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Abstract

Due to the inability of GPS (Global Positioning System) or other GNSS (Global
Navigation Satellite System) methods to provide satisfactory precision for the in-
door localization scenario, indoor positioning systems resort to other signals al-
ready available on-site, typically Wi-Fi given its ubiquity. However, instead of
relying on an error-prone propagation model as in ranging methods, the popu-
lar fingerprinting positioning technique considers a more direct data-driven ap-
proach to the problem. First of all, the area of interest is divided into zones, and
then a machine learning algorithm is trained to map between, for instance, power
measurements from Access Points (APs) to the localization zone, thus effectively
turning the problem into a classification one.

However, although the positioning problem is a geometrical one, virtually
all methods proposed in the literature disregard the underlying structure of the
data, using generic machine learning algorithms. In this work we consider in-
stead a graph-based learning method, Graph Neural Networks, a paradigm that
has emerged in the last few years and constitutes the state-of-the-art for several
problems. After presenting the pertinent theoretical background, we discuss two
possibilities to construct the underlying graph for the positioning problem. We
then perform a thorough evaluation of both possibilities, and compare it with
some of the most popular machine learning alternatives. The main conclusion is
that these graph-based methods obtain systematically better results, particularly
with regards to practical aspects (e.g. gracefully tolerating faulty APs), which
makes them a serious candidate to consider when deploying positioning systems.
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Resumen

Debido a la incapacidad del GPS (Global Positioning System o Sistema de Posi-
cionamiento Global) o de otros métodos de navegación por satélite (GNSS por
sus siglas en inglés) de proporcionar un posicionamiento en espacios interiores con
suficiente precisión, se suele recurrir a otras señales ya disponibles en el lugar,
t́ıpicamente Wi-Fi por su gran adopción. Existen diversas técnincas que utilizan
la señal de Wi-Fi para realizar el posicionamiento modelando la propagación de la
señal para alcanzar el objetivo. Sin embargo, debido a su alta complejidad, estos
modelos de propagación son propensos a errores. Una alternativa que se popu-
larizó es el posicionamiento en base a huellas (fingerprinting) que considera un
enfoque basado en datos más directo al problema. El método consiste en dividir
el área de interés en zonas y entrenar un algoritmo de aprendizaje automático
para establecer una relación entre, por ejemplo, las mediciones de potencia de los
puntos de acceso (Access Points o APs) y la zona de localización, convirtiéndose
aśı en un problema de clasificación.

Si bien el problema de posicionamiento es en última instancia un problema
geométrico, prácticamente todos los métodos propuestos en la literatura ignoran
la estructura subyacente de los datos, utilizando para su resolución algoritmos
genéricos de aprendizaje automático. Este trabajo propone utilizar un método de
aprendizaje basado en grafos (Graph Neural Networks o GNN), un paradigma que
ha surgido en los últimos años y que constituye el estado del arte para varios proble-
mas. Tras presentar el marco teórico pertinente, discutimos dos posibilidades para
construir el grafo subyacente al problema de posicionamiento. A continuación re-
alizamos una evaluación exhaustiva de ambas posibilidades y las comparamos con
algunas de las alternativas más populares de aprendizaje automático. La princi-
pal conclusión es que estos métodos basados en grafos obtienen sistemáticamente
mejores resultados, especialmente en lo que respecta a los aspectos prácticos (por
ejemplo, tolerar fallas en APs), lo que los convierte en excelentes candidatos a
considerar a la hora de diseñar e implementar sistemas de posicionamiento.
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Chapter 1

Introduction

The key enabler for location-based services is naturally an accurate positioning
system. This becomes even more crucial in indoor location-based services, which
are not simply an extension of outdoor localization, but rather offer a new range of
applications. Although for outdoor scenarios Global Navigation Satellite Systems
(GNSS) such as GPS are generally enough, the signal is not strong enough to
provide a sufficient precision for indoor applications, since it can be blocked by
physical obstacles like buildings. The resulting error is typically in the tens of
meters, barring its usage on scenarios in which precision is critical.

High-precision indoor localization pays a crucial role in many personal and
business applications. Let us consider the use of indoor positioning systems in an
emergency (such as a fire). It can help rescuers or residents locate their positions
and find the shortest way to escape from the building, where smoke might even
block their field of vision [25]. Another example is its use to assist businesses
to understand the pattern of customer visits in places like shopping malls. Such
information can then be used to stock up certain sections, display custom adver-
tisements or design the layout of products. For personal navigation systems, a
low-precision localization result can guide users to an erroneous destination. In
museums, an accurate localization of visitors can enable the possibility of offering
self-guided tours, or provide accessibility to visually impaired people, helping them
have an independent experience, just to name a few examples [22]. In medical sce-
narios, an accurate indoor positioning system is a crucial technology for uses that
range from quickly locating and tracking personnel (e.g. the nearest nurse), to
helping identify paths of infection, or finding equipment and other medical devices
(e.g. respirators) inside a hospital or a building.

Several approaches have been proposed to address this problem, which basically
consider other signals to infer the position of the mobile device. For instance, the
received power or the Channel State Information from a set of Wi-Fi, Bluetooth,
Ultra Wide-Band or radio-frequency identification tags (RFID) transmitters with
a known and fixed location (thus generally known as anchor nodes) may be used
to this end, constituting the so-called ranging techniques [44]. These are generally
model-based, requiring in turn a precise model that relates the position of the
mobile to the received power, a model which is generally unavailable.
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Instead of collecting a large set of measurements to derive a channel model,
the so-called fingerprinting technique takes a more data-driven approach to the
problem at hand: directly learning to map, for instance, the received powers (from
the anchor nodes) to the position of the mobile, transforming the problem into a
regression one [50]. In fact, depending on the final application, the actual coordi-
nates of both the anchor nodes and the mobile device may actually be unnecessary
(or even unavailable). For instance, we may want to identify at what shop is a
certain customer of a shopping mall, and not the precise coordinates. In this case,
the problem turns into a classification one. That is to say, the area is divided into
zones and the objective is, given the power measurements from the anchor nodes,
inferring at which zone the mobile device is. Note that in both cases a measure-
ment stage is still necessary in order to train a learning algorithm to provide this
mapping.

Interestingly, the vast majority of the existing fingerprinting techniques con-
sider vector-based learning algorithms, ignoring the geometric nature of the prob-
lem [51]. Following our ongoing example, if the number of anchor nodes is n, then
the input to the learning algorithm may be a vector in Rn (the power received
from each anchor node), thus dropping the spatial information, which is to be
inferred again by the learning algorithm. This will limit the generalization power
of the resulting method. To illustrate the importance of considering the structure
of the data, suffice to say that it is one of the main reasons behind the success
of Convolutional Neural Networks (CNNs) for image and audio processing. CNNs
precisely take advantage of the geometric properties of a grid-like structure and
using convolutions, they are able to learn spatial hierarchies of features.

In this work, we study how to take into account the geometric information of
the problem as an a priori on the learning algorithm. We will be using Wi-Fi
Access Points (APs) as anchor nodes and the measured power (Received Strength
Signal Indicator, RSSI) from all APs as the input to the learning algorithm, which
will map this input to a zone (i.e. a classification problem). Extending the proposed
methodology to other technologies, inputs or to consider it a regression problem is
straightforward. We will define a graph with APs as its nodes, where the existence
of an edge and its weight is indicative of the distance between each pair of APs
(e.g. the mean RSSI between each pair of APs). A given input (i.e. the RSSI of
each AP as measured by the mobile node) is now actually a number associated to
each node on the graph (or a two-dimensional vector, if the APs are dual-band),
thus defining a signal on the graph. The proposed classifier is based on Graph
Neural Networks, which basically extend the concept of CNNs to signals defined
on graphs [16].

We will introduce two versions of the learning algorithm. In the first one the
graph signal is mapped to a zone. In a nutshell, we will transform the positioning
problem into a graph classification one. By means of two public datasets we will
compare this method to some popular alternatives, namely K-Nearest Neighbors,
a Fully Connected Neural Network, or the combination of methods used in the
indoor positioning software FIND3 1. Results indicate that the proposed method

1https://github.com/schollz/find3
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performs systematically better in terms of accuracy. For instance, in one of the
datasets it performed above KNN using less than half of the training samples. The
code generated in this work is available on GitHub2.

These virtues notwithstanding, this first method’s main drawback is that it
considers the geometry between APs only, ignoring the zones. We may include
the zones on the graph, resulting in a so-called heterogeneous graph. In particular,
although we may define the same kind of edges (e.g. mean RSSI from each AP to
each zone), the signal on nodes corresponding to zones is clearly not of the same
kind as the one on each AP (they may even be of different dimensions). In any case,
the problem now turns into a graph signal interpolation one, where given the signal
on the nodes corresponding to APs, we want to estimate a probability distribution
over the nodes corresponding to zones. This method obtained similar results than
the homogeneous case, with the addition to showing much better robustness in the
scenario where one or several APs fail. The heterogeneous method was also tested
on a scenario where a new zone is defined, e.g. when a new exposition gets added
in a museum, and we do not have new training data. In this complex scenario
we found that the model had promising results, being able to correctly classify
inputs to the new zone for some specific configurations. It is important to note
that neither of the methods require a map to construct the graphs, and we resort
to the training dataset only.

The remainder of this document is structured as follows. Chapter 2 discusses
the problem of indoor localization, introduces necessary background concepts and
related localization examples. Chapter 3 presents the use of machine learning
for indoor localization and delves into the methods used. Chapter 4 describes
implementation details including the datasets used in this work and the graph
construction algorithms. Chapter 5 presents in detail the solution designed along
with the results obtained. Finally, Chapter 6 concludes this work and discusses
some possible future research lines.

2https://github.com/facundolezama19/indoor-localization-gnn

3

https://github.com/facundolezama19/indoor-localization-gnn


This page has been intentionally left blank.



Chapter 2

Indoor Localization

Indoor localization is the process of obtaining a device or user location in an
indoor setting or environment. Indoor device localization has been extensively
investigated over the last few decades, mainly in industrial settings and for wireless
sensor networks and robotics. However, it is only less than a decade ago since
the wide-scale proliferation of smart phones and wearable devices with wireless
communication capabilities have made the localization and tracking of such devices
synonym to the localization and tracking of the corresponding users. This enabled
a wide range of related applications and services. User and device localization have
wide-scale applications in health sector, industry, disaster management, building
management, surveillance and a number of various other sectors [51].

In this chapter we will provide a detailed explanation of several indoor local-
ization techniques and technologies. We based this overview mainly in available
surveys [2, 46,48,51].

2.1 Localization Techniques
In this section we will present different techniques used for indoor localization.
Each of these have their advantages and disadvantages, some are widely used
while some others are poorly adopted, but they all serve as a starting point to
understand how to solve indoor localization problems.

