if the condition is high; that restric-
tion thus indicates that only high variables can be updated in the branches,
something not satisfied by the statement of the example.

The following theorem establishes the relationship between both type sys-
tems.

Theorem 2.2. For every e ∈ Exp, S ∈ Stm, and st, pc ∈ SType:

(i) If `sd e : st then ` e : st.

(ii) If ` e : st then there exists st′ such that `sd e : st′ and st′ ≤ st.

(iii) If [pc] `sd S then [pc] ` S.

(iv) If [pc] ` S then there exists pc′ such that [pc′] `sd S and pc ≤ pc′.

Proof. See 5.1.
�

The type systems presented in Figures 2.2 and 2.3 are called top-down
systems. Another way of defining the security type system is by using a
bottom-up formulation, where the program counter of the commands is deter-
mined by choosing the greatest pc that is consistent with variable assignments
and by adding restrictions in the rules for conditionals and loops.

A bottom-up type system for statements is shown in Figure 2.4. In that
system, the typing judgement has the form [pc] `′ S and means that statement
S is typable in the security context pc.

Observe that this type system includes a subsumption rule. We also re-
formulate this type system to turn it syntax-directed. This gives rise to the
system shown in Figure 2.5. The typing judgement in this system has the
form [pc] `′sd S.

The following theorem establishes the relationship between the bottom-
up type system with subtyping and the top-down formulation of the syntax-
directed type system.

2.1. SOURCE LANGUAGE 17

`sd e : st st ≤ Γ(x) pc ≤ Γ(x)

[pc] `′ x := e
ass’

[pc1] `′ S1 [pc2] `′ S2

[min pc1 pc2] `′ S1;S2
seq’

`sd e : st [pc1] `′ S1 [pc2] `′ S2 st ≤ min pc1 pc2

[min pc1 pc2] `′ if e then S1 else S2
if’

`sd e : st [pc] `′ S st ≤ pc

[pc] `′ while e do S
while’

[pc] `′ skip skip’

[high] `′ c

[low] `′ c
sub’

Figure 2.4: Bottom Up Security Type system with Subtyping of the Source
Language

`sd e : st st ≤ Γ(x) pc ≤ Γ(x)

[pc] `′sd x := e
ass’sd

[pc1] `′sd S1 [pc2] `′sd S2

[min pc1 pc2] `′sd S1;S2
seq’sd

`sd e : st [pc1] `′sd S1 [pc2] `′sd S2 st ≤ min pc1 pc2

[min pc1 pc2] `′sd if e then S1 else S2
if’sd

`sd e : st [pc] `′sd S st ≤ pc

[pc] `′sd while e do S
while’sd

[high] `′sd skip skip’sd

Figure 2.5: Syntax-directed, Bottom Up Security Type System of the Source
Language

Theorem 2.3. For every S ∈ Stm, and pc ∈ SType:

i) If [pc] `′ S then [pc] `sd S

ii) If [pc] `sd S then [pc] `′ S

Proof. See 5.2. �

A desirable property for a security type system is type soundness, which
means that every typable statement satisfies non-interference. We build up
the soundness proof using two lemmas. The first one, called confinement,
states that if a sentence is typable in a high context then the execution of the
sentence does not alter the value of the low variables.

Lemma 2.4 (Confinement).

[high] `sd S ∧ 〈S, s〉 ⇓ s′ =⇒ s �L s′

18 CHAPTER 2. A SIMPLE SECURITY TYPES PRESERVING COMPILER

Proof. The proof can be done trivially by induction on the derivations of the
evaluation relation 〈S, s〉 ⇓ s′. �

The second lemma states that the evaluation of an expression of type low
(i.e. an expression that does not contain high variables) is the same in L-
equivalent states.

Lemma 2.5.
`sd e : low ∧ s �L s′ =⇒ E[[e]] s = E[[e]] s′

Proof. Straightforward by induction on the derivation of `sd e : low. �

Based on these lemmas, we can now state type soundness.

Theorem 2.6 (Type soundness). For every S ∈ Stm and pc ∈ SType,

[pc] `sd S =⇒ NIS(S)

Proof. See 5.3. �

2.1.4 Implementation

We represent in Agda the terms of the language together with the typing rules
of Figure 2.3 using generalized algebraic data types (GADTs).

The security types low and high are represented by the following datatype
definition:

data St : Set where
Low : St
High : St

The expressions of the language are then represented by a datatype Exp,
indexed by a value of type St that corresponds to the security type of the
expression:

data Exp : St→ Set where
IntVal : N→ Exp Low
Var : {st : St} → VarT st→ Exp st
Add : {st st’ : St} → Exp st→ Exp st’→ Exp (st ∪ st’)

where ∪ : St→ St→ St is the function that calculates the maximun between
two security types and VarT is the type to represent typed variables:

data VarT : St→ Set where
VarL :N→ VarT Low
VarH :N→ VarT High

To model the statements of the language we define the following datatype,
indexed by a security type representing the security level of the program point
in which the statement is executed.

2.2. TARGET LANGUAGE 19

data Stm : St→ Set where
Skip : {pc : St} → Stm pc

Assign : {st st’ pc : St} →
st’ ≤St st→ pc ≤St st→ VarT st→ Exp st’→ Stm pc

Seq : {pc : St} → Stm pc→ Stm pc→ Stm pc

If0 : {st pc : St} →
Exp st→ Stm (st ∪ pc)→ Stm (st ∪ pc)→ Stm pc

While : {st pc : St} →
Exp st→ Stm (st ∪ pc)→ Stm pc

The constructors Skip, Assign, Seq, If0 and While are direct implementa-
tions of the rules for statements of the type system in Figure 2.3. Now, the
typing judgement S : Stm pc corresponds to the judgement [pc] `sd S in our
formal type system.

2.2 Target Language

The target language of the compiler is a low-level code of a stack machine
in the style of the presented in [13]. In this section we describe its syntax
and operational semantics and define a type system that guarantees non-
interference.

2.2.1 Syntax

The instructions of the target language are given by the following abstract
syntax:

c ::= push n pushes the value n on top of the stack
| add addition operation
| fetch x pushes the value of variable x onto the stack
| store x stores the top of the stack in variable x
| noop no operation
| c1 ; c2 code sequence
| branch (c1, c2) conditional
| loop (c1, c2) looping

where c ∈ Code, x ∈ Var and n ∈ Num. Like the source language, this
language also manipulates program variables that have associated a security
level. As usual in this kind of low-level languages, values are placed in an
evaluation stack in order to be used by certain operations.

20 CHAPTER 2. A SIMPLE SECURITY TYPES PRESERVING COMPILER

〈push n, σ, s〉 B (N[[n]] : σ, s) 〈add, z1 : z2 : σ, s〉 B ((z1 + z2) : σ, s)

〈fetch x, σ, s〉 B ((s x) : σ, s) 〈store x, z : σ, s〉 B (σ, s[x 7→ z])

〈noop, σ, s〉 B (σ, s)

〈c1, σ, s〉 B (σ′, s′)

〈c1 ; c2, σ, s〉 B 〈c2, σ
′, s′〉

〈c1, σ, s〉 B 〈c′, σ′, s′〉

〈c1 ; c2, σ, s〉 B 〈c′ ; c2, σ
′, s′〉

z = 0

〈branch (c1, c2), z : σ, s〉 B 〈c1, σ, s〉

z , 0

〈branch (c1, c2), z : σ, s〉 B 〈c2, σ, s〉

〈loop (c1, c2), σ, s〉 B 〈c1 ; branch (c2 ; loop (c1, c2),noop), σ, s〉

Figure 2.6: Operational Semantics of the Target Language

2.2.2 Operational semantics

A code c is executed on an abstract machine with configurations of the form
〈c, σ, s〉 or (σ, s), where σ is an evaluation stack and s ∈ State is a state that
associates values to variables. The operational semantics is given by a transi-
tion relation between configurations that specifies an individual execution step.
The transition relation is of the form 〈c, σ, s〉 B γ, where γ may be either a
new configuration 〈c′, σ′, s′〉, expressing that remaining execution steps still
need to be performed, or a final configuration (σ′, s′), expressing that the exe-
cution of c terminates in one step. As usual, we write 〈c, σ, s〉 B∗ γ to indicate
that there is a finite number of steps in the execution from 〈c, σ, s〉 to γ. The
operational semantics of the language is shown in Figure 2.6.

We can define a meaning relation 〈c, s〉 ↓ s′ iff 〈c, ε, s〉 B∗ (σ′, s′) which
states that a given code c, and states s and s′ are in the relation whenever the
execution of c starting in s and the empty stack ε terminates with state s′. It can
be proved that this is in fact a partial function as our semantics is deterministic.
Based on this relation, we can define the notion of non-interference for low-
level programs:

NIT(c) df
= ∀si, s′i . si �L s′i ∧ 〈c, si〉 ↓ s f ∧ 〈c, s′i〉 ↓ s′f =⇒ s f �L s′f

Like it happened for the source language, this definition of non-interference
is termination-insensitive.

2.2.3 Security Type System

The security type system of the target language is shown in Figure 2.7. It is
defined in terms of a transition relation that relates a program code with the
security level of the program counter and the state of the stack type (stack
of security types) before and after the execution of that code. The typing

2.2. TARGET LANGUAGE 21

push ls ` push n : pc { low :: ls

add st1 :: st2 :: ls ` add : pc { max st1 st2 :: ls

fetch ls ` fetch x : pc { Γ(x) :: ls

store
st ≤ Γ(x) pc ≤ Γ(x)

st :: ls ` store x : pc { ls

noop ls ` noop : pc { ls

cseq
ls ` c1 : pc { ls′ ls′ ` c2 : pc { ls′′

ls ` c1 ; c2 : pc { ls′′

branch
B (st, ls, c1, c2, pc, ls′)

st :: ls ` branch (c1, c2) : pc { ls′

b1
ls ` c1 : pc { ls′ ls ` c2 : pc { ls′

B (low, ls, c1, c2, pc, ls′)

b2
[] ` c1 : high { [] [] ` c2 : high { []

B (high, ls, c1, c2, pc, ls)

loop
L (ls, c1, c2, pc, st, ls′)

ls ` loop (c1, c2) : pc { ls′

l1
ls ` c1 : pc { low :: ls′ ls′ ` c2 : pc { ls′′

L (ls, c1, c2, pc, low, ls′′)

l2
[] ` c1 : pc { high :: [] [] ` c2 : high { []

L (ls, c1, c2, pc, high, ls)

Figure 2.7: Security Type System for the Target Language

judgement is then of the form ls ` c : pc { ls′, where ls and ls′ are stack types.
This judgement states that a program c is typable when, starting in the security
environment given by the stack type ls and with program counter pc, it ends up
with stack type ls′. This type system is syntax-directed.

Like for the source language, this type system was designed in order to
prevent both explicit and implicit illegal flows. Rule store, for example, prevents
explicit flows by requiring that the value to be stored in a variable low has also
security level low, while the requirement on the context prevents implicit flows.

Rules branch and loop also take care of implicit flows. Rule branch uses an
auxiliary relation B . Depending on the security type of the value at the top
of the stack (value used to choose the branch to continue) relation B requires
a different typing to the codes at the branches. If this value is low, then the
codes at the branches type in any context and the stack type can be changed

22 CHAPTER 2. A SIMPLE SECURITY TYPES PRESERVING COMPILER

(in both branches to the same stack type). On the other hand, if the value at
the top is of type high, then the codes at the branches can only be typed in a
high context and are not allowed to use the stack. This is enforced by typing
the branches with the empty stack.

To see some examples of the kind of cases we want to avoid associated
with branch, let us consider the following codes:

fetch xH; fetch xH;
branch (push 1 ; store xL, push 2 ; store xL) branch (push 0, push 3);

store xL

Although in these cases we are storing a low value in a low variable (an action,
in principle, completely legal), the reason for rejecting these codes is because
the low value to store depends on the value of the high variable xH and there-
fore, as a result, we are implicitly informing in xL the status of xH (i.e. whether
it is, or not, zero).

In the code on the right hand side, we have a situation that is not easy to
detect because the instruction store xL occurs outside the conditional and its
action depends on the code that comes before it. This is a problem originated
by the way the storage of a value in a variable is performed in this language.
In fact, to do so at least two independent actions are required: one (or many)
for computing and setting (in the stack) the value to be stored, and another for
storing that value in the variable.

Therefore, in order to reject this kind of implicit flows, we must enforce
that if the value at the top of the stack, used by a conditional to choose the
branch, is high, then the branches of that conditional are not allowed to change
the stack of security types. Roughly speaking, what we are stating could be
expressed by a rule like this:

ls ` c1 : high { ls ls ` c2 : high { ls

high :: ls ` branch (c1, c2) : pc { ls

However, a rule like the one above is not enough to guarantee noninterfer-
ence, since an insecure code like the following would be accepted:

push 1;
fetch xH;
branch (store xH ; push 2, store xH ; push 3);
store xL

This code is insecure because after its execution the variable xL contains the
value 2 or 3 depending on whether xH is, or not, zero. However, it passes
the rule above because both branches of the conditional change the starting
stack type during their execution, but deliver the starting stack type at the end.
The origin of the insecurity is the fact that the codes of the branches were able
both to use and modify values contained in the original stack and finish with the
same stack type. That way, it was possible to replace a value in the stack with

2.2. TARGET LANGUAGE 23

another one (of same security type) that depended on the branch taken (and
hence, on a high value). Therefore, when a conditional is over a high value
we must prevent the codes of the branches to change the values contained in
the starting stack as well as to deliver a stack different from the starting one.
To enforce this requirement we require the branches of the conditional to be
typed in the empty stack. In some sense, this is a stronger condition, because
doing so we are preventing the branches to even use the values contained in
the starting stack. This is stated by relation B in rule b2.

We could have written two rules for the conditional directly, instead of defin-
ing the auxiliary relation B, but in that case the type system would not continue
being syntax-directed.

A similar situation happens with rule loop, now using the auxiliary relation
L. By similar considerations to those given for conditionals, when in a loop
loop (c1, c2) the condition c1 puts a high value at the top of the stack, then the
body c2 is required to be typed in the empty stack.

We note that this type system rejects some secure programs. For example,
the following program is not accepted:

push 1;
branch (push 0,noop)

because of the restriction of rule b1, which states that the branches of a con-
ditional must deliver the same stack type.

