
Topological Optimization of
Fault-Tolerant Networks meeting

Reliability Constraints

Nelson Sebastián Laborde Castillo

Programa de Posgrado en Informática

Facultad de Ingeniería, PEDECIBA - Informática

Universidad de la República

Montevideo � Uruguay

Diciembre de 2020

Topological Optimization of
Fault-Tolerant Networks meeting

Reliability Constraints

Nelson Sebastián Laborde Castillo

Tesis de Maestría presentada al Programa de

Posgrado en Informática, Facultad de Ingeniería de

la Universidad de la República, como parte de los

requisitos necesarios para la obtención del título de

Magister en Informática.

Director de tesis:

Dr. Ing. Franco Robledo

Director académico:

Prof. Ing. Omar Viera

Montevideo � Uruguay

Diciembre de 2020

Laborde Castillo, Nelson Sebastián

Topological Optimization of Fault-Tolerant Networks

meeting Reliability Constraints / Nelson Sebastián

Laborde Castillo. - Montevideo: Universidad de la

República, Facultad de Ingeniería, PEDECIBA -

Informática, 2020.

XIV, 136 p.: il.; 29, 7cm.

Director de tesis:

Franco Robledo

Director académico:

Omar Viera

Tesis de Maestría � Universidad de la República,

Programa de Informática, 2020.

Referencias bibliográ�cas: p. 90 � 101.

1. Topological Network Design, 2. Network Reliability,

3. Simulation, 4. Network Optimization, 5. Backbone,

6. RVR, 7. Metaheuristics, 8. VNS. I. Robledo, Franco.

II. Universidad de la República, Programa de Posgrado en

Informática. III. Título.

INTEGRANTES DEL TRIBUNAL DE DEFENSA DE TESIS

Dr. Sebastián Basterrech (Professor VSB-Tech. University Ostrava CZ Rep. - Revisor)

Dr. Ing. Gerardo Rubino (Directeur de Recherche, INRIA/Rennes, Francia)

Dr. Ing. Raúl Ruggia (PEDECIBA Informática - Presidente de Mesa)

Montevideo � Uruguay

Diciembre de 2020

iv

(Dedicatoria) A mis Padres

Ricardo y Rosario, a mi

Hermano Santiago y a mi

Familia.

v

Agradecimentos

Quisiera agradecer a mis tutores, Dr. Ing. Franco Robledo y Prof. Ing.

Omar Viera, por el apoyo, guía y gran paciencia durante todo el proceso de

desarrollo de esta Tesis.

Agradezco la participación del Dr. Ing. Pablo Romero en el intercambio

de ideas y su colaboración en la revisión y mejora de este trabajo.

Agradezco a Ing. Sebastián Ressi e Ing. Alvaro Rivoir por su

colaboración con ideas y sugerencias, basadas en su experiencia con trabajos

previos, en la misma temática que el presente trabajo.

Agradezco profundamente el honor de tener al Dr. Sebastián Basterrech

como revisor de este trabajo.

A mi amigo y colega Ing. Julio Cesano por alentarme a inscribirme junto

a él, en el programa de Maestría PEDECIBA.

Un agradecimiento muy especial a mi familia, a mi esposa Mara y a mis

hijos Maite y Guillermo, por todo el apoyo, comprensión y motivación que me

dieron durante el desarrollo de este trabajo, el cuál está enteramente dedicado

a ellos.

vi

RESUMEN

En una red las entidades relevantes son nodos y conexiones entre nodos, y en

general el principal objetivo buscado es lograr una comunicación segura entre

nodos de esta red, ya sea para redes telefónicas y de comunicación de datos,

de transporte, arquitectura de computadores, redes de energía eléctrica o

sistemas de comando y control. La optimización relativa al costo de una red

y la con�abilidad de la misma, relacionada con la supervivencia de esta, son

los criterios predominantes en la selección de una solución para la mayor

parte de los contextos. Un tema interesante que ha atraído un gran esfuerzo

es cómo diseñar topologías de red, con un uso mínimo de recursos de red en

términos de costo que brinde una garantía de con�abilidad. A pesar que por

años el costo ha sido el factor primario, la con�abilidad ha ganado rápida-

mente en relevancia. Con sistemas de transmisión de �bra óptica de alta

capacidad formando la columna vertebral de la mayoría de las redes actuales

y junto con el rápido desarrollo de la tecnología de comunicación de redes y

el crecimiento explosivo de las aplicaciones de Internet, la con�abilidad de la

red parece cada vez más importante, tanto para áreas tradicionales como la

industria de defensa, �nanzas y energía, y áreas emergentes como la

computación con�able, la computación en la nube, internet de las cosas (IoT)

y la próxima generación de Internet, la supervivencia del trá�co por sobre los

fallos de red se ha convertido aún en más crítica. En ese sentido podemos

diferenciar, a grandes rasgos, dos de los principales problemas a resolver en el

análisis y diseño de topologías de red. Primeramente la obtención de una red

óptima en algún sentido, siendo este de�nido por ejemplo mediante la

obtención de la máxima cantidad posible de caminos disjuntos entre pares de

nodos, esto sujeto a determinadas restricciones de�nidas según el contexto.

El segundo problema es la evaluación de la con�abilidad de la red en función

de las con�abilidades elementales de los nodos y conexiones entre nodos que

componen la red. Estas con�abilidades elementales son probabilidades de

operación asociadas a los nodos y conexiones entre nodos. Ambos problemas

están fuertemente relacionados, pudiendo tener que comparar en el proceso

de búsqueda de redes óptimas la con�abilidad entre soluciones candidatas, o

vii

luego de obtener una solución candidata tener que evaluar la con�abilidad de

la misma y de esta forma descartarla o no. El presente trabajo se centra en la

resolución del problema enfocado en ambos puntos planteados. Para ello

modelamos el problema de diseño de la topología de red sobre la base de un

modelo de�nido como Generalized Steiner Problem with Node-Connectivity

Constraints and Hostile Reliability (GSP-NCHR) extensión del más conocido

Generalized Steiner Problem (GSP). El presente problema es NP-duro,
dedicamos un capítulo para presentar resultados teóricos que lo demuestran.

Nuestro objetivo es atacar de forma aproximada el modelo GSP-NCHR de

tal modo de poder resolver la optimización de la red y luego medir la

con�abilidad de la solución obtenida. Para ello optamos por desarrollar la

metaheurística Variable Neighborhood Search (VNS). VNS es un método

potente que combina el uso de búsquedas locales basadas en distintas

de�niciones de vecindad, el cual ha sido utilizado para obtener soluciones de

buena calidad en distintos problemas de optimización combinatoria. En lo

referente al cálculo de con�abilidad de la red, nuestro modelo GSP-NCHR

pertenece a la clase NP-duro, por eso desarrollamos Recursive Variance

Reduction (RVR) como método de simulación, ya que la evaluación exacta de

esta medida para redes de tamaño considerable es impracticable. Las pruebas

experimentales fueron realizadas utilizando un conjunto amplio de casos de

prueba adaptados de la librería travel salesman problem (TSPLIB), de

heterogéneas topologías con diferentes características, incluyendo instancias

de hasta 400 nodos. Los resultados obtenidos indican tiempos de cómputo

altamente aceptables acompañados de óptimos locales de buena calidad.

Palabras Clave: Diseño Topológico de Redes, Con�abilidad de Redes,

Simulación, Optimización de Redes, Red Dorsal, RVR, Metaheurísticas,

VNS.

Como resultado de esta tesis, se ha logrado la siguiente publicación: "A

GRASP/VND Heuristic for the Generalized Steiner Problem with

Node-Connectivity Constraints and Hostile Reliability" que será publicada en

"Proceedings of the 8th International Conference on Variable Neighborhood

Search (ICVNS Marzo 2021). Khalifa University, Abu Dhabi, U.A.E." Este

viii

artículo será publicado por Springer en "Lecture Notes in Computer Science

(LNCS) series."

ix

ABSTRACT

The relevant entities in a network are its nodes, and the links between them.

In general, the goal is to achieve a reliable communication between di�erent

pairs of nodes. Examples of applications are telephonic services, data

communication, transportation systems, computer systems, electric networks

and control systems.

The predominant criterion for the design of a reliable and survivable

system is the minimum-cost in most contexts. An attractive topic for

research is to consider a minimum-cost topological optimization design

meeting a reliability threshold. Even though the cost has been the primary

factor in the network design, recently, the network reliability has grown in

relevance. With the progress of Fiber-To-the-Home (FTTH) services for the

backbone design in most current networks, combined with the rapid

development of network communication technologies, and the explosive

increase of applications over the Internet infrastructure, the network

reliability has supreme importance, for traditional communication systems

but for the defense, business and energy, and emergent �elds such as trusted

computing, cloud computing, Internet of Things (IoT) and Next Generation

Networks (NGN), the fault tolerance is critical.

We can distinguish two main problems to address in the analysis and

design of network topologies. First, the robustness is usually met under

multi-path generation. Therefore, we require certain number of node-disjoint

paths between distinguished nodes, called terminals. The second problem is

to meet a minimum-reliability requirement in a hostile environment, using

the fact that both nodes and links may fail. Both problems are strongly

related, where sometimes the minimum-cost topology already meets the

reliability threshold, or it should be discarded, and the design is challenging.

This thesis deals with a topological optimization problem meeting

reliability constraints. The Generalized Steiner Problem with

Node-Connectivity Constraints and Hostile Reliability (GSP-NCHR) is

introduced, and it is an extension of the well-known Generalized Steiner

Problem (GSP). Since GSP-NCHR subsumes the GSP, it belongs to the class

of NP-Hard problems. A full chapter is dedicated to the hardness of the

GSP-NCHR, and an analysis of particular sub-problems. Here, the

GSP-NCHR is addressed approximately. Our goal is to meet the topological

x

requirements intrinsically considered in the GSP-NCHR, and then test if the

resulting topology meets a minimum reliability constraint.

As a consequence a hybrid heuristic is proposed, that considers a Greedy

Randomized construction phase followed by a Variable Neighborhood Search

(VNS) in a second phase. VNS is a powerful method that combines local

searches that consider di�erent neighborhood structures, and it was used to

provide good solutions in several hard combinatorial optimization problems.

Since the reliability evaluation in the hostile model belongs to the class of

NP-Hard problems, a pointwise reliability estimation was adopted. Here we

considered Recursive Variance Reduction method (RVR), since an exact

reliability evaluation is prohibitive for large-sized networks.

The experimental analysis was carried out on a wide family of instances

adapted from travel salesman problem library (TSPLIB), for heterogeneous

networks with di�erent characteristics and topologies, including up to 400

nodes. The numerical results show acceptable CPU-times and

locally-optimum solutions with good quality, meeting network reliability

constraints as well.

Keywords: Topological Network Design, Network Reliability,

Simulation, Network Optimization, Backbone, RVR, Metaheuristics,

VNS.

As product of this thesis, the following publication has been achieved: "A

GRASP/VND Heuristic for the Generalized Steiner Problem with

Node-Connectivity Constraints and Hostile Reliability" to be published in

the "Proceedings of the 8th International Conference on Variable

Neighborhood Search (ICVNS March 2021). Khalifa University, Abu Dhabi,

U.A.E. The article will be published by Springer in the Lecture Notes in

Computer Science (LNCS) series."

xi

Contents

Acronyms xii

1 Introduction 3

1.1 Context . 3

1.2 Problem . 4

1.3 Goals . 5

1.3.1 General Goal . 5

1.3.2 Speci�c Goals . 5

1.4 Expected Results . 6

1.5 Methodology . 6

1.6 Conclusions . 7

1.7 Structure of this Thesis . 8

2 Background 10

2.1 Concepts on Network Optimization 10

2.2 Graph-Theoretic Terminology 12

3 Problem De�nition 14

3.1 Motivation . 14

3.2 Choosing a Metaheuristic . 16

3.3 Choosing a Reliability Evaluation Method 16

3.4 Problem Formulation . 17

4 Problem and Analysis 19

4.1 Model . 19

4.2 Hardness . 21

4.3 Special Sub-Problems . 21

xii

4.4 Minimum-Weight k-Connected Spanning Networks with Relia-

bility Constraints . 33

4.4.1 MWKECSNP ILP Formulation based on Bienstock

Theorem . 34

4.4.2 Particular case k = 2 . 40

5 Related Work 43

5.1 Topological Network Design . 43

5.2 Network Reliability . 47

6 Algorithms 50

6.1 Network-Design . 51

6.2 Construction . 52

6.3 Local Search . 54

6.3.1 Local Search 1: KeyPathLocalSearch 55

6.3.2 Local Search 2: KeyTreeLocalSearch 57

6.3.3 Local Search 3: SwapKeyPathLocalSearch 58

6.4 Variable Neighborhood Search (VNS) 60

6.5 Recursive Variance Reduction (RVR) 63

7 Results 70

7.1 Introduction . 70

7.2 Description of the Test-Set . 71

7.3 Numerical Results . 74

7.3.1 Resulting Topologies . 77

7.4 Key Questions . 81

8 Conclusions 86

9 Future Work 88

Bibliography 90

10 Appendix 102

10.1 Feasibility - Local Search Phase 102

10.2 Feasibility - Construction Phase 106

10.3 Graphical Tools . 110

10.4 Validation Tests . 115

xiii

10.4.1 Greedy Construction . 116

10.4.2 Local Search . 119

10.4.3 RV R . 129

List of Figures 135

xiv

Glossary

� GSP: Generalized Steiner Problem.

� GSP-NC: GSP with Node-Connectivity Constraints.

� GSP-EC: GSP with Edge-Connectivity Constraints.

� GSP-NCHR: GSP with Node-Connectivity Constraints and Hostile

Reliability.

� GSP-ECHR: GSP with Edge-Connectivity Constraints and Hostile

Reliability.

� SNDP: Survivable Network Design Problem.

� GSNDP: Generalized Survivable Network Design Problem.

� GNDP: Generalized Network Design Problem.

� VCSNDP: Vertex Connectivity Survivable Network Design Problem.

� SN-MSP: Survivable Network with Minimal Steiner nodes Problem.

� SMT: Steiner Minimal Tree.

� MCSP: Minimal Connected Sub Graph Problem.

� MST: Minimum Spanning Tree.

� TSP: Travel Salesman Problem.

� BNDP: Backbone Network Design Problem.

� KSP: K Shortest Paths.

� WAN: Wide Area Network.

� IP: Internet Protocol.

� MPLS: Multiprotocol Label Switching.

� ZDD: Zero Decision Diagram.

� CMC: Crude Monte Carlo.

� RVR: Recursive Variance Reduction.

� RNN: Random Neural Network.

� SMBS: Stochastic Monotone Binary System.

1

� GRASP: Greedy Randomized Adaptive Search Procedure.

� IoT: Internet of Things.

� GA: Genetic Algorithm.

� RL: Relocation Heuristics.

� VNS: Variable Neighborhood Search.

� ILS: Iterated Local Search.

� TS: Tabu Search.

� VND: Variable Neighborhood Descent.

� VNDS: Variable Neighborhood Decomposition Search.

� BVNS: Biased Variable Neighborhood Search.

� PVNS: Parallel Variable Neighborhood Search.

2

Chapter 1

Introduction

1.1 Context

This thesis is developed for the Master in Informatics, under the Program for

the Development of Basic Sciences (PEDECIBA), and Universidad de la

República (UdelaR). This work is developed under the framework of a more

general network planning project for modern communication networks. This

is generally a complex and demanding task, which is accomplished by

optimization as a main tool, and combines a quantitative analysis and

evaluation as a primary element in the cycle of optimization. In this thesis,

we wish to develop a research activity that includes the design of

highly-reliable massive telecommunication networks. Given the previous

experience in this �eld, it is essential to assist on decision-making, which is

extremely useful for the design of �ber-optics communications.

The information revolution shocked the world during the XX and XXI

centuries, and it represents one of the most relevant revolutions in history.

The impact was even greater when sharing digital information, allowing

cooperation and convergence between both technologies and people. At the

beginning, telephonic networks1 were considered to satisfy the data

communication needs. Currently, the situation is much di�erent, and data

networks were adapted to pursue di�erent goals, normally by means of

service integration and tra�c needs. The data networks allow the multiple

convergence of di�erent communication technologies permanently, even when

the original deployment has more than a century. The interconnection allows

1Network: it can be considered as a set of nodes and a set of links between them.

3

hub, storage and centrality of information that is sparse among distinct

continents. As a result, jobs, e-commerce, business and other routine

activities are speed-up, and a great variety of on-line services are available

anytime and anywhere, with anything at hand (i.e., a cell-phone). The

network design task, combining di�erent tra�c and services, among many

other factors, is not easy at all, but the contrary. This task is complex, and

the design, network dimensioning and optimization2 represents hard decisions

to make. This complex task must be simultaneously accomplished with the

development of a network topology3 that meets a speci�c reliability

threshold4 suitable for the context. A large number of sites with di�erent

characteristics are interconnected during the network design, in order to meet

a pre-established reliability bound at the minimum cost.

The goal in every topological design5 is to adapt the technological

requirements from the context as much as possible, meeting the budget

constraints imposed by the project (which implies the cost of infrastructure

but also factors related with an expected quality of service). In this work we

address a topological design of highly-reliable networks6, adding di�erent

optimization phases by means of quantitative evaluations in order to

determine if the desired reliability parameter is achieved.

1.2 Problem

During the �rst phase of this thesis, a literature review was performed. As a

result, we de�ned the problem under study with the following two items:

� Given a network where the potential link-costs are known, design a

minimum-cost network meeting predetermined connectivity and

reliability constraints (inputs of the problem).

� Perform a quantitative analysis of the results, in terms of cost.

2Optimization: a �eld of mathematics that assists on decision making, by means of a
minimization/maximization of a quantity, using a speci�c criterion.

3Network Topology: physical con�guration in which nodes are interconnected in a net-
work.

4Reliability: the probability of correct operation of a system on given conditions during
a speci�c period of time.

5Topological design: stage of the network planning process which consists in the physical
location of the network components and their interconnections.

6Structural Reliability: probability of correct operation of a system, given the occurrence
of failures on the network components.

4

In this context, it is relevant to dispose of methods for the topological

network design meeting certain connectivity requirements (i.e., two

node-disjoint paths between nodes) and simultaneously, some network

reliability requirement (measured in probabilistic terms) exceeding a

prede�ned threshold (problem data). The problem involves a mixture of

structural reliability and topological survivability7 of a network. In a �rst

phase, a literature review is performed and, in a second phase, di�erent

solutions to the problem are proposed. The third phase is the

implementation of the selected methodology. Finally, in the fourth phase, an

experimental analysis is carried out to measure quantitatively the quality of

the solution obtained following the designed methodology, and to determine,

if possible, how good are the returned solutions.

1.3 Goals

1.3.1 General Goal

Develop a heuristic8 whose result is the design of a network topology (i.e.,

associated graph) meeting connectivity requirements between pairs of nodes

(problem data) and a minimum reliability threshold (problem data). Answer

key-questions, in order to understand the interplay between topological

survivability and structural network reliability.

1.3.2 Speci�c Goals

The author of this thesis is proposed to perform an in-depth study of the

concepts of Structural Reliability and Topological Survivability. A speci�c

goal is to get skills in network reliability and planning, particularly on the

topological design of strategic complex networks with critical/relevant

applications [59]. Learn network planning tools and how to implement

e�cient algorithms to tackle NP-Hard problems9, such as the problem

addressed in this thesis.

7Topological survivability: is to accomplish certain network connectivity levels.
8Heuristic: method and exploratory algorithms for the resolution of problems, where the

solutions are discovered as a result of the progress achieved during a search.
9NP-Hard: so far, these problems cannot be solved e�ciently (in polynomial-time with

respect to the size of the input).

5

1.4 Expected Results

Macroscopically, it is expected to o�er a methodology that serves as a base-step

for decision-making in the development of fault-tolerant telecommunication

networks. This is typically the case of a backbone network design10 of a Wide

Area Network (WAN), (i.e., Internet). In order to meet these objectives, the

following tasks should be performed:

� Understand the mathematical model associated to the problem to solve.

� Perform a literature review.

� Get a better insight of the following concepts:

� Topological network survivability.

� Structural network reliability.

� Explore di�erent approaches to propose an approximate solution.

� Select and implement a solution.

� Measure the quality of the results obtained.

1.5 Methodology

In a previous stage to the development of a solution for the problem, the

author performed a literature review, understanding the main concepts and

related �elds of knowledge. As far as I know, the object under study in this

thesis is novel. I can �nd a scarce number of close problems from the

scienti�c literature. In fact, the closest works from the literature either deal

with network reliability, or network optimization independently, but not

both. The �rst stage of this project is focused on understanding the problem

and propose a formal (mathematical programming) de�nition. Given that,

the problem under study belongs to the NP-Hard class, an exact evaluation

algorithm is prohibitive for large networks. As a consequence, a

metaheuristic is adopted. In terms of the optimization problem, several

metaheuristics were studied to potentially address the problem11. Among

those metaheuristics we can �nd GRASP [78, 92, 91] and its particular

version for GSPNC [23, 96], Genetic Algorithms [4, 78], Tabu Search [78, 76],

10Backbone: is the skeleton or main core of a network.
11Metaheuristic: particular heuristics that serve as a template to solve a very large class

of computational problems.

6

Variable Neighborhood Search or VNS [53, 50, 52] and Iterated Local Search,

or ILS [78, 70, 69]. The selection of a metaheuristic provides opportunities to

use a powerful and �exible tool, that can be easily combined with hybrid

method or speci�c heuristics suitable for the problem. Once analyzed and

understood a variety of potential metaheuristics for our network optimization

problem (the construction phase of our topological network design), the

decision was to adopt VNS. This metaheuristic is based on a simple principle:

a systematic variation of neighborhood structures during the search. The

accuracy to switch neighborhood structures is essential. VNS has shown its

e�ectiveness by means of several experiments showing equal or better results

than most metaheuristics for a great variety of combinatorial optimization

problems, which makes this selection attractive.

Analogously, for the stage of network reliability analysis, di�erent

evaluation techniques were studied. An exact network reliability evaluation

belongs to the class of NP-Hard problems, for our hostile model of

simultaneous links and node-failures. Therefore, simulation methods were

considered12, such as Crude Monte Carlo, or CMC [75] and Recursive

Variance Reduction or RVR [21, 23, 18]. Even though Crude Monte Carlo

proposed an unbiased reliability estimation, this technique is not suitable for

highly reliable scenarios, since it does not satisfy the property of bounded

relative error. An outstanding method for variance reduction is RVR, which

was selected in this thesis. The implementation is not trivial, but there is

both, practical and theoretical evidence that RVR presents much reduced

variance than CMC [16]. In practice, RVR is suitable for the reliability

estimation on large networks, even under highly reliable scenarios [64].

1.6 Conclusions

In this thesis we study the topological design of highly-reliable networks,

tackling two sub-problems clearly identi�ed: the network optimization

problem and the minimum network reliability requirements. The network

optimization problem is here addressed using metaheuristics, since it is an

NP-Hard problem [47, 116, 97], and therefore, the application of exact

methods is prohibitive in terms of computational time, even for networks

12Simulation: is to perform repetitions of a model under a �xed assumption.

7

with small and moderate size. For that reason, we decided to adopt Variable

Neighborhood Search, (VNS). The reasons to support this decision will be

exposed in Chapter 3. In terms of the network reliability evaluation method,

simulation methods are used, since exact reliability evaluation methods are

also prohibitive. The Recursive Variance Reduction (RVR) method was

selected for the pointwise reliability estimation in our hostile environment of

simultaneous link/node failures. The reasons to select RVR are also discussed

in Chapter 3. We do not have access to public benchmark data for our

network optimization problem13 in order to compare the quality of the

results, having to simulate network test instances. Nevertheless, the

CPU-times are acceptable, and the returned solutions are locally-optimal,

with good quality in terms of costs reduction. It is worth to note that the

related literature from the scienti�c community is scarce, and the problem

under study is novel.

1.7 Structure of this Thesis

This thesis is organized in the following manner. Chapter 1 serves as an

introduction, and contains the motivation of this thesis, some elements of the

problem under study and comments on the selected methodology for its

resolution. Chapter 2 presents the terminology that will be used throughout

this thesis. A description of the problem and reasons to select VNS and RVR

as the building-blocks of our resolution is provided in Chapter 3. Chapter 4

formally presents the Generalized Steiner Problem with Node-Connectivity

Constraints and Hostile Reliability (GSP-NCHR) with a mathematical

programming formulation. Its NP-Hardness is established, and particular

cases are also discussed. The related work for the selected resolution methods

is covered in Chapter 5. Full details of the algorithmic resolution is presented

in Chapter 6. The experimental tests together with a quantitative analysis of

the results is included in Chapter 7. Chapter 8 presents Concluding remarks,

and Chapter 9 points out trends for future work and possible research �elds

that extend or complement this thesis. An Appendix is devoted to validation

tests, some special procedures involved in the algorithmic design and a

visualization tool for graphs that is also a product of this thesis. In order to

13Benchmark: technique used to measure the performance of a system or part of it,
commonly in relation with a parameter of reference.