2.1.1 Time of Arrival (ToA)
The ToA or Time of Flight (ToF) approach involves finding the amount of time
needed by a signal to travel from the unlocated device (UD), e.g. a smartphone,
to the anchor nodes (ANs), e.g. Wi-Fi APs. The UD is assumed to be located at
a distance represented as a circle centered on the AN with a radius d estimated
through the ToA. Hence, to detect the exact location of the UD, at least three ANs
are required. Figure 2.1 shows a simple example of this. In this case, the estimated
position of the UD is simply within the region of intersection (if it exists) of the
three circles. The actual estimated position could then be easily obtained through
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UD

AN1 AN2

AN3

Time 
Stamped 
Packet

Time 
Stamped 
Packet

Time 
Stamped 
Packet

Figure 2.1: ToA based device localization example. The UD location is estimated as the
intersection of the circles centered on the ANs.

any filtering technique such as Least Square or Weighted Least Square.

ToA requires synchronization between transmitters and receivers and times-
tamps to be transmitted with the signal (depending on the communication proto-
col). The key factors that affect ToA estimation accuracy are the signal bandwidth
and the sampling rate. Low sampling rate (in time) reduces the ToA resolution
since the signal may arrive between the sampled intervals. In multipath indoor
environments, the larger the bandwidth, the higher the resolution of ToA estima-
tion. Although large bandwidth and super-resolution techniques can improve the
performance of ToA, still they cannot eliminate significant localization errors when
the direct line of sight path between the transmitter and receiver is not available.

2.1.2 Time Difference of Arrival (TDoA)
TDoA examines the time difference at which the signal arrives at several ANs. The
UD must lie on a hyperboloid for each TDoA measurement with a constant range
difference between the two ANs. Such measurements are taken between multiple
pairs of reference points with known locations. Also, relative time measurements
are used at each receiving node as opposed to absolute time measurements. This
is different from the ToA technique, where the absolute signal propagation time
is used. No synchronized time source is needed by TDoA to perform localization,
and synchronization is only needed at the ANs. The location to be estimated is

6
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UD
AN1 AN4

AN2
AN3

X

Y

TDoA 2-3

TDoA 1-2 TDoA 3-4

Figure 2.2: TDoA based localization and proximity detection. The UD position is obtained by
estimating the intersection of the hyperbolic curves.

the intersection of many hyperbolic curves, as shown in Figure 2.2. This technique
is referred to as multilateration.

2.1.3 Angle of Arrival (AoA)
AoA based approaches use several antennas (arrays) at the receiver side to estimate
the angle at which the transmitted signal arrives on the receiver by exploiting and
calculating the TDoA at individual elements of the array. The main advantage of
AoA is that the UD location can be estimated with as little as two antennas in
a 2D environment, or three in a 3D environment respectively. AoA can provide
accurate estimation when the transmitter-receiver distance is small but it requires
more complex hardware and careful calibration compared to other techniques such
as RSSI (see Section 2.1.5). Also, its accuracy deteriorates with an increase in the
transmitter-receiver distance where a small error in the angle of arrival calculation
can translate into a huge error in the location estimation. Indoor environments
are challenging for this technique due to multipath effects where the AoA in terms
of line of sight is often hard to obtain. Figure 2.3 shows how AoA can be used to
estimate the user location.

2.1.4 Phase of Arrival (PoA)
In order to estimate the distance between the transmitter and the receiver, PoA
approaches look at the phase or phase difference of carrier signal. It is often
assumed for determining the phase of the signal at the receiver side that the

7
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Figure 2.3: AoA based localization diagram [51]. The UD’s signal arrives at several antennas
in the antenna array and the angles at which it arrives on each antenna are used to intersect
and calculate the UD position.

signals transmitted are of pure sinusoidal form and have the same frequency and
zero phase offset. There are a number of techniques available to estimate the range
or distance between the transmitter and the receiver using PoA. One of these is to
assume that a finite delay exists between the transmitter and the receiver which
can be expressed as a fraction of the signal’s wavelength. Figure 2.4 shows a
simple diagram illustrating the situation. The incident signals arrive with different
phases at different antennas in the antenna array, which can be used to obtain the
transmitter location.

2.1.5 Received Signal Strength Indicator (RSSI)
The RSSI based approach is one of the simplest and most widely used approaches
for indoor localization [51]. The RSSI is the signal power strength received at the
receiver. It is usually measured in dBm (decibel-milliwatts) and it can be used to
estimate the distance between a transmitter and a receiver, where the higher the
RSSI value the smaller the distance. The distance can be estimated using different
propagation models given that the transmission power is known. Using the RSSI
and a simple path loss propagation model, the distance d between the transmitter
and the receiver can be estimated as:

RSSI = −10n log10(d) + A (2.1)

where n is the path loss exponent (which varies from 2 in free space to 4 in indoor
environments) and A is the RSSI value at a reference distance from the receiver.

8
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Figure 2.4: PoA based localization diagram [51]. Sinusoidal signals arrive at antennas in the
antenna array with different phases. Knowing the signal’s wavelength and assuming a finite
distance between the transmitter and receiver, UD position can be estimated.

RSSI based localization requires trilateration, i.e., the RSSI at the device is
used to estimate the absolute distance between the user device and three reference
points. Then, similarly to ToA (see Section 2.1.1), basic trigonometry is applied
to obtain the user device’s location relative to the reference points as shown in
Figure 2.5.

While the RSSI based approach is simple and cost efficient, it struggles, espe-
cially in non-line-of-sight conditions, due to additional signal attenuation resulting
from transmission through walls, multipath fading and indoor noise.

2.1.6 Channel State Information (CSI)
Channel State Information (CSI) is another metric that can overcome the problem
of multipath and temporal fluctuations especially in complex indoor environments.
It represents the channel properties of a communication link. More specifically,
CSI describes the propagation of signal from the transmitter to the receiver and
gives information about the combined effect of, for instance, scattering, fading,
and power decay with distance. Comparing to the RSSI, CSI is more resistant to
environment changes.

In general, the CSI is a complex quantity and can be written as:

H(f) = |H(f)|ej∠H(f) , (2.2)

9
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UD

AN1 AN2

AN3

RSSI2RSSI1

RSSI3

Figure 2.5: RSSI based localization. The UD location is estimated as the intersection of the
circles centered on the ANs.

where |H(fi)| is the magnitude response and ∠H(fi) is the phase response of the
frequency fi of the channel.

This information can be used simply by trilateration or in a fingerprint sce-
nario, as it will be described in the following section, to obtain the UD’s location.
Extensive evaluation results indicate that the scheme successfully copes with very
complex indoor structure and simultaneously provides good performance in local-
ization cost, and localization accuracy.

All of the presented techniques have something in common: they all need a
physical model to estimate the UD’s location. These models are complicated to
estimate in indoor scenarios and many of the techniques include precise synchro-
nization between devices. This opens an opportunity to use other more data-driven
approaches for indoor localization. In the following section we present the approach
used in this project: the widely studied fingerprinting approach.

2.2 Wi-Fi Fingerprinting
Although the techniques explained in the previous section can be applied in several
network scenarios and technologies, when focusing on indoor scenarios we rapidly
converge into one: WLAN (Wireless Local Area Network).

10
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WLAN is one of the most popular solutions for indoor positioning and it pro-
vides better performance compared to other technologies, such as GPS and Blue-
tooth, in indoor scenarios. WLAN-based positioning systems are also much more
adopted due to the fact that they do not require any additional software or hard-
ware manipulation, but are able to perform localization based on the existing
infrastructure. RSSI is widely used in WLAN-based positioning systems due to its
easy extraction in 802.11 networks and its ability to run on off-the-shelf WLAN
hardware, as opposed to CSI information that is harder to obtain. On the other
hand, techniques such as ToA, TDoA, and AoA are less common to WLAN-based
positioning systems since angular and time delay measurements are complex, as it
was mentioned in previous sections. We will focus then on the use of RSSI signals
for positioning. For simplicity and because it is one of the most popular WLAN
technologies we are going to be referring to Wi-Fi from now on.

One of the most direct ways to obtain RSSI information in order to enable
indoor localization services is by using the signals received on the process of Wi-
Fi scanning. Wi-Fi scanning is the process through which available networks for
connection are found. In a typical scenario, the scanning is performed at low rates
since the set of available networks changes slowly. But when a device aims to
estimate its position while acquiring Wi-Fi signals, several RSSI measurements
are needed from the APs in order to minimize the positioning error. When the
device is moving, a regular update is needed, hence, scanning for available APs
is performed at a rate equivalent to the update rate. If a device is concerned
about the positioning accuracy, it performs the scanning at a rate higher than the
update rate so that the average of RSSI measurements reduces the effect of noise.
On the other hand, a slower scanning rate than the update rate leads to reduced
power consumption at the expense of positioning accuracy. Balancing the trade
off between power consumption and positioning performance is the main driver for
a device in selecting its parameters for scanning in Wi-Fi.

Although RSSI based methods are common and straightforward to use, there
is still a limitation due to the physical modeling of the signal propagation. But
RSSI measurements are not only used in the scenario described in 2.1.5. As we
will see they are also leveraged on other data-driven localization techniques such
as fingerprinting.

The most popular data-driven Wi-Fi indoor localization technique is based
on the fingerprint approach. This is a technique that identifies the location of a
user by characterizing the radio signal environment of the device. The process is
described in 3 phases and can also be seen in Figure 2.6:

1. Is the so-called calibration phase, offline phase or training phase. This phase
focuses on constructing a radio map by associating the fingerprints that were
collected from RSSI measurements to their position.

2. An algorithm is developed to match new incoming measurements with the
prerecorded radio map. The algorithm may be based on deterministic ap-
proaches, probabilistic approaches or their combinations.

3. Execution of positioning algorithm to estimate the UD’s location.

11
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Positioning Algorithm

Training database

Offline training phase

Online testing phase

UD measurements Estimated location

. . . .

RSSI1, RSSI2, ..., RSSIn

RSSI1, RSSI2, ..., RSSIn

RSSI1, RSSI2, ..., RSSIn

RSSI1, RSSI2, ..., RSSIn

RSSI1, RSSI2, ..., RSSIn

   (x, y)

   (x, y)

   (x, y)
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      (x, y)RSSI1, RSSI2, ..., RSSIn

Figure 2.6: Fingerprinting process diagram [2]. The diagram shows the offline phase where
training data is obtained and the database is constructed. The bottom part of the diagram
describes the online phase where new RSSI measurements are received from an UD and the
positioning algorithm outputs the estimated location.

The basic drawback of Wi-Fi fingerprint technology is the laborious, time con-
suming database construction process and a lot of human intervention. On the
other hand RSSI is vulnerable to environment changes including the multipath
problem and interference such as moving objects, door opening and closing. These
constraints affect the database life cycle which requires another site survey and
task calibration to be updated and adapted to the environment.

There are a number of algorithms available that can be used to match the offline
measurements with the new online measurements. Some of these are discussed
below.

2.2.1 Deterministic approaches

Deterministic methods use the raw data, associating a degree of similarity to each
reference point independently. These methods are usually simple and useful for
real time applications. One of the main advantages of the deterministic methods is
their ease of implementation. For instance, the algorithm of K-Nearest Neighbors
(KNN) is one of the simplest classification algorithms. Its principle is based on the
search of neighbors and the determination of the device’s position according to a
similarity measure with its k-nearest neighbors. The only element needed is the
definition of a distance between the new measurements and those in the database.
This algorithm will be explained in depth in the following chapter.

12
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2.2.2 Probabilistic approaches
Probabilistic methods rely on calculating the likelihood of the user being in a
specific location provided the RSSI values obtained in online phase.