In Section 2.3, we show that the programs (secure or not) that are rejected
by these restrictions of the type system are not the ones generated by compi-
lation.

Figure 2.8 shows an alternative, bottom-up security type system with sub-
typing for the low-level language.

The following theorem establishes the relationship between the bottom-up
type system and the top-down formulation of Figure 2.7.

Theorem 2.7. For every c ∈ Code, pc, ls and ls′:

i) ls `b c : pc { ls′ ⇒ ls ` c : pc { ls′

ii) ls ` c : pc { ls′ ⇒ ls `b c : pc { ls′

Proof. See 5.4. �

Now, let us analyze type soundness for the type system shown in Fig-
ure 2.7. It requires the proof of some previous properties.

Definition 2.8. Two evaluation stacks σ and σ′ with same stack type ls are
said to be L-equivalent, written σ �L σ′, when they coincide in the low values,
i.e., for every position i, if ls[i] = low, then σ[i] = σ′[i].

One of the properties we need is preservation, which states that typing is
preserved through reduction.

24 CHAPTER 2. A SIMPLE SECURITY TYPES PRESERVING COMPILER

push ls `b push n : pc { low :: ls

add st1 :: st2 :: ls `b add : pc { max st1 st2 :: ls

fetch ls `b fetch x : pc { Γ(x) :: ls

store
st ≤ Γ(x) pc ≤ Γ(x)

st :: ls `b store x : pc { ls

noop ls `b noop : pc { ls

cseq
ls `b c1 : pc1 { ls′ ls′ `b c2 : pc2 { ls′′

ls ` c1 ; c2 : min pc1 pc2 { ls′′

branch
B (st, ls, c1, c2, pc, ls′)

st :: ls `b branch (c1, c2) : pc { ls′

b1b

ls `b c1 : pc1 { ls′ ls `b c2 : pc2 { ls′

B (low, ls, c1, c2, min pc1 pc2, ls′)

b2b

[] `b c1 : high { [] [] `b c2 : high { []

B (high, ls, c1, c2, pc, ls)

loopb

L (ls, c1, c2, pc, st, ls′)

ls `b loop (c1, c2) : pc { ls′

l1b

ls `b c1 : pc1 { low :: ls′ ls′ `b c2 : pc2 { ls′′

L (ls, c1, c2, min pc1 pc2, low, ls′′)

l2b

[] `b c1 : pc { high :: [] [] `b c2 : high { []

L (ls, c1, c2, pc, high, ls)

sub
ls `b c : high { ls′

ls `b c : low { ls′

Figure 2.8: Bottom Up Security Type System for the Target Language with
Subtyping

2.2. TARGET LANGUAGE 25

Theorem 2.9 (Preservation).

ls ` c : pc { ls′ ∧ 〈c, σ, s〉 B 〈c′, σ′, s′〉 ⇒ ∃ls′′. ls′′ ` c′ : pc { ls′

Proof. By induction on a derivation of 〈c, σ, s〉 B 〈c′, σ′, s′〉. See 5.5. �

Another property that is necessary is confinement, which states that a
code executed in a high context does not alter low variables.

Lemma 2.10. For every c ∈ Code, ls, ls′, σ, and s such that

ls ` c : high { ls′

then either
∃ σ′, s′, c′.〈c, σ, s〉 B 〈c′, σ′, s′〉 ∧ s �L s′

or
∃ σ′, s′.〈c, σ, s〉 B (σ′, s′) ∧ s �L s′

Proof. See 5.6 �

Theorem 2.11 (Confinement). For every c ∈ Code, ls, ls′, σ, and s,

ls ` c : high { ls′ ∧ ∃ σ′ s′.〈c, σ, s〉 B∗ (σ′, s′) ⇒ s �L s′

Proof. By using preservation and Lemma 2.10. �

Finally, we state the following property: if a typable code is executed in L-
equivalent stacks of values and stores, then after n steps L-equivalent stacks
and stores are reached.

Lemma 2.12. For every c ∈ Code, ls, ls′, s1, s2, σ1, σ2, pc, such that σ1 �L σ2,
s1 �L s2 and ls ` c : pc { ls′, then either

∃c′, s′1, s
′

2, σ
′

1, σ
′

2. 〈c, σ1, s1〉 B∗ 〈c′, σ′1, s′1〉 ∧
〈c, σ2, s2〉 B∗ 〈c′, σ′2, s′2〉 ∧
σ′1 �L σ′2 ∧ s′1 �L s′2

or
∃s′1, s

′

2, σ
′

1, σ
′

2. 〈c, σ1, s1〉 B∗ (σ′1, s′1) ∧
〈c, σ2, s2〉 B∗ (σ′2, s′2) ∧
σ′1 �L σ′2 ∧ s′1 �L s′2

Proof. By structural induction on the code c. See 5.7. �

Now, we can prove soundness of the security type system. Soundness
states that every low-level code typable in the security type system is non-
interfering.

Theorem 2.13 (Type soundness). For every c ∈ Code, ls, ls′ and pc,

ls ` c : pc { ls′ =⇒ NIT(c)

Proof. The proof is a consequence of Lemma 2.12. �

26 CHAPTER 2. A SIMPLE SECURITY TYPES PRESERVING COMPILER

2.2.4 Implementation

The low-level language is encoded by the datatype Code, indexed by the se-
curity level of the context and the stack types (represented as lists) before and
after the execution of the code.

mutual
data Code : List St→ St→ List St→ Set where

Push : {Σ : List St}{pc : St} →
N→ Code Σ pc (Low :: Σ)

Fetch : {Σ : List St}{st pc : St} →
VarT st→ Code Σ pc (st :: Σ)

Store : {Σ : List St}{st st’ pc : St} →
st’ ≤St st→
pc ≤St st→
VarT st →

Code (st’ :: Σ) pc Σ

Sum : {Σ : List St}{pc st st’ : St} →
Code (st :: st’ :: Σ) pc (st’ ∪ st :: Σ)

App : {Σ Σ1 Σ2 : List St}{pc : St} →
Code Σ pc Σ1 →

Code Σ1 pc Σ2 →

Code Σ pc Σ2

Branch : {Σ Σ’ : List St}{st pc : St} →

B st Σ pc Σ’→
Code (st :: Σ) pc Σ’

Loop : {Σ Σ’ : List St}{pc st : St} →
L Σ pc st Σ’→
Code Σ pc Σ’

Noop : {Σ : List St}{pc : St} →
Code Σ pc Σ

data B : St→ List St→ St→ List St→ Set where
BLow : {Σ Σ’ : List St}{pc : St} →

Code Σ pc Σ’→
Code Σ pc Σ’→
B Low Σ pc Σ’

BHigh : {Σ : List St}{pc : St} →
Code [] High []→
Code [] High []→

2.3. COMPILER 27

B High Σ pc Σ

data L : List St→ St→ St→ List St→ Set where
LLow : {Σ Σ1 Σ2 : List St}{pc : St} →

Code Σ pc (Low :: Σ1)→
Code Σ1 pc Σ2→
L Σ pc Low Σ2

LHigh : {Σ : List St}{pc : St} →
Code [] pc (High :: [])→
Code [] High []→
L Σ pc High Σ

The typing judgement c : Code Σ pc Σ’ corresponds to the judgement
ls ` c : pc { ls′ and the data types B and L correspond to the relations B and
L of the formal type system.

2.3 Compiler

The compiler is a function that converts terms of the source language into
terms of the target language. Since the terms of our source language are of
two syntax categories, we have to define two compilation functions, one for
expressions (Ce : Exp → Code) and the other for statements (CS : Stm →

Code). Figure 2.9 shows the definition of both functions.
It is not difficult to prove that this compiler is correct with respect to the

semantics of the source and target languages.

Theorem 2.14 (compiler correctness). For any expression e, statement S of the
source language, and state s it holds that:

i) 〈Ce[e], ε, s〉 B∗ (E[[e]]s, s)

ii) if 〈S, s〉 ⇓ s′ then 〈CS[S], ε, s〉 B∗ (ε, s′)

Expressions

Ce[n] = push n

Ce[x] = fetch x

Ce[e1 + e2] = Ce[e1] ; Ce[e2] ; add

Sentences

CS[x := e] = Ce[e] ; store x

CS[skip] = noop

CS[S1;S2] = CS[S1] ; CS[S2]

CS[if e then S1 else S2]
= Ce[e] ; branch(CS[S1],CS[S2])

CS[while e do S] = loop(Ce[e],CS[S])

Figure 2.9: Compilation functions

28 CHAPTER 2. A SIMPLE SECURITY TYPES PRESERVING COMPILER

In this work we are especially interested in another property of the com-
piler, namely the preservation of non-interference through compilation. Preser-
vation in this context means that the compiler converts non-interfering pro-
grams in the source language into non-interfering programs in the target lan-
guage. This property can be established semantically.

Theorem 2.15 (Semantic-based preservation of noninterference). For any e ∈ Exp
and S ∈ Stm,

i) NIT(Ce[e])

ii) if NIS(S) then NIT(CS[S])

Our interest, however, is to establish the property at the type level.

Theorem 2.16 (type-based preservation of noninterference). For any e ∈ Exp and
S ∈ Stm,

i) If `sd e : st then for any ls and pc, ls ` Ce[e] : pc { st :: ls

ii) If [pc] `sd S then for any ls, ls ` CS[S] : pc { ls

Proof. The proof of i) proceeds by induction on the structure of the expression
e. We analyse the code that returns the compiler in each case and construct
a derivation tree for this code using the type system for the target language.
The proof of ii) proceeds similarly by induction on the structure of statement
S. �

2.3.1 Implementation

The compiler function Ce can be easily implemented in Agda as follows:

compileExp : {st pc : St}{Σ : List St} →
Exp st→ Code Σ pc (st :: Σ)

compileExp (IntVal n) = Push n

compileExp (Var x) = Fetch x

compileExp (Add e1 e2) = App (App (compileExp e1) (compileExp e2)) Sum

and CS can be implemented as:
compiler : {pc : St} → Stm pc→ Code [] pc []

compiler (Assign st’≤st pc≤st var e) =
App (compileExp e) (Store st’≤st pc≤st var)

compiler (Seq c1 c2) = App (compiler c1) (compiler c2)

2.4. SUMMARY 29

compiler (If0 e c1 c2) =
branch (compileExp e) (compiler c1) (compiler c2)

compiler (While e c) = loop (compileExp e) (compiler c)

compiler Skip = Noop

where the functions branch and loop are defined as follows:

branch : {st pc : St} →
Code [] pc (st :: [])→ -- result of the compilation of the guard

Code [] (st ∪ pc) []→ -- result of compilation of the first branch

Code [] (st ∪ pc) []→ -- result of compilation of the second branch

Code [] pc []

branch {st = Low} ce c1 c2 = App ce (Branch (BLow c1 c2))

branch {st = High} ce c1 c2 = App ce (Branch (BHigh c1 c2))

loop : {st pc : St} →
Code [] pc (st :: [])→ -- result of compilation of the guard

Code [] (st ∪ pc) []→ -- result of compilation of the sentence

Code [] pc []

loop {st = Low} ce c = Loop (LLow ce c)

loop {st = High} ce c = Loop (LHigh ce c)

These functions turn out to be more than simply compilation functions.
They are actually the Agda representation of the proof terms of Theorem 2.16.
In fact, observe that the type of these functions is exactly the encoding of the
properties i) and ii) in that theorem. In other words, when writing these func-
tions we are actually proving the theorem and the preservation of noninterfer-
ence is being verified by Agda’s type system. As we mentioned above, both
i) and ii) are proved by structural induction. The equations of the compiler
functions encode the cases of the inductive proofs.

2.4 Summary

In this chapter we developed a simple compiler in Agda that preserves non-
interference. The compiler takes programs in an imperative high-level lan-
guage and returns code in a low-level language that runs in a stack-based
abstract machine. A security type system was defined for checking non-
interference on each language. Each type system was proved sound with re-
spect to the semantic definition of non-interference and implemented in Agda

30 CHAPTER 2. A SIMPLE SECURITY TYPES PRESERVING COMPILER

in terms of data families. Interestingly, the fact of having syntax-directed for-
mulations of the type systems produces that the Agda representations at the
same time encode the AST constructors of the languages together with their
typing rules. As a consequence of that, the encoding enforces that we can only
write non-interfering programs in the Agda implementation of the languages.

Because of this approach the type of the compiler then corresponds ex-
actly to the formulation of the preservation of non-interference through compi-
lation. The definition of the compiler itself then corresponds to the definition of
the proof terms that prove the preservation property. The rest of the job (i.e.
the verification that the function is indeed a proof of the property) is performed
by Agda’s type system.

Chapter 3

Translation from flow-sensitive
to flow-insensitive

Most security type systems are flow-insensitive. One of the reasons is that
they are more intuitive than flow-sensitive ones. Flow-insensitive type systems
do not take into account the order of excecution. This means that the security
of a program remains unaltered if we, for example, reorder the statements in
a sequence. In a flow-insensitive type system, like the ones presented in the
previous chapter, the security level of the program variables is fixed from the
beginning. In contrast, in a flow-sensitive type system the security level of
the variables may be different at different program points. Flow-sensitive type
systems use to be more permissive, accepting more secure programs than
the flow-insensitive ones.

For example, consider following code,

x := y;
x := 0

where x is a low variable and y is a high variable. Although in the second as-
signment the variable x is overridden with the constant 0, this code is rejected
by a flow-insensitive type system because it has an insecure subprogram (the
instruction x := y). This is, however, accepted by a flow-sensitive type system
(e.g., the one presented in [9]) because the security level of the variable y is
relabeled to low after the first assignment.

Another example of an intuitively secure code that is rejected by a flow-
insensitive type system is the following, where x and y have the same security
level as above:

y := 0;
if y then x := 1 else x := 2

Hunt and Sands [9] show that any program in a While language which is
typable in a flow-sensitive type system can be translated to an equivalent pro-
gram that is typable in a simple flow-insensitive type system. The translation
is formulated as an extension of the flow-sensitive type system.