8

experimental reproducibility the source code, data testset and other

materials are available at https://github.com/slaborde/NetworkDesign

9

https://github.com/slaborde/NetworkDesign

Chapter 2

Background

This chapter includes the basic terminology from Network Optimization,

Complexity and Graph Theory that will be used throughout this thesis. The

reader is invited to consult the books [54, 34, 75, 95] for additional

terminology.

2.1 Concepts on Network Optimization

1. Graph: a set of nodes and links between them. The links could be

directed; in that case we have a directed graph.

2. Network : a weighted graph, where the weight is a function on the nodes

and/or links that represent either costs, capacities or probabilities.

3. Backbone: is the skeleton or main core of a network. A �xed network

could have more than one backbone (i.e., Internet).

4. Reliability : is the probability of correct operation of a system.

5. Topological Design: stage of the network planning process, which consists

of the location of the network components and their interconnections.

6. Survivability : is the ability of a system, sub-system, equipment, process

or procedure of its correct functioning during and after an alteration.

7. Topological Survivability : is to meet certain network connectivity levels

of the network. It is precisely the existence of a pre-established number

of node-disjoint (or link-disjoint) paths between every pair of terminal

nodes.

8. Heuristic: exploration methods or algorithms to solve problems, where

the solutions are discovered by the evaluation of the progress achieved

10

during the search of a �nal result. Even though the exploration is

algorithmic, an evaluation is empirical. They are normally employed to

address hard combinatorial optimization problems, and trade

optimality for computational feasibility.

9. Metaheuristic: particular heuristics that serve as a template to solve a

very large class of computational problems.

10. Optimization: maximization of an objective function (e.g., gains,

velocity, e�ciency, others), or minimization (e.g., cost, time, risk, error,

others) subject to a feasible set of one or multiple constraints. The con-

straints mean that not every decision (solution) is feasible. In systems

engineering, an optimization process implies the enhancement of a

system, with the available resources (bandwidth, CPU, memory, etc.).

11. Combinatorial Optimization: an optimization problem where the feasible

set is �nite.

12. Locally-optimum solution: best solution in a set of neighbor solutions.

13. Globally-optimum solution: best solution in the solution feasible set 1.

14. NP : is the set of decision problems that can be solved in polynomial-

time by a non-deterministic Turing machine.

15. NP-Hard: the set of problems H such that every problem L ∈ NP can

be reduced to H in polynomial-time. An NP-Hard problem is at least

as hard as any problem in the class NP . In fact, if we solve a problem

from the class NP-Hard, then we can solve all the problems from the

NP class.

16. NP-Complete: the set of NP decision problems that belong to the NP-
Hard class. This class represents the hardest decision problems belonging

to the NP-class.
17. Simulation: repetitive experimentation with a model with a �xed

hypothesis.

18. Greedy Algorithm: iteratively picks the cheapest item, in order to build

the best solution of a combinatorial optimization problem. In most

cases, Greedy does not �nd the globally-optimum solution, but a good

approximation.

19. Neighborhood : a set of solutions that include a speci�c member x. We

1Is the set of all possible points (sets of values of the choice variables) of an optimization
problem that satisfy the problem's constraints, potentially including inequalities, equalities,
and integer constraints.

11

can freely use these neighborhood, meeting the following clauses:

� x belongs to all its neighborhoods.

� A set that contains a neighborhood of x is also a neighborhood.

� The intersection of two neighborhoods of x is also a neighborhood.

� For every neighborhood V of x, there exists another neighborhood

U of x such that V is a neighborhood of all the points of U .

2.2 Graph-Theoretic Terminology

In this section we present basic graph-theoretic terminology that will be used

throughout this thesis [96].

1. Adjacency : two nodes u and v are adjacent if the link {u, v} belongs to
the graph. In directed graphs the order matters, and we denote (u, v)

to the ordered pair. We also say that the link {u, v} is adjacent to both

nodes u and v.

2. Degree: the degree d(v) of a node v is the number of adjacent links to v.

A node is isolated if it has degree 0.

3. Induced graph: given a graph G = (V,E) and a set U ⊆ V , the induced

graph G(U) denotes the graph in the node-set U , with those links from

G whose extremes are included in U .

4. Path: non-empty graph P = (V,E) such that V = {v1, . . . , vk} and

E = {(v1, v2), (v2, v3), . . . , (vk−1, vk)}. The nodes v1 and vk are connected
by P , and v1 and vk are the extremes of P . The remaining nodes are

internal nodes.

5. Cycle: given a path P = {v1, . . . , vk}, the graph C obtained by the

concatenation between P and {vk, v1} is a cycle.

6. Node-Disjoint Path: two paths p and q are node-disjoint if p ∩ q =

{v1, vk}, being v1 and vk the extremes of both p and q. A generalization

for multiple disjoint paths is straight.

7. Independent Paths : two paths p1 and pk are independent if p1 ∩ pk = ∅,
this is, p1 and pk do not share nodes in common.

8. Subgraph: given a graph G = (V,E), H = (V ′, E ′) is a subgraph of G if

V ′ ⊆ V , E ′ ⊆ E and ∀(u, v) ∈ E ′, u, v ∈ V ′.

12

9. Connected Graph: a graph G = (V,E) is connected if for each pair of

nodes u, v ∈ V there exists a path that connects u and v in G.

10. Tree: a graph G = (V,E) is a tree if it is connected and for all the links

e ∈ E, the graph G′ = (V,E \ {e}) is not connected.
11. Spanning Tree: given a connected graph G = (V,E), a subgraph H =

(V,E ′) is a spanning tree if H is connected and for all the links e ∈ E ′,
H ′ = (V,E ′ \ {e}) is not connected.

12. k-Node Connectivity : a graph G = (V,E) is k-node connected if for all

u, v ∈ V , there exist at least k node-disjoint paths in G that connect

them.

13. Terminal nodes : a distinguished node-set T that belongs to the

backbone are called terminal-nodes or �xed nodes. These nodes

generally correspond to access points in the local networks.

14. Matrix with the connectivity requirements : R = {ri,j}i,j∈T is a matrix

that stores, for every pair of terminal nodes i, j ∈ T , a non-negative

integer ri,j. The requirement ri,j means that we must construct ri,j node-

disjoint paths between the terminal nodes i and j.

15. Backbone Network Design Problem (BNDP): given a network GB

equipped with a terminal-set T , �nd the minimum-cost network

HB ⊆ GB that meets the connectivity requirements R for the

terminal-nodes T .

16. Key-node: consider a feasible solution Gsol that meets the connectivity

requirements R. A key-node is a non-terminal node v ∈ V , whose degree
d(v) is three or greater.

17. Key-path: consider a feasible solution Gsol that meets the connectivity

requirements R. A key-path is a path belonging to Gsol, such that the

internal nodes are non-terminal nodes with degree 2, and whose extremes

are either terminals or key-nodes.

18. Key-tree: consider a feasible solution Gsol that meets the connectivity

requirements R, and v ∈ Gsol a key-node. The key-tree rooted at v is

the tree composed by all the key-paths belonging to Gsol where v is one

of the extremes. Topologically, this is a set of key-paths that share a

key-node as a common extreme.

13

Chapter 3

Problem De�nition

3.1 Motivation

Recently, the traditional design of copper lines, the redundancy and

survivability 1 were not consider a relevant issue. This is due to the fact that

multiple routes were mandatory, given the limited capacity of copper lines.

For instance, several central sites were required, commonly called gateway 2.

As a consequence, the communication networks were not originally deployed

in order to have enough robustness under single point of failures, or failures

on the network sites. The arrival of �ber-optics communication and its high

capacity brought sparse networks. The network design is more relevant, and

requires a smart engineering. In particular, it must be fault tolerant and

highly reliable. In telephonic services, we are only interested in the network

topology. In this case the network is a set of nodes or o�ces and �ber-optics

that interconnect them. The survivability is the existence of a pre-established

number of node-disjoint paths [55]. In practice, a low-cost network is �rst

deployed, and an optimization process takes place, where the costs are

considered (either routing or tra�c costs). In a telephonic service, the o�ces

are classi�ed according to their importance in the following way:

� Special o�ces or terminals, meeting a high survivability level.

� Ordinary o�ces, that should be simply connected to the network, and

� Optional o�ces, that could be included or not in the network.

1Survivability: is the ability of a system, sub-system, equipment, process or procedure of
its correct functioning during and after an alteration.

2Gateway: in a communication network, a gateway is a network element equipped in
order to interact with other networks using di�erent protocols.

14

It is known the pair of o�ces that accept a potential link, with a

corresponding cost between them. The problem can be summarized in the

selection of potential �ber-optics links that should be deployed in order to

meet survivability aspects at the minimum cost, such that:

� The elimination of a single link does not disconnect two terminals.

� The elimination of a single o�ce does not disconnect two special o�ces

or terminals.

Topologically, this is to build two node-disjoint paths between the terminal

nodes. A major re�nement could establish three or more node-disjoint paths

between some terminals, increasing the level of survivability under potential

disasters or multiple node failures and/or link-cuts. This example can be

easily extended to other context with similar characteristics, and summarizes

the basis for the �rst phase of the problem under study in this thesis. A

metaheuristic serves as a template or a generic framework 3 to solve a wide

variety of hard combinatorial problems. A construction algorithm is needed

to address a minimum-cost network design meeting connectivity requirements.

Here, a metaheuristic is also considered for optimization, that will be discussed

in Section 3.2.

In the previous example of a telephonic service, let us assume that each

network component (nodes and links) have an associated elementary reliabil-

ity (operational probability), which is known. We want to determine the

network reliability for the topology that results from the �rst optimization

phase. The goal in this second phase is that the resulting topology meets a

certain reliability threshold established for the network operator or user. For

that purpose, it is necessary to consider an algorithm to �nd the reliability

measure for a given network. This topic is discussed in Section 3.3.

The �nal solution simultaneously solve both phases, using a multi-start

optimization process followed by quantitative network reliability evaluations

to determine if the networks meets the reliability threshold.

3Framework: in software development a framework is a structure in which another soft-
ware projects can be organized and developed.

15

3.2 Choosing a Metaheuristic

There is a large class of potentially useful metaheuristic to address the

problem at hand. After an analysis of possible metaheuristics, Variable

Neighborhood Search (VNS) was selected. Why VNS?

The decision is not only based on a variety of metaheuristics that are

potentially applicable to solve a speci�c problem, or if there is controversy for

a particular context. This approach not only shortens the decision, but also

makes it di�cult, since commonly there is not available information to

perform the correct decision. The �rst step is to consider the desirable

qualities of a metaheuristic, and determine if these qualities are met. In this

sense, VNS is based on a simple principle, not yet deeply explored, which is

the systematic variation of neighborhood structures during the search. The

accuracy to switch the di�erent structures is crucial. Its e�ectiveness has

been tested over di�erent combinatorial problems and experiments, showing

equal or better results than most metaheuristics, and faster. VNS has

reached optimality or almost optimality in several datasets of a wide variety

of problems, with moderate or reasonable CPU-times [55]. A possibility is to

�nd extensions to this metaheuristic [53, 50, 52] or adding VNS to other

metaheuristics, obtaining a hybrid proposal. Even though this is not the

main goal of this thesis, a �exible algorithmic design is delivered in the

search of a solution, and it could enrich the possibilities of future work.

GRASP and VNS are powerful methodologies that were widely used. These

metaheuristics are very e�cient, being excellent methods to address

NP-Hard combinatorial problems related with telecommunications.

3.3 Choosing a Reliability Evaluation Method

An essential part of this thesis is to de�ne a network reliability measure, given

a topology and the elementary reliabilities of its components. Here we consider

the hostile network reliability model, where both links and Steiner (optional)

nodes 4 fail independently. The exact reliability evaluation belongs to the

class of NP-Hard computational problems. As a consequence, there are exact

methods that run in exponential time, or approximative methods. Given the

4Non terminal nodes belonging to V-T.

16

hardness of the underlying model, an exact method is prohibitive for large-sized

instances. Several Monte Carlo based simulation methods are available in the

literature. The simplest approach is Crude Monte Carlo (CMC)[41], where

the goal is to pick independent replicas of the system and take decisions on it,

based on an averaging of observations. Even its simplicity, it is not suitable for

highly-reliable systems, which is the target of this thesis. CMC is unbiased, but

its mean square error (i.e., its variance) is large under rare-event scenarios. An

alternative is Recursive Variance Reduction (RVR) method [75, 21, 18]. This

method is selected since RVR is also unbiased, and presents smaller variance

than CMC. This property has been proved experimentally and mathematically

as well [21, 23, 18]. Furthermore, RVR is suitable for a large variety of models,

such as Stochastic Monotone Binary Systems (SMBS) 5, and our hostile model

belongs to this family[14, 19].

3.4 Problem Formulation

The object under study in this thesis is a combinatorial optimization

problem, that promotes an interplay between network reliability and

topological network design. The problem is called Generalized Steiner

Problem with Node-Connectivity Constraints and Hostile Reliability, and we

will use the acronym GSP-NCHR for short:

De�nition 1 (GSP-NCHR). Given a simple undirected graph G = (V,E), a

set of distinguished nodes T ⊆ V (called terminals), a matrix with link-costs

{ci,j}(i,j)∈E and a matrix with connectivity requirements R = {ri,j}i,j∈T .
Further, we assume that the links may fail, and the elementary reliabilities

are PE = {pe}e∈E, and Steiner nodes belonging to V − T also have an

elementary reliability PV−T = {pv}v∈V−T . Given a reliability threshold pmin,

the goal is to build a minimum-cost topology GS ⊆ G meeting both the

connectivity requirements R and the reliability threshold: RK(GS) ≥ pmin,

being K = T the terminal-set.

The following notation is used in the de�nition of the GSP-NCHR:

� {ci,j}(i,j)∈E is a matrix that returns the link-cost ci,j for all (i, j) ∈ E.
5SMBS is a mathematical model of multi-component on-o� systems subject to random

failures. This model is an extension of network reliability models (where the components
are either nodes or links).

17

� R = {ri,j}i,j∈T is a matrix with the connectivity requirement between

di�erent pairs of terminals. Speci�cally, the positive integer ri,j denotes

the number of node-disjoint paths between the terminals i, j ∈ T that

are required in the solution.

� RK(GS) denotes the probability that the random graph GS spans the

terminal set K = T , where both links and Steiner nodes may fail with

respective probabilities PE and PV−T . Throughout this thesis we will

consider the terminal-set as K = T , unless stated otherwise. This model

is known in the literature as the hostile network reliability model.

It is worth to note that node-disjoint paths are required in the GSP-NCHR.

If edge-disjoint paths are required instead, we consider the alternative GSP-

ECHR. The main goals of this thesis is to answer the following key-questions:

1 How many feasible networks there exists given the full probabilistic model

(pmin, PE, PV−T)?

2 What is the sensibility of the model with respect to the elementary

reliabilities? For instance, for any given threshold (pmin = 0.98), what

happens if we �x pv = 0.99 but we pick di�erent values for the

elementary link reliabilities pe ∈ {0.99, 0.97, 0.95}? How many feasible

networks survive? Analogously, if we �x pe = 0.99 and

pv ∈ {0.99, 0.97, 0.95}.
3 How many networks survive on average, for any given probabilistic

model? Understand the sensibility of the model with respect to the

connectivity requirements ri,j ∈ {2, 3, 4}.
4 Is it better to improve the elementary reliability of links, or the reliability

of Steiner nodes, in order to meet a demanding reliability threshold?

Currently, there is no polynomial-time algorithm to test whether a given

network meets a minimum reliability threshold. Given the hardness of this

decision problem, we will consider a relaxation for the GSP-NCHR without

reliability constraint during the �rst phase of this thesis. In fact, in order

to answer the key-questions, we will produce a full-algorithm to solve the

relaxed GSP-NCHR, that is called GSP-NC. In a second phase of this thesis,

we will count the number of feasible solutions returned by our algorithm for the

general GSP-NCHR. This phase considers a pointwise reliability estimation

method called Recursive Variance Reduction (RVR). Chapter 4 provides a

formal de�nition of both problems.

18

Chapter 4

Problem and Analysis

In this chapter, the problem under study is formalized by means of a

combinatorial optimization problem. Its hardness is established. Particular

sub-problems are brie�y discussed.

4.1 Model

Given an instance (G,C,R, T, PE, PV−T , pmin) for the GSP-NCHR, where G

is the ground graph, C = {ci,j}(i,j)∈E is the matrix with the link-costs, R =

{ri,j}i,j∈T is the matrix with connectivity requirements between terminal nodes

T ⊆ V , PE the elementary reliabilities of the links, PV−T the reliability of

Steiner (optional) nodes and pmin is the reliability threshold. The goal is

to �nd the minimum-cost subgraph GS ⊆ G meeting both the connectivity

requirements R and the reliability threshold RK(GS) ≥ pmin, being K = T

the terminal-set. Consider three sets of decision variables:

yu,v(i,j) =

{
1 if(i, j) ∈ E is used in a path u− i− j − v
0 otherwise

x(i,j) =

{
1 if(i, j) ∈ E is used in the solution

0 otherwise

x̂i =

{
1 if the Steiner node i ∈ V − T is used in the solution

0 otherwise

In this thesis, we introduce the GSP-NCHR as the following combinatorial

optimization problem:

19

min
∑

(i,j)∈E

ci,jxi,j

s.t. xij ≥ yu,v(i,j) + yu,v(j,i) ∀ (i, j) ∈ E, ∀u, v ∈ T, u 6= v

(4.1)∑
(u,i)∈E

yu,v(u,i) ≥ ru,v ∀u, v ∈ T, u 6= v (4.2)

∑
(j,v)∈E

yu,v(j,v) ≥ ru,v ∀u, v ∈ T, u 6= v (4.3)

∑
(i,p)∈I(p)

yu,v(i,p) −
∑

(p,j)∈I(p)

yu,v(p,j) ≥ 0, ∀p ∈ V − {u, v}, ∀u, v ∈ T, u 6= v (4.4)

∑
(s,i)∈E

xs,i ≤Mx̂s, ∀s ∈ V − T (4.5)

RK(GS({xij})) ≥ pmin (4.6)

x(i,j) ∈ {0, 1} ∀(i, j) ∈ E (4.7)

x̂i ∈ {0, 1} ∀i ∈ V − T (4.8)

yu,v(i,j) ∈ {0, 1} ∀(i, j) ∈ E, ∀u, v ∈ T, u 6= v (4.9)

The objective is to minimize the global cost of the solution. The set of

Constraints (4.1) state that links are one-way. The connectivity requirements

are expressed by means of Constraints (4.2) and (4.3). Constraints (4.4)

represent Kirchho� law, or �ow conservation [42]. Constraints (4.5) state

that an incident link to a Steiner node can be used only if the Steiner node is

considered in the solution. Observe that M is a large real number; M = |E|
can be used in the model without loss of generality. The minimum reliability

threshold is established with Constraint (4.6) which denotes the subgraph

induced by decision variables {xij}(i,j)∈E. Finally, the set of constraints

(4.7-4.9) state that all the decision variables belong to the binary set {0, 1}.
All these constraints are important because we want robust networks where

reliability exceeds a pre-established minimum threshold, not only want

robustness by guaranteeing disjoint paths between pairs of terminal nodes.

20

4.2 Hardness

In this section, we show that the GSP-NCHR belongs to the class

of NP-Complete problems. Recall that the Generalized Steiner Problem

(GSP) already belongs to this class:

De�nition 2 (Generalized Steiner Problem). Given an undirected graph G =

(V,E) and a matrix with link-costs C = {ci,j}(i,j)∈E, a terminal-set T ⊆ V and

a matrix with requirements R = {ri,j}i,j∈T , the goal is to �nd the minimum-

cost subgraph GS ⊆ G such that every pair of terminals i, j ∈ T is connected

by at least ri,j disjoint paths.

If we consider the GSP with T = V and ri,j = 2 for all i, j ∈ V , the

minimum-cost is not greater than n = |V | if and only if G has a Hamiltonian

Tour. Since Hamiltonian tour belongs to Karp list of NP-Complete

problems [58], then GSP is NP-Hard. Further, the GSP also belongs to the

NP set [116], since both the feasibility can be accomplished by Menger

theorem [36], and the cost of a feasible solution is found in an additive

manner. Therefore, the GSP belongs to the class of NP-Complete problems.

Theorem 1. The GSP-NCHR belongs to the class of NP-Hard problems.

Proof. Consider an arbitrary instance (G,C,R, T) of the GSP. Consider the

instance (G,C,R, T, PE, PV−T , pmin), where the probabilities are trivially

selected as pe = 0,∀e ∈ E, pv = 1,∀v ∈ V − T , and pmin = 1. It is straight to

see that the mapping π : (G,C,R, T) → (G,C,R, T, PE, PV−T , pmin) can be

accomplished in polynomial-time, and, by inclusion, the GSP-NCHR is at

least as hard as the GSP. Therefore, the GSP-NCHR is NP-Hard.

The same result holds if we consider edge-disjoint requirements instead, and

the GSP-ECHR is also NP-Hard. Theorem 1 can be strengthened considering

strong inapproximability results of special sub-problems [43].

4.3 Special Sub-Problems

In the �rst phase of this thesis, we will tackle a relaxation of the GSP-NCHR:

De�nition 3 (GSP-NC). This is the relaxation of GSP-NCHR, without

Constraint 4.6. Speci�cally, given a simple undirected graph G = (V,E), a set

21

of distinguished nodes T ⊆ V (called terminals), a matrix with link-costs

{ci,j}(i,j)∈E and a matrix with connectivity requirements R = {ri,j}i,j∈T , build
a minimum-cost topology GS ⊆ G meeting the connectivity requirements.

In this thesis we develop a full algorithm for the GSP-NC. Then, we study

the number of feasible solutions for the GSP-NC that also meet the reliability

threshold. The key-questions of this thesis are strictly related with the number

of feasible solutions for the GSP-NC that are also feasible for the GSP-NCHR.

In this way, we study the interplay between topological network design and

reliability analysis. Furthermore, a sensibility on the reliability parameters

and connectivity constraints is also discussed.

Source-Terminal Reliability

Let T = {s, t} be the terminal-set (known as source-terminal model) with

rs,t = 1. If l denotes the length of the shortest path Ps,t between s and t:

Lemma 1. The threshold pmin is met with the shortest path if and only if

pl ≥ pmin.

Observe that a globally optimum solution is met with the shortest path

GS = Popt under identical costs if l satis�es the previous inequality. The

shortest path Popt is found using Dijkstra algorithm [37].

Proposition 1. If there exists a feasible single path Ps,t for the source-terminal

scenario with identical probabilities pi,j = p, then the globally optimum solution

for GSP-NCHR can be found.

Proof. By hypothesis, there exists a feasible path Ps,t that meets the reliability

threshold pmin. In particular, the threshold is met by the shortest path. By

Lemma 1, pl ≥ pmin. Consider the greatest integer h such that ph ≥ pmin:

h = b log(pmin)

log(p)
c (4.10)

The globally optimum solution for GSP-NCHR is obtained applying Cheng-

Ansari algorithm [46], �nding the minimum cost among all the paths with

lengths i ∈ {l, . . . , h}.

22

All-Terminal Reliability

Under the all-terminal reliability model, all the nodes are terminal, i.e., T = V ,

and there are no Steiner (optional) nodes. Consider the cheapest or Minimum

Spanning TreeGS = T . If T respects the reliability threshold, then the globally

optimum solution is met.

Proposition 2. Under the all-terminal reliability model, a Minimum Spanning

Tree T achieves the globally optimum solution if and only if
∏

e∈T pe ≥ pmin.

Proposition 3. For the case source-terminal: T = {s, t}, PE = {pij}(i,j)∈E,
PV \T = {1}v∈V \T , rst = 1, cij = c, ∀(i, j) ∈ E, and a given pmin, the global

optimal solution of the GSP −NCHR can be computed in polynomial time.

Proof. Given a path p communicating s and t in G, the reliability condition

for this path is: ∏
(i,j)∈p

pij ≥ pmin.

This constraint can be established by the following equation by applying

logarithm to both sides of the inequality.