Artificial Neural Networks are used in a number of classification and forecast-
ing scenarios. For localization, the neural network has to be trained using the RSSI
values and the corresponding locations that are obtained during the offline phase.
Once the neural network is trained, it can then be used to obtain the device’s loca-
tion based on the online RSSI measurements. The Multi-Layer Perceptron (MLP)
network with one hidden layer is one of the simplest neural networks used for lo-
calization. In MLP based localization, an input vector of the RSSI measurements
is taken as input and the obtained output is the estimated probabilities of the
user’s location. This method will be explained in depth in the following chapter.

A summary of the advantages and disadvantages of the techniques discussed
in this chapter is presented here:

• RSSI

– Advantages: Easy to implement, cost efficient, can be used with a
number of technologies.

– Disadvantages: Prone to multipath fading and environmental noise,
lower localization accuracy, can require fingerprinting.

• CSI

– Advantages: More robust to multipath and indoor noise.

– Disadvantages: It is not easily available on off-the-shelf NICs.

• AoA

– Advantages: Can provide high localization accuracy, does not require
any fingerprinting.

– Disadvantages: Might require directional antennas and complex hard-
ware, requires comparatively complex algorithms and performance de-
teriorates with increase in distance between the transmitter and re-
ceiver.

• ToA

– Advantages: Provides high localization accuracy, does not require
any fingerprinting.

– Disadvantages: Requires time synchronization between the transmit-
ters and receivers, might require time stamps and multiple antennas at
the transmitter and receiver. Line of Sight is mandatory for accurate
performance.

13
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• TDoA

– Advantages: Does not require any fingerprinting, does not require
clock synchronization among the device and AN.

– Disadvantages: Requires clock synchronization among the ANs, might
require time stamps, requires larger bandwidth.

• PoA

– Advantages: Can be used in conjunction with RSS, ToA, TDoA to
improve the overall localization accuracy.

– Disadvantages: Degraded performance in the absence of line of sight.

• Fingerprinting

– Advantages: Fairly easy to use.

– Disadvantages: New fingerprints are required even when there is a
minor variation in the space.

As we presented in this chapter, the problem of indoor localization is a widely
studied topic and different methods and technologies have been used to address it.
In [2] technologies such as the use of infrared sensors, ultrasound sensors, cameras
and their subsequent processing, radio frequency technologies such as Radio Fre-
quency Identification (RFID) and methods based on WLAN are presented. The
latter has gained great interest in recent years due to the growth of Wi-Fi network
deployments.

As we mentioned before, indoor positioning based on WLAN infrastructure is
usually done by means of power measurements from the different network APs.
Since it is not easy to fit a propagation model that accurately estimates the signal
received at each point, fingerprint-based techniques have become the most popular
approach to the problem [51]. In this case, the RF propagation model is not taken
into account directly, but through RSSI measurements from mobile devices. This
data-driven approach converts the problem into a machine learning one, turning
the position estimation into a regression problem. It can be further simplified if,
instead of the exact position, the goal is only to estimate the area where the mobile
device is located, reducing the problem to a classification one. We will expand on
this idea in the next chapter when we formally present the problem.

One of the most used methods to address this problem is K-Nearest Neighbors,
due to its simplicity and good results [1, 40]. Other machine learning techniques
used for this problem include Deep Learning [28], Random Forests, Support Vector
Machine or Multi Layer Perceptron [4]. However, all of them are vector-based
learning algorithms, where the model simplification ignores the geometric nature
of the position estimation problem, particularly the relationship between the RSSI
measurements at a certain point from the different APs.

A novel machine learning approach which we will explore next and that enables
to take into account the geometric information as a model prior are Graph Neural

14
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Networks (GNNs). For this purpose, a graph is defined with the network APs
as nodes, and the edges weights should reflect the distance between each pair of
APs. As detailed later on, in this model the RSSI values measured by the mobile
devices will be signals defined on the graph. Although there are still not many
indoor localization works based on GNNs in the literature yet, some promising
results are already beginning to show that it is a successful approach to address
the problem.

In the following chapter we will present both the basic notions of graph learning
and the definitions of the studied GNN models, together with the constructed
graphs.

15
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Chapter 3

Machine Learning for Indoor
Localization

As stated in the previous chapter, KNN and Neural Networks based algorithms are
widely used to approach the problem of indoor localization as a classification one.
This is why we considered these algorithms as baselines to compare the results
obtained in this work. In this Chapter we briefly present the ideas behind these
algorithms along with a more thorough explanation of the studied approach: graph
based learning and GNNs.

3.1 Problem Statement
As we mentioned before, in the fingerprinting approach the localization problem is
usually turned into a classification one: given the RSSI measurements of the nAP

APs received by the device, the objective is to learn how to map these values to
the corresponding zone. Figure 3.1 shows this idea on a simple diagram.

1

3

2

4

ZonesML Algorithm

signal prediction

Figure 3.1: Example diagram showing the classification problem.

Formally, let us denote by X ∈ RnAP×Fin one of these measurements, where for
instance Fin = 2 when measurements for both the 2.4 GHz and 5 GHz bands are
available. We will use xi ∈ RFin to indicate the i-th row of X, corresponding to the
RSSI measurement from AP i (with a default value of, for instance, -100 dBm in
case this particular AP’s RSSI was below the sensitivity of the device). Given nz
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possible zones, we want to estimate the parameters of a function Φ : RnAP×Fin →
{1, . . . , nz} that minimizes a certain loss over the available training set.

We remark again that if other types of measurements are available (such as
Channel State Information), they may easily be included in the framework by
modifying the definition of xi accordingly. Moreover, if we were interested in the
actual coordinates of the device, we would simply change the codomain of the
function Φ and consider a regression problem; i.e. we would have Φ : RnAP×Fin →
R3 and the cost function would for instance be the Mean Squared Error instead of
a Cross Entropy Loss used for classification. In any case, the family of functions
Φ typically chosen (e.g. a Neural Network) does not consider at all the underlying
structure of the problem, which is expected to be learned from the training set
instead. In this work we consider an alternative approach, where the geometric
information is provided a priori by means of a graph.

3.2 Baseline Methods
3.2.1 K-Nearest Neighbors
Nearest neighbor methods are very simple, straightforward and widely used in
both classification and regression problems. At the basic level, the observations of
the training set closest in the input space are used to classify the new instance. In
other words, to classify a new object with input vector x ∈ RnAP we examine the
k closest data points in the training set and assign to the object the class that has
the most points among all of the k samples. This notion is defined as follows:

ŷ(x) = argmaxz∈{1,...,nz}
∑

xi∈Nk(x)

δ(z, yi) (3.1)

where Nk(x) is the neighborhood of x composed by its k closest points xi in the
training set, yi is the class associated to xi, and δ(a, b) = 1 if a = b and 0 otherwise.
Thinking of this approach for indoor localization we would assign to a device the
most common zone among its k nearest observations in the nAP -dimensional space.

Of course, this simple outline leaves a lot unsaid. In particular, we must choose
a suitable value for k and close is defined here in terms of the nAP -dimensional
input space, so a metric needs to be used in order to calculate the distances. A
common approach is to use the Euclidean Distance but other several such as the
Minkowski Distance, Manhattan Distance or the Cosine Distance are widely used.
The most basic approach takes k = 1, making the classifier rather unstable, with
high variance and sensitive to the data. This can be seen in Figure 3.2 where
the boundaries define the spaces where new instances may be classified as one
or another class. Those small boundaries are the ones that make the classifier
unstable.

Predictions can often be more consistent by increasing k, thus reducing the
variance but as a trade-off it may increase the bias of the method. As k increases,
the training data points included in the neighborhood are not necessarily very
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Figure 3.2: Classification example in two dimensions, the classes are coded as a binary variable
(Blue = 0, Orange = 1), and then predicted by 1-nearest-neighbor classification. [18]

close to x. An example of the regions defined by using k = 15 are shown in Figure
3.3, where the regions defined by the boundaries are less sparse.

3.2.2 Fully Connected Neural Networks
As stated in the previous Chapter, indoor localization problems do not escape
from the widely adopted method of Deep Learning. In this work we evaluate a
Fully Connected Neural Networks to use as a baseline to compare our results and
that is why we include in this section a brief introduction.

A Fully Connected Neural Network (FCNN) is composed of one or more layers
and is named that way because each layer connects every input feature to every
output feature. Motivated by the explanation from [3], a layer is calculated by
first constructing M linear combinations of the input features x1, x2..., xD as

aj =
D∑
i=1

w
(1)
j,i xi + w

(1)
j,0 , (3.2)

where j = 1, ...,M , and the superscript (1) indicates that the corresponding pa-

rameters are in the first layer of the network. w
(1)
j,i are called the weights and w

(1)
j,0

are the biases.
The activations aj are then transformed using a differentiable, nonlinear ac-

tivation function σ(·) to obtain the outputs of the hidden units of the layers as
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Figure 3.3: Classification example in two dimensions, the classes are coded as a binary variable
(Blue = 0, Orange = 1). The predicted class is obtained by applying Equation 3.1 using the
15-nearest-neighbors. [18]

follows:

zj = σ(aj) (3.3)

The nonlinear functions σ(·) are sometimes chosen to be sigmoidal functions
such as the logistic sigmoid and tanh, or other popular ones such as ReLU.

Similarly, at the final layer of the network we have the output activations
calculated by

ak =

M∑
j=1

w
(L)
k,j zj + w

(L)
k,0 , (3.4)

where k = 1, ...,K, and K is the total number of outputs. Finally, the output unit
activations are transformed using an activation function resulting in the network
outputs yk. The activation function must be chosen accordingly to the nature of
the problem for which the neural network is being used. For standard regression
problems, the activation function is the identity so that yk = ak. On the other
hand, for multiple binary classification problems the output unit activations are
transformed by applying a logistic sigmoid. For multiclass problems such as the
one studied in some parts of this work, a softmax activation function as described
in the following equation is used.
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Figure 3.4: Network diagram for the two layer neural network corresponding to Equation
3.6. [3]

p(Ck|x) =
exp(ak)∑
j exp(aj)

(3.5)

Combining all these stages the overall network function, assuming two layers
and sigmoid activation function at the output, takes the form

yk(x,w) = σ

 M∑
j=1

w
(2)
k,jσ

(
D∑
i=1

w
(1)
j,i xi + w

(1)
j,0

)
+ w

(2)
k,0

 , (3.6)

where weights and biases have been grouped together into a vector w. This can
also be seen in Figure 3.4 where a two layer FCNN is shown. So the neural network
model is simply a nonlinear function from a set of input variables xi to a set of
output variables yk controlled by a vector w of adjustable parameters.

3.3 Graph Neural Networks
Learning from data represented by graphs or networks has received considerable
attention over the last few years. Applications range from the analysis of social
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networks [43] to predicting properties of chemical compounds [8]. The most im-
portant challenge is that, differently to for instance audio or images, graph data
is highly irregular and non-euclidean.

In this section we will introduce some basic graph theory, then we will present
the network embedding problem and some graph learning applications, and lastly
we will describe GNNs as it is the main learning algorithm used in this work.