31

32CHAPTER 3. TRANSLATION FROM FLOW-SENSITIVE TO FLOW-INSENSITIVE

Γ ` n : low Γ ` x : Γ(x)

Γ ` e : st Γ ` e′ : st′

Γ ` e + e′ : st t st′

Figure 3.1: Flow-Sensitive Typing Rules for expressions

The aim of this chapter is to show a formalization of that translation in
Agda. As source and target language of the translation we consider the
same While language presented in the previous chapter. We encode the
abstract syntax of the While language and both security type systems (the
flow-sensitive and the flow-insensitive one) in terms of inductive families. We
then implement the translation as a function between such inductive families.
Like in the previous chapter, by writing this function in Agda we are proving
that the translation preserves non-interference. Again, the validation of that
preservation is being performed by Agda’s type checker.

3.1 Flow-Sensitive Type System

In a flow-sensitive language, the security type of a variable can change during
program execution.

We use the flow-sensitive type system given by Hunt and Sand [9]. It is
defined for a lattice with two elements (low and high). In this type system the
judgement for sentences is of the form

pc ` Γ { S } Γ′

meaning that S is typable in the security context pc and the type environments
Γ and Γ′, which describe the security level of the variables before and after
the execution of S, respectively (we call them pre and post environment). The
judgement for expressions has the form:

Γ ` e : t

meaning that e has type t in the type environment Γ.
The typing rules for expressions and commands are shown in Figures 3.1

and 3.2.
For any expression e, we say that e is typable in an environment Γ iff its type

is the least upper bound of the types of its free variables. The rules shown in
Figure 3.1 are similar to the rules of Figure 2.3.

Rule Assign states that an assignment is typable in any context. The type
of the variable x in the post-environment can change to high if the assigment is
performed in a high context or if the assigned expression is high. It is changed
to low if the context and the type of the expression are low. In other cases, the
post-environment doesn’t change.

The rules If and While were designed to prevent implicit flows. If the con-
dition is high then the branches (of the conditional) or the body (of the while)
must be typable in a high context.

3.1. FLOW-SENSITIVE TYPE SYSTEM 33

Skip
pc ` Γ { skip } Γ′

Assign
Γ ` e : t

pc ` Γ { x := e } Γ[x 7→ pc t t]

Seq
pc ` Γ { S1 } Γ

′ pc ` Γ′ { S2 } Γ
′′

pc ` Γ { S1;S2 } Γ
′′

If
Γ ` e : t pc t t ` Γ { Si } Γ

′ i = 1, 2

pc ` Γ { if e then S1 else S2 } Γ
′

While
Γ ` e : t pc t t ` Γ { S } Γ

pc ` Γ { while e do S } Γ

Sub
pc1 ` Γ1 { S } Γ′1
pc2 ` Γ2 { S } Γ′2

pc2 ≤ pc1, Γ2 v Γ1, Γ′1 v Γ′2

Figure 3.2: Flow-Sensitive Typing Rules for commands

The rule Sub states that if a program is typable in a high context, pre-
environment Γ1 and post-environment Γ′1, then it is also typable in a low con-
text, and in pre-environments that are smaller than Γ1 and post-environment
greater than Γ′1. So, the variables of the pre-environment can vary to low,
and the variables that are in the post-environment can vary to high, without
affecting the typing.

Using this type system we can type for example the program presented in
the introduction of this chapter, which does not type in a flow-insensitive type
system:

x := y
x := 0

The first assigment changes the security type of x from low to high. The
second assigment backs the type of x to low.

A syntax-directed version of the type system, taken also from [9], is shown
in Figure 3.3. In this new type system the subsumtion rule (SUB) was elim-
inated. It is an algorithmic type system, in the sense that it calculates the
smallest Γ′ such that pc ` Γ {S} Γ′ for a given sentence S, an environment Γ
and program counter pc. The rules Skip, Assign and Seq remain unchanged.

The difference between the rule If of the system of Figure 3.2 and the one
in the syntax-directed version is the post-environment of the conditional. In
the syntax-directed system this environment is the smallest post-environment
in which the conditional can be typable.

In the new system, the rule While is a fixed-point construction. The body of
the loop will be typed repeatedly until the post-environment does not change
with respect to the last iteration.

Another way to present this rule is by using the least fixed-point operator,

34CHAPTER 3. TRANSLATION FROM FLOW-SENSITIVE TO FLOW-INSENSITIVE

If
Γ ` e : t pc t t ` Γ { Si } Γ

′

i i = 1, 2

pc ` Γ { if e then S1 else S2 } Γ
′

1 t Γ′2

While
Γ′i ` e : ti pc t ti ` Γ′i { S } Γ′′i 0 ≤ i ≤ n

pc ` Γ { while e do S } Γ′n
Γ′0 = Γ,Γ′i+1 = Γ′′i t Γ,Γ′n+1 = Γ′n

Figure 3.3: Syntax-directed Flow-Sensitive Typing Rules

denoted as fix, as follows:

While
Γ f = fix(λΓ . let Γ ` e : t pc t t ` Γ { S } Γ′ in Γ′ t Γ0)

pc ` Γ0 { while e do S } Γ f

This fixed-point construction guarantees to terminate since it is computed
on a monotone function (defined over the typing rules) and also because the
set of environments is finite (since the set of security levels is finite). The
proof of convergence of this rule was given in [9] as part of the proof of the
following theorem, that states the correctness of the type system. Here we
include a complete proof of the theorem since it is crucial for understanding
the implementation of the rule.

The function AS calculates the smallest Γ′ such that pc ` Γ { S } Γ′.

Theorem 3.1. For all S, pc, Γ, there exists a unique Γ′ such that pc ` Γ { S } Γ′

and furthermore, the corresponding function AS(pc,Γ) 7→ Γ′ is monotone.

Proof. The proof is by induction on the structure of the sentence S. We
have the following cases:

• S = x := e

Assuming Γ ` e : t, by the Assign rule we have that

Γ′ = Γ[x 7→ pc t t]

To prove that AS is monotone when S = x := e we need to show that:

pc1 v pc2 ∧ Γ1 v Γ2 ⇒ Γ1[x 7→ pc1 t t1] v Γ2[x 7→ pc2 t t2]

where Γ1 ` e : t1 and Γ2 ` e : t2. This consequence can be proved
trivially.

• S = S1;S2

By induction hypothesis we have that there exists unique Γ′ such that:

pc ` Γ { S1 } Γ
′

3.1. FLOW-SENSITIVE TYPE SYSTEM 35

for a given pc and Γ. Using induction hypothesis on S2 we have that there
exists a unique Γ′′ such that:

pc ` Γ′ { S2 } Γ
′′

By the Seq rule we have that

pc ` Γ { S1 ; S2 } Γ
′′

The proof of monotonocy for this case follows from the monotonocy for
the sentences S1 and S2.

• S = if e then S1 else S2

By induction hypothesis we have that there exists unique Γ′1 and Γ′2 such
that:

pc t t ` Γ { S1 } Γ
′

1 ∧ pc t t ` Γ { S2 } Γ
′

2

for a given pc and Γ, where Γ ` e : t. Then, by the If rule, we have that

pc ` Γ { if e then S1 else S2 } Γ
′

1 t Γ′2

The proof of monotonocy for this case follows from the monotonocy for
the sentences S1 and S2.

• S = while e do S1

Given pc and Γ, by induction hiphotesis we have that there exists unique
Γ′′0 and Γ′′1 such that:

pc t t ` Γ { S1 } Γ
′′

0 ∧ pc t t0 ` Γ′′0 t Γ { S1 } Γ
′′

1

where Γ ` e : t and Γ′′0 t Γ ` e : t0.

Then, since Γ v Γ′′0 t Γ we have that t v t0 and also pc t t v pc t t0.

From the monotonocy ofAS1 , Γ v Γ′′0 t Γ and pct t v pct t0 follows that

Γ′′0 v Γ′′1

Then, by applying a similar reasoning we have that there exists a chain

Γ′′0 v Γ′′1 v Γ′′2 v ...

where pct ti ` Γ′′i tΓ { S1 } Γ
′′

i+1 and ΓitΓ ` e : ti and also there exists
n such Γ′′n = Γ′′m for all m > n, since the set of environments is finite. The
existence of this chain with finite length guarantees the convergence of
the While rule, and therefore there exists a unique Γ′′n such

pc ` Γ { while e do S1 } Γ
′′

n t Γ

36CHAPTER 3. TRANSLATION FROM FLOW-SENSITIVE TO FLOW-INSENSITIVE

We call G the function that calculates the elements of the chain Γ′′0 v
Γ′′1 v Γ′′2 v ..., defined as:

G (pc,Γ,Γ′′i) = AS1(pc t ti,Γ
′′

i t Γ)

where Γ′′i t Γ ` e : ti. Function G is monotone since it is derived from
A

S1 which is monotone. This allows us to conclude thatAS is monotone
when S = while e do S1.

�
The previous theorem stated the correctness of the algorithmic type sys-

tem. To implement this type system in Agda we need to define a function that
computes, in finite time, the fixed-point of function G. The following theorem is
used for the definition of such function in Agda.

Theorem 3.2. Given a partial order (S,v), an element x ∈ S, a monotone
function g : S → S over v, and a strictly decreasing function bound : S → N
with respect to the strict order @ (x @ y ⇒ bound y < bound x) with unique
minimal element (bound x = 0 ∧ bound y = 0 ⇒ x = y), if x v g x and
bound x ≤ k for some k, then there exists n ≤ k such that gn x is a fixed-point
of g.

Proof. The proof is by induction on k.

• k = 0

By hypothesis bound x ≤ 0, and therefore bound x = 0. Since bound is
a decreasing function and x v g x, we have that bound (g x) ≤ bound x.
Thus, bound (g x) = 0. By uniqueness of bound’s minimal element we
conclude that g x = x, and therefore x is a fixed-point of g.

• k = n + 1

By hypothesis we know that bound x ≤ n + 1 and x v g x. Then we have
two cases:

case: x = g x

Then x is a fixed-point of g.

case: x @ g x

Since bound is strictly decreasing wrt @ we have that bound (g x) <
bound x ≤ n + 1, and therefore bound (g x) ≤ n. Since g is monotone
and x @ g x we have that g x v g2 x. Then, by induction hyphotesis we
conclude that there exists i ≤ n such g ((gi (g x)) = gi (g x) , meaning
that gi (g x) is a fixed-point of g. Therefore, we conclude that gi+1 x is
a fixed-point of g where i + 1 ≤ n + 1 . �

Based on this theorem we implement an Agda function fixS, which returns
a value of the set and a proof that it is a fixpoint of g. Within this function we
use a record definition PartialOrder to express the properties of the relation v.

3.1. FLOW-SENSITIVE TYPE SYSTEM 37

record PartialOrder {X} (4 : X→ X→ Set) : Set where
field

refl : ∀ {x} → x 4 x
antisym : ∀ {x y} → x 4 y→ y 4 x→ x ≡ y
trans : ∀ {x y z} → x 4 y→ y 4 z→ x 4 z

Function fixS is defined as follows:

fixS : (X : Set)→
(k : N)→ -- maximun number of iterations

(@ : Rel X)→
(v : Rel X)→
(sum : {x y : X} → x v y→ (x ≡ y) ∨ (x @ y))→
(str : {x y : X} → x @ y→ x v y)→
(par : PartialOrder v)→

(bound : X→N)→ -- bound function

-- the bound function is decreasing

(∀ {x y : X} → x @ y→ bound y ¡ bound x)→
-- the bound function has a unique minimal value

(∀ (x y : X)→ bound x ≡ 0→ bound y ≡ 0→ x ≡ y)→

(g : X→ X)→
(∀ {x y} → x v y→ g x v g y)→ -- g is monotone

(x : X)→ -- inicial value

x v g x→
k ≥ bound x→ -- invariant

Σ X (λ x→ x ≡ g x)

fixS X 0 rel@ relv sum str par bound boundDec minimal g gmono x xvgx p
with minimal x (g x) (n≡0 p)

(n≡0 (trans (propDec’ bound rel@ relv boundDec xvgx) p))

fixS X 0 rel@ relv sum str par bound boundDec minimal g gmono x xvgx p |
x≡gx = x , x≡gx

fixS X (suc n’) rel@ relv sum str par bound boundDec minimal g gmono
x xvgx p with sum xvgx

... | inl x≡gx = x , x≡gx

... | inr x@gx =
let r = p≤p (trans (boundDec x@gx) p)
in fixS X n’ rel@ relv sum str par

bound boundDec minimal g
gmono (g x) (gmono xvgx) r

In contrast to Theorem 3.2, fixS does not show that the solution is gn Γ0 for
some n ≤ k. Notice that when the number of iterations is 0 we use properties

38CHAPTER 3. TRANSLATION FROM FLOW-SENSITIVE TO FLOW-INSENSITIVE

of the bound function that are passed to the function to help the type checker
to infer that x = g x.

Function fixS turns out to be itself a monotone function. The monotonic-
ity of fixS will be required later for the impementation of the type system for
sentences, which uses a fix operator that is defined in terms of fixS. Here we
show only the type of this property:

fixSmonotone : (X : Set)→
(k : N)→ -- maximun number of iterations

(@ : X→ X→ Set)→
(v : X→ X→ Set)→
(sum : {x y : X} → x v y→ (x ≡ y) ∨ (x @ y))→
(str : {x y : X} → x @ y→ x v y)→

(par : PartialOrder v)→

(bound : X→N)→ -- bound function

-- the bound function is decreasing

(bDec : ∀ {x y : X} → x @ y→ bound y < bound x)→
-- the bound function has a unique minimal value

(minimal : ∀ (x y : X)→ bound x ≡ 0→ bound y ≡ 0→ x ≡ y)→

(g : X→ X)→
-- g is monotone

(gmono : ∀ {x y} → x v y→ g x v g y)→

(x : X)→ -- inicial value x

(xvgx : x v g x)→
(inv : k ≥ bound x)→ -- invariant

(x’ : X)→ -- inicial value x’

(x’vgx’ : x’ v g x’)→
(inv’ : k ≥ bound x’)→ -- invariant

x v x’→ g x v g x’→
proj1 (fixS X k @ v sum str par bound bDec minimal g gmono x xvgx inv) v
proj1 (fixS X k @ v sum str par bound bDec minimal g gmono x’ x’vgx’ inv’)

3.2 Agda Implementation

For the Agda implementation of the language with flow-sensitive type sys-
tem we want to proceed in a similar way as we did for the same language
in Chapter 2 when the type system was flow-insensitive. The goal then is to
define GADTs of flow-sensitive typed terms for expressions and statements.
Those typed terms will be useful later when we define their translation to flow-
insensitive typed terms.