∑
(i,j)∈p

(− log(pij)) ≤ − log(pmin).

Let us consider the matrix P̂ = {− log(pij)}(i,j)∈E. The length-bounded

Dijsktra Algorithm is applied until the �rst path that satis�es the reliability

condition is found. The length-bounded Dijsktra Algorithm computes the

shortest path between two nodes with the condition that this path has no

more than l edges (hops), being l a pre-established parameter.

23

Algorithm GSP-NCHR_Source_Terminal;

Input: G = (V,E), T = {s, t}, P̂ , c, pmin;

1 l← 1;
2 found_solution← FALSE;
3 while (l ≤ |E| − 1) and not(found_solution) do

4 [p̂, cost]← Restricted_Dijkstra(G, P̂ , s, t, l);

/* It is computed the bounded shortest path from s to t based in the matrix P̂ */
/* the path found p̂ has no more than l hops */

5 if cost ≤ − log(pmin) then
6 found_solution← TRUE;
7 optimal_solution← p̂;
8 optimal_cost← l · c;
9 else l← l + 1;
11 end_while;
12 if (found_solution) return (optimal_solution,optimal_cost);

Figure 4.1: GSP-NCHR Source-Terminal Pseudo-code.

If the GSP-NCHR instance has a feasible solution, algorithm 4.1 returns

the global optimum for this particular case.

Let us analyze the following particular case: T = {s, t}, rs,t = k > 1. In the

case that the costs and the probabilities (in edges or nodes) are not uniform,

the problem is NP-Hard.

We will analyze the following sub-cases:

i) Non-uniform costs in the edges, uniform edge probabilities, uniform node

probabilities (i.e. PV \T = {1}v∈V \T).
ii) Uniform costs in the edges, non-uniform edge probabilities, uniform node

probabilities.

In any case, to know if there are feasible solutions, it is enough to use the

Suurballe Algorithm [109] in the following way.

Note: The Suurballe Algorithm [109][110] computes in polynomial time the

k-node-disjoint paths (or the k-edge-disjoint paths) from s to t of minimum

total edge cost, for a given integer k.

We denote by Ĝ the graph equal to G but such that each edge e ∈ E is

weighted by − log(pe). We will denote Ĉ = {− log(pe)}e∈E.

24

Proposition 4 (Existence of Feasible Solutions for (i) and (ii).). Let

L = {li}i∈1..k be the k-node-disjoint paths (resp. k-edge-disjoint paths) with

minimum sum of costs over Ĝ between s and t considering Ĉ. Then there

will be feasible solution if;

k∑
i=1

∑
e∈li

− log(pe) ≤ − log(pmin).

Proof. If L = {li}i∈1..k were not feasible, we would have
∏k

i=1

∏
e∈li pe < pmin;

which would imply
∑k

i=1

∑
e∈li log(pe) < log(pmin).

Analysis of (i): Suurballe Algorithm must be used with the addition of us-

ing the Grötschel Algorithm when calculating a path that interlinks the

remaining r paths.

Analysis of (ii): Since the costs of the edges are uniform, say equal to c0,

then the maximum possible cost is bounded by m · c0, where m is the

number of the edges in the graph. It is enough to �nd the k minimum

logprob path (
∑

e∈Lk
log(pe) > log(pmin)) with lower cost than i ·c0, with

i = 1..m. The algorithm is presented below.

Note: The Grötschel Algorithm [2] computes in polynomial time the short-

est path between a pair of nodes of a simple graph with the restriction that

the length of the computed path (in terms of number of edges) does not ex-

ceed a given number of edges. This number is a parameter of the algorithm.

Algorithm GSP-NCHR_Source_Terminal_k_Connectivity;

Input: Ĝ, Ĉ,T = {s, t}, PE , m, pmin;

1 i← 0; optimum← FALSE;
2 repeat
3 i← i+ 1;
4 Lk ← the k paths given by Suurballe(Ĝ, Ĉ, k, s, t, i) using Alg_Grotschel;
5 if costo(Lk) ≤ − log(pmin) then optimum← TRUE;
6 until optimum or i = m;
7 if optimum return Lk;
8 else return �There is no solution"

Figure 4.2: GSP-NCHR Source-Terminal Pseudo-code with rs,t = k > 1, and
edges with uniform costs.

Lemma 2. For the case All Terminal: T = V , C = {cij}(i,j)∈E,

25

PE = {pij}(i,j)∈E, and a given pmin, the GSP −NCHR can be formulated as

the following Integer Linear Programming Problem:

(GSP −NCHR_All_Terminal) min
∑
i,j∈E

cij · xij (4.11)

s.a.

/ ∗ Connectivity constraints ∗ /∑
(i,j)∈E

xij = n− 1, (4.12)

/ ∗ Reliability restriction ∗ /∑
(i,j)∈E

(− log(pij)) · xij ≤ − log(pmin),

(4.13)

/ ∗ Binary decision variables ∗ /

xij ∈ {0, 1}, ∀(i, j) ∈ E. (4.14)

Proof. Equation 4.11 minimizes the global connectivity cost. Equation 4.12

indicates that the spanning subgraph must have n − 1 edges, where n = |V |.
This condition forces that the topology to be a spanning tree of V .

Equation 4.13 is the reliability condition for a feasible solution. Finally

(equation 4.14), the decision variable xij ∈ {0, 1} indicates whether or not an
edge (i, j) ∈ E will be part of the solution.

Let us consider the following Linear Programming Problem:

(�P) : min
∑
i,j∈E

cij · xij

s.a. ∑
(i,j)∈E

xij ≥ n− 1,

∑
(i,j)∈E

(− log(pij)) · xij ≤ − log(pmin),

xij ≥ 0, ∀(i, j) ∈ E.

26

The P̂ formulation is a lineal relaxation of the problem

GSP− NCHR_All_Terminal. The Lagrangean relaxation of P̂ is given by

the following formulation:

P̂λ1,λ2 : min
∑
i,j∈E

cij · xij + λ1 ·

(n− 1)−
∑

(i,j)∈E

xij

+ λ2 ·

− log(pmin) +
∑

(i,j)∈E

(log(pij))


s.a.

xij ≥ 0, ∀(i, j) ∈ E.

(4.15)

Regrouping terms we have:

P̂λ1,λ2 : min
∑
i,j∈E

(cij − λ1 + λ2 · log(pij)) · xij + λ1 · (n− 1)− λ2 · log(pmin)

s.a.

xij ≥ 0, ∀(i, j) ∈ E.

If ∃(̂i, ĵ) ∈ E such that (cîĵ−λ1 +λ2 · log(pîĵ)) < 0, then we set all variables

xij to zero except xîĵ. In this way, if xîĵ → +∞ the feasibility is preserved and

the objective function tends to −∞. In order to avoid this, we impose that:

(cij − λ1 + λ2 · log(pij)) ≥ 0, ∀(i, j) ∈ E.

Since we are minimizing, the optimum of P̂λ1,λ2 with positive coe�cients is

obtained with xij = 0 ∀(i, j) ∈ E. The objective function of the Dual Problem

D of the primal problem P̂ is given by:

Φ(~λ) = Φ(λ1, λ2) = λ1 · (n− 1)− λ2 · log(pmin).

The complete formulation of D dual problem of P̂ is:

27

D : max λ1 · (n− 1)− λ2 · log(pmin)

s.a.

cij ≥ λ1 − λ2 · log(pij), ∀(i, j) ∈ E.

λ1, λ2 ≥ 0.

The feasible region of D is:

FD = {(λ1, λ2)|cij ≥ λ1 − λ2 · log(pij), (i, j) ∈ E;λ1, λ2 ≥ 0} .

Let us consider a system of equations given by two lines r y r̂:

r : λ1 − λ2 · log(pij) = cij,

r̂ : λ1 − λ2 · log(puv) = cuv.

Assuming that r and r̂ are not parallel, the resolution of this system is the

point:

λ1 = cij +
(cuv − cij)
log(

pij
puv

)
· log(pij).

λ2 =
(cuv − cij)
log(

pij
puv

)
.

Let (λ̂1, λ̂2) be the point given by:

(λ̂1, λ̂2) = arg max

{
Φ(λ1, λ2)|λ1 = cij +

(cuv − cij)
log(

pij
puv

)
log(pij), λ2 =

(cuv − cij)
log(

pij
puv

)
;

}

(u, v) ∈ E, (i, j) ∈ E.

Let us de�ne λ̄1 and λ̄2 by:

λ̄1 = min {cij|(i, j) ∈ E} .

λ̄2 = min

{
cij

− log(pij)
|(i, j) ∈ E

}
.

We consider the following points: A = (λ̄1, 0), B = (0, λ̄2), and C =

(λ̂1, λ̂2).

28

Let ~λ(opt) = (λ
(opt)
1 , λ

(opt)
2) be given by:

(λ
(opt)
1 , λ

(opt)
2) = arg max {Φ(A),Φ(B),Φ(C)} .

(λ
(opt)
1 , λ

(opt)
2) = arg max

{
λ̄1(n− 1),−λ̄2 log(pmin), λ̂1(n− 1)− λ̂2 log(pmin)

}
.

The point ~λ(opt) is the global optimum of D and the optimal value is:

Φ(~λ(opt)) = λ
(opt)
1 (n− 1)− λ(opt)2 log(pmin).

Since the duality gap is zero between P̂ and D, the value Φ(~λ(opt)) is also

the global optimal value of P̂.

Lemma 3. The Integer Linear Programming Problem associated with GSP −
NCHR for the All-Terminal case has as lower bound, the value:

λ
(opt)
1 (n− 1)− λ(opt)2 log(pmin),

being λ
(opt)
1 and λ

(opt)
2 the values computed above.

Proof. We know that P̂ is a lineal relaxation of GSP− NCHR_All_Terminal.

Furthermore, Φ(~λ(opt)) is the optimal value of P̂, completing the proof.

Lemma 4. For the case All Terminal: T = V , C = {cij}(i,j)∈E,
PE = {pij}(i,j)∈E, and a given pmin, the following Integer Linear

Programming Problem is a multi-objective formulation that provide an

approximation to the optimal value of the GSP −NCHR.

(P̄) : min
∑
i,j∈E

α · (cij · xij) + β ·

 ∑
(i,j)∈E

(− log(pij)) · xij


s.a. ∑

(i,j)∈E

xij = n− 1,

xij ∈ {0, 1}, ∀(i, j) ∈ E.

Proof. Fixed α ≥ 0 and β ≥ 0 the objective have two components which are

minimized:

29

�

∑
i,j∈E α · (cij · xij), in�uencing directly in the minimization of the cost

associated with the spanning tree for V .

� β · (
∑

(i,j)∈E(− log(pij)) · xij), linked directly to the reliability maximiza-

tion of the required network topology (a spanning tree covering the set

V).

The constraint
∑

(i,j)∈E xij = n − 1 guarantees that the computed feasible

solution is a spanning tree for V .

By relaxing the constraint xij ∈ {0, 1}, ∀(i, j) ∈ E by xij ≥ 0, ∀(i, j) ∈ E,
we have the problem:

(P̄L) : min
∑
i,j∈E

(α · cij + β · (− log(pij))) · xij

s.a. ∑
(i,j)∈E

xij = n− 1,

xij ≥ 0, ∀(i, j) ∈ E.

The Lagrangean relaxation of P̄L is given by the following formulation:

(P̄
(λ1)
L) : min

∑
i,j∈E

(α · cij + β · (− log(pij))− λ1) · xij + λ1 · (n− 1)

s.a.

xij ≥ 0, ∀(i, j) ∈ E.

If ∃(̂i, ĵ) ∈ E such that (α · cîĵ + β · (− log(pîĵ)) − λ1) < 0, then we set

all variables xij to zero except xîĵ. In this way, if xîĵ → +∞ the feasibility is

preserved and the objective function tends to −∞. In order to avoid this, we

impose that:

α · cij + β · (− log(pij))− λ1 ≥ 0, ∀(i, j) ∈ E.

The global optimal solution for the problem P̄
(λ1)
L satisfying that

constraints is accomplished by setting xij = 0, ∀(i, j) ∈ E. Under these

conditions the value of the objective function is the objective function of the

30

Dual problem of P̄L (let us denote it by D̄) which is given by:

Φ(λ1) = λ1 · (n− 1).

The Dual Problem D̄ can then be formulated as:

(D̄) : max λ1 · (n− 1)

s.a.

α · cij + β · (− log(pij)) ≥ λ1, ∀(i, j) ∈ E,

λ1 ≥ 0

Let us consider:

γM = arg max {α · cij − β · log(pij)|(i, j) ∈ E} .

Thus, γM = α · cîĵ − β · log(pîĵ) for a certain (̂i, ĵ) ∈ E. The global

optimal solution of the Dual problem D̄ is λ1 = γM and the optimum value is

γM · (n− 1).

By the Duality Theorem for Linear Programming Problems we have that

the duality gap is zero, and the optimum value of P̄L is also:

γM · (n− 1) = (α · cîĵ − β · log(pîĵ)) · (n− 1).

Theorem 2. Fixed a pmin value there exist α̂ and β̂ for the problem P̄ such

that if Ê ⊆ E is the solution edge set, it is ful�lled that:

−
∑

(i,j)∈Ê

log(pij) ≤ − log(pmin).

Proof. Let us consider the following values for α̂ and β̂: α̂ ≥ 0 arbitrary,

β̂ =

(
log(pmin)∑

(i,j)∈E log(pij) · x̂ij

)
,

where {x̂ij}(i,j)∈E are the values of the decision variables for the globally

optimal solution of the following Linear Programming Problem:

31

(M̂) : max −
∑
i,j∈E

log(pij) · xij

s.a.

−
∑
i,j∈E

log(pij) · xij ≤ − log(pmin)

xij ≥ 0, ∀(i, j) ∈ E.

Since when solving (M̂) the set of values {x̂ij}(i,j)∈E ful�lls the �rst

constraint of the (M̂) model, we have that:

−
∑
i,j∈E

log(pij) · x̂ij ≤ − log(pmin).

By dividing this inequality by the left side we have that the β̂ value

satis�es:

1 ≤ β̂ =
log(ppmin)∑

(i,j)∈E log(pij) · x̂ij
.

Let us consider now:

∑
(i,j)∈Ê

(− log(pij)) ≤ β̂·
∑

(i,j)∈Ê

(− log(pij)) =

(
log(ppmin)∑

(i,j)∈E log(pij) · x̂ij

)
·
∑

(i,j)∈Ê

(− log(pij)) =

= (− log(pmin)) ·

(∑
(i,j)∈Ê log(pij)∑

(i,j)∈E log(pij) · x̂ij

)
≤ (− log(pmin)),

where in the last inequality we use that it is ful�lled:(∑
(i,j)∈Ê log(pij)∑

(i,j)∈E log(pij)·x̂ij

)
≤ 1.

Then with β̂ de�ned above it is satis�ed:

−
∑

(i,j)∈Ê

log(pij) ≤ − log(pmin),

32

as required, and completing the proof.

4.4 Minimum-Weight k-Connected Spanning

Networks with Reliability Constraints

In the work [6] Bienstock introduce important theorems related to the

�Minimum-Weight k-Connected Spanning Networks" (denoted by MWkCSN)

Problem under the hypothesis of triangular inequality in edge costs. The

MWkCSN is a particular case of the �Generalized Steiner Problem" (GSP)

taking rij = k ∀i, j ∈ V . We will denote by MWKECSNP the version of the

MWkCSN with edge-connectivity requirements. In this section the

MWkCSN problem is de�ned. Structural theorems for the MWkCSN are

introduced which characterize global optimum solutions. Moreover, we

formulate the MWKECSNP as an Integer Linear Programming Problem

taking into account the characterization given by the Bienstock's Theorem

for the edge-connectivity version. We extend the MWKECSNP problem by

adding the reliability constraint used in the GSP-NCHR formulation. We

denote this problem as MWKECSNP_RC. We formulate the

MWKECSNP_RC problem as a Integer Linear Programming Model, and we

make a study of relaxations and lower bounds by applying Lagrangean

relaxations and Duality Theory.

De�nition 4 (MWkCSN). k-connected network design with triangle

inequality: given a complete graph with edge weights that satisfy the triangle

inequality, and an integer k, �nd a minimum-weight k-edge (or k-vertex)

connected spanning subgraph.

Theorem 3 ([6]). For any set of vertices V with nonnegative symmetric weight

function d(·, ·) satisfying the triangle inequality and any k ≥ 2, there exist a

minimum-weight k-edge connected subgraph G = (V,E) satisfying the following

conditions:

(I) Every vertex of G has degree k or k + 1;

(II) Removing any 1,2,...., or k edges of G does not leave all the resultant

connected components all k-edge connected.

33

Theorem 4 ([6]). For any set of vertices V with nonnegative symmetric

weight function d(·, ·) satisfying the triangle inequality and any k ≥ 2, there

exist a minimum-weight k-vertex connected subgraph G = (V,E) satisfying

the following conditions:

(I') If |V | ≥ 2k every vertex of G has degree k or k + 1;

(II) Removing any 1,2,...., or k edges of G does not leave all the resultant

connected components all k-edge connected.

In [6] the authors prove that for k ≥ 3 a minimum weight k-edge connected

subgraph can have a value strictly less than a minimum-weight k-vertex

connected subgraph. In the case k = 2 [77] Monma prove that the class of

minimum-weight 2-edge (respectively 2-vertex) connected subgraphs can be

restricted to the class of 2-edge (respectively, vertex) connected subgraph

G = (V,E) satisfying conditions (I) and (II) de�ned above. Furthermore,

they prove that the global optimal values of MW2ECSNP (edge-connectivity)

and MW2VCSNP (vertex-connectivity) for the same instance are equal.

4.4.1 MWKECSNP ILP Formulation based on

Bienstock Theorem

In this point we introduce an exact formulation for the MWKECSNP when

the triangular inequality is satis�ed by the costs of the edges.

Decision variables:

yu,v(i,j) =


1, if the directed edge (i, j) is used in a path communicationg u with v

in the sense u− i− j − v; u, v ∈ V ;
0, otherwise.

xij =

{
1, if the edge (i, j) ∈ E is used in the solution

0, otherwise.

34

Binary-Integer Linear Programming Model for the MWKECSNP:

PMWKECSNP : min
∑

(i,j)∈E

cij · xij

s.a. ∑
(u,i)∈E

yu,v(u,i) ≥ k, ∀u, v ∈ V,

∑
(j,v)∈E

yu,v(j,v) ≥ k, ∀u, v ∈ V,

∑
(i,p)∈I−(p)

yu,v(i,p) −
∑

(p,j)∈I+(p)

yu,v(p,j) ≥ 0, ∀u, v ∈ V ;∀p ∈ V \ {u, v},

yu,v(i,j) + yu,v(j,i) ≤ xij, ∀u, v ∈ V, ∀(i, j) ∈ E,∑
(v,i)∈E

xvi ≤ k + 1, ∀v ∈ V,

xij ∈ {0, 1}, ∀(i, j) ∈ E; yu,v(i,j) ∈ {0, 1}, ∀(i, j) ∈ E,∀u, v ∈ V.

Next, we introduce an exact model for solving the MWKECSNP with

Reliability Constraints. The formulation is also a Binary-Integer Linear

Programming Model:

PMWKECSNP_RC : min
∑

(i,j)∈E

cij · xij

s.a. ∑
(u,i)∈E

yu,v(u,i) ≥ k, ∀u, v ∈ V,

∑
(j,v)∈E

yu,v(j,v) ≥ k, ∀u, v ∈ V,

∑
(i,p)∈I−(p)

yu,v(i,p) −
∑

(p,j)∈I+(p)

yu,v(p,j) ≥ 0, ∀u, v ∈ V ;∀p ∈ V \ {u, v},

yu,v(i,j) + yu,v(j,i) ≤ xij, ∀u, v ∈ V, ∀(i, j) ∈ E,∑
(v,i)∈E

xvi ≤ k + 1, ∀v ∈ V,

∑
(i,j)∈E

− log(pij) · xij ≤ − log(pmin), ∀(i, j) ∈ E,

xij ∈ {0, 1}, ∀(i, j) ∈ E; yu,v(i,j) ∈ {0, 1}, ∀(i, j) ∈ E,∀u, v ∈ V.

35

Let P̂MWKECSNP_RC be the following model resulting of the linear relax-

ation in [0, 1] of the xij and y
u,v
(i,j) variables:

P̂MWKECSNP_RC : min
∑

(i,j)∈E

cij · xij

s.a. ∑
(u,i)∈E

yu,v(u,i) ≥ k, ∀u, v ∈ V,

∑
(j,v)∈E

yu,v(j,v) ≥ k, ∀u, v ∈ V,

∑
(i,p)∈I−(p)

yu,v(i,p) −
∑

(p,j)∈I+(p)

yu,v(p,j) ≥ 0, ∀u, v ∈ V ;∀p ∈ V \ {u, v},

yu,v(i,j) + yu,v(j,i) ≤ xij, ∀u, v ∈ V, ∀(i, j) ∈ E,∑
(v,i)∈E

xvi ≤ k + 1, ∀v ∈ V,

∑
(i,j)∈E

− log(pij) · xij ≤ − log(pmin), ∀(i, j) ∈ E,

0 ≤ xij ≤ 1, ∀(i, j) ∈ E; 0 ≤ yu,v(i,j) ≤ 1, ∀(i, j) ∈ E,∀u, v ∈ V.

Now, let P̂
(L)
MWKECSNP_RC be a Lagrangian relaxation of P̂MWKECSNP_RC

36

formulated as follows:

P̂
(L)
MWKECSNP_RC : min

∑
(i,j)∈E

cij · xij

+
∑
u,v∈V

λu,v1 ·

k − ∑
(u,i)∈E

yu,v(u,i)


+
∑
u,v∈V

λu,v2 ·

k − ∑
(j,v)∈E

yu,v(j,v)


+
∑
u,v∈V

∑
p∈V \{u,v}

λu,v,p3 ·

 ∑
(p,j)∈I+(p)

yu,v(p,j) −
∑

(i,p)∈I−(p)

yu,v(i,p)


+
∑
u,v∈V

∑
(i,j)∈E

λu,v4,(i,j) ·
(
yu,v(i,j) + yu,v(j,i) − xij

)

+
∑
v∈V

λv5 ·

 ∑
(v,i)∈E

xvi − k − 1


+ λ6 ·

 ∑
(i,j)∈E

− log(pij) · xij + log(pmin)


+
∑

(i,j)∈E

λ
(i,j)
7 · (xij − 1)

xij ≥ 0, ∀(i, j) ∈ E; 0 ≤ yu,v(i,j) ≤ 1, ∀(i, j) ∈ E,∀u, v ∈ V.

Let us denote: λ
(i,j)
4 =

∑
u,v∈V λ

u,v
4,(i,j). Notice that the following points are

satis�ed for the P̂
(L)
MWKECSNP_RC formulation:

�

(
k −

∑
(u,i)∈E y

u,v
(u,i)

)
is minimum when

∑
(u,i)∈E y

u,v
(u,i) = g+(u), where

g+(u) is the degree of node u.

�

(
k −

∑
(j,v)∈E y

u,v
(j,v)

)
is minimum when

∑
(j,v)∈E y

u,v
(j,v) = g−(v), where

g−(v) is the degree of node v.

� (
∑

(p,j)∈I+(p) y
u,v
(p,j) −

∑
(i,p)∈I−(p) y

u,v
(i,p)) is minimum when∑

(p,j)∈I+(p) y
u,v
(p,j) = 0 and

∑
(i,p)∈I−(p) y

u,v
(i,p)) = g−(p) where g−(p) is the

degree of node p.

� Fixed xij, the expression (yu,v(i,j) + yu,v(j,i) − xij) is minimum when yu,v(i,j) =

yu,v(j,i) = 0.

�

∑
v∈V λ

v
5 ·
(∑

(v,i)∈E xvi − k − 1
)

=
∑

(i,j)∈E λ
i
5 · xij − (k + 1) ·

∑
v∈V λ

v
5.

37

By considering these points we provide the following formulation for the

P̂
(L)
MWKECSNP_RC which considers only the {xij} variables.

P̂
(L)
MWKECSNP_RC : min

∑
(i,j)∈E

cij · xij

+
∑
u,v∈V

λu,v1 · (k − g+(u))

+
∑
u,v∈V

λu,v2 · (k − g−(v))

+
∑
u,v∈V

∑
p∈V \{u,v}

λu,v,p3 · (−g−(p))

+
∑

(i,j)∈E

λ
(i,j)
4 · (−xij)

+
∑

(i,j)∈E

λi5 · xij − (k + 1) ·
∑
v∈V

λv5

+ λ6 ·

 ∑
(i,j)∈E

− log(pij) · xij + log(pmin)


+
∑

(i,j)∈E

λ
(i,j)
7 · (xij − 1)

xij ≥ 0, ∀(i, j) ∈ E.