3.3.1 Graph Notions
Let us first review some basic notions related to graphs so that we can further
build on these concepts when explaining the different learning tasks and when
introducing GNNs.

A graph or network G given as a pair G = (V,E), is composed by a set of
vertices (or nodes) V = v1, ..., vn with n = |V |, connected by edges E = e1, ..., em
with m = |E|, where each edge ek is a pair (vi, vj) with vi, vj ∈ V . A graph is said
to be weighted if there exists a weight function: w : (vi, vj) → wij that assigns
weight wij to edge connecting nodes vi, vj ∈ V . Otherwise, we say that the graph
is unweighted. A graph is undirected if (vi, vj) ∈ E implies (vj , vi) ∈ E, i.e. the
relationships are symmetric, and directed if the existence of edge (vi, vj) ∈ E does
not necessarily imply (vj , vi) ∈ E. Finally, a graph can be homogeneous if nodes
refer to one type of entity and edges to one relationship. It can be heterogeneous
if it contains different types of nodes and edges.

0

2

3

4

1

Figure 3.5: Example of an undirected graph. Nodes are represented by circles, which are
labeled from zero to four. Edges between nodes are represented by lines.

An example can be social networks. These can be represented as undirected
graphs, for example encoding symmetric relationships as friendship, or directed
graphs encoding for example a follower/followed relationship in social media.

A path P from vi to vj of length k is a sequence of k + 1 vertices (vi) and k
edges (ei) of the form v0, e1, v1, e2, v2, ... , ek, vk, where each edge ei connects
vi−1 with vi. A path is called simple if there are no repeated vertices. Otherwise,
if a path visits a node more than once, it is said to contain a cycle.

Given two nodes (u, v) in a graph G, we define the distance from u to v, denoted
dG(u, v), to be the length of the shortest path from u to v, or ∞ if there exists no
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path from u to v.

The degree, deg(vi), of a vertex vi in an unweighted graph is the number of
edges incident to it. Similarly, the degree of a vertex vi in a weighted graph is the
sum of incident edges weights. The degree matrix D of a graph with vertex set V
is the |V | × |V | diagonal matrix such that Dii = deg(vi).

A finite graph G = (V,E) can be represented as a square |V | × |V | adjacency
matrix, where the graph edges will be represented as the elements of the matrix.
The adjacency matrix is binary for unweighted graphs, A ∈ {0, 1}|V |×|V | (indi-
cating whether pairs of nodes are adjacent or not), and non-binary for weighted
graphs A ∈ R|V |×|V | with Aij = wij . Undirected graphs have symmetric ad-
jacency matrices, in which case, Ã denotes symmetrically-normalized adjacency

matrix: Ã = D− 1
2AD− 1

2 , where D is the degree matrix.

The unnormalized Laplacian of an undirected graph is the |V | × |V | matrix

L = D −A. The symmetric normalized Laplacian is L̃ = I −D− 1
2AD− 1

2 . The
random walk normalized Laplacian is the matrix Lrw = I−D−1A.

The first order proximity between two nodes vi and vj is a local similarity
measure, which captures the direct neighbor relationship between the vertices.
For each vertex pair (vi, vj), if (vi, vj) ∈ E, the first-order proximity between vi
and vj is wij ; otherwise, the first order proximity between vi and vj is 0. In
other words, the first-order proximity characterizes the local graph structure. The
second order proximity between two nodes vi and vj measures the similarity of their
neighborhood structures, capturing the global structure. Two nodes in a network
will have a high second-order proximity if they tend to share many neighbors.

3.3.2 Learning on Graphs
Graphs are structures that represent complex relational information in a domain-
agnostic way. To a large extent, it is their arbitrary structure what makes them
so powerful, but also highly complex to use as learning data. To name just one
example, operations like traditional convolutional filters are capable of efficiently
processing data in Euclidean domains, but they are not as well-defined on irregular
graph domains.

In an attempt to apply machine learning techniques to graph-structured data,
new methods such as Graph Representation Learning (GRL) have been developed
which aim to learn low-dimensional continuous vector representations (embed-
dings) for graph-structured data [5]. These methods take the graph elements (such
as nodes, edges and local or global structure) to a lower dimensional space and
preserve the information of graphs in the new embedding space. More specifically,
network embedding aims at learning a mapping function from a discrete graph to a
continuous domain. Formally, given a graph G = (V,E) with weighted adjacency
matrix W ∈ R|V |×|V |, the goal is to learn low dimensional vector representations
{Zi}i∈V for nodes in the graph {vi}i∈V to further use them in tasks such as the
ones that we will describe in the following section.

As other learning techniques, network embeddings can be categorized in induc-
tive and transductive, depending on whether the model can generalize to unseen
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data instances or not respectively.

Graph Embedding Applications
Graph embeddings can be applied to many tasks intrinsic to learning on graphs.
Here we briefly explain some of these tasks.

Node classification is one of the main supervised graph applications, where
the goal is to accurately predict node labels. For instance, in citation networks,
node labels could be scientific topics and they have to be predicted based on
citations. Exploiting the connection between nodes is a common approach to
solve node classification. This can be done in multiple ways. There is the idea of
homophilia, which is the tendency for nodes to share attributes (including labels)
with their neighbors in the graph. In contrast, other networks behave according to
the concept of heterophilia: nodes will be preferentially connected to nodes with
different labels.

One can also predict edges over a graph, a task known as ‘relation prediction’,
‘graph completion’ or ‘relational inference’. The basic idea is to determine the
probability that an edge exists between two nodes. More advanced problems in-
clude predicting the type of edge, not just existence. A real world example of this
task is recommending new content to social media users.

Tasks previously mentioned deal with inferring missing information, either la-
bels or edges. A different task known as ‘community detection’ or ‘clustering’, on
the other hand, identifies underlying communities amongst the nodes. Since there
is no need to indicate known communities, it is often considered a unsupervised
task.

Other applications on graphs involve classification, regression, or clustering
problems over entire graphs. Similar to node classification, graph classification
aims to predict graph-level labels given an input graph. As an example, [31]
models the prediction of a molecule’s odor as a graph classification problem.
The molecule’s embedding represents the underlying relationship between the
molecule’s structure (the graph) and the odor (the predicted class). See Figure 3.6
for an illustration. In this case, a GNN was used to learn the graph embedding.
The next section will go over this technique in more detail.

3.3.3 GNNs
After covering what graph embeddings can be used for, let us discuss how they can
be constructed. Many techniques have been proposed for generating effective graph
embeddings, which can be grouped into two categories: traditional methods and
Graph Neural Networks (GNNs) based methods. Examples of traditional methods
include random walks, factorization methods, and temporal point processes.

Traditional techniques have been often referred to as the ‘shallow’ approach
to generate graph embeddings, mainly due to its limitations. They are inherently
transductive, meaning that they can only generate embeddings for nodes that were
present during the training phase and are not able to generalize to unseen nodes
after training [21].
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Figure 3.6: A molecule is represented as a graph and featurized by its constituent atoms,
bonds, and connectivities. The graph embedding is used for predicting odor descriptors via a
fully-connected neural network [31].

GNN, on the other hand, overcomes many of the traditional approaches’ lim-
itations. Mainly, it is able to generalize to unseen data (what we referred to as
‘inductive’). The key idea behind a GNN is that the node embedding is generated
by aggregating the node’s neighbors embeddings.

Simply speaking, the GNN algorithm works as follows: at each iteration, every
node aggregates information from its local neighborhood and at every step, further
nodes are considered. After the first iteration, every node embedding contains
information from its immediate neighbors. After the second iteration every node
embedding contains information from its neighbors’ neighbors and so on. This
idea is illustrated in Figure 3.7. The information encoded is both structural and
feature-based.

This local feature-aggregation behavior of GNNs is analogous to the behavior
of the convolutional kernels in CNNs. However, whereas CNNs aggregate feature
information from spatially-defined patches in an image, GNNs aggregate informa-
tion based on local graph neighborhoods [17].

GNNs have been applied to a wide range of domains and their application can
be classified as structural and non-structural, depending on the type of data. In
the structural case, data has an inherent graph structure (e.g. social interaction
networks or molecular networks). In the non-structural scenario, the structure in
the data is not explicit and the graph needs to be constructed. This is the case of
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Figure 3.7: Overview of how a single node aggregates information from its local neighborhood.
The model aggregates information from node 1’s local graph neighbors (i.e. 0, 2 and 3), and
in turn, the information coming from these neighbors are based on information aggregated
from their respective neighborhoods, and so on.

this work, since multiple graphs can be created based on the same problem (indoor
localization).

The motivation behind using GNNs to study the indoor localization problem
is to take into account the underlying geometry. Although the utility of learned
neural network embeddings in this problem is relatively unproven and to be con-
firmed, we still anticipate that a learned GNN embedding on an indoor localization
task may produce a semantically meaningful and useful organization of the Wi-Fi
deployment. As stated in [20], GNNs are suitable for problems in communication
networks because of their strong learning ability to capture the spatial informa-
tion hidden in the network topology and their generalization ability to be used in
unseen topologies when the networks are dynamic.

Originally, some of the first works to propose Graph Neural Networks, which
basically try to emulate the success obtained by CNNs onto the graph domain,
represent node i (for i = 1, . . . , n) by a vector xi ∈ Rd, which is iteratively updated
by combining it with its neighbors’ vector representation [32]. After a number of
iterations, a final vector representation of each node is obtained, which is then
used to, for instance, node classification.

An alternative approach to the problem was provided by taking a Graph Signal
Processing perspective [35]. In particular, a spectral-based graph convolution was
first considered [12], an operation that is extremely costly and numerically unsta-
ble. To remedy this, a Chebyshev polynomial on the Laplacian matrix was first
proposed to approximate the spectral convolution [9]. Analogous to a discrete-
time convolution, a first-order convolution layer for a GNN may be obtained by
aggregating neighbors information (as shown in Figure 3.7) and can be formally
defined by the following equation:
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x′
i = σ

ΘT
∑

j∈Ni∪{i}

Sj,ixj

 , (3.7)

where x′
i ∈ Rd′ is the output of the layer, σ(·) is a point-wise non-linearity (e.g. the

ReLU function), Θ ∈ Rd×d′ is the learneable parameter of this layer, Ni is the set
of neighbors of node i, and Sj,i is the j, i entry of matrix S ∈ Rn×n, the so-called
Graph Shift Operator (GSO). S is a matrix representation of the graph, which
should respect its sparsity (i.e. Si,j ̸= 0 whenever there is an edge between nodes
i and j). The adjacency matrix of the graph, its Laplacian or their normalized
versions are all valid GSOs. Moreover, larger values of Sj,i means that xj will have
more weight on Equation (3.7), and thus should be indicative that the signal on
nodes i and j are more related to each other.

To grasp the rationale behind Equation (3.7) note that a discrete-time signal
may be represented by a linear graph (successive samples are joined by an edge). If
d = d′ = 1, we would be linearly combining the previous and current samples, and
then evaluating this with function σ(·). For a general graph we would be linearly
combining the vector representation of the node’s neighbors. As we concatenate K
such layers, the final vector representation of node i will depend on its neighbors
at most K hops away.