For the expressions of the language the implementation is immediate. The
expressions with the typing rules of Figure 3.1 are represented by the type

3.2. AGDA IMPLEMENTATION 39

ExpS, which is parametrized by a vector of security types corresponding to
the type environment, and a value of type St corresponding to the security
type of the expression:

data ExpS {m : N} (Γ : Vec St m) : St→ Set where
IntValS : N→ ExpS Γ Low
VarS : (n : Fin m)→ ExpS Γ (lookup n Γ)
AddS : {st st’ : St} → ExpS Γ st→ ExpS Γ st’→ ExpS Γ (st ∪ st’)

By representing variables as naturals numbers taken from a finite set we
make them correspond to the positions of a vector (type environment) Γ. The
type Fin m represents the type of finite sets of size m.

In the case of statements we proceed in two stages. First, we define a
relation that implements the typing rules of Figures 3.2 and 3.3 and as second
step we define a datatype that represents the abstract syntax of statemets
decorated with their flow-sensitive typing rules. Like in Chapter 2, this is in-
deed possible because we have a syntax-directed type system.

The relation that implements the typing rules for statements is defined on
ordinary, non-decorated abstract syntax terms given by datatypes ASTExp
and ASTCom, which capture the structure of expressions and sentences, re-
spectively.

data ASTExp (n : N) : Set where
INTVAL :N→ ASTExp n
VAR : Fin n→ ASTExp n
ADD : ASTExp n→ ASTExp n→ ASTExp n

data ASTCom (m : N): Set where
ASSIGN : Fin m→ ASTExp m→ ASTCom m
IF0 : ASTExp m→ ASTCom m→ ASTCom m→ ASTCom m
WHILE : ASTExp m→ ASTCom m→ ASTCom m
SEQ : ASTCom m→ ASTCom m→ ASTCom m

Concerning expressions, function typeAstExp computes the security type
of an expression under an environment Γ according to the typing rules of Fig-
ure 3.1.

typeAstExp : {n : N} → Vec St n→ ASTExp n→ St
typeAstExp Γ (INTVAL n) = Low
typeAstExp Γ (VAR n) = lookup n Γ
typeAstExp Γ (ADD e e’) = (typeAstExp Γ e) ∪ typeAstExp Γ e’

The type system for statements is then implemented by the following rela-
tion:

data Tc {n : N} : ASTCom n→ St→ Vec St n→ Vec St n→ Set where
Skip : {Γ : Vec St n}{pc : St} →

Tc SKIP pc Γ Γ

40CHAPTER 3. TRANSLATION FROM FLOW-SENSITIVE TO FLOW-INSENSITIVE

Ass : {x : Fin n}{e : ASTExp n}{Γ : Vec St n}{pc : St} →
Tc (ASSIGN x e) pc Γ (change x Γ (pc ∪ (typeAstExp Γ e)))

Seq : {Γ Γ’ Γ” : Vec St n}{pc : St} {s1 s2 : ASTCom n} →
Tc s1 pc Γ Γ’ →

Tc s2 pc Γ’ Γ”→
Tc (SEQ s1 s2) pc Γ Γ”

If0 : {Γ Γ’ Γ” : Vec St n}{pc : St}{e : ASTExp n}{s1 s2 : ASTCom n} →
Tc s1 (pc ∪ (typeAstExp Γ e)) Γ Γ’→
Tc s2 (pc ∪ (typeAstExp Γ e)) Γ Γ”→
Tc (IF0 e s1 s2) pc Γ (Γ’ t Γ”)

While : {Γ : Vec St n}{pc : St}{e : ASTExp n}{s : ASTCom n} →
Tc (WHILE e s) pc Γ (proj1 (fix {n} s e pc Γ))

For the While case, recall that, given an initial environment Γ0 and a pro-
gram counter pc, an statement while e do S types in the post-environment that
results from computing the following fixpoint construction:

fix(λΓ . let Γ ` e : t pc t t ` Γ { S } Γ′ in Γ′ t Γ0) (3.1)

To obtain the post-environment we define a function fix that computes the
fixed-point of G, the function used in the proof of the While rule in Theorem 3.1:

G (pc,Γ,Γ′′i) = AS(pc t ti,Γ
′′

i t Γ)

where Γ′′i t Γ ` e : ti. Function fix

fix : {n : N} →
(s : ASTCom n)→
(e : ASTExp n)→
(pc : St)→
(Γ : Vec St n)→
Σ (Vec St n) (λ Γ’→ Γ’ ≡ body e s pc Γ Γ’)

takes a statement s and an expression e (body and condition of a loop, resp.),
a program context pc, and an initial type environment Γ and computes the
environment Γ’ that satisfies to be the fixpoint of the function body e s pc Γ,
which implements the body of the fixpoint construction (3.1):

body : {n : N} (e : ASTExp n)→
(s : ASTCom n)→
(pc : St)→
(Γ : Vec St n)→
(Γ’ : Vec St n)→ Vec St n

body e s pc Γ Γ’ = let st = typeAstExp Γ’ e

3.2. AGDA IMPLEMENTATION 41

Γ” = tc s (pc ∪ st) Γ’
in Γ” t Γ

Function body is defined in terms of another function, called tc, which is a
functional implementation of the algorithmic type system. Given a statement
s, a program context pc, and an initial type environment Γ, tc s pc Γ computes
the post-environment Γ’ that satisfies the type system.

tc s pc Γ = Γ’ ⇐⇒ Tc s pc Γ Γ’

Function tc returns a dependent pair consisting of the final type environ-
ment and a proof that it satisfies the Tc relation.

tc : {n : N} →
(s : ASTCom n)→
(pc : St)→
(Γ : Vec St n)→
Σ (Vec St n) (λ Γ’→ Tc s pc Γ Γ’)

tc (SEQ s s’) pc Γ = let (Γ’ , tcs) = tc s pc Γ
(Γ” , tcs’) = tc s’ pc Γ’

in Γ” , Seq tcs tcs’

tc (IF0 e s s’) pc Γ = let pc’ = pc ∪ (typeAstExp Γ e)
(Γ’ , tcs) = tc s pc’ Γ
(Γ” , tcs’) = tc s’ pc’ Γ

in Γ’ t Γ” , If0 tcs tcs’

tc {n} (WHILE e s) pc Γ = proj1 (fix {n} s e pc Γ) , While

tc {n} SKIP pc Γ = Γ , Skip

Function fix is defined in terms of fixS, the function that implements Theo-
rem 3.2 in Agda. As partial order we use the following partial order v (and its
strict version @) between security type vectors:

mutual
data v : {n : N} → Vec St n→ Vec St n→ Set where

xs≡ys : ∀ {n} {xs : Vec St n} → xs v xs
xs@ys : ∀ {n} {xs ys : Vec St n} → xs @ ys→ xs v ys

data @ : {n : N} → Vec St n→ Vec St n→ Set where
Γ@Γ’< : ∀ {n} {Γ Γ’ : Vec St n} → Γ v Γ’→ (Low :: Γ) @ (High :: Γ’)
Γ@Γ’≡ : ∀ {n} {st : St} {Γ Γ’ : Vec St n} → Γ @ Γ’→ (st :: Γ) @ (st :: Γ’)

Function body plays the role of function g in fixS. The proof that body is
monotone uses the property that tc is also monotone, and since tc is defined
in terms of fix, then the monotonicity of tc requires that fix is monotone. Here

42CHAPTER 3. TRANSLATION FROM FLOW-SENSITIVE TO FLOW-INSENSITIVE

we show only the types of these facts, the complete proofs can be found in
Appendix B.

bodyMonotone : {n : N}{e : ASTExp n}{s : ASTCom n}
{pc pc’ : St}{Γ Γ’ Γ1 Γ1’ : Vec St n} →
pc ≤St pc’→
Γ v Γ1 → Γ’ v Γ1’→
body e s pc Γ Γ’ v body e s pc’ Γ1 Γ1’

tcMonotone : {n : N}{pc pc’ : St}{Γ Γ1 : Vec St n}
(s : ASTCom n)→
pc ≤St pc’→ Γ v Γ1 → tc s pc Γ v tc s pc’ Γ1

fixMonotone : {n : N}{pc pc’ : St}{Γ Γ’ : Vec St n} →
(s : ASTCom n)→ (e : ASTExp n)→
pc ≤St pc’→ Γ v Γ’→
proj1 (fix s e pc Γ) v proj1 (fix s e pc’ Γ’)

We use function sumLow, which computes the number of low values in an
environment, to play the role of function bound.

sumLows : {n : N} → Vec St n→N
sumLows [] = zero
sumLows (Low :: xs) = suc (sumLows xs)
sumLows (High :: xs) = sumLows xs

This function fits as a bound function because in each step of the computation
of the post-environment in the While rule the number of low variables in the
environment is possibly decreasing.

We prove two properties about sumLows: (i) it is decreasing, and (ii) it has
a unique minimal value. Here, we show just the types of these properties:

sumLowDec : {n : N} {Γ Γ’ : Vec St n} → Γ @ Γ’→ sumLows Γ < sumLows Γ’

minimalEnv : {n : N} → {Γ Γ’ : Vec St n} →
sumLows Γ ≡ 0→ sumLows Γ’ ≡ 0→ Γ ≡ Γ’

Finally, we have all the elements necessary to define fix in terms of fixS:

fix : {n : N} →
(s : ASTCom n)→
(e : ASTExp n)→
(pc : St)→
(Γ : Vec St n)→
Σ (Vec St n) (λ Γ’→ Γ’ ≡ body e s pc Γ Γ’)

3.2. AGDA IMPLEMENTATION 43

fix {n} s e pc Γ =
let Γ0 = Γ

Γ1 = body e s pc Γ Γ0

in fixS (Vec St n)
n @ v ≡∨@ xs@ys
parOrdv
-- bound functions and properties

sumLows sumLowDec minimalEnv
(body e s pc Γ) -- function g
(bodyMonotone {e = e} {s = s} (≤St-refl {st = pc}) (reflv {Γ = Γ}))
Γ0 lema1 (lemasL Γ0)

Observe that the maximal number of iterations is n, the length of the en-
vironments. The record parOrdv contains the properties that the relation v
over vectors of security types is a partial order.

We conclude the section by presenting the implementation of typed ab-
stract syntax terms for statements:

data ComS {m : N} : Vec St m→ St→ Vec St m→ Set where

AssignS : {Γ : Vec St m}{pc st : St}
(n : Fin m)→
ExpS Γ st→
ComS Γ pc (change n Γ (pc ∪ st))

SkipS : {Γ : Vec St m}{pc : St} →
ComS Γ pc Γ

SeqS : {Γ Γ’ Γ” : Vec St m}{pc : St} →
ComS Γ pc Γ’→
ComS Γ’ pc Γ”→
ComS Γ pc Γ”

IfS : {pc st : St}{Γ Γ’ Γ” : Vec St m} →
ExpS Γ st→
ComS Γ (pc ∪ st) Γ’→
ComS Γ (pc ∪ st) Γ”→
ComS Γ pc (Γ’ t Γ”)

WhileS : {Γ : Vec St m}{pc tn : St}
(s : ASTCom m)
(e : ASTExp m)→
ComS Γ pc (proj1 (fix {m} s e pc Γ))

Like relation Tc, ComS is indexed by two type environments of the same
lenght which contain the security level of the variables before and after the
execution of the sentence. The other parameter represents the security type
of the program context.

44CHAPTER 3. TRANSLATION FROM FLOW-SENSITIVE TO FLOW-INSENSITIVE

The constructors AssignS, SeqS and IfS can be seen as direct implemen-
tations of the rules Assign, Seq and If of the algorithmic version of the type
system, shown in Figures 3.2 and 3.3.

Notice that, unlike the other constructors, the While constructor only con-
siders ordinary ASTs of expressions and statements. This is because, as we
already saw, the type information of s and e is unnecessary for the computa-
tion of the fixpoint.

The following definition connects ComS with the type system by stating
that ComS is a correct implementation of typable statements.

liftS : {m : N}{Γ Γ’ : Vec St m}{pc : St}
(s : ASTCom m) →

Tc s pc Γ Γ’→
ComS Γ pc Γ’

liftS SKIP Skip = SkipS

liftS (ASSIGN x e) Ass = AssignS x (liftE e)

liftS (SEQ s1 s2) (Seq t1 t2) = SeqS (liftS s1 t1) (liftS s2 t2)

liftS (IF0 e s1 s2) (If0 t1 t2) = IfS (liftE e) (liftS s1 t1) (liftS s2 t2)

liftS (WHILE e s) While = WhileS e s

The codes that complete the definitions presented in this section can be
found in Appendix B.

3.3 The translation to flow-insensitive

Now we turn to the formalization of Hunt and Sands program translation [9]
in Agda. It converts programs typable in the flow-sensitive type system in-
troduced in this chapter to equivalent programs typable in a flow-insensitive
type system. The translation rules, shown in Figure 3.4, are defined as an
extension of the flow-sensitive type system and are expressed in terms of the
following judgement:

pc ` Γ {S { D} Γ′

where as before pc is the security context, and Γ and Γ′ are type environments.
S is a sentence with floating-type variables, typable in the flow-sensitive type
system, and D is the equivalent sentence (or sentences) produced by the
translation, with fixed-type variables and typable in the flow-insensitive type
system.

We start with the introduction of some notation and constructions used in
the translation.

3.3. THE TRANSLATION TO FLOW-INSENSITIVE 45

Γ ` E : t s = pc t t

pc ` Γ {x := E { xs := EΓ} Γ[x 7→ s] pc ` Γ {skip{ skip} Γ

pc ` Γ {S1 { D1} Γ
′ pc ` Γ′ {S2 { D2} Γ

′′

pc ` Γ {S1;S2 { D1;D2} Γ
′′

Γ ` E : t pc t t ` Γ {S1 { D1} Γ
′

1 pc t t ` Γ {S2 { D2} Γ
′

2 Γ′ = Γ′1 t Γ′2

pc ` Γ {if E then S1 else S2 { if EΓ then (D1 ; Γ′ := Γ′1) else (D2 ; Γ′ := Γ′2)} Γ′′

Γ′i ` E : ti pc t ti ` Γ′i {S { Di} Γ
′′

i 0 ≤ i ≤ n

pc ` Γ {while E do S { Γ′n := Γ ; while EΓ′n do (Dn ; Γ′n := Γ′′n)} Γ′n
Γ′0 = Γ,Γ′i+1 = Γ′′i t Γ,Γ′n+1 = Γ′n

Figure 3.4: Translation rules

To transform a program typable in the flow-sensitive system to another
typable in the flow-insensitive system we need to transform floating-type vari-
ables into fixed-type variables. The set of fixed-type variables FVar is defined
from the set of floating variables, Var, by annotating each variable name with
a security type:

FVar = {xt | x ∈ Var, t ∈ {H, L}}

This means that for each variable x, two fixed-type variables are introduced:
xL and xH.