Lemma 5. If the lambda parameters satisfy: λu,v1 ≥ 0, λu,v2 ≥ 0, λu,v,p3 ≥ 0,

λ
(i,j)
4 ≥ 0, λv5 ≥ 0, λ6 ≥ 0, and λ

(i,j)
7 ≥ 0, then P̂

(L)
MWKECSNP_RC is a relaxation

of P̂MWKECSNP_RC.

38

By regrouping terms we can formulate P̂
(L)
MWKECSNP_RC as follows:

P̂
(L)
MWKECSNP_RC : min

∑
(i,j)∈E

(
cij − λ(i,j)4 + λi5 − λ6 · log(pij) + λ

(i,j)
7

)
· xij

+
∑
u,v∈V

λu,v1 · (k − g+(u))

+
∑
u,v∈V

λu,v2 · (k − g−(v))

+
∑
u,v∈V

∑
p∈V \{u,v}

λu,v,p3 · (−g−(p))

− (k + 1) ·
∑
v∈V

λv5

+ λ6 · log(pmin)

−
∑

(i,j)∈E

λ
(i,j)
7

xij ≥ 0, ∀(i, j) ∈ E.

If ∃(̂i, ĵ) ∈ E such that (cîĵ − λ
(̂i,ĵ)
4 + λî5− λ6 · log(pîĵ) + λ

(̂i,ĵ)
7) < 0, then we

set all variables xij to zero except xîĵ. In this way, if xîĵ → +∞ the feasibility

is preserved and the objective function tends to −∞. In order to avoid this,

we impose that:

cij − λ(i,j)4 + λi5 − λ6 · log(pij) + λ
(i,j)
7 ≥ 0, ∀(i, j) ∈ E.

The global optimal solution for the problem P̂
(L)
MWKECSNP_RC satisfying

that constraints is accomplished by setting xij = 0, ∀(i, j) ∈ E. Under these
conditions the value of the objective function is the objective function of the

Dual problem of P̂MWKECSNP_RC (let us denote it by D̂MWKECSNP_RC) which

is given by:

Φ̂(~λ) =
∑
u,v∈V

λu,v1 · (k − g+(u)) + λu,v2 · (k − g−(v))−
∑

p∈V \{u,v}

λu,v,p3 · (g−(p))


−(k + 1) ·

∑
v∈V

λv5 + λ6 · log(pmin)−
∑

(i,j)∈E

λ
(i,j)
7 .

39

The Dual Problem D̂MWKECSNP_RC can then be formulated as:

D̂MWKECSNP_RC : max Φ̂(~λ)

s.a.

cij − λ(i,j)4 + λi5 − λ6 · log(pij) + λ
(i,j)
7 ≥ 0, ∀(i, j) ∈ E

λu,v1 , λu,v2 ≥ 0, ∀u, v ∈ V

λu,v,p3 ≥ 0, ∀u, v ∈ V, ∀p ∈ V \ {u, v}

λ
(i,j)
4 ≥ 0, ∀(i, j) ∈ E

λv5 ≥ 0, ∀v ∈ V

λ6 ≥ 0

λ
(i,j)
7 ≥ 0, ∀(i, j) ∈ E.

Theorem 5. Let d̂opt = Φ̂(~λopt) be the global optimal value of

D̂MWKECSNP_RC. Then, d̂opt is a lower bound for the globally optimal value

of PMWKECSNP_RC.

Proof. We know that P̂MWKECSNP_RC is a lineal relaxation of

PMWKECSNP_RC . Moreover, de duality gap between P̂MWKECSNP_RC and

D̂MWKECSNP_RC is zero since they are Linear Programming Models, thus

completing the proof.

4.4.2 Particular case k = 2

For the particular case k = 2 we have the problems MW2ECSNP and

MW2VCSNP, formally expressed by:

MW2ECSNP: 2-edge-connected network design with triangle inequality:

given a complete graph with edge weights that satisfy the triangle

inequality, �nd a minimum-weight 2-edge-connected spanning

subgraph.

MW2VCSNP: 2-vertex-connected network design with triangle inequality:

given a complete graph with edge weights that satisfy the triangle

inequality, �nd a minimum-weight 2-vertex-connected spanning

subgraph.

In [77] Monma prove that the optimal value of both problems under the

same instance coincide. For this reason they denote both problems

40

indistinctly as MWTCSNP (Minimum weight two-connected spanning

network problem). The MWTCSNP belongs to the class of NP-Complete

problems [77].

Monma introduce an important theorem which characterizes global

optimum solutions of the MWTCSNP. We will provide the statement of the

Monma Theorem below; the details of the demonstration the reader can �nd

it in [77].

Theorem 6 ([77]). For any set of vertices V with distance function d(·, ·),
there exists a minimum-weight two-connected graph G = (V,E) satisfying the

following conditions:

(a) Every vertex in G has degree 2 or 3.

(b) Deleting any edge or pair of edges in G leaves a bridge in one of the

resulting connected components of G.

Let us denote by:

Ψ̂(~λ) =
∑
u,v∈V

λu,v1 · (2− g+(u)) + λu,v2 · (2− g−(v))−
∑

p∈V \{u,v}

λu,v,p3 · (g−(p))


−3 ·

∑
v∈V

λv5 + λ6 · log(pmin)−
∑

(i,j)∈E

λ
(i,j)
7 .

Let us consider the following problem:

41

D̂MWTCSNP_RC : max Ψ̂(~λ)

s.a.

cij − λ(i,j)4 + λi5 − λ6 · log(pij) + λ
(i,j)
7 ≥ 0, ∀(i, j) ∈ E

λu,v1 , λu,v2 ≥ 0, ∀u, v ∈ V

λu,v,p3 ≥ 0, ∀u, v ∈ V, ∀p ∈ V \ {u, v}

λ
(i,j)
4 ≥ 0, ∀(i, j) ∈ E

λv5 ≥ 0, ∀v ∈ V

λ6 ≥ 0

λ
(i,j)
7 ≥ 0, ∀(i, j) ∈ E.

We introduce the following theorem.

Theorem 7. Let d̂
(opt)
Monma = Ψ̂(~λopt) be the global optimal value of

D̂MWTCSNP_RC. Then, d̂
(opt)
Monma is a lower bound for the globally optimal

value of the PMWTCSNP_RC problem.

Proof. We know that P̂MWTCSNP_RC will be a lineal relaxation of

PMWTCSNP_RC . Furthermore, de duality gap between P̂MWTCSNP_RC and

D̂MWTCSNP_RC is zero since they are Linear Programming Models, thus

completing the proof.

Notice that d̂
(opt)
Monma is a lower bound for both the edge-connectivity version of

MWTCSNP (i.e. MW2ECSNP) and the vertex-connectivity version of

MWTCSNP (i.e. MW2VCSNP) since both problem coincide in global

optimality.

42

Chapter 5

Related Work

In this chapter we revisit the related work, as well as some works where

GRASP and/or VNS methodologies were provided for speci�c combinatorial

optimization problems. Previous works on the Recursive Variance Reduction

(RVR) method under di�erent contexts are also cited.

5.1 Topological Network Design

Robledo and Canale [97] develop a GRASP methodology for the backbone

design of telecommunication networks. Robledo considers GRASP for the

design of a WAN topology [96], using local searches based on Random Neural

Networks (RNN). Risso also develops a GRASP combined with evolutionary

algorithms for the design of IP/MPLS networks [94].

Resende covers a wide spectrum of GRASP algorithms for several hard

combinatorial optimization problems [91, 93], combining Greedy notion with

randomization, local searches and even post-optimization methods such as

path-relinking as well as parallel continuous GRASP. In [72], di�erent ways

to implement GRASP for a multi-objective problem are suggested, specially

using path-relinking. In [39], GRASP combined with external path-relinking is

considered to minimize the di�erential dispersion. In [38], GRASP is developed

to tackle the graph coloring of convex graphs. In [32], a GRASP algorithm

is de�ned for solving a large-scale single row facility layout problems. In the

p-next center problem, we must assign users in the centers in order to minimize

the worst distance between a user and its closest center. A GRASP and VNS

for solving the p-next center problem was proposed in [69].

43

In [113], a fully deterministic algorithm of time complexity O(k3log(n))

was presented for the Vertex Connectivity Survivable Network Design

Problem (VCSNDP), being k the maximum connectivity requirement for the

problem. This work outperforms previously randomized algorithms. In [44],

an enhancement in the computational order with polynomial time for the

�rst proposal authored by Williamson [43] is proposed. The key concept is a

combinatorial characterization of redundant links. The order is reduced from

O(k3n4) to O(k2n2 + kn2
√
log(log(n))).

Agrawal, Klein and Ravi [1] developed an approximation algorithm with

logarithmic factor for the Generalized Steiner Problem with Edge

Connectivity (GSP-EC). More recently, Jain [56] presented a factor-2

approximation algorithm for the GSP-EC, where a feasible solution of a

linear programming relaxation of the problem is �rst found, and the solution

is iteratively built. Sartor and Robledo proposed a GRASP/VNS heuristic

for the GSP-EC [103]. Kortsarz, Krauthgamer and Lee [61] introduced the

�rst inapproximability result for the Generalized Steiner Problem with Node

Connectivity (GSP-NC) when there are no Steiner nodes.

There are several works that develop approximation algorithms for the

GSP and sub-problems. In [89], the authors develop approximations for the

2-node connectivity versions stated in [49]. Subsequent articles [48, 44, 115]

extend those methods to give approximation algorithms for the GSP-EC

without multiple links.

An important particular case for the GSP-NC occurs in the

minimum-cost k-node connected spanning graph. In [27, 33, 51] the authors

propose approximation algorithms. The reader is invited to consult the

references [26, 28, 40, 45]. These articles o�er di�erent approximation

algorithms and their respective approximation ratios. Some works study the

particular case of identical costs, usually known as the minimum cardinality

augmentation. Sartor and Robledo solved the GSP-EC [105] and

GSP-NC [104, 106] with a GRASP proposal. In [84] E. Paolini explores a

generalized formulation that extends the original GSP to in�nite sets in

metric spaces. In [117], the GSP is addressed in Halin graphs (obtained

connecting the leaf-nodes of a tree in a cycle). In [71], Mahjoub and Pesneau

study the particular 2-edge connected Steiner subgraph polytope. The au-

thors �nd polynomial-time cutting-plane solutions for particular cases, where

the terminals have special dispositions. As a consequence, they generalize the

44

previous analysis for Halin graphs presented in [117]. In [86] authors propose

an hybrid Lagrangean heuristic with GRASP and path-relinking for set

k-covering, the hybrid GRASP Lagrangean heuristic employs the GRASP

with path-relinking heuristic using modi�ed costs to obtain approximate

solutions for the original problem. Computational experiments carried out

test instances show experimentally that the Lagrangean heuristics performed

consistently better than GRASP as well as GRASP with path-relinking. In

[88] Fuzzy GRASP hybridized with path relinking is implemented for solving

a variant of the vehicle routing problem with additional risk constraints,

namely the Risk-constrained Cash-in-Transit Vehicle Routing Problem

(RCTVRP), authors conclude that proposed algorithm outperforms all

existing methods from the literature for solving RCTVRP.

In [79, 80], S. Nesmachnow presents an empirical evaluation of several

simple metaheuristics (VNS is among them) to address the GSP, with

promising results. In [85], M. Pedemonte and H. Cancela developed an Ant

Colony Optimization (ACO) to solve the GSP using parallel computing in

order to reduce the CPU-time. In [81], another proposal of ACO for the GSP

is presented to tackle the GSP in general graphs, outperforming previous

heuristics.

In [99, 98], an integer linear programming formulation was solved using

branch-and-cut for the Generalized Network Design Problem (GNDP),

applied to two-types of survivability structured: rings and 2-edge connected

topologies. In [65], the same formulation is considered in order to solve the

{0, 1, 2} Survivable Network Design Problem or {0, 1, 2}-GSNDP, that

extends the GNDP and has a direct application for the design of backbone

networks.

In [8], the Generalized SNDP or GSNDP with hop-constraints is discussed,

studying the static problem (given link-reliabilities) and dynamic problem with

an upgrading, where the elementary reliabilities can be increased, with an

associated cost. In [108], a compilation of several techniques is performed,

showing a comparison for the GSP, SNDP and the minimal connected subgraph

problem (MCSP).

In [29], an experimental study is carried out using exact algorithms over

2-node connected graph with more than one-hundred nodes, showing the

computational feasibility of this solution. In [57], the Survivable Network

with Minimum Steiner nodes Problem (SN-MSP) is addressed, by means of a

45

natural transformation from SN-MSP into SNDP, such that a factor α for

SNDP implies a factor αO(k2) for SN-MSP. In [68] the SNDP is tackled

using stochastic models. Several algorithms are proposed, in particular a

branch and cut to solve the SNDP with an acceptable optimization which

shows to speed-up the CPU time. A fast and easy-to-implement technique to

strengthen cuts is also suggested. In [111] the SNDP is addressed. In

practice, the approximate solution is far from optimal. Then, in this work, an

enumeration of optimal solutions is carried out with a compact data

structure, called Zero-Suppressed Binary Decision Diagrams (ZDD). The

authors show that this method works for several real-world instances.

In [102], the SNDP with mixed node and link requirements is considered.

The authors propose a cutting plane algorithm for an integer linear

programming formulation. In [83], the GSNDP for Wireless networks is

considered, where the link-activity depends on some parameters and the cost

is a function of them. The model proposed is a generalization of several

connectivity problems previously addressed in the literature, such as

Node-Weighted Steiner Network, Power Optimization and Minimum

Connected Dominating Set.

In [12] several heuristics such as VNS, Tabu Search and Relocation

Heuristic (RL) are developed to solve the Partitioning signed networks

problem. The authors shows that the combination of multi-step relocation

heuristics with Tabu Search and VNS produce a fast node-partition

algorithm for signed networks that is competitive with existent

metaheuristics. VNS is considered in [112] to solved the well-known Steiner

Minimal Tree Problem (SMT) in sparse graphs. The authors obtained better

results than previous heuristics.

In [25], VNS is adapted to solve a network clustering problem with similar

results obtained by machine learning approaches such as clustering k-Means.

This work also solves the sum-square of the distance between all the node-pairs,

using a novel VNS approach. A modi�ed VNS heuristic is considered in [82]

for a k-Means Clustering problem. There, the authors compare k-VNS versus

traditional k-means and j-means algorithms. It is worth to remark that VNS

outperformed the traditional approaches, specially in large datasets. A hybrid

VNS/GA proposal is proposed in [35] to solve the Multicriteria route planning

in public transit networks. The hybrid proposal outperforms pure VNS and

GA solutions, in both quality and CPU-time. In [30], VNS is developed to

46

solve the k-labelled spanning forest problem, with a strong impact in multi-

modal transportation networks. The goal is to build a spanning forest of

the ground graph, having the least number of connected components and an

upper-bound in the number of labels to use. In [66], the authors consider on

one hand VNS, and GRASP on the other, to solve the Capacitated Connected

Facility Location problem, that combines locations with Steiner trees. This

problem gains relevance for its applications in the last-mile in Fiber-To-The-

Home (FTTH) services. Both heuristics obtain solutions with high quality

in reduced times. In [107], the same heuristics were employed for the Three-

Layer Hierarchical Ring Network Design problem, that is widely used in large

telecommunication networks. Better results were obtained using VNS.

In [118], VNS is considered to solve a relay design problem. Given a set of

products that will be routed through the network, the relay problem implies

to select a route for each product and determine the locations for the relays

were the product should be re-processed at certain distance intervals. A VNS

is proposed, were di�erent local searches look for the routes for each product

and the optimal place for retransmission for a given set of routes, that are

found with an implicit enumeration that by means of a dynamic

programming algorithm. The experiments con�rm that VNS with optimal

retransmission assignment outperforms all the existent algorithms from the

literature. Several implementations of VNS has been developed for the

Traveling Salesman Problem as well, showing that VNS is competitive [55].

Exact solutions for the TSP and extensions can be found in [100]. The reader

can appreciate that the CPU-times provided by the exact solutions are longer

than the heuristics, and in particular VNS proposal for the TSP.

5.2 Network Reliability

It is worth to remark that there are scarce works that jointly deal with a

topological network optimization under reliability constraints. Javiera

Barrera et. al. proposed a topological network optimization, trying to

minimize costs subject to K-terminal reliability constraints [5]. The authors

consider Sample Average Approximation (SAA) method, which is a powerful

tool for NP-Hard combinatorial problems and stochastic optimization [60].

They conclude that suboptimal solutions could be found if dependent failures

are ignored in the model. The scienti�c literature also o�ers topological

47

optimization problems meeting reliability constraints, or reliability

maximization under budget constraints, which is known as network synthesis.

The reader can �nd a survey on the synthesis in network reliability in [7].

More recent works propose a reliability optimization in general stochastic

binary systems [19], even under the introduction of Sample Average

Approximation [87]. Building uniformly most-reliable graphs is an active and

challenging research �eld, where the goal is to �nd graphs with �xed nodes

and links with maximum reliability evaluation in a uniform sense, for the

whole compact set of elementary reliabilities p ∈ [0, 1]. There are pairs of

nodes and links where such uniformly most-reliable graphs do not exist [9].

The interested reader can consult [3] for conjectures in this �eld. A strictly

related problem to ours is to consider topological modi�cations (i.e., moving

links, or path replacements, among many others) in order to increase the

reliability measure. This problem is not mature, and a recent work propose a

novel reliability-increasing network transformation [15]. There, E. Canale et.

al. show that any graph with a cut-point can be transformed into a

biconnected graph with greater reliability. The reader can �nd alternative

measure such as the average reliability and its hardness in [10].

Most works in the �eld of network reliability analysis deal with its

evaluation rather than its maximization. The literature on network reliability

evaluation is abundant, and here we can mention distinguished works on this

�eld. A trade-o� between accuracy and computational feasibility is met by

simulations, given the hardness of the classical network reliability

models [101]. Macroscopically, Monte Carlo methods consider independent

replications of a complex system, and by means of statistical laws �nd

pointwise estimations, in order to make decisions on the system. The reader

is invited to consult an excellent book on Monte Carlo methods authored by

Fishman [41], which was inspirational for network reliability, numerical

integration, statistics and other �elds of knowledge. In our particular case we

deal with the hostile network reliability model, where both links and

non-terminal nodes fail independently. Its reliability evaluation belongs to

the class of NP-Hard problems as well [19].

H. Cancela y El Khadiri propose a Monte Carlo-based algorithm for a

variance reduction, called Recursive Variance Reduction method, or

RVR [16]. This formulation allows a meaningful reduction in variance, and

48

the product between time and variance is also reduced when compared to

Crude Monte Carlo. Furthermore, the variance is mathematically proved to

be always better in RVR than in CMC. A novel Monte Carlo-based method

is proposed in [64], based on a dynamic importance sampling. The goal is to

recursively approximate a variance-zero importance sampling estimation,

which is adequate for rare event scenarios (i.e., highly-reliable networks in

particular). The approximation is based on properties of mincuts. It is worth

to remark that this approximate zero-variance proposal achieves the bounded

relative error property, meaning that asymptotically, when the rarity of the

individual failures tends to zero, the relative error is bounded. Furthermore,

it converges to zero under special conditions stated in the article.

In [18] and [22], RVR is combined with Importance Sampling (IS) for

static network reliability models. The authors present two estimators:

Balanced RVR (considers a uniform distribution to choose the �rst

operational link of a cutset) and Zero-Variance Aproximation RVR tries to

imitate the zero-variance estimator [64]. In [17, 13], RVR is extended to a

large variety of models, and its variance is again smaller than the one

obtained using CMC. In [14], the applicability of RVR is extended to

Stochastic Monotone Binary Systems (SMBS), and approximative methods

are discuss for the reliability evaluation of SMBS in general. First, two

variants of Monte Carlo are presented, and RVR is �nally generalized for

SMBS. In [21] a novel method RVR-MonteCarlo is presented. This method is

based on series-parallel reductions and partitions that consider both pathsets

and cutsets to recursively reduce the original problem to an equivalent

problem with smaller networks. Good results were obtained for rare events,

with a meaningful improvement with respect to state-of-the-art variance

reduction methods. In [114], the traditional RVR is combined with

integer-programming algorithms to �nd better cutsets. The accuracy of RVR

is improved using this special selection of cutsets. In [20] shows that the

well-known series-parallel reductions can be incorporated in the recursive

variance reduction simulation method, leading to a more e�cient estimator.

49

Chapter 6

Algorithms

A literature review of the potential algorithms to implement was carried out,

considering scienti�c literature and documents provided by the Computer

Science institute (InCO) provided by the advisors. The proposal is driven by

the following criteria:

1. Simplicity: it must be simple.

2. E�ciency: it must assume reasonable (non-prohibitive) time on a PC.

3. Reproducibility: it should be speci�ed clearly.

4. E�ectiveness: it must �nd globally optimum solutions in most of the

instances under study.

It is hard to determine the correct metaheuristic, since the available

information is scarce, and the problem addressed in this thesis is novel. A

possible approach is to determine simple heuristics that comply the previous

criteria in previous problems, related with topological network design.

VNS [53, 50, 52] has shown to be e�cient in multiple problems (see

Chapter 5 for further details). Its e�ectiveness has been tested over several

datasets with optimal or near-optimal solutions, in moderate or at least

reasonable times for small and medium-sized instances. A valuable element is

its simplicity. This metaheuristics is modern, and it has a lower number of

related work in contrast with other metaheuristics. Another valuable fact is

that VNS is capable of hybridization or extensions, combining other

metaheuristics.

Additionally, the algorithm should be selected in an ad-hoc manner

speci�cally for our problem. The network reliability evaluation under the

50

hostile model belongs to the class of NP-Hard problems. Consequently, an

exact reliability evaluation for large networks is currently prohibitive. A

valuable alternative is to consider Monte Carlo-based methods for simulation,

such as RVR [75, 21, 23, 18]. Usually, Crude Monte Carlo is the most simple

estimation approach for network reliability. However, its variance is large for

highly reliable systems, which is our focus. It presents large variance and,

consequently, its accuracy does not meet our requirements. This is the reason

why we selected RVR [75, 21, 23, 18]. Furthermore, this celebrated method

had success in terms of reliability estimation under a large variety of

scenarios. Section 6.5 presents outstanding properties of RVR method (see

Chapter 5 for further details on its potential applicability to other scenarios).

It is worth to mention that RVR works in general for monotone systems, and

our hostile network reliability model is monotone. Our main algorithm is

presented in Section 6.1. A greedy construction is followed by multiple local

searches in a VNS, and the reliability estimation is carried out using RVR.

6.1 Network-Design

NetworkDesign executes di�erent phases that solve the problem of this thesis.

Essentially, we can identify three phases:

1. Construction Phase

2. Survivability Phase

3. Reliability Phase

Construction Phase receives the ground graph and returns a feasible

solution for the GSP-NC1, which will be introduced in a Survivability phase.

This second phase considers a metaheuristic to address the problem, trying

to provide an improvement of the received solution in terms of cost, and

preserving feasibility. Finally, the Reliability phase is in charge of the

reliability estimation. Figure 6.1 presents a pseudocode for NetworkDesign.

It receives the ground graph GB, a number of iterations iter and a positive

integer k to �nd the k shortest paths during the Construction Phase, a

reliability threshold pmin and number of iterations simiter during the

simulations carried out in the Reliability Phase.

1During this chapter, the feasibility is always related to the relaxed problem with no
reliability constraint, this is, the GSP-NC.

51

Algorithm 1 sol = NetworkDesign(GB, iter, k, pmin, simiter)

1: i← 0; P ← ∅; sol← ∅
2: while i < iter do
3: g ← ConstructionPhase(GB, P, k)
4: gsol ← SurvivabilityPhase(g, P)
5: rel← ReliabilityPhase(gsol, simiter)
6: if rel > pmin then
7: sol← sol ∪ {gsol}
8: end if
9: end while
10: return sol

Figure 6.1: Pseudocode for the main algorithm: NetworkDesign.

NetworkDesign will collect all the feasible solutions found in a set sol. In

Line 1, sol is initially the empty set, a counter of iterations is i = 0 and a set

of paths between the di�erent terminals is also empty. During the while-loop

of Lines 2-9, the three phases are called in order (Lines 3-5), and a feasibility

test takes e�ect (Lines 6-8). The algorithm returns sol, that contains all the

feasible solutions obtained during the execution (Line 10).