Let us now consider matrix X ∈ Rn×d, which basically stacks all nodes’ vectors
xi, and is termed a graph signal. Computing the matrix product SX = Y we end
up with another graph signal that aggregates at each node the information of
its neighbors, corresponding to the first-order convolution we used in Equation
(3.7) (albeit without parameter Θ, which we will include shortly). By writing
SKX = S(SK−1X) we may see that this way we aggregate the information K
hops away. A general graph convolution is defined simply as a weighted sum of
these K signals (i.e.

∑
k S

kXhk, where scalars hk are the taps of the filter). Notice
that parameter Θ in Equation (3.7) is now interpreted as a filter bank. Indeed, by
considering a d× d′ matrix Hk instead of the scalar taps, a single-layer GNN (or
graph perceptron) results of applying a pointwise non-linear function σ(·) to this
convolution [16,19]:

X′ = σ

(
K∑
k=0

SkXHk

)
, (3.8)

whereas a deep GNN is constructed by concatenating several perceptrons. Figure
3.8 illustrates the concatenation for deep GNN.

In addition to having empirically shown to provide state-of-the-art performance
in a number of important problems [52], GNN’s theoretical properties have been
intensively studied during the last few years. Important to our problem at hand,
are their permutation equivariance (i.e. the output signal on each node is inde-
pendent of the nodes’ ordering), stability (i.e. small perturbations on the graph’s
edges lead to small perturbations on the output graph signal) and transferability
(i.e. one may actually train in a small graph, and as long as the statistic is similar,
the performance should remain the same on a larger one) [15,30].

27



Chapter 3. Machine Learning for Indoor Localization

Figure 3.8: Deep GNN representation by concatenating several convolution layers [30]. In this
case the nonlinearity is represented as a separate step applying σ(·) to the intermediate signal
Ui.

GNNs permutation equivariance property is presented and demonstrated in
[15], and it states that graph signal processing with GNNs is independent of node
relabeling. Let us formally present the proposition. We start by considering graph
shift operators S and Ŝ = PTSP for some permutation matrix P ∈ P. Given
a bank of filters {Hlk} for each layer l = 1, ..., L and a point-wise non-linearity
σ(·), define a GNN Φ. Then, for any pair of corresponding graph signals x and
x̂ = PTx used as input to the GNN it holds that:

Φ(Ŝ, x̂) = PTΦ(S,x). (3.9)

This property will motivate one of the proposed architectures detailed on the
next section. As stated in [30], permutation equivariance not only applies to entire
reordered graphs, but also to having locally similar structures within a graph.
GNNs may learn good representations for a subgraph and transfer that knowledge
to other subgraphs with similar structure, allowing to train on some data and
expect decent performance on subgraphs that were not considered at training but
are seen at inference time. This is also a motivation for some of the experiments
detailed in Chapter 5 such as the addition of new zones.

Stability is also an interesting property that motivates some of the experiments
from Chapter 5. In this work we present some studies that explore the robustness
of the proposed methods in comparison to other more known ML approaches, so
the stability property is of great importance.
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3.4 Proposed GNN Architectures

3.4.1 Homogeneous Graphs
Let us then go back to our localization problem. We will first consider the APs
graph. Although the details on how the graph can be constructed for our particular
case are included in Section 4.2, suffice to say at this point that each node is an
AP, an edge exist between nodes i and j if the received power between them is
above a certain threshold, and that the edge’s weight will be the corresponding
mean RSSI plus this threshold (so as to turn larger weights to more related signals
on the nodes).

Over this graph, we will consider the signal we defined before X ∈ RnAP×Fin ,
corresponding to the RSSI measurements for each AP (with Fin = 2 if measure-
ments for both 2.4GHz and 5GHz bands are available). The learning algorithm
should then output on what zone (from the nz possibilities) was that measurement
taken. This thus corresponds basically to a graph classification problem.

Graph classification is typically achieved by taking the output of a GNN, pass-
ing it through a so-called readout layer (which transforms all nodes signals into
a single vector that represents the whole graph) and then applying, for instance,
an MLP followed by a softmax [31,45] . Although typical readout layers (e.g. the
sum) enforce permutation equivariance [27], it is clear that which AP had a certain
representation is important to infer at which zone was the measurement taken. We
have thus used as readout a stacking of the node’s representation, resulting thus
in a vector y ∈ RnAPFout , where Fout is the last layer’s dimension of the GNN. An
illustrative example diagram is displayed in Figure 3.9.

GNN Readout NN

Figure 3.9: Illustrative diagram of the graph classification problem for localization. The signal
of a graph with nAP = 5 dual band APs (and thus each xi has Fin = 2 dimensions) is
processed by a GNN which produces a signal with Fout = 2 dimensions too. The readout layer
then stacks all vectors and passes it through a NN which produces a probability distribution
over the nz = 4 zones. Note that training can be performed end-to-end.

It may seem that we have returned to a learning algorithm that drops the
geometry of the data, as in traditional learning algorithms. Although this is ac-
tually true for the zones, a drawback we will address in the following section, just
considering the geometry of the APs will have important performance advantages
over traditional baselines, as will be further discussed on Chapter 5.
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3.4.2 Heterogeneous Graphs
The question thus remains as to how to include the zones’ geometry as an a priori.
Let us then consider that zones are now nodes on the graph. The first thing to
note is that we have no input signal associated to a zone. We may for instance
associate an arbitrary scalar to all zones or a one-hot encoded vector [41]. On the
contrary, we have an output signal (e.g. a 1 if the measurement was taken at that
zone, or 0 if not) which is not present on the APs’ nodes. We will thus consider
the output signal only at the zones’ nodes to compute the loss.

Furthermore, we have at least two types of edges now: the edges between APs
(which we have been considering so far) and between an AP and a zone. Although
we may define the latter just as the one we used for the inter-APs edges (i.e. the
mean RSSI at that zone from that AP plus a threshold), it is clear that in terms of
propagating information they should be considered different. We may even include
edges between zones, considering for instance their distance or if it is possible to
transit from one to the other.

In any case, we are in the context of heterogeneous graphs (or networks) and
learning therein [10]. The most typical application is in relational data or knowl-
edge graphs, such as academic graphs (where nodes may be papers, authors, con-
ferences, etc.) [38] or recommender systems (where nodes may be users and films,
as well as actors, directors, country of origin, etc.) [34]. In our particular case, we
want to learn to estimate the zones’ signal given the one on the APs, thus turning
the localization problem into a graph signal interpolation one.

Graph convolution is easily extended to the heterogeneous case. For instance,
Equation (3.7) is now written as [33]:

x′
i = σ

ΘT
0 xi +

∑
r∈R

ΘT
r

∑
j∈N r

i

Sr
j,ixj

 , (3.10)

where R is the set of possible relations (e.g. between APs or between an AP and
a zone), N r

i are the set of neighbors of node i of relation type r, and Sr
j,i is the

j, i entry in the GSO if the corresponding relationship is of type r (and 0 else).
Note that we now have an specific learning parameter Θr for each type of relation.
An illustrative example diagram of the proposed signal interpolation system is
presented in Figure 3.10.

Similarly to Figure 3.9, there are nAP = 5 dual band APs and nz = 4 zones.
The graph now also includes nodes representing these zones (the white ones) and
edges connecting them to the APs (the slashed ones), with a weight which may
be the mean RSSI as measured in the corresponding zone. The input signal on
the APs is the same as before, and we have arbitrarily set all input signals on the
zones as a constant. This heterogeneous signal is processed by a heterogeneous
GNN, which will produce a vector for each AP (which we will ignore in the training
cost) in addition to a distribution over the zones’ nodes. Note that information is
propagated through all nodes and edges.

Going back to analyzing the properties described in the previous section, this
new heterogeneous graph is highly motivated by the permutation equivariance
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Heterogeneous

GNN

Figure 3.10: Illustrative diagram of the positioning system as a graph signal interpolation
problem in the heterogeneous context.
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Figure 3.11: Heterogeneous graphs and GNN motivating example. Signal is strong on APs
2 and 3, and after passing through the heterogeneous GNN, the interpolated signal over the
zone nodes indicates that the output zone is number 1.

property. Figure 3.11 illustrates the proposed scenario, where we have AP nodes
(in black) and zone nodes (in white).

As explained before, the goal is to interpolate the signal on the zone nodes.
Figure 3.11 shows a signal example on some AP nodes and a reference signal on
zones. We can notice that the signal on APs 2 and 3 is stronger than in the rest
of the APs based on the color intensity. After passing this signal through the
heterogeneous GNN we will have an interpolated signal over the zone nodes which
indicates the zone where the device is most probable to be in. In this case, that is
zone number 1.

If we better observe the graph structure, we can notice there are similar struc-
tures or subgraphs within the heterogeneous graph. These similar subgraphs are
often called motifs and are defined by a particular pattern of interactions. Figure
3.12 highlights a relevant motif in this example graph. On the left we can see zone
number 1 strongly connected (edges’ width represent their weights) to APs num-
ber 2 and 3, while also having a weaker connection to AP number 1. The image
on the right shows another highlighted subgraph, with a very similar structure to
the one described before. Zone number 3 has strong connections to APs number
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3 and 4, and a weak connection to AP number 1.
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Figure 3.12: Example motif on motivating example graph. On the left we can see zone number
1 strongly connected to APs number 2 and 3. The image on the right shows a similar subgraph
highlighted where zone number 3 has strong connections to APs number 3 and 4.

Based on the permutation equivariance property we can expect to achieve
decent performance when classifying instances in zone number 3 if we train our
model so that it achieves good performance when classifying instances in zone
number 1. This example can be seen in Figure 3.13.
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Figure 3.13: Heterogeneous graphs and GNN motivating example. Expected result based on
permutation equivariance and stability properties. The signal over the APs is a permutation
from the original one and the interpolated signal over the zones indicates that the output zone
is number 3.

We have the same graph as in the previous example, but this time the signal
on the AP nodes has changed. A strong signal can be found on APs number 3
and 4, while a weaker signal is associated to APs 1 and 2. After applying the het-
erogeneous GNN to this example we expect to have as an output the interpolated
signal over the zone nodes, in particular a strong one over zone number 3.

It is worth to mention that these motifs may not be exactly the same. Based
on the construction algorithm that will be described in Section 4.2, and on the
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deployment of APs and the zones defined we cannot expect to have a perfect
match between these subgraphs. But based on the stability property previously
mentioned, these motivating examples still make sense and motivate the further
exploration done in this work.

3.5 Related Work
As we mentioned before, although there are still not many indoor localization
works based on GNNs in the literature yet, they are starting to appear.

In [47] a GNN based method is presented, analyzing a simulated scenario where
the distance between nodes is modeled with noisy values of the Euclidean distance
between them. Results with a real dataset like [39] (which we present later in this
document) can be found in [37], which uses a Graph Convolutional Network (GCN)
to address the problem. An advantage of the graph based approach discussed in [6]
is the possibility of using transfer learning, adapting a previously trained network
with data from other location, thus requiring less number of measurements to train
the model.

Finally, it is worth highlighting other variants of the problem, which are dif-
ferent applications where the GNN-based approach is still very useful. On the one
hand, [7] studies the case where the signals are not measurements of the power
of a Wi-Fi network, but images from multiple cameras of the mobile device. It is
clear that the graph model (named Graph Location Networks in this context) still
suits the problem, in this case modeling the relationship between images taken at
different locations. Another problem extension is addressed by [24], which uses a
GNN to estimate the device next location, taking advantage of the graph to model
the trajectories given by the device locations sequence.