Each time a floating-type variable x raises its security type, the translation
will reflect this fact by constructing an assignment that moves information from
xL to xH. Therefore, the transformed code may include a sequence of variable
assignments (between annotated variables) that make explicit the variables
that changed their security level. We write Γ := Γ′ to represent an appropriate
sequentialisation of the following set of variable assignments:

{xs := xt | Γ(x) = s,Γ′(x) = t, s , t}

A sequence of assignments Γ := Γ′ will be used with environments Γ,Γ′

such that Γ′ v Γ. This gives rise to well-typed assignments as information
flows in the appropriate direction (from low to high variables).

The relation v is defined by the following datatype:

data v : {n : N} → Vec St n→ Vec St n→ Set where
[]v[] : [] v []
xsvys : ∀ {n} {x y : St} {xs ys : Vec St n} →

x ≤St y→ xs v ys→ (x :: xs) v (y :: ys)

A sequence of assignments is modeled as the following function in Agda:

46CHAPTER 3. TRANSLATION FROM FLOW-SENSITIVE TO FLOW-INSENSITIVE

Γ:=Γ’ : {n : N} {pc : St} →
(Γ : Vec St n)→ (Γ’ : Vec St n)→ Γ’ v Γ→ Stm pc

Γ:=Γ’ {n = n} Γ Γ’ Γ’vΓ = assigments 0 Γ Γ’ Γ’vΓ

It is based on a function assigments which generates the sequence of assign-
ments by recursively traversing the environments Γ and Γ’. At each i it adds
an assigment Γ(i) := Γ′(i) if Γ(i) = High and Γ′(i) = Low.

assigments : {n : N} {pc : St} →
N→ (Γ : Vec St n)→ (Γ’ : Vec St n)→ Γ’ v Γ → Stm pc

assigments i .[] .[] []v[] = Skip

assigments i .(Low :: ys) .(Low :: xs)
(xsvys {n} {.Low} {Low} {xs} {ys} l≤x xs≤ys) =

assigments (suc i) ys xs xs≤ys

assigments i .(High :: ys) .(Low :: xs)
(xsvys {n} {.Low} {High} {xs} {ys} l≤x xs≤ys) =

Seq (Assign ≤StHigh ≤StHigh (VarH i) (Var (VarH i)))
(assigments (suc i) ys xs xs≤ys)

assigments i .(High :: ys) .(High :: xs)
(xsvys {n} {.High} {.High} {xs} {ys} h≤h xs≤ys) =

assigments (suc i) ys xs xs≤ys

Given an environment Γ, every expression E with floating-type variables
can be translated to an expression EΓ with fixed-type variables by replacing
each floating-type variable x by a fixed-type variable xs whose security level s
is that given in Γ for x, i.e. s = Γ(x). The following function implements this
transformation, where Exp is the type of expressions presented in Chapter 2.

transExp : {n : N}{st : St}{Γ : Vec St n} → ExpS Γ st→ Exp st

transExp (IntValS y) = IntVal y
transExp {Γ = Γ} (VarS n’) with lookup n’ Γ
... | Low = Var (VarL (toN n’))
... | High = Var (VarH (toN n’))

transExp (AddS y y’) = Add (transExp y) (transExp y’)

Now we are in conditions to present the Agda implementation of the trans-
lation shown in Figure 3.4.

translate : {n : N}{pc : St} {Γ Γ’ : Vec St n} →
ComS Γ pc Γ’→ Stm pc

3.3. THE TRANSLATION TO FLOW-INSENSITIVE 47

-- Asignment

translate {pc = pc} (AssignS {st = st} v e) =
assign pc st (toN v) (transExp e)

-- Skip

translate SkipS = Skip

-- Sequencing

translate (SeqS s s’) with translate s | translate s’
... | s1 | s2 = Seq s1 s2

-- Conditional

translate (IfS {pc} {st} {Γ} {Γ1’} {Γ2’} e s s’) with translate s | translate s’
... | s1 | s2 =

If0 (transExp e)
(Seq s1 (Γ:=Γ’ {pc = pc ∪ st} (Γ2’ t Γ1’) Γ1’ (ΓvΓ’tΓ Γ1’ Γ2’)))
(Seq s2 (Γ:=Γ’ {pc = pc ∪ st} (Γ1’ t Γ2’) Γ2’ (ΓvΓ’tΓ Γ2’ Γ1’)))

-- Iteration

translate (WhileS {Γ } {pc} e s) with fromAstE (proj1 (fix s e pc Γ)) e
... | st , en with tc s (pc ∪ st) (proj1 (fix s e pc Γ))
... | Γ” , sn =

let Γn’ = Γ” t Γ
dn = translateAst (pc ∪ st) Γ s

in Seq (Γ:=Γ’ Γn’ Γ (ΓvΓ’tΓ Γ Γ”))
(While (transExp en)

(Seq dn (Γ:=Γ’ Γn’ Γ” (ΓvΓtΓ’ Γ” Γ))))

Function assign groups the different cases that occur in assignments:

assign : (pc : St)→ (st : St)→N→ Exp st→ Stm pc
assign Low Low x e = Assign l≤x l≤x (VarL x) e
assign Low High x e = Assign h≤h l≤x (VarH x) e
assign High st x e = Assign ≤StHigh h≤h (VarH x) e

Function translateAst is like translate, but it works on ordinary ASTs for state-
ments instead of typable statements.

translateAst : {n : N}(pc : St) (Γ : Vec St n)→ ASTCom n→ Stm pc

It is worth noticing that translate not only implements the desired transla-
tion but it also ensures that the statement that results from the translation is
typable in the flow-insensitive type system. Again, this is a situation where
we are using Agda’s type system to enforce the preservation of the security
property. In other words, translate can be understood as an implemention of
the following theorem, where [pc] `sd D states for the typing judgement of the
syntax-directed type system presented in Figure 2.3 (Chapter 2).

Theorem 3.3 ([9]). If pc ` Γ {S { D} Γ′ then [pc] `sd D.

48CHAPTER 3. TRANSLATION FROM FLOW-SENSITIVE TO FLOW-INSENSITIVE

3.4 Summary

In this chapter we formalized Hunt and Sands translation that converts pro-
grams typable in a flow-sensitive type system into programs typable in a flow-
insensitive type system.

Like in Chapter 2, we introduced typed representations of expressions and
statements, now for the flow-sensitive type system. In most of the cases those
representations were the result of a direct implementation of the typing rules.
The interesting case was that of the While statement. Since it is based on a
fixpoint construction, it was necessary to establish the conditions that should
be met for the existence of the fixpoint. We stated the conditions in Theo-
rem 3.2 (they are similar to the conditions that are required to guarantee the
termination of a while sentence in Hoare Logic). Based on this theorem we
defined function fixS, which was an essential ingredient for the implementation
of the fixpoint construction.

In the context of our formalization we defined the translation as a function
between flow-sensitive typed terms and flow-insensitive typed terms.

Chapter 4

Conclusions

In this thesis we dealt with the formalization of program translations that pre-
serve the security property of noninterference. We used a type-based ap-
proach to noninterference on programming languages with different character-
istics. Agda was our formalization framework; we used it both as a functional
language and as a proof assistant.

The first case we analyzed was the development of a simple compiler be-
tween a While language and semi-structured machine code. We defined a
(flow-insensitive) security type system for each of the languages, which we
proved sound with respect to the corresponding semantic definition of non-
interference. The definition of the security type system for the high level lan-
guage did not present any particular difficulty since it is something rather stan-
dard [22, 20, 14]. This contrasts with the situation of low-level languages,
where works presenting security type systems for those languages are scarce
(e.g. [2, 1, 12, 19]). Despite its simplicity and the fact of being semi-structured
(without jumps), the definition of a security type system for the target language
was not absent of some complications.

The second program translation we adressed was the one introduced by
Hunt & Sands [9] and focuses on transforming programs in a While language
which are typable in a flow-sensitive type system to equivalent programs ty-
pable in a flow-insensitive type system. An aspect that captured our interest
in formalizing this transformation is that it contains the computation of a final
environment as the result of a fixpoint construction.

A distinguishing feature of our Agda formalization was the systematic use
we did of typed representations of the abstract syntax for the object languages
in terms of inductive families. This of course demanded the introduction of
syntax-directed formulations of all security type systems. As a result of this
encoding, only terms corresponding to non-interfering programs can be writ-
ten in the Agda implementation of the object languages. This has also con-
sequences on the functions we can define between those typed representa-
tions. For example, concerning the compiler developed in Chapter 2, the use
of typed representations of the languages makes that the type of the compiler
by itself expresses the preservation of non-interference through compilation.

49

50 CHAPTER 4. CONCLUSIONS

Therefore, the definition of the compiler plays two roles simultaneously: as
compiler function (as expected) and as proof term of the preservation prop-
erty. The verification that it is indeed a valid proof of the property is then
performed by Agda’s type system. The same happens with the implementa-
tion of Hunt & Sands’ translation presented in Chapter 3. Summing up, the
two program translations we analyzed are nice examples of function defini-
tions that are designed following a sort of correct-by-construction discipline.
In this respect, Agda resulted a more than suitable framework for experiment
with such programming methodology.

Future work

In this thesis, we only dealt with the noninterference property. It is our interest
to explore the analysis of other security properties and security-preserving
program translations following a similar approach as the one of this thesis.

It would be interesting to use another, more realistic, low-level language
as target language of the compiler. However, a problem of real low-level
languages is their absence of structure, which complicates the definition of
syntax-directed security type systems. We are currently experimenting in the
development of a compiler in Agda that takes programs in a similar While lan-
guage and returns code in a low-level language with jumps defined by Saabas
& Uustalu [19, 18]. This low-level language has the important feature of being
modular, which is a key aspect for defining a syntax-directed type system. In
this language, modularity is achieved by defining a code as the finite union of
non-overlapping pieces of code. A security type system for this language is
presented in [19].

Another alternative could be to consider a richer language as target lan-
guage of the compiler. For example, the one developed by Zdancewic [24],
which is a security-typed language that includes recursion, higher-order func-
tions, structured state, and concurrency. Zdancewic also considers more prac-
tical security policies than noninterference.

Chapter 5

Proofs from Chapter 2

5.1 Proof of Theorem 2.2

We include here the proof of properties (iii) and (iv) only. Properties (i) and
(ii) can be proved similarly by induction.

Property (iii) If [pc] `sd S then [pc] ` S.

Proof. The proof is by induction on the structure of statements. The cases
corresponding to the sentences skip and sequence are immediate.

• Case S = x := e

We have two cases:

– Case Γ(x) = low
Since st ≤ low and pc ≤ Low by rule asssd, we have that st = low and
pc = low. We conclude using rule assL.

– Case Γ(x) = high
By rule assH we conclude that [pc] ` x := e

• Case S = while e do S1

If while e do S1 is typable, then the rule whilesd is used and we have that:

– `sd e : st

– [max st pc] `sd S1

– [pc] `sd while e do S1

By induction hypothesis we have that [max st pc] ` S1 and by the property
(i) we have that ` e : st.

We can prove using the subsumption rule that if [max st pc] ` S then
[pc] ` S, for any statement S and security types st and pc. Then, we have
that [pc] ` S1 and by rule while we conclude that [pc] ` while e do S1.

51

52 CHAPTER 5. PROOFS FROM CHAPTER 2

• The conditional case is similar to the previous case.

�

Property (iv) If [pc] ` S then there exists pc′ such that [pc′] `sd S and pc ≤ pc′.

Proof. The proof is by induction on the typing derivation of [pc] ` S.

• The cases the sentence skip and sequence are immediate.

• If the last rule used in the derivation is assL, we have that ` e : low. By
property (ii) we have that `sd e : low.

Then, we use rule asssd to conclude that [low] `sd xL := e.

• If the last rule used in the derivation is assH, we have that [pc] ` xH := e.

Since pc ≤ high and st ≤ high for any pc and st, and any expression is
typable, by rule asssd we have that [pc] `sd xH := e.

• When the last rule used in the derivation is while, we have that

– ` e : pc

– [pc] ` S

– [pc] ` while e do S

By property (ii) we have that exists pc′ such `sd e : pc′ with pc′ ≤ pc. By
induction hypothesis we have that [pc′′] `sd S for any pc′′ ≥ pc. Then,
since max pc′′ pc′ = pc′′, using rule whilesd we conclude that:

[pc′′] `sd while e do S

• When the last rule used in the derivation is if, the proof is analogous to
the previous case.

• When the last rule used in the derivation is sub we have that:

– [high] ` S

– [low] ` S

then we proceed by induction on the structure of S:

– The cases for assignment of low and high variables and skip are
immediate.

5.2. PROOF OF THEOREM 53

– Case S = S1;S2.
The unique rule that can be used as last rule in the derivation of
[high] ` S1;S2 is the rule seq.Then, we have that [high] ` S1 and
[high] ` S2.

By induction hypothesis we can conclude that [high] `sd S1 and
[high] `sd S2. Finally, we use seqsd rule to conclude that

[high] `sd S1;S2

.

– Case S = while e do S1.
The unique rule that can be used as last rule in the derivation of
[high] ` while e do S1 is the rule while.Then, we have that ` high : e
and [high] ` S1.

By induction hypothesis we have that [high] `sd S1 and by property
(ii) we have that there exists st such `sd st : e.

Then, since max st high = high, by rule whilesd we conclude that
[high] `sd while e do S1

– The case for conditionals is analogous.

�

5.2 Proof of Theorem 2.3

Proof. The proof of part i) is by induction on the structure of commands.
We have the following cases.