6.2 Construction

In a trade-o� between simplicity and e�ectiveness, a Greedy Randomized

solution has been developed [31, 96]. This algorithm builds a feasible solution

based on paths, trying to combine speed and optimality in terms of cost. It

builds a graph meeting the connectivity constraints between the terminals

R = {ri,j}i,j∈T . Speci�cally, given i, j ∈ SID there exist ri,j node-disjoint paths

that connect i and j in the graph. From now on, S
(I)
D is the set of terminal

nodes, following the terminology of the backbone design from Wide Area

Networks. Figure 6.2 receives the ground graph GB, the matrix with

link-costs C, the connectivity matrix R, and the parameter k.

52

Algorithm 2 (sol, P) = Greedy(GB, C,R, k)

1: gsol ← (S
(I)
D , ∅); mi,j ← ri,j; Pi,j ← ∅,∀i, j ∈ S(I)

D ; Ai,j ← 0,∀i, j ∈ S(I)
D

2: while ∃mi,j > 0 : Ai,j < MAX_ATTEMPTS do

3: (i, j)← ChooseRandom(S
(I)
D : mi,j > 0)

4: G← GB \ Pi,j
5: for all (u, v) ∈ E(G) do
6: cu,v ← cu,v × 1{(u,v)/∈gsol}
7: end for
8: Lp ← KSP (k, i, j, G, C)
9: if Lp = ∅ then
10: Ai,j ← Ai,j + 1; Pi,j ← ∅; mi,j ← ri,j
11: else
12: p← Select_Random(Lp); gsol ← gsol ∪ {p}
13: Pi,j ← Pi,j ∪ {p}; mi,j ← mi,j − 1
14: (P,M)← General_Update_Matrix(gsol, P,M, p, i, j)
15: end if
16: end while
17: return (gsol, P)

Figure 6.2: Pseudocode for the Construction Phase: Greedy.

In Line 1, the solution gsol is initialized only with the terminal nodes SID
without links, M = {mi,j}i,j∈T stores the unsatis�ed requirements, so initially

mi,j = ri, for all i, j ∈ S(I)
D , and the matrix P = {Pi,j}i,j∈S(I)

D
that represents the

collection of node-disjoint paths is empty for all Pi,j. Additionally, the matrix

A = {Ai,j}i,j∈S(I)
D

that controls the number of attempts that the algorithm

fails to �nd ri,j node-disjoint paths between i, j is initialized correspondingly:

Ai,j = 0∀i, j ∈ S(I)
D .

The purpose of the while-loop (Lines 2-13) is to ful�ll all the connectivity

requirements, or detect all the pair of terminals i, j ∈ S(I)
D that could not ful�ll

the connectivity requirements during MAX_ATTEMPTS. Each iteration

works as follows. A pair of terminals (i, j) is uniformly picked at random from

the set S
(I)
D , provided that mi,j > 0 (Line 3). The graph G is de�ned in Line 4

discards the nodes that were already visited in the previous paths. Therefore,

if we �nd some path between i and j in G, it will be included.

In the for-loop of Lines 5-7, an auxiliary matrix with the costs C = ci,j is

de�ned, where the links belonging to gsol have null cost. This allows to use al-

ready existent links from gsol without additional cost, and add them to build

53

a new node-disjoint path. The k-Shortest Paths from i to j are computed in

Line 8 using the costs from the matrix C. These paths are stored in a list Lp.

The function KSP is implemented e�ciently using Yen algorithm [73], that

�nds the k-Shortest Paths between two �xed nodes in a graph. In Line 9, we

test if the list Lp is empty. In this case we re-initialize Pi,j, mi,j, and add a

unit to Ai,j, since i and j belong to di�erent connected components. If the

list Lp is not empty, a path p is uniformly picked at random from the list Lp,

and it is included in the solution (Line 12). The path p is added to Pi,j, and

the requirement mi,j is decreased a unit (Line 13). The addition of the path

p could build node-disjoint paths from di�erent terminals. Consequently, the

method General_Update_Matrix �nds these new paths. Greedy returns a

feasible solution gsol equipped with all the sets P = {Pi,j}i,j∈S(I)
D

of

node-disjoint pairs between the di�erent terminals (Line 17).

The reader can �nd a proof of feasibility for Greeedy, as well as details of

the auxiliary functions KSP and General_Update_Matrix in the Appendix.

6.3 Local Search

The construction phase does not return even a locally-optimum solution.

Therefore, VNS combines di�erent local searches in order to systematically

modify the neighborhoods and �nd a better solution [78, 52, 12]. Here, three

di�erent local searches are proposed, each one based on di�erent

neighborhood structures. It is worth to mention that only one of them, called

SwapKeyPathLocalSearch, updates the set of paths P . This seems a

subtlety, but it means in fact a major implementation decision.

If we decide to update the set P during a local search, in successive

iterations we can either use this set or not, but the risk is to loose the

updated version of P in a di�erent local search that considers P . As a

consequence, the execution of SwapKeyPathLocalSearch is independent of

the iterations which KeyPathLocalSearch and KeyTreeLocalSearch are

implied. This is properly illustrated in the following sections.

54

6.3.1 Local Search 1: KeyPathLocalSearch

Before the detailed description of this local search, some auxiliary concepts and

a neighborhood structure are in order. First, recall the concepts of key-node

and key-path:

De�nition 5 (key-node). A key-node in a feasible solution v ∈ gsol is a Steiner
(non-terminal) node with degree three or greater.

De�nition 6 (key-path). A key-path in a feasible solution p ⊆ gsol is an

elementary path where all the intermediate nodes are non-terminal with degree

2 in gsol, and the extremes are either terminals or key-nodes.

De�nition 7 (Neighborhood Structure for key-paths). Given a key-path in a

feasible solution p ∈ gsol, a neighbor-solution is ĝsol = {gsol \ p} ∪ {p̂}, where p̂
is other path that connects the extremes from p, and preserves feasibility. The

neighborhood of key-paths from gsol is composed by the previous operation to

the distinct key-paths belonging to Kgsol = {p1, . . . , ph}, the decomposition of

gsol into key-paths.

KeyPathLocalSearch builds neighbor solutions with an iterative

replacement of key-paths with the same key-nodes, preserving feasibility. The

process is repeated until no additional improvements are feasible, and a

locally-optimum solution is met for this neighborhood system. A pseudocode

for KeyPathLocalSearch is presented in Figure 6.3. It receives the ground

graph GB, link-costs C and a feasible solution gsol. The variable improve is

set to TRUE in Line 1. This variable is useful to determine whether there

exists an improvement or not during the replacement of key-paths of the

algorithm. The while-loop of Lines 2-14 looks for neighbor solutions, studying

each key-path from the solution gsol and replacing by new key-paths in order

to reduce the cost of the global solution, preserving feasibility. Each iteration

works as follows. The variable improve is set to FALSE in Line 3. The

decomposition of gsol into key-paths is found in Line 4. The internal

while-loop of Lines 5-13 studies the key-paths from K(gsol) one-by-one,

looking for a cheaper and feasible replacement. A key-path that was not

previously studied p ∈ K(gsol) is uniformly picked at random in Line 6. The

network µ̂ induced by the nodes NODES(p) ∪ SD \ NODES(gsol) is

computed in Line 7 (recall that SD is the set of terminal nodes following the

55

traditional terminology from WAN network design). The set on the right,

S = SD \NODES(gsol), is precisely the terminal nodes not belonging to gsol.

Observe that µ̂ does not possess nodes from gsol \ p, except for u and

v. Then, all the paths connecting u and v belonging to µ̂ re-establish the

feasibility of gsol \ p. Consequently, the shortest path from u to v in µ̂ is

found in Line 8. The cost between p̂ and the original path p is compared

in Line 9. If p̂ is cheaper than p, the key-path p is correspondingly replaced

by p̂ in gsol (Line 10), and the variable improve is set to TRUE (Line 11),

in order to re-start the local search from Line 2. On the other hand, if p̂

is not cheaper than p, the while-loop of Lines 5-13 picks another key-path

not studied before, until all key-paths are studied. The process is �nished

as soon as there are no possible improvements, or there are no key-paths to

study. The best neighbor solution gsol is returned in Line 15. A proof that

KeyPathLocalSearch preserved feasibility is provided in the Appendix.

Algorithm 3 gsol = KeyPathLocalSearch(GB, C, gsol)

1: improve← TRUE
2: while improve do
3: improve← FALSE
4: K(gsol)← {p1, . . . , ph} {Key-path decomposition of gsol}
5: while not improve and ∃ key-paths not analyzed do
6: p← (K(gsol)) {Path not analyzed yet, with extremes u and v}
7: µ̂←< NODES(p) ∪ SD \NODES(gsol) > {Induced subgraph µ̂}
8: p̂← Dijkstra(u, v, µ̂)
9: if COST (p̂) < COST (p) then
10: gsol ← {gsol \ p} ∪ {p̂}
11: improve← TRUE
12: end if
13: end while
14: end while
15: return gsol

Figure 6.3: Pseudocode for Local Search 1: KeyPathLocalSearch [96].

56

6.3.2 Local Search 2: KeyTreeLocalSearch

First, a neighborhood structure is in order. Recall the concept of key-tree:

De�nition 8 (Key-tree). Let v ∈ gsol be a key-node belonging to a feasible

solution gsol. The key-tree associated to v, denoted by Tv, is the tree composed

by all the key-paths that meet in the common end-point (i.e., the key-node v).

De�nition 9 (Neighborhood Structure for key-tree). Consider the key-tree

Tv ∈ gsol rooted at the key-node v, where gsol is a feasible solution. A neighbor

of gsol is ĝsol = {gsol \ Tv} ∪ {T}, being T another tree that replaces Tv, with

identical leaf-nodes, and preserving feasibility. The neighborhood of gsol is

composed by all the neighbor solutions obtained with an iterative application

of the previous operations, for the di�erent key-trees belonging to gsol.

Based on this neighborhood structure, we de�ne a second local search that

replaces key-trees (note that the previous local search was a replacement of

key-paths).

Algorithm 4 gsol = KeyTreeLocalSearch(GB, C, gsol)

1: improve← TRUE
2: while improve do
3: improve← FALSE
4: X ← KeyNodes(gsol) {Key-nodes from gsol}
5: S ← SD \NODES(gsol)
6: while not improve and ∃ key-nodes not analyzed do
7: v ← X {Key-node not analyzed yet}
8: [gsol, improve]← General_RecConnect(GB, C, gsol, v, S)
9: end while
10: end while
11: return gsol

Figure 6.4: Pseudocode for Local Search 2: KeyTreeLocalSearch [96].

Figure 6.4 presents a pseudocode for KeyTreeLocalSearch. The rationale

is to iteratively build neighbor solutions using a replacement of key-trees,

preserving feasibility. The process is repeated until no possible improvement

exists. It receives the ground graph GB, link-costs C and the feasible solution

gsol. The variable improve is set to TRUE (Line 1). The while-loop of

57

Lines 2-10 looks for better neighbors solutions, studying each key-node from

the current solution gsol, and a replacement takes place if corresponds. The

while-loop is repeated whenever an improvement is found. Each iteration

works in the following manner. The variable improve is set to FALSE in

Line 3. The set X of all the key-nodes from gsol are obtained in Line 4. In

Line 5, the set of Steiner nodes S not belonging to gsol are computed. The

internal while-loop of Lines 6-9 studies every key-node belonging to X,

together with its associated key-tree, trying to �nd a cheaper key-tree for

replacement. A key-node v ∈ X is uniformly picked at random in Line 7.

The algorithm called General_RecConnect is called in Line 8, to �nd a

replacement that is both feasible and cheaper than Tv. The description of

General_RecConnect, and a proof of feasibility are found in the Appendix.

If this search is successful, this algorithm returns an improved neighbor

solution in Line 8, and the solution is updated in the same line. Additionally,

the variable improve is set to TRUE, and the local searches proceeds in Line 2.

If General_RecConnect fails to �nd a replacement, the internal while-loop

considers an alternative key-node not previously studied, or this loop is �nished

if all the key-nodes were studied.

The process is �nished as soon as there are no possible improvements, or

there are no key-trees to study. The best neighbor solution gsol is returned in

Line 11.

6.3.3 Local Search 3: SwapKeyPathLocalSearch

The following neighborhood structured will be useful:

De�nition 10 (Neighborhood Structure for key-path replacement). Given a

key-path p ⊆ gsol from a feasible solution gsol, a neighbor solution for gsol is

ĝsol = {gsol \ p} ∪ {m}, being m the set of nodes and links that will be added

to preserve the feasibility of the solution ĝsol. The set m could be empty, if the

deletion of a key-path from gsol is already feasible. The neighbor of key-paths

from gsol is composed by the previous neighbor solutions to each of the di�erent

key-paths belonging to the K(gsol) = {p1, . . . , ph}, the decomposition of gsol into

key-paths.

SwapKeyPathLocalSearch iteratively builds neighbor solutions,

removing key-paths and reconstructing a feasible solution using the

58

information stored in the matrix P (of node-disjoint paths), generated by

Greedy algorithm during the Construction phase. The process is �nished

only when no feasible improvements are possible. Figure 6.5 shows a

pseudocode for SwapKeyPathLocalSearch. It receives the ground graph

GB, the link-costs C, a feasible solution gsol and the matrix with the

node-disjoint paths P obtained by the Greedy randomized construction.

The variable improve is set to TRUE in Line 1. This variable is useful to

determine whether there exists an improvement or not during the replacement

of key-paths by paths. The while-loop of Lines 2-9 looks for neighbor solutions,

studying each key-path from the solution gsol and replacing by nodes and links,

or simply deleting the key-path improving the cost, whenever the resulting

network is feasible. Each iteration works as follows. The variable improve is

set to FALSE in Line 3. The decomposition K(gsol) of gsol into key-paths is

found in Line 4.

The internal while-loop of Lines 5-8 studies the key-paths from K(gsol)

one-by-one, looking for a cheaper and feasible replacement with nodes and

links. A key-path that was not previously studied p ∈ K(gsol) is uniformly

picked at random in Line 6. The routine FindSubstituteKeyPath is called in

Line 7. It deletes the key-path from the current solution and tries to

re-connect the extremes by nodes and links, preserving feasibility. If, in addi-

tion, the resulting solution is cheaper, the variable improve is set to TRUE,

and the solution is e�ectively replaced. Otherwise, the following key-path is

studied. The process is �nished as soon as there are no possible improve-

ments, by replacements from key-paths to nodes and links , or there are no

key-paths to study. The best neighbor solution gsol is returned in Line 10. A

proof of feasibility for SwapKeyPathLocalSearch and the auxiliary

algorithm FindSubstituteKeyPath are found in the Appendix. The diversity

(in terms of neighborhoods structures) of the three local searches explains

the e�ectiveness of our VNS, as we will see in the Results (Chapter 7).

59

Algorithm 5 gsol = SwapKeyPathLocalSearch(GB, C, gsol, P)

1: improve← TRUE
2: while improve do
3: improve← FALSE
4: K(gsol)← {p1, . . . , ph} {Key-path decomposition of gsol}
5: while not improve and ∃ key-paths not analyzed do
6: p← (K(gsol)) {Path not analyzed yet}
7: (gsol, improve)← FindSubstituteKeyPath(gsol, p, P)
8: end while
9: end while
10: return gsol

Figure 6.5: Pseudocode for Local Search 3: SwapKeyPathLocalSearch [96].

6.4 Variable Neighborhood Search (VNS)

VNS [78, 53, 50, 52] is supported by a systematic modi�cation of neighborhood

structures, hence it requires a �nite set of prede�ned neighborhoods. This

represents a major di�erence with respect to most local search algorithms that

use a �xed neighborhood structure. VNS is based on three simple facts [78]:

1. A locally-optimum solution for one neighborhood structure is not neces-

sarily for another one.

2. A globally-optimum solution is locally-optimum under all neighborhood

structures.

3. In most problems, a locally optimum solution with respect to one or

many neighborhood structures are relatively close.

The last observation is empirical, and it implies that a locally-optima

provides information about the globally-optimum solution. Sometimes they

share common features. Nevertheless, those features are usually not known.

Therefore, it is natural to perform an organized exploration of the vicinities

of a local optima, until an improvement is met. The facts 1-3 suggest that

several neighborhood structures should be employed to address a

combinatorial optimization problem. The change of neighborhood structures

can be performed either in a deterministic or a stochastic way, or even in a

hybrid manner. Here, we considered a purely deterministic change of local

60

searches, called Variable Neighborhood Descent or VND [53], which consists

of an iterative replacement to the current solution for a better one, whenever

an improvement is feasible. If a change of neighborhood structure takes place

whenever a locally-optimum solution is met for some structure, a VND is

obtained [53].

A general template for VND is presented in Figure 6.6. It receives an

objective function f for the combinatorial problem, a feasible solution x and

a collection of neighborhood structures NS. Observe that the resulting

solution provided by VNS is a locally-optimum solution with respect to all

the kmax = |NS| neighborhood structures, and the possibility to reach a

globally optimum solution is greater than using a single structure [53]. In the

following paragraphs, we detail our VNS implementation.

Algorithm 6 x = V ND(f, x,NS)

1: improve← TRUE
2: while improve do
3: localsearch← 1
4: while localsearch ≤ |NS| do
5: x′ ← BestNeighbor(localsearch, x)
6: if f(x′) < f(x) then
7: x← x′; localsearch← 1
8: else
9: localsearch← localsearch+ 1
10: end if
11: if localsearch > |NS| then
12: improve← FALSE
13: end if
14: end while
15: end while
16: return x

Figure 6.6: General Template for VND.

Our implementation follows a VNS with minor variations; see Figure 6.7

for a pseudocode. It receives the current solution G and the matrix P with

node-disjoint paths from G, previously obtained by our Greedy Randomized

construction phase, and a collection of local searches cls.

61

Algorithm 7 G = V NS(G, cls, P)

1: k ← 0; kmax ← size(cls);
2: G← SwapKeyPathLocalSearch(G,P)
3: notimprove← 0
4: while notimprove < kmax do
5: G← LocalSearch(cls[k], G)
6: cost← GetCost(G)
7: newcost← GetCost(G)
8: if newcost < cost then
9: cost← newcost
10: notimprove← 0
11: G← G
12: else
13: notimprove← notimprove+ 1
14: end if
15: k ← (k + 1)mod kmax
16: end while
17: return G

Figure 6.7: Pseudocode for our speci�c VNS proposal.

In Line 1, the number of local searches kmax and a pointer of current local

search are initialized. SwapKeyPathLocalSearch is introduced in Line 2,

which considers the matrix P as an input. Recall that

SwapKeyPathLocalSearch is not compatible with the other local searches.

For that reason, it is executed at the beginning of the algorithm only once

and it is not considered further as a part of the previously mentioned

neighborhood structures. Nevertheless, it is included in our VNS

implementation, and it is essential to achieve considerable improvements in

the initial solutions coming from the Construction phase. In Line 3, the

variable notimprove is set to 0. In the while-loop of Lines 4-15, the local

search k takes e�ect, until there is no feasible improvement (Line 5). If an

improvement is achieved, both the cost and the solution are updated

(Lines 6-11). Otherwise, the variable notimprove is increased a unit

(Line 13). In all cases, the following structure is visited in a cyclic-way

(Line 15). Here there is a di�erence with respect to the general template

from Figure 6.6, since we proceed with the following structure in a cyclic

order, instead of returning to the �rst structure. This is to avoid the

62

hierarchy imposed by a traditional VNS scheme, since our local searches are

equally relevant. Finally, the resulting solution is returned in Line 17. It is

worth to remark that this algorithm can be con�gured for N arbitrary local

searches, that can be parameterized by the collection cls.

6.5 Recursive Variance Reduction (RVR)

The rational behind RVR [75, 21, 23, 18, 24] is to reduce the original problem

to a problem with a smaller network that is derived or built from the original.

The method is recursive, building several (smaller) networks successively, and

it stops when we �nd a network that is always connected or disconnected, no

matter the states of its components. The target is a pointwise estimation for

the unreliability QK for a given terminal-set K. However, it can be extended

to a larger family of stochastic monotone binary systems. The de�nitions

pseudocodes and properties presented in this section are extracted from [75].

The reader can consult Chapter 5 for further information. Consider a network

G = (V,E) equipped with a terminal set K ⊆ V , v ∈ V and e ∈ E. The

following terminology will be used:

� The network is K-connected when for every u ∈ K and every v ∈ K,

there exists a path that connects u and v (operational state).

� R(G) denotes the reliability (the probability that the network is

K-connected).

� Q(G) = 1−R(G) denotes the unreliability.

� D ⊆ V ∪ E is an extended K-cut if G′ = (V − D,E − D) is not K-

connected.

� G − {e} is the network whose node-set is V , link-set is E − {e} and

terminal-set K.

� G−{v} is the network whose node-set is V −{v}, the link-set consists of
E minus all the links incident to v, and the terminal-set is now K−{v}.

� If d is a component (node or link), G|d denotes the derived network,

setting the operational probability of d to 1 (d is a perfect component).

� G ∗ d denotes the reduced network, setting the operational probability

of d to 1. If d = e = {u, v}, G ∗ e denotes a link-contraction. If the

nodes u and v are identi�ed with the node w, the terminal-set is K ′ =

K − {v1, v2} ∪ {w}, if v1 ∈ K or v2 ∈ K, or simply K ′ = K otherwise.

63

The goal is to build an unbiased pointwise reliability estimator with

smaller variance than Crude Monte Carlo [75]. For that purpose, the

following properties are considered:

Property 1. Let G = (V,E) the network equipped with the terminal-set K =

{v1, . . . , v|K|}. The following relations hold for the reliability R(G) and unreli-

ability Q(G):

R(G) =

(∏
v∈K

rv

)
R(G|v1|v2| . . . |v|K|) (6.1)

Q(G) = 1−

(∏
v∈K

rv

)
+

(∏
v∈K

rv

)
Q(G|v1|v2| . . . |v|K|) (6.2)

Property 1 means that the reliability R(G) can be found setting perfect

terminal nodes, and multiplying the result of the resulting network by the

products of the elementary reliabilities for the terminal nodes.

Property 2. Let G = (V,E) the network equipped with the terminal-set K,

and consider an arbitrary component d. Then: R(G|d) = R(G ∗ d).

Property 2 means that we can contract perfect components, and the

reliability is preserved. The RVR method considers this property in order to

successively reduce the size of the network. Consider the structure function

φ : G → {0, 1}. For every state of the system, the function φ equals 1 if and

only if the system is K-operational, or 0 otherwise.

Consider N independent replicas of the system, and the averaging provided

by CMC for the unreliability evaluation:

Y =
1

N

N∑
i=1

(1− φ(X − i)) (6.3)

Clearly, if we denote Y = 1− φ(G), then E(Y) = E(Y) = Q(G), and CMC is

unbiased for the reliability. The goal of RVR is to build an unbiased random

variable Z(G) for the unreliability, with smaller variance than CMC (see

Property 3). Such random variable is built using extended K-cuts, and it is

expressed as a function of |D| random variables Y (Gi) that corresponds to

the states of the original network.

64

Property 3. Consider a network G = (V,E) equipped with perfect terminal-

set K (rv = 1 for all v ∈ K). Further, consider the following notation:

� D = {d1, d2, . . . , d|D|} an extended K-cut from G.

� AD the event all the components from D fail.

� Q(D) = Pr(AD) =
∏|D|

i=1(1− rdi): the probability of the event AD.

� Bi the event: the components from Di = {d1, . . . , di−1} fail but di works.
� Gi = (G− d1 − . . .− di−1) ∗ di.
� V a random variable independent of Y (Gi) ruled by the probabilities:

Pr(V = v) = Pr({Bv})/(1−QD) = rdv

v−1∏
i=1

(1− rdi)/(1−QD),

for all 1 ≤ v ≤ |D|.

Then, the following random variable:

Z(G) = QD + (1−QD)

|D|∑
i=1

1{V=i}Y (Gi),

is unbiased for the unreliability, and presents smaller variance than CMC:

E(Z(G)) = Q(G)

V ar(Z(G)) = (Q(G)−QD)R(G) ≤ Q(G)R(G) = V ar(Y (G))

The summation
∑|D|

i=1 1v=iY (Gi) corresponds to Z(Gv), which is constructed

using an extended K-cut D, and it is expressed in terms of |D| random
variables Y (Gi) each corresponding to di�erent states of the original network.

Property 3 states that the random variable Z is unbiased, and it presents

smaller variance than the original Y . Therefore, RVR always have smaller

variance than CMC. Observe that the collection of the events Bi and AD is a

partition of the possible network states. If the eventAD holds, a cutset is found;

otherwise, we can study a derived smaller network. Intuitively, this partition

of a random variable into indicator random variables reduce the variance.