In the following Chapter we will dive into the datasets used and the imple-
mentation details; we will explain how we built these graphs (homogeneous and
heterogeneous) based on the available data.
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Chapter 4

Implementation Details

4.1 Datasets
As in every machine learning problem, datasets were a key aspect in this work.
As we stated before, building a good dataset is a complex and time consuming
task. We should gather a great amount of fingerprints taking care of the diversity
of devices used, the distribution of the fingerprints over the area, and the quality
of the measurements. Since building a dataset was not in the scope of this work,
we opted for using publicly available datasets to test the GNNs. As a result, two
datasets were used: MNAV [4] and UJIIndoorLoc [39]. We now briefly describe
them.

4.1.1 UJIIndoorLoc
This dataset can be found at Kaggle1 and was used as the official dataset of the
IPIN2015 competition [39]. This dataset was designed to test WLAN fingerprinting
techniques. The data was acquired in three buildings of the University of Jaume
I, each with 4 floors or more and covering an area of over 110,000 m2. Figure 4.1
shows a map of the buildings. In total, it has 19,937 training samples and 1,111
test samples acquired 4 months after the training data. The dataset was collected
by more than 20 users using 25 different models of devices. In addition to RSSI
measurements from 520 APs, each measurement is labeled with the corresponding
building and floor, along with its longitude and latitude (which were not taken
into account here). Note that in this case the positions of the APs are unavailable,
highlighting the practical importance of the method to construct the graph we will
discuss in Section 4.2.

We started by looking at the available APs to see if we could identify those
that contributed with meaningful information. Figure 4.2 shows a histogram of
the mean RSSI for the 520 APs available in the dataset. We can see that the
majority of the APs have a mean value of −105 dBm and that in the best case
the mean values are situated around −99 dBm. This behavior is explained by the

1https://www.kaggle.com/giantuji/UjiIndoorLoc
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Figure 4.1: UJIIndoorLoc dataset map showing the different buildings and its indoor distribu-
tion. [39]
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Figure 4.2: Histogram of the mean RSSI for the 520 APs from UJIIndoorLoc dataset.

fact that the area covered by the APs deployment is large and most of the APs
can only cover a small part of the total area. This leads to fingerprints having
good RSSI values for few APs and near −105 dBm values to almost every other
AP. This information is not enough to filter out some APs.

In Figure 4.3 we can see a histogram of the standard deviation RSSI for the
520 APs. It is simple to notice that, although there is a great number of APs that
have almost 0 dBm standard deviation, there are some others that can provide
useful information. Using this information, together with that from Figure 4.2,
we filtered out those APs that did not provide useful information (i.e. the ones
that have smaller standard deviation). This resulted in using 253 APs out of the
original 520 APs available.

Different definitions of zones may be explored in this case. For instance, a
simple and coarse case-scenario is to predict at which building is the device located.
We have considered the more interesting scenario where we want to predict both
the building and the floor (resulting in 13 zones by combining the building and
floor IDs).
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Figure 4.3: Histogram of the standard deviation RSSI for the 520 APs from UJIIndoorLoc
dataset.

4.1.2 MNAV
The second dataset we considered here was created within the framework of [4],
which sought to provide an indoor localization system to the Museo Nacional
de Artes Visuales (MNAV, National Museum of Visual Arts) in Uruguay using
fingerprinting techniques with Wi-Fi. The dataset is available on GitHub 2. Figure
4.4 shows a map of the museum including both floors, the position of the deployed
APs and the 16 areas that were defined.

The dataset has 10,469 measurements (which we splited 80%-20% for training
and testing) from 188 APs, each labeled with the corresponding zone. Inside the
museum there are 15 APs, each one using both the 2.4 GHz and 5 GHz bands,
thus defining 30 of the 188 APs available in the dataset. The rest are APs outside
the museum that the devices found while searching for Wi-Fi networks. In this
work, we decided to use only the features corresponding to the APs within the
museum, discarding the rest since we did not have control over them and data was
noisy.

Figure 4.5 shows the distribution of RSSI for each of the 15 APs on the 2.4
GHz band. It can be noticed that there are some APs, such as the last one, that
provide little information since most of its measurements are near −100 dBm. This
may be of interest when analyzing the results, as some of the APs may become
more relevant to the decision of classifying devices into the zones.

4.2 Graph Construction
Before presenting the results we obtained with the proposed methods, let us discuss
how we built the graphs underlying them. Recall that in the graph nodes are the
APs (and zones in the heterogeneous case) and the edges’ weights should be related

2https://github.com/ffedee7/posifi mnav/tree/master/data analysis
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Figure 4.4: MNAV dataset map showing both floors, the distribution of the deployed APs in
red circles and the different zones defined in blue numbers. [4]

to the distance between them. If a map with the position of the APs and zones is
available, then we may build the graph by considering the inverse (or some other
decreasing function) of the distance between them. Note however that we are using
the RSSI from all APs as the graph signal in order to infer the corresponding zone.
It may well happen that two points are very near to each other but, for instance,
separated by a thick wall, meaning that the RSSI as measured in each point may
be significantly different.

It would then be more sensible to use an edge weight related to a ‘RF distance’
between points. To this end, we have used precisely the RSSI between them. If
we had access to the area where the positioning system is deployed, we may for
instance measure the received RSSI at a given AP from all the rest. However, this
was not the case here, as we only had access to the datasets.

We have thus proceeded as follows to construct the homogeneous inter-AP
graph. As mentioned before, nodes correspond to the APs and edges connect
each node with all other nodes in the graph. Available information (instances
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Figure 4.5: Distribution of RSSI measurements on the 15 APs considered (only 2.4GHz
measurements are plotted) from MNAV dataset.

of our datasets) is used to estimate the weights of the edges. Let us consider a
single weight estimation, that of the edge between APi and APj , as an example,
since the same logic can be extended to all edges. We want to set a weight that
represents in some way the RSSI between APi and APj (which as we know, is not
directly observable). For that, we only consider the instances X in the training set
which have ‘high’ RSSI values for APi, the rationale being that these would be the
best representation of the power measurements that APi would take. In practice,
this was done by setting a threshold (highest power signal to APi minus a certain
value named rssi threshold) and only considering the subset of measurements for
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which xi was above said threshold. Once that subset is obtained, the edge’s weight
between APi and APj is simply the mean over this subset of the RSSI for APj

(i.e. the mean of the corresponding xj on this subset).
One last step that was considered during this process was the possibility of

applying pruning. This consisted of eliminating edges with small weights (based
on a certain prune threshold) since they do not provide much information. Also,
this avoids having a complete graph that is heavier to process. The pseudo-code
for the proposed method is provided in Algorithm 1.

Algorithm 1 Homogeneous graph construction

Input: train data, aps, rssi threshold, prune threshold

for ap ∈ aps do
# Get highest power signal to AP ap
max val ap ← max(train data[ap])
ap data ← [ ]
for instance ∈ train data do

if instance[ap] > (max val ap − rssi threshold) then
ap data.append(instance)

end if
end for
# Get mean power signal from AP ap to other APs
mean ap to aps ← mean(ap data)
graph edges ← prune edges(mean ap to aps, prune threshold)
build edges(ap, graph edges)

end for

Note that in the case when there are measurements for both bands (i.e. Fin = 2)
we will obtain two weights per edge. Although this is easily accommodated for the
methods we discussed before, results do not change significantly when using either
of them or both, so we will focus on the results of using a single weight per edge
(the one corresponding to the 2.4 GHz band). Furthermore, in order to work with
positive weights, we have subtracted the minimum RSSI value to all measurements
as a pre-processing step. Note that this way AP pairs may be disconnected on
the graph (with a weight equal to zero), effectively reflecting they are far apart.
Finally, note that the resulting graph is not necessarily symmetric.

In the case of the heterogeneous graph, edges between zones and APs can be
constructed similarly. We have simply considered as an edge weight the mean
RSSI as measured at that zone (minus the minimum RSSI). Furthermore, we have
used 0 as the input signal on the nodes corresponding to zones (very small changes
were obtained using other alternatives such as using ones instead of zeros).

Figure 4.6 shows a resulting homogeneous graph for MNAV dataset without
applying edge pruning. The graph is overlaid on the map shown in Figure 4.4
where each node corresponds to an AP and they are numbered according to the
number of AP. The width of the edges is proportional to the weight.
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Figure 4.6: Graph for MNAV dataset constructed using the method explained in Algorithm 1
and overlaid on the map shown in Figure 4.4. Some strong connections can be seen between
APs while the majority of the APs are connected by thin lines corresponding to weak connec-
tions.

41



This page has been intentionally left blank.



Chapter 5

Experiments and Results

Let us now present the experimental results of the proposed methods, along with
some popular baselines. Regarding the latter, we have used KNN, a FCNN and
the combination of methods discussed in [4] (which in turn is a small variation
on the combination used in the popular FIND3 software1), implemented through
Scikit-Learn [29].

Since GNNs have gained traction in the last couple of years, several Python
libraries appeared to breach the gap between theory and implementation. Some of
these were well suited for specific tasks, mostly related to the areas of investigation
of the authors. But it quickly raised the need for more stable, robust and complete
libraries. This is where some big companies came into the scene and developed
libraries such as Pytorch Geometric [14] (now PyG), Tensorflow GNN [13] and
Deep Graph Library [42]. We began this work by using the library 2 developed by
the Alelab group 3 from the University of Pennsylvania but later decided on using
PyG based on the maturity of the library.

Regarding the homogeneous case, the structure of the model consists of two lay-
ers with an output dimension of 20, and a filter length of K = 2 for UJIIndoorLoc
and K = 3 for MNAV. In particular, we used the implementation of the architec-
ture proposed in [11] (cf. Equation 3.8). After the readout we used an MLP with
the same size as the number of zones (cf. Figure 3.9). In the heterogeneous case we
had to resort to the simpler architecture studied in [26], basically a single-tap filter
(generalized to heterogeneous graphs in [33] as presented in Equation 3.10), as the
more general architecture we used before did not support heterogeneous graphs in
PyG. In any case, the final architecture has 4 layers, all with an output dimension
of 20 (except, naturally, the last one, which has dimension equal to 1). We also
explored a simplified heterogeneous architecture in some of the experiments to be
able to better understand the results. As we know, interpretability in neural net-
works is not straightforward, and GNNs are not the exception. Figure 5.1 shows
a simple abstraction of the two heterogeneous GNNs variants.