• Case S = S1;S2

If S1;S2 is typable in the type system of figure 2.3, then by rule seq’ we
have that:

i) [pc1] `′ S1

ii) [pc2] `′ S2

iii) [min pc1 pc2] `′ S1;S2

Since min pc1 pc2 ≤ pc1 and min pc1 pc2 ≤ pc2, using rule sub’ and the
items i) and ii) we conclude that:

[min pc1 pc2] `′ S1 and [min pc1 pc2] `′ S1

By induction hypothesis we have that:

54 CHAPTER 5. PROOFS FROM CHAPTER 2

[min pc1 pc2] `sd S1 and [min pc1 pc2] `sd S1

Then, using rule seqsd we conclude that [min pc1 pc2] `sd S1;S2.

• Case S = while e do S

Assuming that S is typable in type system of figure 2.3, then by rule while’
we have that:

i) `sd e : st

ii) [pc] `′ S

iii) st ≤ pc

iv) [pc] `′ while e do S

By the item iii) we have that max st pc = pc. Then by induction hypothesis:

[max st pc] `sd S

By rule whilesd we conclude that [pc] `sd while e do S

• The conditional case is similar to the previous case.

• The cases for assigments and the skip sentence are immediate.

Now, we prove the part ii) also by induction on the structure of commands.
We have the following cases.

• Case S = S1;S2

Since S1;S2 is typable, by rule seqsd we have that:

i) [pc] `sd S1

ii) [pc] `sd S2

iii) [pc] `sd S1;S2

By induction hypothesis on items i) and ii), and the rule seq’ we conclude
that [pc] `′ S1;S2.

• Case S = while e do S1

Assuming that S is typable, by rule whilesd we have that:

i) `sd e : st

5.3. PROOF OF THEOREM 55

ii) [max st pc] `sd S1

iii) [pc] `sd while e do S1

By induction hypothesis we have that [max st pc] `′ S1.

Since st ≤ max st pc, by rule while’ we have that [max st pc] `′ while e do S1.

Then, we use that pc ≤ max st pc and rule sub’ to conclude that [pc] `′

while e do S1.

• The conditional case is similar to the previous case.

• The cases for assigments and the skip sentence are immediate.

�

5.3 Proof of Theorem 2.6

Proof. To prove soundness we will use the bottom-up syntax directed version
of the type system.

The proof is by induction on the derivation 〈S, s〉 ⇓ s′.

We have the following cases:

• If the rule for assigments is used we have that:

i) 〈x := e, s〉 ⇓ s[x 7→ E[[e]] s]

ii) 〈x := e, t〉 ⇓ t[x 7→ E[[e]] t]

iii) [pc] `sd x := e `sd e : st st ≤ Γ(x) pc ≤ Γ(x)

Since the states s and t agree in all lows variables (by assumption s �L t),
to prove that s[x 7→ E[[e]] s] = t[x 7→ E[[e]] t] we just need to prove that
if Γ(x) = low then E[[e]] s = E[[e]] t. We suppose that Γ(x) = low, then
st = low. This means that the expression e not contain high variables.
Then, E[[e]] s = E[[e]] t follows from s �L t and Lemma 2.5.

• The case for sequences can be solved easily using induction hypothesis.

• If the first rule for the if sentence is used we have that:

i) E[[e]] s = 0 〈S1, s〉 ⇓ s′ 〈if e then S1 else S2, s〉 ⇓ s′

ii) 〈if e then S1 else S2, t〉 ⇓ t′

56 CHAPTER 5. PROOFS FROM CHAPTER 2

iii) `sd e : st [pc1] `′sd S1 [pc2] `′sd S2 st ≤ min pc1 pc2
[min pc1 pc2] `′sd if e then S1 else S2

We continue the proof by cases:

If st = low, then [pc1] `′sd S1 and [pc2] `′sd S2. Now, since s �L t we use
Lemma 2.5 to conclude that E[[e]] t = 0. By semantic definition we have
that 〈S1, t〉 ⇓ t′. Then, by induction hypothesis we conclude that s′ �L t′.

If st = high, then [high] `′sd S1 and [high] `′sd S2. As opposite to the
previous case we do not know if E[[e]] t = 0 or E[[e]] t , 0, since the
expression e can contain high variables.

Using confinement (2.4) on the first sentence ([high] `′sd S1) we conclude
that s �L s′. And on the second sentence ([high] `′sd S2) we have that
t �L t′. Since s �L t by transitivity we conclude that s′ �L t′.

• The case of the second rule for the if sentence is analogous.

• The case for the while sentence is similar to the if sentence.

�

5.4 Proof of Theorem 2.7

Proof. The proof of part i) is by induction on the structure of instructions.
We have the following cases.

• Case c = i1;i2
Since i1;i2 is typable, then by rule cseqb we have that:

i) ls `b i1 : pc1 { ls′

ii) ls′ `b i2 : pc2 { ls′′

iii) ls `b i1 ; i2 : min pc1 pc2 { ls′′

Using that min pc1 pc2 ≤ pc1 and min pc1 pc2 ≤ pc2, the rule sub and the
items i) and ii) we conclude that:

ls `b i1 : min pc1 pc2 { ls′ and ls′ `b i2 : min pc1 pc2 { ls′′

Then, by induction hypothesis we have that

ls ` i1 : min pc1 pc2 { ls′ and ls′ ` i2 : min pc1 pc2 { ls′′

Using rule cseq we conclude that ls ` i1 ; i2 : min pc1 pc2 { ls′′.

5.4. PROOF OF THEOREM 57

• Case c = branch (i1, i2)

Assuming that c is typable, by the rules of the type system we have that:

i) ls `b i1 : pc1 { ls′

ii) ls `b i2 : pc2 { ls′

iii) low :: ls `b branch (i1, i2) : min pc1 pc2 { ls′

or

i) [] `b i1 : high { []

ii) [] `b i2 : high { []

iii) high :: ls `b branch (i1, i2) : pc { ls

If the first option is true then using the subtyping rule and induction hy-
pothesis we have that:

ls ` i1 : min pc1 pc2 { ls′ and ls ` i2 : min pc1 pc2 { ls′

Then, we conclude that

low :: ls ` branch (i1, i2) : min pc1 pc2 { ls′

If the second option is true, by induction hypothesis we have that:

[] `b i1 : high { [] and [] `b i2 : high { []

Using the rule loop and b2 we conclude.

• Case c = loop (i1, i2)

Similar to the previous case.

• The cases c = fetch x, c = store x c = add and c = noop are trivial.

The proof of part ii) is also by induction on the structure of commands.
We have the following cases.

• Case c = i1;i2
Since i1;i2 is typable, we have that:

i) ls ` i1 : pc { ls′

ii) ls′ ` i2 : pc { ls′′

58 CHAPTER 5. PROOFS FROM CHAPTER 2

iii) ls ` i1 ; i2 : pc { ls′′

We conclude that ls `b i1 ; i2 : pc { ls′′ using first induction hypothesis
and then cseqb rule.

• case c = branch (i1, i2)

Since c is typable, we have that:

i) ls ` i1 : pc { ls′

ii) ls ` i2 : pc { ls′

iii) low :: ls ` branch (i1, i2) : pc { ls′

or

i) [] ` i1 : high { []

ii) [] ` i2 : high { []

iii) high :: ls ` branch (i1, i2) : pc { ls

If the first option is true by induction hypothesis we have that:

ls `b i1 : pc { ls′ and ls `b i2 : pc { ls′

Then, we conclude by the branchb rule that:

low :: ls ` branch (i1, i2) : pc { ls

If the second option is true we conclude similarly that:

high :: ls ` branch (i1, i2) : pc { ls

• case c = loop (i1, i2)

Similar to the previous case.

• The other cases are trivial.

�

5.5. PROOF OF THEOREM 59

5.5 Proof of Theorem 2.9

Proof. We will prove this property by induction on a derivation of 〈c, σ, s〉 B
〈c′, σ′, s′〉.

• If the last rule used in the derivation is E-Seq1, then we know that c has
the form c1 ; c2 and:

i) 〈c1, σ, s〉 B (σ′, s′)
ii) 〈c1 ; c2, σ, s〉 B 〈c2, σ′, s′〉

Since c1 ; c2 is typable, by rule cseq we have that:

iii) ls ` c1 : pc { ls′

iv) ls′ ` c2 : pc { ls′′

v) ls ` c1 ; c2 : pc { ls′′

We conclude by item iv).

• If the last rule used in the derivation is E-Seq2, then we know that c has
the form c1 ; c2 and:

i) 〈c1, σ, s〉 B 〈c′1, σ
′, s′〉

ii) 〈c1 ; c2, σ, s〉 B 〈c′1 ; c2, σ′, s′〉

Since c1 ; c2 is typable we also have the hipothesis iii), iv) and v) of the
previous item.

Using i), iii) we conclude by induction hypothesis that:

∃ ls′′′ · ls′′′ ` c′1 : pc { ls′

Then, by rule cseq we conclude that ls′′′ ` c′1 ; c2 : pc { ls′′.

• If the last rule used in the derivation is E-Branch1, then we know that c
has the form branch (c1, c2) and:

〈branch (c1, c2), 0 : σ, s〉 B 〈c1, σ, s〉

Since the code is typable, we have that:

60 CHAPTER 5. PROOFS FROM CHAPTER 2

i) ls ` c1 : pc { ls′

ii) ls ` c2 : pc { ls′

iii) low :: ls ` branch (c1, c2) : pc { ls′

or

i) [] ` c1 : high { []

ii) [] ` c2 : high { []

iii) high :: ls ` branch (c1, c2) : pc { ls

If the first option is true we conclude using i).

If the second option is true, then using i) and that pc ≤ High we conclude
that

ls ` c1 : pc { ls

• The case where the last rule used is E-Branch2 is similar to the previous
case.

• When the last rule used in the derivation is E-Loop, then the code must
be of the form loop (c1, c2) and we have that:

〈loop (c1, c2), σ, s〉 B 〈c1 ; branch (c2 ; loop (c1, c2),noop), σ, s〉

Since loop (c1, c2) is typable, we conclude by rule loop that:

i) [] ` c1 : pc { high :: []

ii) [] ` c2 : high { []

iii) ls ` loop (c1, c2) : high { ls

or

i) ls ` c1 : pc { low :: ls′

ii) ls′ ` c2 : pc { ls′′

iii) ls ` loop (c1, c2) : pc { ls′′

If the first case is true, then using i) y ii) and the type system we conclude
that:

[] ` loop (c1, c2) : high { []

5.6. PROOF OF LEMMA 61

Then by the item ii) and the rule cseq we have that

[] ` c2 ; loop (c1, c2) : high { []

The, we can conclude that

high :: [] ` branch (c2 ; loop (c1, c2),noop) : high { []

By item i) and the rule cseq we have that

[] ` c1 ; branch (c2 ; loop (c1, c2),noop) : high { []

Then we can conclude trivially that

ls ` c1 ; branch (c2 ; loop (c1, c2),noop) : high { ls

If the second case is true the proof is similar.

�

5.6 Proof of Lemma 2.10

Proof. The proof is by structural induction on the code c.

• For the codes push n, fetch x, add branch (c1, c2) and loop (c1, c2) we con-
clude trivially since s′ = s.

• If c = store x then

〈store x, z : σ, s〉 B (σ, s[x 7→ z])

Since c type in a high context by the type system we have that

st :: ls ` store x : high { ls and Γ(x) = high

Then, s �L s[x 7→ z].

62 CHAPTER 5. PROOFS FROM CHAPTER 2

• If c = c1 ; c2, we have that c1 and c2 also type in high contexts.

By induction hypothesis exists σ′ s′ c′ such that,

〈c1, σ, s〉 B 〈c′, σ′, s′〉 ∧ s �L s′

or exists σ′ s′ such,

∃ σ′ s′.〈c1, σ, s〉 B (σ′, s′) ∧ s �L s′

If the first case is true by the semantic definition we have that

〈c1 ; c2, σ, s〉 B 〈c′ ; c2, σ′, s′〉

If the second case is true then

〈c1 ; c2, σ, s〉 B 〈c2, σ′, s′〉

�

5.7 Proof of Lemma 2.12

Proof. The proof is by structural induction on the code c.

• If c = push n, then

〈push n, e1, s1〉 B (N[[n]] : e1, s1)

and

〈push n, e2, s2〉 B (N[[n]] : e2, s2)

We conclude trivially that N[[n]] : e1 �L N[[n]] : e2 and s1 �L s2.

• If c = fetch x we have that:

〈fetch x, e1, s1〉 B ((s1 x) : e1, s1)

and

〈fetch x, e2, s2〉 B ((s2 x) : e2, s2)

We have two cases, if Γ(x) = low then s1 x = s2 x and e′1 �L e′2 hold.
If Γ(x) = high we have that e′1 �L e′2 since e1 �L e2. We conclude also
trivially that s1 �L s2

5.7. PROOF OF LEMMA 63

• If c = store x then

〈store x, z1 : e1, s1〉 B (e1, s1[x 7→ z1])

〈store x, z2 : e2, s2〉 B (e2, s2[x 7→ z2])

and

st :: Σ ` store x : pc { Σ

with st ≤ Γ(x) and pc ≤ Γ(x). We have that e′1 �L e′2 trivially hold. Now, if
st = low, we have that z1 = z2 and conclude that s1[x 7→ z1] �L s2[x 7→ z2].
If st = high, then Γ(x) = high holds and s′1 �L s′2 is consequence of
s1 �L s2.

• If c = branch (c1, c2) then since the code is typable, we have that:

i) ls ` c1 : pc { ls′

ii) ls ` c2 : pc { ls′

iii) low :: ls ` branch (c1, c2) : pc { ls′

or

i) [] ` c1 : high { []

ii) [] ` c2 : high { []

iii) high :: ls ` branch (c1, c2) : pc { ls

If the first case is true, then we have that z1 = z2 (since st = low and
z1 :: e1 �L z2 :: e2), by the evaluation rules we have that:

〈branch (c1, c2), z1 :: e1, s1〉 B 〈c1, e1, s1〉

〈branch (c1, c2), z2 :: e2, s2〉 B 〈c1, e2, s2〉

or

〈branch (c1, c2), z1 :: e1, s1〉 B 〈c2, e1, s1〉

〈branch (c1, c2), z2 :: e2, s2〉 B 〈c2, e2, s2〉

Then, we can conclude trivially that the lemma hold.