Based on the Properties 1-3, the following recursive random variable F is

considered:

65

F (G) =


1 if G is not K − connected

0 if K is a single node

QD + (1−QD)
∑|D|

i=1 1{V=i}F (Gi) otherwise

An independent sample of F for a network G is considered to develop RV R

method. The algorithm is detailed in Figure 6.8

Algorithm 8 RV R(G,K, pv, pe)

1. Test:

� If G always K-connected, return 0.

� If G is never K-connected, return 1.

2. Find an extended K-cutset D = {d1, . . . , d|D|}
3. Find QD (all the components from D fail)

4. Pick a sample v of the discrete random variable V

5. Build Gv = G− {d1, . . . , dv−1} ∗ dv
6. Recursive step: return QD + (1−QD)RV R(Gv)

Figure 6.8: Pseudocode for RVR method.

RVR can be implemented in a variety of network reliability models, such

as all-terminal RV , source-terminal Rs,t, and K-terminal RK , among many

others (the reader can �nd a validation of RVR in the Appendix). Further, it

is suitable for our hostile network reliability model, where both links and non-

terminal (Steiner) nodes may fail. The necessary functionalities for Graph

class were implemented in order to apply RV R to the structure previously

designed. Its implementation in blocks is described in Figure 6.9.

66

Algorithm 9 R = Rel(G, seed,N,K, pv, pe)

1. s = 0 counter for the mean value

2. ss = 0 counter for the variance

3. Set(seed)

4. for i = 1 to N do

� G′ = G

� x = 1−RV R(G′, K, pv, pe)

� s = s+ x

� ss = ss+ x2

5. end for

6. esp = s/N

7. var = 1/N(N − 1)(ss− s2/N)

8. return (esp, var)

Figure 6.9: Implementation - Graph Class for Reliability evaluation.

The class RV R considers an algorithm to �nd the reliability estimation

using the homonym algorithm (see Figure 6.10). It receives the network, a seed

for the pseudo-random number generator ((unsigned)time(0) is used) and a

number of iterations. Figure 6.10 shows the implementation of RV R, where

the variable terminals counts the number of terminals in the network. This

number is decreased, either by node-elimination or contraction. The function

φ states whether the terminal-set K belongs to the same component or not

(see Figure 6.11). This is veri�ed using depth �rst search (DFS) algorithm.

The node-failure implies a non-operational state, so this test is part of our

algorithm. The variable boolean is returned accordingly.

The auxiliary functions used in Figure 6.10 are brie�y described:

� GetKExtendedCut: a terminal node v ∈ K is picked and considers the

set of adjacent nodes and incident links whose elementary reliabilities

are strictly smaller than 1, adding those components to D.

� AllFailedProb: �nds the product of the unreliabilities of all the compo-

nents belonging to D.

� GetRandomItem: considers a uniformly distributed continuous variable

in [0, 1] and picks a sample of the discrete random variable V . Then,

67

Algorithm 10 RV R(G,K, pv, pe)

1. If terminals=1, return 0

2. Elseif φ(G,K) = 1, return 1.

3. Else

4. D := GetKExtendedCut(G)

5. QD := AllFailedProb(D)

6. index := GetRandomItem(D)

7. c := D[index]

8. remove(G,D, index− 1)

9. add(G, c)

10. return QD + (1−QD)×RV R(G)

11. EndIf

Figure 6.10: Pseudocode for the RVR implementation.

Algorithm 11 boolean = φ(G,K)

1: for all v ∈ K do
2: if NonOperational(v) then
3: boolean← 0
4: end if
5: end for
6: reached← 0
7: v ← RandomTerminal(K)
8: reached← DFS(v)
9: if reached = |K| then
10: boolean← 1
11: else
12: boolean← 0
13: end if
14: return boolean

Figure 6.11: Pseudocode for the Structure Evaluation φ.

68

it returns the corresponding index for the component selected from the

extended cut D.

� Remove: deletes from G all the components until the position index−1.

If some terminal node is involved in the set, the variable terminals is

decreased.

� Add: sets the elementary reliability of the component to 1 and determines

whether it is possible to contract the component or not. If positive, the

contraction takes e�ect. If a link is perfect and some of the adjacent nodes

belongs to the terminal-set K, then the identi�cation w belongs to the

new terminal-set w. If parallel links appear with elementary reliabilities

r1 and r2, a single link replaces both parallel links, with the elementary

reliability r = r1 + r2 − r1r2.

We can appreciate how the network is successively reduced step-by-step,

since the number of components is reduced in each step, either by eliminations

or contractions. Therefore, the number of recursive calls is not greater than

|V |+ |E|. Additionally, the most demanding operation is the rule-evaluation,

with order O(|V |). Therefore, the computational order for RV R method is

O(|V | × (|V | + |E|)). In order to carry out several independent executions of

this simulation, an iterative implementation is considered, the mean value of

F (G) is then estimated by an averaging over the sample:

E(F) =
1

N

N∑
i=1

Fi,

and its variance using the following expression:

V ar(F) =
1

N(N − 1)

N∑
i=1

(Fi − E(F))2

For convenience, it can be computed using unbiased estimations for the �rst

and second moments:

V ar(F) =
1

N(N − 1)

 N∑
i=1

F 2
i −

1

N

(
N∑
i=1

Fi

)2


The mathematical models were extracted from [75].

69

Chapter 7

Results

7.1 Introduction

In order to understand the e�ectiveness of this proposal, an extensive

computational study was carried out using our main algorithm

NetworkDesign. Recall that NetworkDesign involves a Construction Phase

using Greedy, followed by a Local Search Phase with VNS (with three local

searches, to know, KeyTreeLocalSearch, KeyPathLocalSearch and

SwapKeyPathLocalSearch) and the introduction of RVR for the reliability

evaluation. The underlying probabilistic model is precisely the hostile model,

where both links and Steiner nodes fail [67]. Given the monotonicity of this

model, the application of RVR is suitable for this purpose.

The experimental analysis was carried out in a laptop Pentium Core I5,

8GB. We selected pmin = 0.8 in all the instances under study and k = 5 for

Greedy. The parameter k was selected using preliminary tests under random

graphs generated using our algorithm for the construction of test-graphs,

looking for di�erent values of k. The value k = 5 showed acceptable results

for those preliminary tests. Since this thesis proposes a reliability-centric

design, it makes no sense to establish a threshold that is lower than 80%.

The elementary reliabilities for both Steiner nodes and links are close to the

unit. In fact, we are focused on the design of highly-reliable networks.

70

7.2 Description of the Test-Set

After a literature review, a possibility is to build a test-set for the

computational analysis using random graphs. We considered a random graph

generation for the di�erent algorithms involved in the solution, and for

preliminary tests in the main algorithm NetworkDesign.

In order to highlight the e�ectiveness of our proposal, we �nally consid-

ered well-known instances from the Travelling Salesman Problem (TSP),

extracted from the TSPLIB [90]. To the best of our knowledge, there are no

benchmarks available for our particular problem. Therefore, we decided to

adapt the instances from a well-known library with full accessibility.

Some instances from TSPLIB were selected, and then they were modi�ed

to get complete graphs, with the corresponding euclidean costs on the links.

Speci�cally, we selected the following instances under study: att48, berlin52,

brazil58, ch150, d198, eil51, gr137, gr202, kroA100, kroA150, kroB100,

kroB150, kroB200, lin105, pr152, rat195, st70, tsp225, u159, rd100 and

rd400. Observe that the su�x is the number of nodes in the corresponding

instance (e.g., kroA100 has 100 nodes). The �rst column from Table 7.1

contains the name of the instance. The following columns, from the left to

the right, contain respectively:

� % T : the percentage of terminal nodes in the graph. We considered 20%,

35% y 50% for our test-set. Then, we have 3 classes of instances for each

TSP instance.

� % Rel: the elementary reliabilities for Steiner nodes and links,

respectively.

� % Req: this is the percentage of pairs (terminal nodes) that should meet

a connectivity requirements ri,j ∈ {2, 3, 4}, respectively.
� Iter_ND: iterations considered in NetworkDesign, according to %T .

� Iter_RV R: iterations considered in RV R method.

� #: number of generated instances.

The constraint imposed by the reliability threshold is carried out in a

subset of test-cases, and the corresponding results are detailed in Section 7.3.

The abbreviation NA (for non-applicable) appears for those instances were

the reliability threshold is not performed. On the other hand, our Greedy

construction and the application of V NS takes place over the whole test-set.

71

If the name includes (E), this means that the instance is a variation of the

corresponding instance, with di�erent connectivity requirements. The number

of iterations for NetworkDesign is established in Iter_ND = 100 for those

instances with relative small CPU times (minutes), and Iter_ND ∈ {20, 50}
for instances with more demanding CPU times. The number of iterations for

the RVR method is Iter_RV R = 104, selected again using preliminary tests.

Table 7.1: Test-Set

Problem % T %Rel % Req Iter_ND Iter_RV R #
att48 20-35-50 99-95 100-0-0 100-100-100 104 3

berlin52 20-35-50 99-95 100-0-0 100-100-100 104 3
brazil58 20-35-50 99-95 100-0-0 100-100-100 104 3
ch150 20-35-50 99-95 100-0-0 100-100-100 104 3
d198 20-35-50 99-95 100-0-0 20-20-20 NA 3
eil51 20-35-50 99-95 100-0-0 100-100-100 104 3
gr137 20-35-50 99-95 100-0-0 100-20-20 NA 3
gr202 20-35-50 99-95 100-0-0 100-100-100 104 3

kroA100 20-35-50 99-95 100-0-0 100-100-100 NA 3
kroA150 20-35-50 99-95 100-0-0 100-20-20 NA 3
kroB100 20-35-50 99-95 100-0-0 100-100-100 NA 3
kroB150 20-35-50 99-95 100-0-0 100-20-20 NA 3
kroB200 20-35-50 99-95 100-0-0 20-20-20 NA 3
lin105 20-35-50 99-95 100-0-0 100-100-100 NA 3
pr152 20-35-50 99-95 100-0-0 20-20-20 NA 3
rat195 20-35-50 99-95 100-0-0 20-20-20 NA 3
st70 20-35-50 99-95 100-0-0 100-100-100 104 3
tsp225 20-35-50 99-95 100-0-0 50-50-50 104 3
u159 20-35-50 99-95 100-0-0 20-20-20 NA 3
rd100 20-35-50 99-95 100-0-0 100-100-100 NA 3
rd400 20-35-50 99-95 100-0-0 50-50-50 104 3

berlin52(E) 20 99-90 65-25-10 100 104 1
eil51(E) 20 99-90 65-25-10 100 104 1
att48(E) 35 99-90 65-25-10 100 104 1
st70(E) 35 99-90 65-25-10 100 104 1

brazil58(E) 50 99-90 65-25-10 100 104 1
eil51(E) 50 99-90 65-25-10 100 104 1

kroB100(E) 20 99-90 65-25-10 100 104 1
lin105(E) 20 99-90 65-25-10 100 NA 1
kroA100(E) 35 99-90 65-25-10 20 104 1
rd100(E) 35 99-90 65-25-10 20 NA 1

A second test-set is considered in order to answer strategic questions that

72

represent the main goals of this thesis: the sensibility of the solution to

perturbations in the elementary reliabilities. Di�erent values for the

elementary reliabilities for both Steiner nodes and links were used.

Speci�cally, the nine combinations for pv, pe ∈ {0.99, 0.97, 0.95} were

introduced in di�erent instances, being pv and pe the elementary reliabilities

for Steiner nodes and links e = (i, j) respectively. The details of the second

test-set are presented in Table 7.2.

Table 7.2: Test-Set (2)

Problem % T % Req Iter_ND Iter_RV R #
att48 20-35-50 100-0-0 100 104 3

att48(E) 20 0-100-0 100 104 1
att48(E) 20 0-0-100 100 104 1
att48(E) 35 65-25-10 100 104 1
berlin52 20-35-50 100-0-0 100 104 3

berlin52(E) 20 65-25-10 100 104 1
brazil58 20-35-50 100-0-0 100 104 3

brazil58(E) 50 65-25-10 100 104 1
eil51 20-35-50 100-0-0 100 104 3

eil51(E) 20 65-25-10 100 104 1
eil51(E) 50 65-25-10 100 104 1
kroA100 35 100-0-0 100 104 1

kroA100(E) 35 65-25-10 100 104 1
kroB100 20 100-0-0 100 104 1

kroB100(E) 20 65-20-10 100 104 1
ch150 20-35-50 100-0-0 100 104 3
gr202 20-35-50 100-0-0 100 104 3
tsp225 20-35-50 100-0-0 100 104 3
rd400 20-35-50 100-0-0 100 104 3

For instance, in the �rst row we can see that we generate 3 instances for

att48 with respective percentage of terminal nodes 20-35-50, where the

connectivity requirements are rij = 2 (100-0-0). For each instance of att48,

one-hundred feasible solutions were found, using 104 iterations of the RVR

method with the nine possible scenarios of elementary reliabilities:

99− 99, 99− 97, 99− 95, 97− 99, 97− 97, 97− 95, 95− 99, 95− 97, 95− 95.

It is worth to mention that thousands of hours of CPU times were

required for this thesis in order to accomplish this number of generated

instances, considering the number of iterations involved in the search of

73

locally optimum solutions during the VND, and the corresponding reliability

evaluation. Section 7.3 reports the numerical results. As a consequence, the

answers to the strategic questions of this thesis are provided in Section 7.4.

7.3 Numerical Results

Table 7.3 shows the results for each TSP instance under study. The �rst

column contains the name of the instance. Column 2 shows the percentage of

terminal nodes, and the remaining columns present, in order:

� %IG: percentage of improvement of Greedy in relation to the original

cost of the instance.

� %IV NS: percentage of improvement of V NS, in relation with the out-

put of our Greedy construction.

� CPU : average CPU-time per iteration of NetworkDesign.

� R: average for the reliability estimation.

� V ar: average for the estimated variance.

Table 7.3: Numerical Results

Problem % T %IG % IV NS CPU (s) R V ar

att48 20 99.27 34.61 11.466 96.7 7.608E-07

att48 35 98.6 36.83 29.769 94.3 3.448E-06

att48 50 98.22 37.1 65.904 92.7 5.322E-06

berlin52 20 98.98 30.55 30.605 93.7 3.294E-06

berlin52 35 99.06 33.93 33.433 93.8 3.19E-06

berlin52 50 98.02 33.48 106.945 90.7 6.487E-06

brazil58 20 98.92 31.96 62.377 88.5 6.722E-06

brazil58 35 99.25 39.45 68.891 86 8.347E-06

brazil58 50 98.75 35.26 103.553 91 7.093E-06

ch150 20 99.76 37.51 222.552 85.59 1.029E-05

ch150 35 99.72 36.65 546.652 88.03 9.033E-05

ch150 50 99.69 34.42 1203.054 88.8 8.974E-05

d198 20 99.9 32.22 320.142 NA NA

d198 35 99.86 34.12 2086.376 NA NA

d198 50 99.81 33.39 5548.639 NA NA

74

Table 7.3 � Numerical Results (cont.)

Problem % T %IG % IV NS CPU (s) R V ar

eil51 20 99.34 38.79 14.87 96 1.183E-06

eil51 35 98.54 36.11 39.017 94.2 3.736E-06

eil51 50 98.56 37.32 44.798 93.7 4.284E-06

gr137 20 99.79 36.31 137.496 NA NA

gr137 35 99.71 34.18 404.061 NA NA

gr137 50 99.68 34.61 976.369 NA NA

gr202 20 99.89 32.43 528.162 82.31 1.224E-05

gr202 35 99.75 34.56 3511.698 84.14 1.11E-05

gr202 50 99.74 33.36 9505.629 83.03 1.279E-05

kroA100 20 99.61 36.77 44.225 NA NA

kroA100 35 99.53 38.23 101.498 88.97 8.525E-05

kroA100 50 99.45 35.89 280.833 NA NA

kroA150 20 99.83 36.7 102.712 NA NA

kroA150 35 99.75 36.3 412.97 NA NA

kroA150 50 99.7 32.32 2035.062 NA NA

kroB100 20 99.68 38.71 17.301 90.14 6.251E-05

kroB100 35 99.59 36.32 53.74 NA NA

kroB100 50 99.49 34.98 191.722 NA NA

kroB150 20 99.84 37.49 112.099 NA NA

kroB150 35 99.77 36.05 665.676 NA NA

kroB150 50 99.73 34.53 1327.528 NA NA

kroB200 20 99.89 36.14 279.156 NA NA

kroB200 35 99.84 35.06 2234.738 NA NA

kroB200 50 99.8 33.82 7448.424 NA NA

lin105 20 99.74 35.89 9.439 NA NA

lin105 35 99.61 37.04 86.855 NA NA

lin105 50 99.5 36.4 245.246 NA NA

pr152 20 99.79 37.14 281.166 NA NA

pr152 35 99.77 36.86 808.477 NA NA

pr152 50 99.74 36.88 1673.465 NA NA

rat195 20 99.88 37.31 280.948 NA NA

rat195 35 99.82 34.7 1925.985 NA NA

rat195 50 99.8 34.99 4599.873 NA NA

75

Table 7.3 � Numerical Results (cont.)

Problem % T %IG % IV NS CPU (s) R V ar

st70 20 99.44 39.84 39.852 91.9 4.072E-06

st70 35 99.3 39.56 63.65 90.6 5.743E-06

st70 50 99.16 36.37 128.195 91.3 7.027E-06

tsp225 20 99.88 34.98 1658.773 84.75 1.141E-05

tsp225 35 99.85 34.65 4684.367 84.64 1.249E-05

tsp225 50 99.82 33.26 12088.726 87.19 1.092E-05

u159 20 99.81 35.84 333.263 NA NA

u159 35 99.76 36.14 864.992 NA NA

u159 50 99.75 35.61 1278.13 NA NA

rd100 20 99.68 37.15 22.421 NA NA

rd100 35 99.5 34.54 126.822 NA NA

rd100 50 99.42 36.13 245.827 NA NA

rd400 20 99.94 35.84 5000.214 80.94 14.22E-05

rd400 35 99.94 33.54 9000.103 85.37 11.89E-05

rd400 50 99.93 33.16 19000.70 86.43 11.51E-05

berlin52(E) 20 98.45 25.25 34.209 99.3 4.848E-07

eil51(E) 20 98.47 28.45 29.623 99.6 2.707E-07

att48(E) 35 97.45 31.74 62.967 99.4 4.93E-07

st70(E) 35 98.52 31.87 135.508 99.3 6.549E-07

brazil58(E) 50 97.48 31.84 172.636 99.4 4.825E-07

eil51(E) 50 97.26 32.67 74.473 99.1 7.942E-07

kroB100(E) 20 99.37 30.25 39.255 99.87 1.219E-06

lin105(E) 20 99.33 31.95 64.409 NA NA

kroA100(E) 35 98.99 35.88 225.505 99.81 1.828E-06

rd100(E) 35 99.15 35.3 130.008 NA NA

Average NA 99.39 35.03 1026.003 91.38 2.33E-05

The improvement of V NS over the constructed solution in Greedy, IV NS, is

bounded between 25,25% and 39,84%, according to the instance an its

characteristics on the test-set.

76

The minimum threshold pmin = 0.8 is widely exceeded in all the instances

where the average reliability R was estimated. For those instances in which

the elementary reliabilities were established in 99%-95% respectively for

nodes and links, the range of reliabilities is bounded between 82,31%-96,7%,

while a range of 99,1% y 99,87% is observed with elementary reliabilities

99%-90%.

The estimated variance is reduced in average in all the instances under

study. This suggests that the RVR method is accurate, even under reliability

failures of q = 10−2 for both Steiner nodes and links. This fact is discussed

in Section 7.4. In general, the CPU times are non-prohibitive and in general

are acceptable under all the test-set. In Section 7.3.1, illustrative examples of

resulting networks returned by NetworkDesign are presented to explain the

instances de�ned in the previous tables.

7.3.1 Resulting Topologies

Brazil58

Consider Brazil58 instance with at least %20 of terminal nodes, elementary

reliability in Steiner nodes %99, link-reliabilities %95 and %100 of 2

node-disjoint paths between each pair of terminal nodes as the connectivity

requirement. Figures 7.1 and 7.2 show correspondingly the ground graph GB

and the output of NetworkDesign. The resulting cost is 25106, and the

reliability is 0.917399. In Figure 7.1, the ground graph is illustrated, and the

the excluded nodes and links are colored in grey. In Figure 7.2, red nodes are

the terminals that do not fail, and Steiner nodes are represented in orange.

To simplify, all the links have unit-cost.

Berlin52

Consider Berlin52 instance under identical conditions, with at least %20 of

terminal nodes, elementary reliability in Steiner nodes %99, link-reliabilities

%95 and %100 of 2 node-disjoint paths between each pair of terminal nodes

as the connectivity requirement. Figures 7.3 and 7.4 show correspondingly the

ground graph GB and the output of NetworkDesign. The resulting cost is

4534.109370, and the reliability is 0.844772. In Figure 7.3, the ground graph is

77

Figure 7.1: Brazil58: ground graph GB.

Figure 7.2: Brazil58: resulting topology.

78

illustrated, and the excluded nodes and links are colored in grey. In Figure 7.4,

red nodes are the terminals that do not fail, and Steiner nodes are represented

in orange. To simplify, all the links have unit-cost.

Figure 7.3: Berlin52: ground graph GB.

79

Figure 7.4: Berlin52: resulting topology.

80

7.4 Key Questions

Our particular interest is to answer the following questions that relate the

network optimization and reliability evaluation stages that were addressed

throughout this work.

Question 1. How many feasible networks there exists given the full

probabilistic model (pmin, PE, PV−T)?

We will restrict our attention to the number of feasible networks that we

can �nd, for speci�c values in the probabilistic model. Nevertheless, this

information gives us an insight of the level of feasibility provided by our main

algorithm NetworkDesign, which serves as a guide, and to o�er partial

answers. Consider pmin = 0.98 and di�erent percentage of solutions that

survived for the pair of identical elementary reliabilities in Steiner nodes and

links %99-%99. The respective percentages under di�erent instances is

presented in Table 7.4. We can appreciate that, in general, the number of

solutions that meet the reliability threshold is high. Indeed, it is 100% of the

returned solutions in most instances.

Question 2. What is the sensibility of the model with respect to the

elementary reliabilities? For instance, for any given threshold (pmin = 0.98),

what happens if we �x pv = 0.99 but we pick di�erent values for the

elementary link reliabilities pe ∈ {0.99, 0.97, 0.95}? How many feasible

networks survive? Analogously, if we �x pe = 0.99 and pv ∈ {0.99, 0.97, 0.95}.

Consider the threshold pmin = 0.98. Tables 7.5 and 7.6 present the

percentage of feasible solutions under di�erent scenarios.

On one hand, if we �x the node-reliability and reduce the elementary

link-reliabilities, a notorious reduction in the number of feasible solutions is

observed, even reaching 0 in almost-all the instances under study when the

link-reliabilities are %95. It is worth to note that the feasibility is also 0

specially in large networks when the link reliabilities are %97. This pattern

for the results is reasonable, since the number of links is also increased when

the size of the network is larger.

On the other hand, if we �x the link-reliabilities and reduce the

node-reliabilities, the reduction in the reliability is less important than in the

previous setting, in terms of the percentage of feasible solutions. We can

81

Table 7.4: Percentage of feasible solutions such that R ≥ 0.98

Rel %99-%99 % Feasible solutions with R ≥ 0.98
att48 T20 100
att48 T35 100
att48 T50 100
eil51 T20 100
eil51 T35 100
eil51 T50 100

berlin52 T20 100
berlin52 T35 100
berlin52 T50 100
brazil58 T20 99
brazil58 T35 97
brazil58 T50 100
ch150 T20 100
ch150 T35 100
ch150 T50 100
gr202 T20 99
gr202 T35 100
gr202 T50 100
tsp225 T20 100
tsp225 T35 100
tsp225 T50 100
rd400 T20 100
rd400 T35 100
rd400 T50 100

82

Table 7.5: Solutions such that R ≥ 0.98 (pv �xed)

Rel %99-%x %99-%99 %99-%97 %99-%95
att48 T20 100 90 12
att48 T35 100 53 0
att48 T50 100 20 0

berlin52 T20 100 41 0
berlin52 T35 100 50 0
berlin52 T50 100 1 0
brazil58 T20 99 15 0
brazil58 T35 97 0 0
brazil58 T50 100 5 0
ch150 T20 100 0 0
ch150 T35 100 0 0
ch150 T50 100 0 0
gr202 T20 99 0 0
gr202 T35 100 0 0
gr202 T50 100 0 0
rd400 T20 100 0 0
rd400 T35 100 0 0
rd400 T50 100 0 0

appreciate that if the number of terminal-nodes is decreased, the

corresponding reduction in the percentage of feasible solutions that exceed

the threshold pmin is not as steep as in the previous case. This is coherent,

since larger networks have more perfect terminal nodes (recall that Steiner

nodes are optional). Nevertheless, the global e�ect of network expansion is a

corresponding reduction in the percentage of solutions that exceed the

reliability threshold, since the number of Steiner nodes is increased. This

reduction is not as steep as in the previous case.