Hyper-parameters (including mini-batch sizes, learning rates and weight de-

1https://github.com/schollz/find3
2https://github.com/alelab-upenn/graph-neural-networks
3https://alelab.seas.upenn.edu/

https://github.com/schollz/find3
https://github.com/alelab-upenn/graph-neural-networks
https://alelab.seas.upenn.edu/
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Figure 5.1: Simple diagrams showing the steps involved on the heterogeneous GNNs. The
diagram on the left shows how the convolutions are applied on both signals corresponding to
APs and to zones. This is done for every hidden layer as represented by the dotted red line.
Diagram on the right shows a simplified version where on the hidden layers only convolutions
over the inter-APs subgraph are calculated. The last layer is the same on both alternatives.
The output interpolated signal on the zone nodes is the result of the convolution applied on
the APs-zones subgraph.

cay) were obtained through cross-validation. This was done for the general prob-
lem described in Section 3.1 and those hyper-parameters were left unchanged for
the entire experimentation phase. We avoided re-calculating hyper-parameters for
every subsequent experiments. The idea behind this reasoning is that the exper-
iments included variations in the dataset or in the graph construction phase but
were not significant enough to alter the expeted results. All code generated for
the experiments is available on GitHub 4.

For several analysis in this work we have used the accuracy metric (Equation
5.1) to compare results. Even though this metric has its drawbacks such as not
being well suited for working with imbalanced classes, it is a standard metric that
has been extensively used, in particular in works done on the mentioned datasets.
It is only fair to compare using the same metric and that is what we have done.
In most of the results presented we have also calculated F1-score as a sanity check
and understood that there were not discrepancies with accuracy results.

Accuracy is one metric for evaluating classification models. Informally, accu-
racy is the fraction of predictions our model got right. Formally it is defined as
follows:

4https://github.com/facundo-lezama/gnns-indoor-localization
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5.1. On the size of the training set

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

where TP = True Positives, TN = True Negatives, FP = False Positives, and
FN = False Negatives.

The F1 score can be interpreted as a harmonic mean of the precision and
recall, where an F1 score reaches its best value at 1 and worst score at 0. The
relative contribution of precision and recall to the F1 score are equal. The following
equation formally defines it.

F1 = 2 ∗ precision ∗ recall
precision + recall

(5.2)

5.1 On the size of the training set
Let us first discuss the overall test accuracy of the different methods on both
datasets. Table 5.1 presents these results. There are three important conclusions
that may be drawn from the resulting accuracies. Firstly, the performance of
all methods is relatively high, with a minimum accuracy of 87.7% for KNN on
the UJIIndoorLoc dataset. Secondly, that the homogeneous GNN systematically
outperforms the rest of the methods, particularly in the UJIIndoorLoc dataset.
Figure 5.2 displays the corresponding confusion matrix for UJIIndoorLoc, where it
can be seen that the bigger errors occur when classifying zone 4 as 5 (corresponding
to two floors of the second building). Lastly, the heterogeneous GNN presents very
competitive results, coming third on the UJIIndoorLoc case (only 0.6% below the
FCNN), and second on the MNAV one.

Table 5.1: Classifier accuracy on both datasets.

Dataset

Method UJIIndoorLoc MNAV

KNN 87.7% 96.2%

FCNN 90.1% 95.9%

Bracco et al. [4] 87.9% 96.3%

GNN (homogeneous) 93.0% 96.7%

GNN (heterogeneous) 89.5% 96.3 %

Note that, as stated for example in [4], the fingerprint gathering stage is time-
consuming and represents a non-negligible part of the total cost of the system. It
is then pertinent to evaluate the merits of the different methods in terms of how
many training samples they require. To this end, we have considered sub-samples
of the training set with varying sizes (uniformly chosen among zones, so that we

45



Chapter 5. Experiments and Results

0 1 2 3 4 5 6 7 8 9 10 11 12

0
1

2
3

4
5

6
7

8
9

10
11

12

92% 6% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

2% 95% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 3% 97% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 4% 96% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 0% 77% 17% 3% 0% 0% 0% 0% 3% 0%

0% 0% 0% 0% 12% 75% 11% 0% 1% 0% 1% 0% 0%

0% 0% 0% 1% 0% 2% 92% 5% 0% 0% 0% 0% 0%

0% 0% 0% 0% 0% 0% 2% 98% 0% 0% 0% 0% 0%

0% 0% 0% 0% 0% 0% 0% 0% 92% 8% 0% 0% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 98% 2% 0% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 9% 87% 2% 2%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 90% 10%

0% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0% 8% 90%

Figure 5.2: Confusion matrix obtained by the homogeneous GNN on the UJIIndoorLoc dataset.

do not incur in an imbalance) and measured the obtained accuracy on the testing
set.

In particular, for each sub-sample’s size (measured as a percentage of the orig-
inal training set’s size) we have constructed 10 random training sub-samples and
report the test results in Figures 5.3 and 5.4 in the form of a boxplot for both
datasets. For the sake of presentation clarity, as a baseline we are only showing
KNN in this figure, since results are similar or worse for the other methods. For
instance, this case-study was also carried out in [4] for their method in the MNAV
dataset, resulting in an accuracy as low as 90% when using 30% of the dataset,
and 95% when using 70%. For this dataset, all three methods in Figure 5.4 obtain
a similar performance but using approximately 50% of the samples, and fare well
above an accuracy of 90% when using only 30% of the samples. The superiority
of the GNN-based method is clearer in the UJIIndoorLoc dataset (Figure 5.3),
where we may see that the homogeneous GNN’s performance is above that of the
KNN, even when using 30% of the samples. On the other hand, the heterogeneous
architecture requires roughly 70% to surpass KNN.
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Figure 5.3: UJIIndoorLoc dataset: Accuracy using different amount of fingerprints for KNN
(top left), homogeneous GNN (top right) and heterogeneous GNN (bottom). GNN based
methods maintain an excellent performance even with very few training samples.

5.2 Propagation environment changes
One of the main drawbacks with fingerprint-based localization methods is the need
of updating the system in terms of the propagation environment. For instance, if
a wall is built, it will change the RSSI received at certain zones, thus potentially
resulting in a lower performance of the localization method. This is remedied
by periodically taking new measurements (or at least when such changes occur),
which in turn further increases the cost of these deployments.

In this subsection, we will consider a variant of this scenario, where the RSSI
received from a certain AP is lower (by a certain constant) than expected. This
is achieved by simply decreasing the RSSI corresponding to this AP only on the
test set. This scenario may occur if, after the system is trained and deployed, for
instance the AP configuration is changed and starts transmitting at a lower power,
its antennas are rotated, or simply because it is lowered in height.

Figure 5.5 shows the results for the MNAV dataset when subtracting 5 or 10
dBm to the received RSSI of a single AP. Each boxplot represents the resulting
15 accuracies (one for each AP in the dataset). Note how in this case KNN and
the one studied in [4] are the methods that obtain the best results, although
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Figure 5.4: MNAV dataset: Accuracy using different amount of fingerprints for KNN (top
left), homogeneous GNN (top right) and heterogeneous GNN (bottom). GNN based methods
maintain an excellent performance even with very few training samples.

they are closely followed by the homogeneous GNN. Furthermore, although the
heterogeneous graph does perform competitively well in the -5 dBm example, its
performance is significantly degraded when the offset is -10 dBm. Finally, it is
interesting to highlight that FCNN is the method that performs worst in these
examples. This shows the importance of considering the structure of the data in
the form of the underlying inter-APs graph.

Note that the way we constructed the homogeneous graph (cf. Section 4.2) the
tag of which zone corresponds to each measurement is not necessary. This means
that we may actually update the edges’ weights as clients send the measured RSSI
(assuming a centralized scheme, where clients send their measurements and the
server answers with the estimated zone). By doing this, we can have a more precise
graph given the new state of the deployment. At this point it may be obvious, but
the GNN would not need to be modified to work with the new graph, filters can
remain unchanged.

A reasonable question is to what point do this updated GSO affects the result-
ing accuracy in this scenario. Sadly, our experiments show a somewhat marginal
gain, of approximately 1%.
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Figure 5.5: Accuracy on the MNAV dataset when an offset of -5 dBm (left) or -10 dBm (right)
is applied to the received power of one AP during testing only. Although KNN and [4] perform
best, the homogeneous GNN method obtains competitive results.

5.3 AP failures
Let us now consider a typical failure scenario, where one or several APs cease
operation. This may happen due to a faulty AP or an electrical power problem
on the building. In the latter case, it would affect a group of APs, which are not
necessarily all of the ones used for localization. Although this type of problems are
typically transient and (should) last for a limited amount of time, it is important
to verify if the system still works reasonably well during these problems because
we might not have control over its use or the environment. In some application
scenarios such as museum guidance through indoor localization, a failure in an
AP is not critical to the museum’s operation, which would continue normally and
localization should still work as good as possible for that precise reason.

Note that this AP failure scenario may be considered as a variation of the one
we studied in the previous subsection, where we are basically dropping to zero the
transmitting power of a certain group of APs. Quite interestingly, results show
that differently from that case, KNN now performs much worse.

We will consider that a certain number of APs fail (1, 2 or 3), which is simulated
by simply placing the minimum default RSSI on the entries corresponding to the
faulty APs on the test dataset. All possible combinations of APs are considered,
and results are reported in the form of a boxplot in Figure 5.6.

The main conclusion to draw from Figure 5.6 is that GNN-based methods
tolerate much more gracefully AP failures. Whereas with a single AP failure these
methods may still obtain over 90% accuracy (and this may even be the case in
the two AP failure scenario, depending on which APs fail), this is not at all the
case for baselines (only KNN is shown for the sake of clarity of the figure, but
similar results were obtained with the other methods). Even in the case of a single
failure, results are typically below 90%, whereas with two AP failures they obtain
a performance similar to, or even worse than, the GNN-based methods when three
APs failed.

This is a remarkable result since it says the model is fault tolerant, at least
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Figure 5.6: Test accuracy on the MNAV dataset when a 1 (left), 2 (middle) or 3 (right) APs
fail. All possible combinations of faulty APs are considered. GNN-based methods (particularly
the heterogeneous one) perform much better than the baseline.

to a very common fault. Also, as we stated in previous sections, data gathering
is one of the most time-consuming tasks and it would add a big effort to take
new measurements to accommodate for this transitory scenario. These results are
promising and start to validate the initial idea behind most of this work: using
spatial information can be leveraged to get better results.

5.4 Adding new zones
It is often the case that deployments change their structure (e.g. a new exposition
gets added, walls get teared out, rooms get enlarged) and in this direction we
studied the behavior of the model in the scenario of adding a new zone. In the
case of having a KNN model, if we do not include new training data classified
as the new zone we cannot expect the model to classify any new data with the
recently added class. Another case could be having a FCNN. When modifying
the last layer to include one new class, the weights associated to this new neuron
will be arbitrary and thus it would be hard for the model to correctly classify new
instances with the recently added class.

On the other hand, when using the heterogeneous graph we can add a new
zone by simply adding a new node in the graph. Based on GNN’s theory discussed
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in Chapter 3, there is no need to modify anything in the GNN to handle this
addition. Tap filters remain unchanged and we can try to use the already trained
network to classify instances in the new zone. It is clear that to get the best results
we should retrain the model, but we want to analyze the performance of the GNN
without retraining to understand if we can achieve reasonable results considering
the benefits of the model. As we saw in Chapter 3, the permutation equivariance
property could lead the model to good results on the new zone if a local structure
around it is similar to other in the same graph.