If the second case is true we have that st = high. The evaluation of
〈branch (c1, c2), z1 :: e1, s1〉 and 〈branch (c1, c2), z2 :: e2, s2〉 depend on z1

64 CHAPTER 5. PROOFS FROM CHAPTER 2

and z2. We will prove just the case where z1 = 0 and z2 , 0, the other
cases are similar to previous cases.

By the evaluation rules we have that:

〈branch (c1, c2), z1 : e1, s1〉 B 〈c1, e1, s1〉

〈branch (c1, c2), z2 : e2, s2〉 B 〈c2, e2, s2〉

We use the item i) and Confinment to conclude that exists s′ such that:

〈c1, [], s1〉 B
∗ ([], s′) ∧ s1 �L s′

Then, we can conclude that

〈c1, e1, s1〉 B
∗ (e1, s′) ∧ s1 �L s′

We also use Confinment and item ii) to conclude that exists s′′ such that:

〈c2, [], s2〉 B
∗ ([], s′′) ∧ s2 �L s′′

Then, we conclude that

〈c2, e2, s2〉 B
∗ (e2, s′′) ∧ s2 �L s′′

By transitivity we have that s′ �L s′′.

• If c = c1 ; c2, we have that

i) ls ` c1 : pc { ls′

ii) ls′ ` c2 : pc { ls′′

iii) ls ` c1 ; c2 : pc { ls′′

By induction hypothesis we have that exists s′1, s
′

2, e
′

1, e
′

2 such,

〈c1, e1, s1〉 B
∗ (e′1, s′1) ∧ 〈c1, e2, s2〉 B

∗ (e′2, s′2) ∧ e′1 �L e′2 ∧ s′1 �L s′2

or, exists c′, s′1, s
′

2, e
′

1, e
′

2 such that:

〈c1, e1, s1〉 B
∗
〈c′, e′1, s′1〉 ∧ 〈c1, e2, s2〉 B

∗
〈c′, e′2, s′2〉 ∧ e′1 �L e′2 ∧ s′1 �L s′2

In the first case we use the auxiliary lemma 5.1 to conclude that:

〈c1 ; c2, e1, s1〉 B
∗
〈c2, e′1, s′1〉 ∧ 〈c1 ; c2, e2, s2〉 B

∗
〈c2, e′2, s′2〉

5.7. PROOF OF LEMMA 65

And in the second case we use the auxiliary lemma 5.2 to conclude that:

〈c1 ; c2, e1, s1〉 B
∗
〈c′ ; c2, e′1, s′1〉 ∧ 〈c1 ; c2, e2, s2〉 B

∗
〈c′ ; c2, e′2, s′2〉

• If c = loop (c1, c2), we can do the proof for this case using a big step
semantic and induction on the derivation. For simplicity, we omit this
proof.

�

Lemma 5.1. For every c ∈ Code, e, e′, and s, s′, if 〈c, e, s〉 B∗ (e′, s′) then for
any code c2 we have that 〈c ; c2, e, s〉 B∗ 〈c2, e′, s′〉.

Lemma 5.2. For every c ∈ Code, e, e′, and s, s′, if 〈c, e, s〉 B∗ 〈c′, e′, s′〉 then
for any code c2 we have that 〈c ; c2, e, s〉 B∗ 〈c′ ; c2, e′, s′〉.

66 CHAPTER 5. PROOFS FROM CHAPTER 2

Chapter 6

Complete code of Chapter 3

6.1 Monotony of fixS

-- This lemma lema is neccesary to prove that if we have two chains of the form:

-- ⊥ Γ0’’1 Γ1’’1 Γ1’’1

-- ⊥ Γ0’’2 Γ1’’2 Γ2’’2 Γ3’’2 .. Γn’’2

-- then if Γ1 v Γ2, Γ1’’1 v Γn’’2 is true

-- So, we have that Γi’’ v Γn’’

lema” : (X : Set)→
(k : N)→ -- maximun number of iterations

(@ : X→ X→ Set)→
(v : X→ X→ Set)→
(sum : {x y : X} → x v y→ (x ≡ y) ∨ (x @ y))→
(str : {x y : X} → x @ y→ x v y)→
(par : PartialOrder v)→

(bound : X→N)→ -- bound function

-- the bound function is decreasing

(boundDec : ∀ {x y : X} → x @ y→ bound y ¡ bound x)→
-- the bound function has a unique minimal value

(minimal : ∀ (x y : X)→ bound x ≡ 0→ bound y ≡ 0→ x ≡ y)→

(g1 : X→ X)→
(gmono1 : ∀ {x y} → x v y→ g1 x v g1 y)→ -- g is monotone

(g2 : X→ X)→
(gmono2 : ∀ {x y} → x v y→ g2 x v g2 y)→ -- g is monotone

(x : X)→ -- inicials values

(x’ : X)→ -- inicials values

67

68 CHAPTER 6. COMPLETE CODE OF CHAPTER 3

(x’vg2x’ : x’ v g2 x’)→
(inv’ : k ≥ bound x’)→ -- invariant

x v x’→
(prop : ∀ {x1 x2} → x1 v x2 → g1 x1 v g2 x2)→
x v proj1 (fixS X k @ v sum str par bound boundDec minimal

g2 gmono2 x’ x’vg2x’ inv’)

lema” X 0 rel@ relv sum str par bound boundDec minimal g1 gmono1 g2 gmono2

x x’ x’vg2x’ inv’ xvx’ prop
with minimal x’ (g2 x’) (n≡0 inv’)

(n≡0 (trans (propDec’ bound rel@ relv boundDec x’vg2x’) inv’))
lema” X 0 rel@ relv sum str par bound boundDec minimal g1 gmono1 g2 gmono2

x x’ x’vy’ inv’ xvx’ prop | l = xvx’

lema” X (suc k) rel@ relv sum str par bound boundDec minimal g1 gmono1 g2 gmono2

x x’ x’vg2x’ inv’ xvx’ prop with sum x’vg2x’
lema” X (suc k) rel@ relv sum str par bound boundDec minimal g1 gmono1 g2 gmono2

x x’ x’vg2x’ inv’ xvx’ prop | inl x’≡g2x’ = xvx’

... | inr x’@g2x’ =
let r : k ≥ bound (g2 x’)

r = p≤p (trans (boundDec x’@g2x’) inv’)

xvg2x’ : relv x (g2 x’)
xvg2x’ = PartialOrder.trans1 par xvx’ x’vg2x’

in lema” X k rel@ relv sum str par bound boundDec minimal g1 gmono1 g2

gmono2 x (g2 x’) (gmono2 x’vg2x’) r xvg2x’ prop

-- This lemma lema is neccesary to prove that if we have two chains of the form:

-- ⊥ Γ0’’1 Γ1’’1 Γ2’’1 Γ3’’1 .. Γn’’1

-- ⊥ Γ0’’2 Γ1’’2 Γ1’’2

-- then if Γ1 v Γ2, Γn’’1 v Γ1’’1 is true

lema’ : (X : Set)→
(k : N)→ -- maximun number of iterations

(@ : X→ X→ Set)→
(v : X→ X→ Set)→
(sum : {x y : X} → x v y→ (x ≡ y) ∨ (x @ y))→
(str : {x y : X} → x @ y→ x v y)→
(par : PartialOrder v)→

(bound : X→N)→ -- bound function

-- the bound function is decreasing

(boundDec : ∀ {x y : X} → x @ y→ bound y ¡ bound x)→
-- the bound function has a unique minimal value

(minimal : ∀ (x y : X)→ bound x ≡ 0→ bound y ≡ 0→ x ≡ y)→

6.1. MONOTONY OF FIXS 69

(g1 : X→ X)→
(gmono1 : ∀ {x y} → x v y→ g1 x v g1 y)→ -- g is monotone

(g2 : X→ X)→
(gmono2 : ∀ {x y} → x v y→ g2 x v g2 y)→ -- g is monotone

(x : X)→ -- inicial value

(xvg1x : x v g1 x)→
(inv : k ≥ bound x)→ -- invariant

(x’ : X)→ -- inicial value

x v x’→
x’ ≡ g2 x’→
(prop : ∀ {x1 x2} → x1 v x2 → g1 x1 v g2 x2)→
proj1 (fixS X k @ v sum str par bound boundDec minimal

g1 gmono1 x xvg1x inv) v x’

lema’ X 0 rel@ relv sum str par bound boundDec minimal g1 gmono1 g2 gmono2 x
xvg1x inv x’ xvx’ x’≡g2x’ prop with minimal x (g1 x) (n≡0 inv)

(n≡0 (trans (propDec’ bound rel@ relv boundDec xvg1x) inv))
lema’ X 0 rel@ relv sum str par bound boundDec minimal g1 gmono1 g2 gmono2 x

xvg1x inv x’ xvx’ x’≡g2x’ prop | l = xvx’

lema’ X (suc k) rel@ relv sum str par bound boundDec minimal g1 gmono1 g2 gmono2 x
xvg1x inv x’ xvx’ x’≡g2x’ prop with sum xvg1x

lema’ X (suc k) rel@ relv sum str par bound boundDec minimal g1 gmono1 g2 gmono2 x
xvg1x inv x’ xvx’ x’≡g2x’ prop | inl x≡g1x = xvx’

... | inr x@g1x =
let inv1 : k ≥ bound (g1 x)

inv1 = p≤p (trans (boundDec x@g1x) inv)

g1xvx’ : relv (g1 x) x’
g1xvx’ = PartialOrder.trans1 par (prop xvx’)

(subst (λ y→ relv y x’) x’≡g2x’ (PartialOrder.refl1 par { x = x’}))

in lema’ X k rel@ relv sum str par bound boundDec minimal g1 gmono1 g2

gmono2 (g1 x) (gmono1 xvg1x) inv1 x’ g1xvx’ x’≡g2x’ prop

--

-------- This function is a generalization of fixSmonotone,

-------- it uses two monotone functions g1 and g2 instead of one

fixSmonotone2 : (X : Set)→
(k : N)→ -- maximun number of iterations

(@ : X→ X→ Set)→

70 CHAPTER 6. COMPLETE CODE OF CHAPTER 3

(v : X→ X→ Set)→
(sum : {x y : X} → x v y→ (x ≡ y) ∨ (x @ y))→
(str : {x y : X} → x @ y→ x v y)→
(par : PartialOrder v)→

(bound : X→N)→ -- bound function

-- the bound function is decreasing

(boundDec : ∀ {x y : X} → x @ y→ bound y ¡ bound x)→
-- the bound function has a unique minimal value

(minimal : ∀ (x y : X)→ bound x ≡ 0→ bound y ≡ 0→ x ≡ y)→

(g1 : X→ X)→
(gmono1 : ∀ {x y} → x v y→ g1 x v g1 y)→ -- g is monotone

(g2 : X→ X)→
(gmono2 : ∀ {x y} → x v y→ g2 x v g2 y)→ -- g is monotone

(x : X)→ -- inicial value

(xvg1x : x v g1 x)→
(inv : k ≥ bound x)→ -- invariant

(x’ : X)→ -- inicial value

(x’vg2x’ : x’ v g2 x’)→
(inv’ : k ≥ bound x’)→ -- invariant

x v x’→ g1 x v g2 x’→
(prop : ∀ {x1 x2} → x1 v x2 → g1 x1 v g2 x2)→
proj1 (fixS X k @ v sum str par bound boundDec minimal g1 gmono1 x xvg1x inv) v
proj1 (fixS X k @ v sum str par bound boundDec minimal g2 gmono2 x’ x’vg2x’ inv’)

fixSmonotone2 X 0 rel@ relv sum str par bound boundDec minimal g1 gmono1 g2 gmono2 x
xvg1x inv x’ x’vg2x’ inv’ xvx’ g1xvg2x’ prop with minimal x (g1 x) (n≡0 inv)

(n≡0 (trans (propDec’ bound rel@ relv boundDec xvg1x) inv))

... | x≡g1x with minimal x’ (g2 x’) (n≡0 inv’)
(n≡0 (trans (propDec’ bound rel@ relv boundDec x’vg2x’) inv’))

... | x’≡g2x’ = xvx’

fixSmonotone2 X (suc k) rel@ relv sum str par bound boundDec minimal g1 gmono1 g2 gmono2 x
xvg1x inv x’ x’vg2x’ inv’ xvx’ g1xvg2x’ prop with sum xvg1x

... | inl x≡g1x with sum x’vg2x’

... | inl x’≡g2’ = xvx’

... | inr x’@g2x’ =
let xvg2x’ : relv x (g2 x’)

xvg2x’ = PartialOrder.trans1 par xvx’ x’vg2x’

r : k ≥ bound (g2 x’)
r = p≤p (trans (boundDec x’@g2x’) inv’)

in lema” X k rel@ relv sum str par bound boundDec minimal g1

gmono1 g2 gmono2 x (g2 x’) (gmono2 x’vg2x’) r xvg2x’ prop

6.1. MONOTONY OF FIXS 71

fixSmonotone2 X (suc k) rel@ relv sum str par bound boundDec minimal g1 gmono1 g2 gmono2 x
xvg1x inv x’ x’vg2x’ inv’ xvx’ g1xvg2x’ prop | inr x@g1x with sum x’vg2x’

... | inl x’≡g2x’ =
let inv1 : k ≥ bound (g1 x)

inv1 = p≤p (trans (boundDec x@g1x) inv)

g1xvx’ : relv (g1 x) x’
g1xvx’ = PartialOrder.trans1 par g1xvg2x’

(subst (λ y→ relv y x’) x’≡g2x’
(PartialOrder.refl1 par {x = x’}))

in lema’ X k rel@ relv sum str par bound boundDec minimal g1

gmono1 g2 gmono2 (g1 x) (gmono1 xvg1x) inv1 x’ g1xvx’ x’≡g2x’ prop

... | inr x’@g2x’ =
let inv1 : k ≥ bound (g1 x)

inv1 = p≤p (trans (boundDec x@g1x) inv)

inv2 : k ≥ bound (g2 x’)
inv2 = p≤p (trans (boundDec x’@g2x’) inv’)

in fixSmonotone2 X k rel@ relv sum str par bound boundDec
minimal g1 gmono1 g2 gmono2 (g1 x) (gmono1 xvg1x) inv1 (g2 x’)
(gmono2 x’vg2x’) inv2 (prop xvx’) (prop (prop xvx’)) prop