Question 3. How many networks survive on average, for any given

probabilistic model? Understand the sensibility of the model with respect to

the connectivity requirements ri,j ∈ {2, 3, 4}.

Consider pmin = 0.98. The notation name TXX (Z1−Z2−Z3) means the

name of the graph, TXX is the percentage of terminal-nodes and Z1−Z2−Z3

the percentage of terminal nodes with connectivity requirements 2, 3 and 4

respectively. For example, eil51 T50 (65-25-10) means that the instance is

eil51, with 50% of terminal nodes, where 65% have connectivity requirement

2, 25% have requirement 3 and 10% have requirement equal to 4.

83

Table 7.6: Solutions such that R ≥ 0.98 (pe �xed)

Rel %x-%99 %99-%99 %97-%99 %95-%99
tt48 T20 100 100 99
att48 T35 100 98 96
att48 T50 100 100 99

berlin52 T20 100 100 80
berlin52 T35 100 99 93
berlin52 T50 100 100 100
brazil58 T20 99 59 41
brazil58 T35 97 43 9
brazil58 T50 100 99 81
ch150 T20 100 60 20
ch150 T35 100 98 76
ch150 T50 100 100 97
gr202 T20 99 80 30
gr202 T35 100 69 16
gr202 T50 100 100 76
rd400 T20 100 16 2
rd400 T35 100 98 80
rd400 T50 100 100 100

From Table 7.7, we can appreciate that an increase in the network

connectivity requirements necessarily imply a corresponding increase in the

percentage of networks that meet the reliability threshold, and vice-versa.

This is a nice interplay between topological network design and network

reliability analysis: a more robust network in a deterministic manner

(node-disjoint paths) is translated into a most-reliable network (under

probabilistic models), and vice-versa.

Question 4. Is it better to improve the elementary reliability of links, or the

reliability of Steiner nodes, in order to meet a demanding reliability threshold?

We can appreciate from Tables 7.5 and 7.6 that an increase in the

link-reliabilities have a better impact than a corresponding increase in

node-reliabilities.

84

Table 7.7: Solutions such that R ≥ 0.98 (case %99-%97)

Rel %99-%97 % Feasible solutions with R ≥ 0.98
att48 T20 (100-0-0) 90
att48 T20 (65-25-10) 100
att48 T20 (0-100-0) 100
att48 T20 (0-0-100) 100
eil51 T20 (100-0-0) 76
eil51 T20 (65-25-10) 100
eil51 T50 (100-0-0) 54
eil51 T50 (65-25-10) 100
berlin52 T20 (100-0-0) 41
berlin52 T20 (65-25-10) 100
brazil58 T50 (100-0-0) 5
brazil58 T50 (65-25-10) 100
kroA100 T35 (100-0-0) 0
kroA100 T35 (65-25-10) 100
kroB100 T20 (100-0-0) 3
kroB100 T20 (65-25-10) 100

85

Chapter 8

Conclusions

The object under study in this thesis is the topological design of highly

reliable networks. Our goal is to combine purely deterministic aspects such

as topological network design with probabilistic models coming from network

reliability. For that purpose, the Generalized Steiner Problem with

Node-Connectivity Contraints and Hostile Reliability (GSP-NCHR) is here

introduced. The GSP-NCHR belongs to the class of NP-Hard problems [47],

since it subsumes the Generalized Steiner Problem (GSP). Therefore, the

CPU-times are prohibitive, even for medium and small-sized networks. This

promotes the development of approximative methods for its solution. For

that reason, we considered a heuristic solution. Variable Neighborhood

Search (VNS) was selected mostly because of its simplicity, �exibility and

e�ectiveness (the reasons are detailed in Chapter 3). It is worth to remark

that the network reliability evaluation under the hostile model also belongs

to the NP-Hard class. Therefore, we adopted an outstanding pointwise

reliability estimation, known as Recursive Variance Reduction (RVR)

method, which can be applied in general to arbitrary Stochastic Monotone

Binary Systems. Since the hostile model is monotone, RVR is suitable for

this model (a more detailed justi�cation is provided in Chapter 3). The

object-oriented language C++ was considered [62] for the implementation of

the whole developed algorithms in this thesis, which includes a representation

of random graphs, validation, and testing di�erent algorithms.

To the best of our knowledge, the GSP-NCHR is presented for the �rst

time in this thesis. In fact, the related work that simultaneously addresses a

topological network optimization meeting reliability constraints is scarce.

86

Therefore, no benchmarks for this problem are available in the scienti�c

literature. In order to study the e�ectiveness of our heuristic, we adapted

instances taken from TSPLIB [90]. The improvement provided by the VNS

phase after Greedy Construction ranges between 25.25% and 39.84%,

depending on the instance under study and its characteristics. This

improvement is satisfactory, for all the instances under study. In real-life

scenarios, this means a notorious economical saving. The average reliability

for all the networks range between 82.31% and 99.87%, depending on the

elementary reliabilities for Steiner-nodes and links, and the

connectivity-requirements. The estimated variance was always small, even

under highly-reliable scenarios, showing the accuracy of RVR. In fact, the

simple approach provided by CMC fails to estimate the reliability for

highly-reliable scenarios, providing the incorrect value of unit reliability and

zero variance [75]. The networks here proposed meet the minimum reliability

requirement, and feasible solutions were always returned (the reader can �nd

the numerical results in Chapter 7). The CPU-times per-iteration is

acceptable, since the time is non-prohibitive, even for large-sized instances. It

is fair to remark here that the network reliability estimation using RVR is

not considered in this time for some instances.

In order to answer the strategic questions of the thesis, several remarks are

in order. When the elementary reliability of both Steiner and links is high

(99%-99%), the percentage of networks that achieve the reliability threshold

is high, being 100% for most of the instances under study. On one hand, when

we �x the node-reliabilities but the elementary reliabilities are dropped, we can

appreciate an important degradation of this percentage, meeting 0 in almost-all

instances when the link-reliabilities are 95%. A similar degradation occurs for

large-sized instances when the elementary reliabilities are degraded (99%-97%).

On the other hand, when only the elementary reliabilities of Steiner nodes

are degraded, the percentage of resulting networks that ful�ll the reliability

threshold is not rapidly deteriorated. In summary, the network reliability

is more sensible to link-reliabilities. When the number of terminal-nodes is

increased, the number of solutions that meet the reliability threshold is greater.

This is coherent, since the number of perfect nodes is increased. A reduction

in the reliability can be observed for larger networks, since the number of

Steiner nodes is increased. Finally, we can conclude that when the connectivity

requirements are increased, the resulting networks present greater reliability.

87

Chapter 9

Future Work

The interplay between topological network design and network reliability is

not well understood yet. In this thesis some local searches were proposed,

essentially using key-path and key-tree replacements, in order to reduce costs

preserving feasibility. A current research line is to develop strong reliability-

increasing transformations, that replace links and/or paths in order to increase

the reliability of the resulting network. The development of local searches that

increase reliability and reduce costs would enrich the current solution, and

it is part of future work. In terms of implementation of the algorithms and

experimental analysis, the following elements are relevant for the author of this

thesis:

� Variable neighborhood search is both simple and powerful. The

possibility to introduce VNS in another metaheuristic in a hybrid

manner [53, 50] is an interesting development to empower the solution

of our network optimization problem. Tabu Search or TS [78, 76, 11]

generally considers a neighborhood search, exploiting di�erent

memory-types and movements. At �rst, there are two ways to combine

VNS with TS: using some memory-type to guide the search during

VNS, or to include VNS in TS. GRASP

methodology [23, 34, 78, 92, 91, 96] could be also used together with

VNS, and it results a hybrid metaheuristic attractive for future work.

� VNS is based on a systematic modi�cation of the neighborhood during

the search, and it requires a �nite set of neighborhood structures. Here,

we considered three local searches: KeyPathLocalSearch,

KeyTreeLocalSearch and SwapKeyPathLocalSearch. Another local

88

search in order to enrich our VNS proposal is also a hint for future

work.

� Several proposals extend VNS, providing new characteristics. For the

resolution of large-sized instances, we can �nd Variable Neighborhood

Decomposition Search (VNDS), Biased VNS (BVNS) and Parallel

Variable Neighborhood Search (PVNS). The study of applicability to

the current problem will empower the optimization algorithm.

� A fair comparison with another metaheuristic, such as GRASP, using an

identical test-set is desirable.

� An optimization of the algorithms developed in this thesis using parallel

computing would achieve better CPU-times and �nd exact solutions for

large-sized instances.

89

Bibliography

[1] Agrawal, A., Klein, P., and Ravi, R. When trees collide: An approx-

imation algorithm for the generalized steiner problem on networks. SIAM

Journal on Computing 24, 3 (1995), 440�456.

[2] Alevras, D., Grötschel, M., and Wessaly, R. A network dimensioning

tool.

[3] Archer, K., Graves, C., and Milan, D. Classes of uniformly most

reliable graphs for all-terminal reliability. Discret. Appl. Math. 267 (2019),

12�29.

[4] Arraga, S., and Aroztegui, M. Algoritmos Genéticos Paralelos para el

Problema General de Steiner en Grafos, 2002.

[5] Barrera, J., Cancela, H., and Moreno, E. Topological optimization

of reliable networks under dependent failures. Oper. Res. Lett. 43, 2 (2015),

132�136.

[6] Bienstock, Brickell, M. On the structure of minimum-weight k-

connected spanning network. Society for industrial and applied mathematics

3, 3 (1990), 320�329.

[7] Boesch, F., Satyanarayana, A., and Suffel, C. A survey of some

network reliability analysis and synthesis results. Networks 54, 2 (2009), 99�

107.

[8] Botton, Q., Fortz, B., and Gouveia, L. On the hop-constrained surviv-

able network design problem with reliable edges. Computers and Operations

Research 64 (2015), 159 � 167.

[9] Brown, J. I., and Cox, D. Nonexistence of optimal graphs for all terminal

reliability. Networks 63, 2 (2014), 146�153.

90

[10] Brown, J. I., Cox, D., and Ehrenborg, R. The average reliability of

a graph. Discret. Appl. Math. 177 (2014), 19�33.

[11] Bruni, M., Beraldi, P., and Khodaparasti, S. A hybrid reactive

grasp heuristic for the risk-averse k-traveling repairman problem with pro�ts.

Computers and Operations Research 115 (2020), 104854.

[12] Brusco, M. J., and Doreian, P. Partitioning signed networks using

relocation heuristics, tabu search, and variable neighborhood search. Social

Networks 56 (2019), 70 � 80.

[13] Canale, E., Cancela, H., Romero, P., and Robledo, F. Recur-

sive variance reduction in reliability analysis. Tech. rep., Instituto de Com-

putación., Facultad de Ingeniería. Universidad de la República. Montevideo,

Uruguay., 2014. Technical Report 14-15 UR.FI-INCO.

[14] Canale, E. A., Cancela, H., Piccini, J., Robledo, F., Romero, P.,

Rubino, G., and Sartor, P. Recursive Variance Reduction method in

Stochastic Monotone Binary Systems. Proceedings of the 7th International

Workshop on Reliable Networks Design and Modeling (RNDM) (2015), 135�

141.

[15] Canale, E. A., Robledo, F., Romero, P., and Viera, J. Building

reliability-improving network transformations. In Proceedings of the 15th In-

ternational Conference on the Design of Reliable Communication Networks

(2019), IEEE, pp. 107�113.

[16] Cancela, H., and El Khadiri, M. The recursive variance-reduction

simulation algorithm for network reliability evaluation. IEEE Transactions

on Reliability 52, 2 (2003), 207�212.

[17] Cancela, H., El Khadiri, M., Rubino, G., and Tuffin, B. A Recur-

sive Variance Reduction Technique with Bounded relative Error for Commu-

nication Network Reliability Estimation. In 6th St Petersburg Workshop in

Computer Simulation (Saint Petersburg, Russia, 2009).

[18] Cancela, H., El Khadiri, M., Rubino, G., and Tuffin, B. Recursive

Variance Reduction Estimators for the Static Communication Network Re-

liability Problem. In 8th International Workshop on Rare Event Simulation

(RESIM 2010) (United Kingdom, 2010).

91

[19] Cancela, H., Guerberoff, G., Robledo, F., and Romero, P. Reli-

ability maximization in stochastic binary systems. In Proceedings of the 21st

Conference on Innovation in Clouds, Internet and Networks and Workshops

(2018), IEEE, pp. 1�7.

[20] Cancela, H., and Khadiri, M. E. Series parallel reductions in rvr re-

liability evaluation. Tech. rep., Investigación Operativa � InCo � Pedeciba

Informática, Facultad de Ingeniería. Universidad de la República. Montev-

ideo, Uruguay., 1996. Technical Report INCO 96-01.

[21] Cancela, H., Khadiri, M. E., and Rubino, G. A new simulation

method based on the RVR principle for the rare event network reliability

problem. Annals of Operations Research 196, 1 (2012), 111�136.

[22] Cancela, H., Khadiri, M. E., Rubino, G., and Tuffin, B. Balanced

and approximate zero-variance recursive estimators for the network reliability

problem. ACM Transactions on Modeling and Computer Simulation 25, 1

(2014).

[23] Cancela, H., Robledo, F., and Rubino, G. Network design with node

connectivity constraints. In Proceedings of the 2003 IFIP/ACM Latin Amer-

ica Conference on Towards a Latin American Agenda for Network Research

(New York, NY, USA, 2003), Association for Computing Machinery, p. 13�20.

[24] Cancela, H., and Urquhart, M. Adapting rvr simulation techniques

for general network reliability models. Computers, IEEE Transactions on 51

(05 2002), 439�443.

[25] Carrizosa, E., Mladenovi¢, N., and Todosijevi¢, R. Variable neigh-

borhood search for minimum sum-of-squares clustering on networks. Euro-

pean Journal of Operational Research 230, 2 (2013), 356 � 363.

[26] Chen, Z.-Z. Approximating unweighted connectivity problems in parallel.

Information and Computation 171, 2 (2001), 125 � 136.

[27] Cheriyan, J., Jordan, T., and Nutov, Z. On rooted node-connectivity

problems. Algorithmica 30, 3 (2001), 353�375.

[28] Cheriyan, J., Sebo, A., and Szigeti, Z. Improving on the 1.5-

approximation of a smallest 2-edge connected spanning subgraph. SIAM

Journal on Discrete Mathematics 14, 2 (2001), 170�180.

92

[29] Chimani, M., Kandyba, M., Ljubi¢, I., and Mutzel, P. Strong for-

mulations for 2-node-connected steiner network problems. In Proceedings of

the 2nd International Conference on Combinatorial Optimization and Appli-

cations (Berlin, Heidelberg, 2008), Springer-Verlag, p. 190�200.

[30] Consoli, S., and Pérez, J. A. M. Variable neighbourhood search for

the k-labelled spanning forest problem. Electronic Notes in Discrete Math-

ematics 47 (2015), 29 � 36. The 3rd International Conference on Variable

Neighborhood Search (VNS'14).

[31] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.

Introduction to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

Chapter 16, Greedy Algorithms.

[32] Cravo, G., and Amaral, A. A grasp algorithm for solving large-scale

single row facility layout problems. Computers and Operations Research 106

(2019), 49 � 61.

[33] Czumaj, A., and Lingas, A. On approximability of the minimum-cost

k-connected spanning subgraph problem. In Proceedings of the Tenth Annual

ACM-SIAM Symposium on Discrete Algorithms (USA, 1999), SODA '99,

Society for Industrial and Applied Mathematics, p. 281�290.

[34] de Kerebi, G. I. F., Maneyero, M., Robledo, F., and Sabiguero,

A. Modelo de Con�abilidad en Redes, 1996.

[35] Dib, O., Moalic, L., Manier, M.-A., and Caminada, A. An ad-

vanced ga�vns combination for multicriteria route planning in public transit

networks. Expert Systems with Applications 72 (2017), 67 � 82.

[36] Diestel, R. Graph Theory. Springer International Publishing, Graduate

Texts in Mathematics, 2017.

[37] Dijkstra, E. W. A note on two problems in connexion with graphs. Nu-

merical Mathematics 1, 1 (1959), 269�271.

[38] dos Santos Dantas, A. P., [de Souza], C. C., and Dias, Z. A grasp

for the convex recoloring problem in graphs. Electronic Notes in Theoretical

Computer Science 346 (2019), 379 � 391. The proceedings of Lagos 2019, the

tenth Latin and American Algorithms, Graphs and Optimization Symposium

(LAGOS 2019).

93

[39] Duarte, A., Sánchez-Oro, J., Resende, M. G., Glover, F., and

Martí, R. Greedy randomized adaptive search procedure with exterior path

relinking for di�erential dispersion minimization. Information Sciences 296

(2015), 46 � 60.

[40] Fernandes, C. G. A better approximation ratio for the minimum k-edge-

connected spanning subgraph problem. In Proceedings of the Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms (USA, 1997), SODA '97,

Society for Industrial and Applied Mathematics, p. 629�638.

[41] Fishman, G. Monte Carlo. Springer Series in Operations Research and

Financial Engineering. Springer, 1996.

[42] Ford, D. R., and Fulkerson, D. R. Flows in Networks. Princeton

University Press, USA, 2010.

[43] Gabow, H. N., Goemans, M. X., and Williamson, D. P. An ef-

�cient approximation algorithm for the survivable network design problem.

Mathematical Programming 82 (1998), 13�40.

[44] Gabow, H. N., Goemans, M. X., and Williamson, D. P. An ef-

�cient approximation algorithm for the survivable network design problem.

Mathematical Programming 82 (1998), 13�40.

[45] Galluccio, and Proietti. Polynomial time algorithms for 2-edge-

connectivity augmentation problems. Algorithmica 36, 4 (2003), 361�374.

[46] Gang Cheng, and Ansari, N. Finding all hops k-shortest paths. In Pro-

ceedings of the IEEE Paci�c Rim Conference on Communications Computers

and Signal Processing (2003), vol. 1, pp. 474�477.

[47] Garey, M. R., and Johnson, D. S. Computers and Intractability; A

Guide to the Theory of NP-Completeness. W. H. Freeman and Co., USA,

1990.

[48] Goemans, M. X., Goldberg, A. V., Plotkin, S., Shmoys, D. B.,

Tardos, E., and Williamson, D. P. Improved approximation algorithms

for network design problems. In Proceedings of the Fifth Annual ACM-SIAM

Symposium on Discrete Algorithms (USA, 1994), SODA '94, Society for In-

dustrial and Applied Mathematics, p. 223�232.

94

[49] Goemans, M. X., and Williamson, D. P. A general approximation

technique for constrained forest problems. SIAM Journal on Computing 24,

2 (1995), 296�317.

[50] Gomes, L. M., Diniz, V. B., and Martinhon, C. A. A Tutorial on

Variable Neighborhood Search, 1970.

[51] Hansen, P. Variable Neighborhood Search. Springer International Publish-

ing, Handbook of Heuristics, 2018.

[52] Hansen, P., and Mladenovic, N. An Hybrid GRASP+VNSMetaheuris-

tic for the Prize-Collecting Traveling Salesman Problem, 1970.

[53] Hansen, P., Mladenovic, N., and Pérez, J. A. M. Variable neighbour-

hood search. Revista Iberoamericana de Inteligencia Arti�cial 7, 19 (2003),

77�92.

[54] Harary, F. The maximum connectivity of a graph. Proceedings of the

National Academy of Sciences 48, 7 (1962), 1142�1146.

[55] Hore, S., Chatterjee, A., and Dewanji, A. Improving variable neigh-

borhood search to solve the traveling salesman problem. Applied Soft Com-

puting 68 (2018), 83 � 91.

[56] Jain, K. A factor 2 approximation algorithm for the generalized steiner

network problem. In Proceedings of the 39th Annual Symposium on Founda-

tions of Computer Science (USA, 1998), FOCS '98, IEEE Computer Society,

p. 448.

[57] Kamma, L., and Nutov, Z. Approximating survivable networks with

minimum number of steiner points. In Proceedings of the 8th International

Conference on Approximation and Online Algorithms (Berlin, Heidelberg,

2011), Springer-Verlag, p. 154�165.

[58] Karp, R. M. Reducibility among Combinatorial Problems. Springer US,

Boston, MA, 1972, pp. 85�103.

[59] Kerivin, H., and Mahjoub, A. R. Design of survivable networks: A

survey. Networks 46, 1 (2005), 1�21.

95

[60] Kleywegt, A. J., Shapiro, A., and Homem-de-Mello, T. The sample

average approximation method for stochastic discrete optimization. SIAM

Journal on Optimization 12, 2 (2002), 479�502.

[61] Kortsarz, G., Krauthgamer, R., and Lee, J. R. Hardness of approx-

imation for vertex-connectivity network design problems. SIAM Journal on

Computing 33, 3 (2004), 704�720.

[62] Larman, C. UML y Patrones. Introducción al análisis y diseño orientado

a objetos. Prentice Hall, Inc., USA, 2004.

[63] Lawler, E. L. A procedure for computing the k best solutions to dis-

crete optimization problems and its application to the shortest path problem.

Management Science 18, 7 (1972), 401�405.

[64] L'Ecuyer, P., Rubino, G., Saggadi, S., and Tuffin, B. Approximate

zero-variance importance sampling for static network reliability estimation.

IEEE Transactions on Reliability 60, 3 (2011), 590�604.

[65] Leitner, M. Integer programming models and branch-and-cut approaches

to generalized 0,1,2-survivable network design problems. Computational Op-

timization and Applications 65, 1 (2016), 73.

[66] Leitner, M., and Raidl, G. R. Variable neighborhood and greedy ran-

domized adaptive search for capacitated connected facility location. In Com-

puter Aided Systems Theory � EUROCAST 2011 (Berlin, Heidelberg, 2012),

R. Moreno-Díaz, F. Pichler, and A. Quesada-Arencibia, Eds., Springer Berlin

Heidelberg, pp. 295�302.

[67] Lena, D., Robledo, F., and Romero, P. A hostile model for network

reliability analysis. J. Heuristics 8, 2 (2017), 489�498.

[68] Ljubi¢, I., Mutzel, P., and Zey, B. Stochastic survivable network design

problems. Electronic Notes in Discrete Mathematics 41 (2013), 245 � 252.

[69] López-Sánchez, A., Sánchez-Oro, J., and Hernández-Díaz, A.

Grasp and vns for solving the p-next center problem. Computers and Oper-

ations Research 104 (2019), 295 � 303.

[70] Lourenco, H. R., Martin, O. C., and Stutzle, T. Iterated Local

Search, 2001.

96

[71] Mahjoub, A., and Pesneau, P. On the steiner 2-edge connected sub-

graph polytope. RAIRO Operations Research 42, 1 (2008), 259�283.

[72] Martí, R., Campos, V., Resende, M. G., and Duarte, A. Multiob-

jective grasp with path relinking. European Journal of Operational Research

240, 1 (2015), 54 � 71.

[73] Martins, E., and Pascoal, M. A new implementation of yen's ranking

loopless paths algorithm. Quarterly Journal of the Belgian, French and Italian

Operations Research Societies 1, 2 (2003), 121�133.

[74] Martins, E. Q. V., Pascoal, M. M. B., and Santos, J. L. E. Devia-

tion algorithms for ranking shortest paths. International Journal of Founda-

tions of Computer Science 10, 3 (1999), 247�261.

[75] Mauttone, A. Método RVR en la simulación de medidas de con�abilidad

en redes, 2000.

[76] Mejía, M., and Aguirre, P. E. O. Network Topology Optimization

using Tabu Search, 2005.

[77] Monma, C., Munson, B., and Pulleyblank, W. Minimum-weight

two-connected spanning networks. Math. Program. 46 (02 1990), 153�171.

[78] Morales, E. Búsqueda Optimización y Aprendizaje, 2004.

[79] Nesmachnow, S. Evaluating simple metaheuristics for the generalized

steiner problem. Journal of Computer Science and Technology 5, 4 (2005).