Simulating this scenario was not straightforward. We opted to leave out a zone
in the training phase and add it later in the testing phase. For this purpose we
simulated leaving out a zone by setting every edge-weight corresponding to the
specified zone to 0. Thereby, no signal would be propagated to that node. The
training data was also modified to leave out those instances corresponding to the
specified zone. On the testing phase, the graph was modified to include edge-
weights from and to the specified zone node. Everything else was left unchanged
regarding the graph used for training. Also the testing data included instances
labeled with the specified zone.

For this experiment we decided to modify the structure of the heterogeneous
GNN to make it simpler. Getting to understand what is actually happening on
the heterogeneous GNN as the signal goes through the layers is difficult, so we
opted for simplifying it to try to explain its behavior. The new structure of the
network makes the convolutions to only consider the inter-APs subgraph, as in
the case of the homogeneous graph and homogeneous GNN. Only after the stack
of these convolutional layers comes a final convolutional layer where the entire
heterogeneous graph is considered and information is aggregated into the zone
nodes. This architecture is shown in Figure 5.1.

We started by implementing the addition of a new zone on a simple hetero-
geneous graph as the one presented on the motivating example in Section 3.3.3
(Figures 3.11 3.12 3.13). To simplify the readers’ task we are presenting the same
example in Figure 5.7. This controlled scenario gave us the possibility of validating
our initial motivation for this specific study. The results were as expected. Fig-
ure 5.8 shows the confusion matrices related to training and testing phases. The
testing confusion matrix shows that instances corresponding to the new zone are
correctly classified, even when the GNN did not see a single instance for that class
when training. We also tried some variations to the new zone’s edge weights to
‘break’ the motif and the result was that the GNN could not classify correctly into
the new zone (getting almost 0% accuracy and F1 score). This was as expected
and encouraged us to continue the exploration on a real scenario.

We tested this scenario for every zone in the MNAV dataset. We chose this
dataset since it is simpler than the UJIIndoorLoc one where the number of APs is
considerably higher.

The result was somehow as expected. Working with a small graph as the one
built from the MNAV dataset, we certainly did not expect to see good performance
on every experiment. We saw good performance on some zones (more specifically
when adding zones 1, 8 and 15), meaning that performance was not degraded
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Figure 5.7: Simple heterogeneous graph from Section 3.3.3 motivating example. This example
was used for the analysis of adding new zones. Zone number 3 was removed in the training
phase and added later for testing.

0 1

0
1

85% 15%

5% 95%

0 1 2

0
1

2

90% 10% 0%

0% 100% 0%

5% 20% 75%

Figure 5.8: Confusion matrices corresponding to the addition of a new zone on the motivating
example. Matrix on the left shows the training results. Matrix on the right shows the test
results where zone number 2 was added on the test phase. The GNN clearly understands how
to clasify into this new zone even when it was not trained with that node.

much on the zones that were seen in the training phase and also that the model
performed above 50% both in accuracy and F1 score for the newly added zone.
On the other hand, the accuracy when adding the rest of the zones was 0% for
the added zones while in most cases performance had a small decay on the rest
of the zones seen at training. This last result is in agreement with what was
observed in the analysis on the simple graph, where the GNN performed poorly if
the motif structure changed. One possible explanation may be that the zones that
perform poorly do not associate to a motif in the graph. That is, the most relevant
subgraph for classifying the added zone does not match the relevant subgraphs for
the rest of the zones, so it is difficult for the network to learn to classify the new
zone without seeing its instances during training.

We aimed to go further in the interpretation of the results and tried to discover
those allegedly similar structures for those zones which achieved good performance.
This was not straightforward, specially due to the heterogeneous graph. Figure
5.9 shows how strongly connected are AP nodes and zone nodes. Rows represent
APs and columns represent zones, matrix values correspond to the edges’ weights
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Figure 5.9: This matrix shows how strongly connected AP nodes and zone nodes are. Rows
represent APs and columns represent zones while colors represent the magnitude of the edges’
weights. Stronger connections have higher numbers. Some small structures between APs and
zones can be seen.

which are colored according to a heat-map to better visualize the magnitudes.
We can notice some motifs or similar structures composed of connections between
zone nodes and AP nodes. For instance, column number 0 (corresponding to zone
number 1) has strong connections to APs number 0, 1 and 2, and this structure can
also be seen in column number 13 when looking at its connections to APs number
10, 11 and 12. But this is not necessarily enough to ensure good performance
as there are several other zones with similar structures and the model does not
perform well when adding those zones. This means that in order to have full
understanding of the behavior we need to also address the connections between
APs and the signals on the APs subgraph. Putting it all together and arriving to
conclusions from that information is a difficult task.

Another interesting explainability tool that has been used mainly for computer
vision networks are the saliency maps [36]. It relies on calculating the gradient of
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the loss function for the class we are interested in with respect to the input pixels.
In our case, we can calculate in an analogous way the gradient with respect to
the input signal on the inter-APs subgraph. With that idea in mind, we analyzed
which APs were considered the most important when classifying a zone (by means
of saliency maps). We combined that information with the connection strength
for each one of those APs to see if they matched (i.e. the most important APs
are the ones with the strongest connections). Results showed that in some cases
that was true, but in others it was not. The following example illustrates the
above. Figure 5.10 shows the contribution of the different APs (rows) to the
classification of the zones (columns) obtained using saliency maps in the scenario
of adding zone number 15 (column number 6), which resulted in high accuracy and
F1 score. Observing column number 6 we can notice that the most important APs
are number 4, 8 and 14. When trying to match this information to that in Figure
5.9 we notice that APs 4 and 8 are strongly connected to the node corresponding
to zone 15. Nevertheless, AP number 14 has no connection. All in all, it was not
possible to conclude an explanation that would hold true for all cases. What is
more, the relationship between these two properties (importance and connection
strength) was not always consistent; even in cases in which the classification was
accurate, the most important node was not among the ones with the strongest
connection. This gives us the hint that perhaps analyzing it from this point of
view is too simplistic and disregards existing complexities.

There are other studies that have delved into this problem [49], claiming that
graphs are problematic structures to address with a simple linear combinations of
individual contributions. For example, in our case an AP node might become
important because of its neighborhood (the other nodes it is connected with)
rather than by its connection strength. Interesting tools specifically for GNN
explainability have been developed, like GNNExplainer [49] where an optimization
approach is used to find the most influential subgraphs for each classification.
However, the implementation for heterogeneous GNNs still needs to mature in
order to be used. Explainability is part of what would be interesting to continue
exploring to better understand the results and the potential of GNNs for this kind
of scenarios.
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Figure 5.10: This matrix shows how important the different APs are in the classification of
the different zones based on saliency maps. Rows represent APs and columns represent zones
while colors represent the importance. These values correspond to the scenario of adding zone
number 15 (column 6), which resulted in high accuracy and F1 score.
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Chapter 6

Conclusions and Future Work

In this work we have presented an introduction to different techniques used to solve
the problem of indoor localization, further deepening in the Wi-Fi fingerprinting
technique. This data-driven approach opens the door to the use of machine learn-
ing models, avoiding the laborious work of estimating propagation environments
and synchronizing equipment.

In particular, we have explored the possibility of applying graph-based learning
methods, Graph Neural Networks, to the indoor localization problem. To this day
there are not many research works that use this method to approach the mentioned
problem. One of our main motivations was to understand if taking the structure
of the data and the Wi-Fi deployment into consideration, as it can be done with
GNNs, could help in achieving better results.

We have presented the necessary theoretical background, and discussed two
ways of constructing the underlying graph: the homogeneous graph and the het-
erogeneous graph. The homogeneous graph represented the APs deployment and
the corresponding homogeneous GNN aimed to generate a graph embedding to
further be classified by a MLP. In an attempt to include even more structural data
and get rid of the MLP phase, we decided to study the use of an heterogeneous
GNN and represented the data in an heterogeneous graph. This graph contains,
not only APs as the previous one, but also the zones represented as nodes. We
transformed the graph classification problem into a signal interpolation one. This
was mainly motivated by the permutation equivariance and stability properties of
GNNs.

Two datasets were used for the experimentation phase: MNAV and UJIIndoor-
Loc. Our first idea to build the graphs for these datasets was to consider neighbor
nodes based on physical distances between APs. Since we could not manage to
get all the necessary information regarding the Wi-Fi deployment related to those
datasets, the graph construction phase was not trivial. We managed to lever-
age the available training data and estimated distance relationships between APs
based on RSSI measurements.

We have then conducted a thorough performance evaluation of the homoge-
neous and heterogeneous methods, and compared them to popular methods. Re-
sults show that GNNs achieve systematically better results than previous meth-
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ods. We have furthermore evaluated the practical advantages of GNNs by running
different experiments. For instance, results show that GNNs gracefully tolerate
faulty APs by maintaining high accuracy. We also studied the performance of
GNNs when training on a small amount of data and got promising results, show-
ing that even with small amounts, such as 30% of the dataset, accuracy did not
suffer much. Lastly we evaluated the scenario of adding a new zone. We started
by evaluating the scenario on a simple graph finding that the GNN could learn to
classify new classes that were never seen at training. We then followed to evaluate
the scenario on the MNAV dataset where results were harder to understand. The
GNN performed well on some zones and could not generalize on others. Intu-
itively we can say that the zones that performed well were associated to motifs in
the graph. We aimed to explain the behavior with saliency maps but it was not
straightforward. Saliency maps gave us information of the allegedly most impor-
tant nodes involved on each classification. We tried to combine this information
with the graph’s structure information to see if they were related. Some zones had
strong relationships between both sources of information but some others did not,
even in the case that they were classified correctly. Even though results were in-
conclusive, we understand that there is theoretical background that indicates that
GNNs may be good at handling these changes and further work could be done in
this direction using more complex tools.

In any case, these results are promising and encourage further research on the
use of GNNs to approach indoor localization problems. For instance, other network
architectures may be explored (e.g. attention-based), or temporal information may
be included to the model. Also by evaluating these methods on other datasets we
could better understand some results, since some of the datasets evaluated in this
work were small. Another interesting future work would be to find a dataset that
has deployment information and be able to construct the graphs without using the
training data and compare to the results obtained by constructing the graph the
way proposed in this work. In this direction, it would be interesting to explore
other methods to build the graph, since it is not a trivial decision.

Part of the work done in this thesis was published as a paper [23] in the URU-
CON20211 conference as well as a chapter in a book that is yet to be published.

1https://www.urucon2021.org/

58

https://www.urucon2021.org/


Bibliography

[1] Paramvir Bahl and Venkata N Padmanabhan. Radar: An in-building rf-based
user location and tracking system. In Proceedings IEEE INFOCOM 2000.
Conference on computer communications. Nineteenth annual joint conference
of the IEEE computer and communications societies (Cat. No. 00CH37064),
volume 2, pages 775–784. Ieee, 2000.

[2] Chaimaa Basri and Ahmed El Khadimi. Survey on indoor localization system
and recent advances of wifi fingerprinting technique. In 2016 5th International
Conference on Multimedia Computing and Systems (ICMCS), pages 253–259.
IEEE, 2016.

[3] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and
machine learning, volume 4. Springer, 2006.

[4] Antonio Bracco, Federico Grunwald, Agustin Navcevich, Germán Capde-
hourat, and Federico Larroca. Museum accessibility through wi-fi indoor
positioning. arXiv preprint arXiv:2008.11340, 2020.

[5] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin
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