-------- Monotony of fixS

fixSmonotone : (X : Set)→ -- partial order Set

(k : N)→ -- maximun number of iterations

(@ : X→ X→ Set)→
(v : X→ X→ Set)→
(sum : {x y : X} → x v y→ (x ≡ y) ∨ (x @ y))→
(str : {x y : X} → x @ y→ x v y)→

(par : PartialOrder v)→

(bound : X→N)→ -- bound function

-- the bound function is decreasing

(boundDec : ∀ {x y : X} → x @ y→ bound y ¡ bound x)→
-- the bound function has a unique minimal value

(minimal : ∀ (x y : X)→ bound x ≡ 0→ bound y ≡ 0→ x ≡ y)→

(g : X→ X)→
(gmonotone : ∀ {x y} → x v y→ g x v g y)→ -- g is monotone

72 CHAPTER 6. COMPLETE CODE OF CHAPTER 3

(x : X)→ -- inicial value x

(xvgx : x v g x)→
(inv : k ≥ bound x)→ -- invariant

(x’ : X)→ -- inicial value x’

(x’vgx’ : x’ v g x’)→
(inv’ : k ≥ bound x’)→ -- invariant

x v x’→ g x v g x’→
proj1 (fixS X k @ v sum str par bound boundDec minimal g gmonotone x xvgx inv) v
proj1 (fixS X k @ v sum str par bound boundDec minimal g gmonotone x’ x’vgx’ inv’)

fixSmonotone X k rel@ relv sum str par bound boundDec minimal g gmonotone x
xvgx inv x’ x’vgx’ inv’ xvx’ gxvgx’ =

fixSmonotone2 X k rel@ relv sum str par bound boundDec
minimal g gmonotone g gmonotone x xvgx inv x’ x’vgx’ inv’ xvx’
gxvgx’ gmonotone

6.2. FUNCTION FIX (USED IN THE WHILE RULE) 73

6.2 Function fix (used in the While rule)

mutual
--

-------- Relation that implement the type system

data Tc {n : N} : ASTCom n→ St→ Vec St n→ Vec St n→ Set where
Skip : {Γ : Vec St n}{pc : St} →

Tc SKIP pc Γ Γ

Ass : {x : Fin n}{e : ASTExp n}{Γ : Vec St n}{pc : St} →
Tc (ASSIGN x e) pc Γ (change x Γ (pc ∪ (typeAstExp Γ e)))

Seq : {Γ Γ’ Γ” : Vec St n}{pc : St} {s1 s2 : ASTCom n} →
Tc s1 pc Γ Γ’ →

Tc s2 pc Γ’ Γ”→
Tc (SEQ s1 s2) pc Γ Γ”

If0 : {Γ Γ’ Γ” : Vec St n}{pc : St}{e : ASTExp n}{s1 s2 : ASTCom n} →
Tc s1 (pc ∪ (typeAstExp Γ e)) Γ Γ’→
Tc s2 (pc ∪ (typeAstExp Γ e)) Γ Γ”→
Tc (IF0 e s1 s2) pc Γ (Γ’ t Γ”)

While : {Γ : Vec St n}{pc : St}{e : ASTExp n}{s : ASTCom n} →
Tc (WHILE e s) pc Γ (proj1 (fix {n} s e pc Γ))

--

-------- Function that implement the type system

tc : {n : N} → (s : ASTCom n)→ (pc : St)→ (Γ : Vec St n)→
Σ (Vec St n) (λ Γ’→ Tc s pc Γ Γ’)

tc (ASSIGN m e) pc Γ = change m Γ (pc ∪ (typeAstExp Γ e)) , Ass

tc (SEQ s s’) pc Γ = let (Γ’ , tcs) = tc s pc Γ
(Γ” , tcs’) = tc s’ pc Γ’

in Γ” , Seq tcs tcs’

tc (IF0 e s s’) pc Γ = let pc’ = pc ∪ (typeAstExp Γ e)
(Γ’ , tcs) = tc s pc’ Γ
(Γ” , tcs’) = tc s’ pc’ Γ

in Γ’ t Γ” , If0 tcs tcs’

tc {n} (WHILE e s) pc Γ = proj1 (fix {n} s e pc Γ) , While

tc {n} SKIP pc Γ = Γ , Skip

74 CHAPTER 6. COMPLETE CODE OF CHAPTER 3

--- Monotony of tc

tcMonotone : {n : N}{pc pc’ : St}{Γ Γ1 : Vec St n}
(s : ASTCom n)→
pc ≤St pc’→ Γ v Γ1 → proj1 (tc s pc Γ) v proj1 (tc s pc’ Γ1)

tcMonotone (ASSIGN m x1) pc≤pc’ ΓvΓ1 =
lemaChange {m = m} (lema≤St pc≤pc’ (typeAstExp≤ x1 ΓvΓ1)) ΓvΓ1

tcMonotone (IF0 e s1 s2) pc≤pc’ ΓvΓ1 =
let pc1≤pc1’ = lema≤St pc≤pc’ (typeAstExp≤ e ΓvΓ1)
in lemavt (tcMonotone s1 pc1≤pc1’ ΓvΓ1)

(tcMonotone s2 pc1≤pc1’ ΓvΓ1)

tcMonotone (WHILE e s) pc≤pc’ ΓvΓ1 = fixMonotone s e pc≤pc’ ΓvΓ1

tcMonotone (SEQ s1 s2) pc≤pc’ ΓvΓ1 =
let Γ1’vΓ2’ = tcMonotone s1 pc≤pc’ ΓvΓ1

in tcMonotone s2 pc≤pc’ Γ1’vΓ2’

tcMonotone SKIP pc≤pc’ ΓvΓ1 = ΓvΓ1

------ function body

body : {n : N} (e : ASTExp n)→
ASTCom n→
St→ Vec St n→ Vec St n→ Vec St n

body e s pc Γ Γ’ = let st = typeAstExp Γ’ e
Γ” = proj1 (tc s (pc ∪ st) Γ’)
in Γ” t Γ

----------------Monotony of body

bodyMonotone : {n : N}
{e : ASTExp n}
{s : ASTCom n}
{pc pc’ : St}
{Γ Γ’ Γ1 Γ1’ : Vec St n} →
pc ≤St pc’→

6.2. FUNCTION FIX (USED IN THE WHILE RULE) 75

Γ v Γ1 → Γ’ v Γ1’→
body e s pc Γ Γ’ v body e s pc’ Γ1 Γ1’

bodyMonotone {n}{e}{s}{pc}{pc’}{Γ}{Γ’}{Γ1}{Γ1’}
pc≤pc’ ΓvΓ1 Γ’vΓ1’ =
let pc1≤pc2 : pc ∪ typeAstExp Γ’ e ≤St pc’ ∪ typeAstExp Γ1’ e

pc1≤pc2 = lema≤St pc≤pc’ (typeAstExp≤ e Γ’vΓ1’)
in lemavt (tcMonotone s pc1≤pc2 Γ’vΓ1’) ΓvΓ1

------ The function used in the While rule

fix : {n : N} →
(s : ASTCom n)→
(e : ASTExp n)→
(pc : St)→
(Γ : Vec St n)→
Σ (Vec St n) (λ Γ’→ Γ’ ≡ body e s pc Γ Γ’)

fix {n} s e pc Γ =
let Γ0 = Γ

Γ1 = body e s pc Γ Γ0

in fixS (Vec St n)
-- partial order

n @ v ≡∨@ xs@ys parOrdv
-- bound functions and properties

sumLows sumLowDec minimalEnv
(body e s pc Γ) -- function g
(bodyMonotone {e = e} {s = s} (≤St-refl {st = pc}) (reflv {Γ = Γ}))
Γ0 lema1 (lemasL Γ0)

--- Monotony of fix

fixMonotone : {n : N}{pc pc’ : St}{Γ Γ’ : Vec St n} →
(s : ASTCom n)→
(e : ASTExp n)→
pc ≤St pc’→
Γ v Γ’→
proj1 (fix s e pc Γ) v proj1 (fix s e pc’ Γ’)

fixMonotone {n} {pc}{pc’}{Γ}{Γ’} s e pc≤pc’ ΓvΓ’ =
fixSmonotone2 (Vec St n) n @ v ≡∨@ xs@ys parOrdv

sumLows sumLowDec minimalEnv
(body e s pc Γ) -- function g1

76 CHAPTER 6. COMPLETE CODE OF CHAPTER 3

(bodyMonotone {e = e} {s = s} (≤St-refl {st = pc}) (reflv {Γ = Γ}))
(body e s pc’ Γ’) -- function g2

(bodyMonotone {e = e} {s = s} (≤St-refl {st = pc’}) (reflv {Γ = Γ’}))
Γ lema1 (lemasL Γ)
Γ’ lema1 (lemasL Γ’) ΓvΓ’
(bodyMonotone {e = e} {s = s} pc≤pc’ ΓvΓ’ ΓvΓ’)
(bodyMonotone {e = e} {s = s} pc≤pc’ ΓvΓ’)

Bibliography

[1] Gilles Barthe and Tamara Rezk. Non-interference for a JVM-like lan-
guage. In J. Gregory Morrisett and Manuel Fähndrich, editors, Proceed-
ings of TLDI’05: 2005 ACM SIGPLAN International Workshop on Types
in Languages Design and Implementation, Long Beach, CA, USA, Jan-
uary 10, 2005, pages 103–112. ACM, 2005.

[2] Gilles Barthe, Tamara Rezk, and Amitabh Basu. Security types preserv-
ing compilation. Comput. Lang. Syst. Struct., 33(2):35–59, July 2007.

[3] D. E. Bell and Leonard J. LaPadula. Secure computer systems: Unified
exposition and Multics interpretation. Technical Report MTR-2997, The
MITRE Corp., 1975.

[4] Ana Bove and Peter Dybjer. Dependent types at work. In Ana Bove,
Luı́s Soares Barbosa, Alberto Pardo, and Jorge Sousa Pinto, editors,
Language Engineering and Rigorous Software Development, Interna-
tional LerNet ALFA Summer School 2008, Piriapolis, Uruguay, February
24 - March 1, 2008, Revised Tutorial Lectures, volume 5520 of Lecture
Notes in Computer Science, pages 57–99. Springer, 2008.

[5] Adam Chlipala. A certified type-preserving compiler from lambda calcu-
lus to assembly language. SIGPLAN Not., 42(6):54–65, June 2007.

[6] Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, May 1976.

[7] J. A. Goguen and J. Meseguer. Security policies and security models.
In Symposium on Security and Privacy, pages 11–20. IEEE Computer
Society Press, 1982.

[8] Louis-Julien Guillemette and Stefan Monnier. A type-preserving compiler
in Haskell. SIGPLAN Not., 43(9):75–86, September 2008.

[9] Sebastian Hunt and David Sands. On flow-sensitive security types. SIG-
PLAN Not., 41(1):79–90, January 2006.

[10] Sebastian Hunt and David Sands. From exponential to polynomial-time
security typing via principal types. In Programming Languages and Sys-
tems - 20th European Symposium on Programming, ESOP 2011, Held

77

78 BIBLIOGRAPHY

as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011.
Proceedings, pages 297–316, 2011.

[11] Xavier Leroy. A formally verified compiler back-end. J. Autom. Reason.,
43(4):363–446, December 2009.

[12] Ricardo Medel, Adriana B. Compagnoni, and Eduardo Bonelli. A typed
assembly language for non-interference. In Mario Coppo, Elena Lodi,
and G. Michele Pinna, editors, ICTCS, volume 3701 of Lecture Notes in
Computer Science, pages 360–374. Springer, 2005.

[13] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications:
A Formal Introduction. John Wiley & Sons, Inc., New York, NY, USA,
1992.

[14] Tobias Nipkow and Gerwin Klein. Concrete Semantics: With Is-
abelle/HOL. Springer Publishing Company, Incorporated, 2014.

[15] Ulf Norell. Dependently typed programming in Agda. In 4th international
workshop on Types in Language Design and Implementation, TLDI ’09,
pages 1–2, New York, NY, USA, 2009. ACM.

[16] Emir Pasalic and Nathan Linger. Meta-programming with typed object-
language representations. In Gabor Karsai and Eelco Visser, editors,
Generative Programming and Component Engineering: Third Interna-
tional Conference, GPCE 2004, Vancouver, Canada, October 24-28,
2004. Proceedings, volume 3286 of Lecture Notes in Computer Science,
pages 136–167. Springer, 2004.

[17] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive
security analysis. In Proceedings of the 23rd IEEE Computer Security
Foundations Symposium, CSF 2010, Edinburgh, United Kingdom, July
17-19, 2010, pages 186–199, 2010.

[18] Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. PhD thesis, Tallinn University of Technology, 2008.

[19] Ando Saabas and Tarmo Uustalu. Compositional type systems for stack-
based low-level languages. In Proceedings of the 12th Computing: The
Australasian Theroy Symposium - Volume 51, CATS ’06, pages 27–39,
Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc.

[20] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE J. Selected Areas in Communications, 21(1):5–19, January 2003.

[21] Tim Sheard. Languages of the future. SIGPLAN Not., 39(12):119–132,
2004.

BIBLIOGRAPHY 79

[22] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type sys-
tem for secure flow analysis. J. Comput. Secur., 4(2-3):167–187, January
1996.

[23] Dennis M. Volpano and Geoffrey Smith. A type-based approach to pro-
gram security. In Proceedings of the 7th International Joint Conference
CAAP/FASE on Theory and Practice of Software Development, TAP-
SOFT ’97, pages 607–621, London, UK, UK, 1997. Springer-Verlag.

[24] Steve Zdancewic. Programming Languages for Information Security.
PhD thesis, Cornell University, 2002.

	Introduction
	Organization of the thesis

	A simple security types preserving compiler
	Source Language
	Syntax
	Big-step semantics
	Security Type System
	Implementation

	Target Language
	Syntax
	Operational semantics
	Security Type System
	Implementation

	Compiler
	Implementation

	Summary

	Translation from flow-sensitive to flow-insensitive
	Flow-Sensitive Type System
	Agda Implementation
	The translation to flow-insensitive
	Summary

	Conclusions
	Proofs from Chapter 2
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Lemma ??
	Proof of Lemma ??

	Complete code of Chapter 3
	Monotony of fixS
	Function fix (used in the While rule)

	Bibliography