[80] Nesmachnow, S., and Pedemonte, M. Metaheurísticas basadas en

adaptación social para el Problema de Steiner Generalizado. In Actas VI

Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspira-

dos (MAEB 2009) (New York, NY, USA, 2009), Association for Computing

Machinery, p. 107�114.

[81] Nguyen, T., and Do, P. An ant colony optimization algorithm for solv-

ing group steiner problem. In The 2013 RIVF International Conference on

Computing Communication Technologies - Research, Innovation, and Vision

for Future (RIVF) (2013), pp. 163�168.

97

[82] Orlov, V. I., Kazakovtsev, L. A., Rozhnov, I. P., Popov, N. A.,

and Fedosov, V. V. Variable neighborhood search algorithm for k-means

clustering. In Materials Science and Engineering Conference Series (2018),

vol. 450 of Materials Science and Engineering Conference Series, pp. 22�35.

[83] Panigrahi, D. Survivable network design problems in wireless networks.

In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Dis-

crete Algorithms (USA, 2011), Society for Industrial and Applied Mathemat-

ics, p. 1014�1027.

[84] Paolini, E. Minimal connections: the classical steiner problem and gener-

alizations. Bruno Pini Mathematical Analysis Seminar 3, 1 (2012), 72.

[85] Pedemonte, M., and Cancela, H. A cellular ant colony optimisation

for the generalised steiner problem. International Journal of Innovative Com-

puting and Applications 2 (2010), 188�201.

[86] Pessoa, L. S., Resende, M. G., and Ribeiro, C. C. A hybrid la-

grangean heuristic with grasp and path-relinking for set k-covering. Comput-

ers and Operations Research 40, 12 (2013), 3132 � 3146.

[87] Pulsipher, J., and Zavala, V. Measuring and optimizing system relia-

bility: a stochastic programming approach. TOP (2020), 1 � 20.

[88] Radojicic, N., Djenic, A., and Maric, M. Fuzzy grasp with path re-

linking for the risk-constrained cash-in-transit vehicle routing problem. Ap-

plied Soft Computing 72 (2018), 486 � 497.

[89] Ravi, R., and Klein, P. When cycles collapse: A general approximation

technique for constrained two-connectivity problems. In Proceedings of the 3rd

Symposium on Integer Programming and Combinatorial Optimization (1993),

pp. 39�55.

[90] Reinelt, G. TSPLIB�a traveling salesman problem library. ORSA Journal

on Computing 3, 4 (1991), 376�384.

[91] Resende, M., and Ribeiro, C. Optimization by GRASP. Springer, 2016.

[92] Resende, M. G., and Velarde, J. L. G. Grasp: Greedy randomized

adaptative search procedures. Revista Iberoamericana de Inteligencia Arti�-

cial 7, 19 (2003), 61�76.

98

[93] Resende, M. G. C., and Ribeiro, C. C. GRASP: Greedy Randomized

Adaptive Search Procedures. Springer US, Boston, MA, 2014, pp. 287�312.

[94] Risso, C. Using GRASP and GA to design resilient and cost-e�ective

IP/MPLS networks. PhD thesis, Universidad de la República, 2014.

[95] Robledo, F. Diseño Topológico de Redes. Casos de Estudio: The General-

ized Steiner Problem and The Steiner 2-Edge-Connected Subgraph Problem.

Master's thesis, Tesis de Maestría. Universidad de la República, 2000.

[96] Robledo, F. GRASP heuristics for Wide Area Network design. PhD thesis,

Rennes University, Rennes, France, 2005.

[97] Robledo, F., and Canale, E. Designing backbone networks using the

Generalized Steiner Problem. In Proceedings of the 7th International Work-

shop on Design of Reliable Communication Networks (2009), pp. 327�334.

[98] Rodríguez-Martín, I., Salazar-González, J.-J., and Yaman, H. A

branch-and-cut algorithm for two-level survivable network design problems.

Computers and Operations Research 67 (2016), 102 � 112.

[99] Rodríguez-Martín, I., Salazar-González, J.-J., and Yaman, H.

Hierarchical survivable network design problems. Electronic Notes in Discrete

Mathematics 52 (2016), 229 � 236. Proceedings of the 7th International

Network Optimization Conference.

[100] Rodríguez-Pereira, J., Fernández, E., Laporte, G., Benavent,

E., and Martínez-Sykora, A. The steiner traveling salesman problem

and its extensions. European Journal of Operational Research 278, 2 (2019),

615 � 628.

[101] Rosenthal, A. Computing the reliability of complex networks. SIAM

Journal on Applied Mathematics 32, 2 (1977), 384�393.

[102] Sadeghi, E., and Fan, N. On the survivable network design problem

with mixed connectivity requirements. Annals of Operations Research (2019).

[103] Sartor, P. Problema General de Steiner en Grafos: Resultados y Al-

goritmos GRASP para la versión Arista-Disjunta. Master's thesis, Tesis de

Maestría. Universidad de la República, 2011.

99

[104] Sartor, P., and Robledo, F. A heuristic for the edge-survivable general

steiner problem. In Control and Automation, and Energy System Engineering

(Berlin, Heidelberg, 2011), Springer Berlin Heidelberg, pp. 7�16.

[105] Sartor, P., and Robledo, F. Solving the generalized steiner problem

in edge-survivable networks. In Control and Automation, and Energy System

Engineering (Berlin, Heidelberg, 2011), Springer Berlin Heidelberg, pp. 7�16.

[106] Sartor, P., and Robledo, F. Grasp algorithms for the edge-survivable

generalized steiner problem. International Journal of Control and Automation

5 (2012), 27�44.

[107] Schauer, C., and Raidl, G. R. Variable neighborhood search and grasp

for three-layer hierarchical ring network design. In Proceedings of the 12th

International Conference on Parallel Problem Solving from Nature - Volume

Part I (Berlin, Heidelberg, 2012), Springer-Verlag, p. 458�467.

[108] Shen, H. Approximate algorithms for survivable network design. In 2012

Third International Conference on Networking and Computing (2012), pp. 9�

18.

[109] Suurballe., J. Disjoint paths in a network. Networks. 4 (1974), 125�145.

[110] Suurballe, J., and Tarjan., R. A quick method for �nding shortest

pairs of disjoint paths. Networks. 14, 2 (1984), 325�336.

[111] Suzuki, H., Ishihata, M., and Minato, S.-i. Designing survivable

networks with zero-suppressed binary decision diagrams. In WALCOM: Al-

gorithms and Computation (Cham, 2020), M. S. Rahman, K. Sadakane, and

W.-K. Sung, Eds., Springer International Publishing, pp. 273�285.

[112] Tran, C. V., and Ha, N. H. A variable neighborhood search algorithm

for solving the steiner minimal tree problem in sparse graphs. EAI Endorsed

Transactions on Context-aware Systems and Applications 5, 15 (12 2018).

[113] Tripathi, P. A Deterministic Algorithm for the Vertex Connectivity Sur-

vivable Network Design Problem, 2010. Arxiv:1004.1208v1.

[114] Vijayaraghavan, V., Kianfar, K., Ding, Y., and Parsaei, H. A

mixed integer programming based recursive variance reduction method for

100

reliability evaluation of linear sensor systems. In 2018 IEEE 14th Interna-

tional Conference on Automation Science and Engineering (CASE) (2018),

pp. 836�842.

[115] Williamson, D. P., Goemans, M. X., Mihail, M., and Vazirani,

V. V. A primal-dual approximation algorithm for generalized steiner network

problems. Combinatorica 15, 3 (1995), 435�454.

[116] Winter, P. Steiner problem in networks: A survey. Networks 17, 2 (1987),

129�167.

[117] Woods, B. Generalized Steiner Problem in Halin Graphs. Master's thesis,

University of Waterloo, 2010.

[118] Xiao, Y., and Konak, A. A variable neighborhood search for the network

design problem with relays. J. Heuristics 23, 2-3 (2017), 137�164.

101

Chapter 10

Appendix

10.1 Feasibility - Local Search Phase

In this section it is formally proved that the feasibility 1 is preserved during

all the local searches from Chapter 6. Additionally, we describe the auxiliary

proceduresGeneral_RecConnect and FindSubstituteKeyPath, that are used

in the local searches KeyTreeLocalSearch and SwapKeyPathLocalSearch

respectively.

Proposition 5. KeyPathLocalSearch returns a feasible solution [96].

Proof. Suppose that KeyPathLocalSearch does not preserve feasibility. Since

the input is a feasible network, in some iteration we must have the following

conditions:

� A feasible solution gsol.

� The path p̂ computed in Lines 7-8 meets the inequality COST (p̂) <

COST (p), being p ∈ K(gsol) the current key-path.

� The network ĝ = {gsol \ p} ∪ {p̂} is non-feasible: there exists i, j ∈ T

with less than ri,j node-disjoint paths.

This means that INTERNAL_NODES(p̂) ∩ NODES(gsol \ p) 6= ∅. This

is a contradiction, since NODES(p̂) ⊆ NODES(p) ∪ {SD −NODES(gsol)}.
Therefore, ĝ is feasible and satis�es the requirement matrix R, as we wanted

to prove.

1Here we consider the feasibility of the relaxation, this is, the GSPNC.

102

Procedure General_RecConnect

General_RecConnect is used during KeyTreeLocalSearch [96]. Given a

current solution gsol and a key-node v ∈ gsol, General_RecConnect tries to

�nd a better key-tree T spanning the leaf-nodes belonging to Tv, where Tv is

the tree associated to v. In order to preserve feasibility, T considers only

Steiner nodes not included in gsol and nodes belonging to Tv. Additionally,

the links from the extremes of Tv are not considered.

Algorithm 12 (gsol, improve) = General_RecConnect(GB, C, gsol, v, S)

1: cost← cost_Key_Tree(v, gsol)
2: Y ← Nodes_Key_Tree(v, gsol)
3: Z ← Ends_Key_Tree(v, gsol)
4: Ŝ ← Y \ Z ∪ S
5: U ← {(i, j) ∈ GB : i ∈ Z, j ∈ Ŝ}
6: µ̂←< NODES(Ŝ ∩GB) >; µ̂← µ̂ ∪ U
7: T ← v
8: while ∃u ∈ Z : u /∈ T do
9: X = {u ∈ Z, u /∈ T}; u← Select_Random(X)
10: µ← µ̂ \ {Z − u}
11: p← Dijkstra(u, T, µ)
12: T ← T ∪ {p}
13: end while
14: T ← RemoveDegree1(S, T)
15: if cost(T) < cost then
16: gsol ← {gsol \ (Y \ Z)} ∪ {T}
17: improve← TRUE
18: else
19: improve← FALSE
20: end if
21: return (gsol, improve)

Figure 10.1: Pseudocode for General_RecConnect [96].

Figure 10.1 presents General_RecConnect. It receives the graph GB of

feasible connections, the link-costs C and the current solution gsol, the current

key-node v and the set of Steiner nodes S not belonging to gsol. Let Tv be

the associated key-tree. Line 2 computes the set of nodes Y belonging to Tv.

Line 3 �nds the leaf-nodes Z ⊆ Y . The set Ŝ = {Y \ Z} ∪ {S} is found in

Line 4. The set Ŝ is precisely the Steiner nodes that do not belong to gsol

103

neither the extremes of Tv. In Line 5, the set U includes all the connections

from GB with an extreme in Z and the other in Ŝ. Clearly, in U there are no

links between nodes belonging to Z. Let µ̂ be the network induced by Ŝ in

gsol. The set U is added to µ̂ in Line 6. Note that any spanning tree computed

in µ̂ is a potential replacement for Tv in gsol, since the replacement preserves

feasibility. Line 7 forces the root-node v to be included in the new tree, T .

The while-loop of Lines 8-13 iteratively builds a new key-tree, by adding nodes

from Z to T . In Line 9, a node u ∈ Z not previously picked is uniformly chosen

at random. The auxiliary network µ = µ̂ \ {Z − {u}} is considered in Line 10

to �nd a path from u to T . The nodes from Z −{u} are not considered, since
these nodes must be the extremes of T . Line 11 �nds the shortest path from u

to T in µ. Let p be that path; then p is added to T . The while-loop of Lines 8-

13 is �nished precisely when all the nodes belonging to Z are added into T .

The Steiner nodes from the extremes are removed from T in Line 14. We

remark that those nodes are not necessary to ful�ll feasibility. Furthermore,

it is straight to see that a new key-tree can be constructed from Tv ⊆ µ̂. The

costs of both T and Tv are compared in Line 15. If T is better, the replacement

takes place in the solution gsol in Line 16. The indicator variable improve is

set to TRUE in Line 17 (used in KeyTreeLocalSearch). Otherwise, improve

is set to FALSE in Line 19. Both the indicator variable improve and the

resulting solution gsol are returned in Line 21.

Proposition 6. General_RecConnect preserves feasibility [96].

Proof. Following the previous terminology, it is straight to note that T is a

tree after the while-loop of Lines 8-13. The following observations are in order:

� Z ⊆ T

� Z is precisely the extreme-nodes belonging to T .

� NODES(T) ∩NODES(gsol) = Z ∪ J , with J ⊆ Y \ Z
� There exists a root-node ŝ of T (not necessarily ŝ = v).

If the condition from Line 15 is true, the algorithm �nds ĝ = {gsol \ Tv} ∪ {T}
in Line 16. The feasibility of ĝ is induced by the previous observations. In

fact, the loss of connectivity requirements when Tv is removed is reestablished

with the addition of T . Therefore, General_RecConnect returns a feasible

network in Line 19.

Proposition 7. SwapKeyPathLocalSearch preserves feasibility [96].

104

Proof. If SwapKeyPathLocalSearch does not preserve feasibility, in a certain

step the following conditions are met:

� gsol is feasible.

� The path p̂ computed in Lines 6-8 satisfy:

COST (p \ {gsol \ p}) < COST (p), where p ∈ K(gsol) is the current

key-path, so Line 10 takes e�ect.

� The network ĝ = {gsol \ p}∪ p̂ is non-feasible, and there are less than ri,j

node-disjoint paths between i, j ∈ S(i)
D in ĝ.

Let p̂i,j ∈ Pi,j such that pi,j ⊆ p̂i,j. Consider the path paux = {p̂i,j \
p} ∪ {p}. The nodes from Xp(P) are excluded from Ĥ, hence there are no

nodes from Pi,j \ p̂i,j belonging to H, and INTERNAL_NODES(paux) ∩
INTERNAL_NODES(pi,j) 6= ∅, for all pi,j ∈ Pi,j \ p̂i,j, which contradicts

that ĝsol is non-feasible. Therefore, the network Ĝ computed in Line 10 is

feasible. To complete the proof it is worth to note that:

� All the paths p̂ ∈ P that include p are updated in Line 10, replacing p

by p. There are ri,j node-disjoint paths in Pi,j connecting i to j, for all

i, j ∈ S(i)
D .

� The decomposition of gsol into key-paths is repeated in Lines 13-15, where

gsol was replaced by ĝ in Line 10. Therefore, the feasibility is preserved

during each iteration of the local search.

Proposition 8. KeyTreeLocalSearch preserves feasibility [96].

Proof. Immediate from the feasibility of General_RecConnect, which is

proved in Proposition 6.

FindSubstituteKeyPath

This algorithm is called during SwapKeyPathLocalSearch. It receives the

solution gsol, the key-path p and the matrix P of paths between terminal

nodes computed by the Construction phase, called Greedy.

Figure 10.2 presents FindSubstituteKeyPath. It deletes the key-path p

given by the parameter of the solution gsol and, using the information provided

by P , it will try to reconstruct a feasible solution. After a feasible solution

105

is met, it returns TRUE if the new solution is cheaper than gsol, or FALSE

otherwise. The boolean improve and the resulting solution gsol are returned.

Algorithm 13 (gsol, improve) = FindSubstituteKeyPath(gsol, p, P, improve)

1: cost← cost(gsol)
2: Disable(gsol, p)
3: EliminatePaths(P, gsol)
4: (gsol, feasible)← FindCheapestSolution(gsol, P, cost,MAX_ATTEMPTS)

5: if feasible and cost(gsol) < cost then
6: gsol ← {gsol \ (Y \ Z)} ∪ {T}
7: improve← TRUE
8: else
9: improve← FALSE
10: end if
11: return (gsol, improve)

Figure 10.2: Pseudocode for FindSubstituteKeyPath.

The cost of the input network is obtained in Line 1. The key-path p is

deleted in Line 2, and all the paths from P that intersect with p are also

removed in Line 3. A feasible solution is search in Line 4. An internal cycle

is executed in this step, while a feasible solution is not found or a maximum

number of iterations MAX_ATTEMPTS is met. If the resulting network

is both feasible and cheaper (Line 5), the variable improve is set to TRUE

(Line 6). Otherwise, it is set to FALSE (Line 9). The boolean variable

improve and the resulting solution gsol are returned in Line 11.

10.2 Feasibility - Construction Phase

In this section, the feasibility of the Greedy Randomized Construction is

proved [96]. Additionally, the methods General_Update_Matrix and KSP

are explained.

106

Algorithm 14 (P,M) = General_Update_Matrix(Gsol, P,M, p, i, j)

1: for all k ∈ S(I)
D , k 6= i, j : k ∈ p do

2: if mi,k > 0 then
3: if Nodes(Pi,k) ∩Nodes(p(i,k)) = {i, k} then
4: Pi,k ← Pi,k ∪ {p(i,k)}
5: mi,k ← mi,k − 1; mk,i ← mk,i − 1
6: end if
7: end if
8: if mk,j > 0 then
9: if Nodes(Pk,j) ∩Nodes(p(k,j)) = {k, j} then
10: Pk,j ← Pk,j ∪ {p(k,j)}
11: mj,k ← mj,k − 1; mk,j ← mk,j − 1
12: end if
13: end if
14: end for
15: return (P,M)

Figure 10.3: Pseudocode for General_Update_Matrix [96].

Figure 10.3 presents General_Update_Matrix. It receives the solution

obtained so far (during the construction), Gsol, the matrix with paths P , the

connectivity matrix M , the terminals i, j and the path p found between them.

The for-loop of Lines 1-14 studies each terminal node k ∈ S(I)
D , k 6= i, j, such

that k ∈ p. It determines whether there exists a sub-path between k and

i (resp. j), or not, that must be node-disjoint with the previous paths Pi,k

(resp. Pk,j). If this is the case, the set Pi,k (resp. Pk,j) is extended, adding

p(i,k) (resp. p(k,j)), andmi,k andmk,i (resp. mk,j andmj,k) are decreased a unit.

New paths between intermediate terminals for the path p are also included as

an optimization to this algorithm.

Proposition 9. At the end of General_Update_Matrix, the following

clauses are met:

� Pi,j = ∅ if and only if mi,j = ri,j.

� If mi,j = k (with k ∈ {0, . . . , ri,j}), there exists at least ri,j − k node-

disjoint paths from i to j in Gsol.

� The relation |Pi,j| = ri,j − mi,j in each iteration of the construction

algorithm.

107

Proof. It is assumed that both P and M satisfy the statement when

General_Update_Matrix is called. Let us pick i, j ∈ S
(I)
D as the pair of

terminals and p the path that connects them computed by the construction

algorithm. The cycle studies ∀ k ∈ S(I)
D , k ∈ p, k 6= i, j the following cases:

� Case I: Ifmi,k > 0 we know that there exists ri,j−mi,j node-disjoint paths

between i and j in Gsol. Further, if mi,j = ri,j we have Pi,j = ∅. If the
condition NODES(Pi,k)∩NODES(p(i,k)) = {i, k} is true, the sub-path
p(i,k) is added to Pi,k, since this is node-disjoint with the path belonging

to Pi,k. The values mi,k and mk,i are decreased a unit, preserving the

veracity of the clauses.

� Case II: mi,k = 0, is analogous.

Proposition 10. If Ai,j < MAX_ATTEMPT, ∀i, j ∈ S(I)
D , the construction

algorithm returns a feasible solution [96].

Proof. We assume that there exists a subnetwork Gsol ⊆ GB that is a feasible

solution. In Line 1, the algorithm initializes:

� Gsol with a set of terminal-nodes S
(I)
D , and an empty set of links.

� The auxiliary matrix M with mi,j = ri,j, ∀i, j ∈ S(I)
D .

� The matrix P = ∅.

Let us assume that, the conditional if from Line 2 holds in a certain iter-

ation. In Line 3, we pick a pair of terminal nodes i, j ∈ S(I)
D such that mi,j >

0 uniformly at random. The auxiliary network G = GB \ Pi,j is computed in

Line 4. If there exists a node-disjoint path from i to j in G, this path is node-

disjoint with respect to the paths belonging to Pi,j. The auxiliary costs C as-

sociated to G are found in Line 5, assigning zero-cost to the links that are in-

cluded in Gsol. The block of Lines 5-12 look for a new path from i to j in Gsol

considering C, using the fact that the condition |Pi,j| = ri,j −mi,j is met dur-

ing General_Update_Matrix. Let us discuss two cases:

� ¬∃p ⊆ G that connects i to j: in this case, Line 7 updates Pi,j and mi,j,

since Pi,j contains a path that is intersection of two or more node-disjoint

paths that connect i and j. The construction proceeds in Line 2.

108

� ∃p ⊆ G: a path p is selected from the list Lp in Line 9. Sine p * Gsol, the

current solution Gsol is update in Line 9. In Line 10, mi,j is decreased a

unit.

Based on the construction phase previously described, it is straight to see

that, after the for-loop of Lines 1-14, if mi,j = 0, ∀i, j ∈ S
(I)
D , the resulting

solution Gsol satis�es the connectivity requirements R.

We �nally give details of KSP , Yen [73], used to implement the K shortest

paths, without cycles between two �xed nodes s and t. This solution belongs

to the class of Deviation Algorithms [74], which builds a pseudo-tree of paths

without cycles.

Algorithm 15 ksp = KSP (G, s, t, k)

1: ksp← ∅; X ← ∅, kaux ← 0
2: p← Dijkstra(G, s, t)
3: if p 6= ∅ then
4: X ← X ∪ {p}; d(p)← s
5: while X 6= ∅ and kaux < k do
6: k ← k + 1
7: pk ← GetMinCostPath(X), vki ← d(pk)
8: X ← X − {pk}, ksp← ksp ∪ {pk}
9: if kaux < k then
10: while vti 6= t do
11: G← G−Nodes(subpk(s, vki−1))
12: G← G− Arcs(vki , vki+1)
13: G← G− Arcs(starting in vki removedwhen pk was computed)
14: p̂← Dijkstra(G, vki , t)
15: if p̂ 6= ∅ then
16: p̂← subpk(s, v

k
i−1) + p̂, X ← X ∪ {p̂}

17: end if
18: vki ← vki+1

19: end while
20: end if
21: end while
22: end if
23: return ksp

Figure 10.4: Pseudocode for KSP .

Figure 10.4 presents KSP . It receives the graph G, two nodes s and t

109

and an integer k ≥ 1 that represents the number of shortest paths without

cycles between s and t. The collection of candidate paths starts as empty

sets in Line 1. Line 2 applies Dijkstra algorithm [37] to �nd the shortest

path between s and t. If there exists such path p, then p is added to the list

(Line 4). In the while-loop of Lines 5-21, the k shortest paths are computed.

During the iteration k, the last path pk already found in X (Line 7), and

its deviation node vki , pk is added into ksp and eliminated from X (Line 8).

If the k shortest paths are not found yet, new deviation nodes from pk are

obtained during the while-loop of Lines 10-19. Only the nodes from vki to t are

analyzed in order to avoid repeated operations. For each node, the shortest

path between vki and t is found using Dijkstra (Line 14), and if p̂ is not empty,

a new path is obtained as the concatenation p̂ ← subpk(s, v
k
i−1) + p̂ (Line-16)

and added to the list. In order to avoid cycle or previous paths, the nodes from

pk that are ancestors of vki are deleted from G (Line 11), as well as the arcs

(Lines 12-13). In this way, the k shortest paths without cycles between s and

t are found. For each analyzed node, we must apply Dijkstra algorithm whose

complexity is O(m+nlog(n)) [37]. In a worst case, we must analyze n nodes for

every path p1, . . . , pk, and the complexity for the KSP is O(kn(m+ nlog(n))).

See [63] for further details.

10.3 Graphical Tools

Even though the implementation of graphical interfaces were not mandatory

in this thesis, the author considers it is bene�cial to have a graphical tool able

to create graphs in a fast and simple manner, and to visualize them in order to

facilitate the validation tests for the algorithms. For that purpose, a graphical

tool (Graph Viewer) was developed. Graph Viewer allows to create graphs,

and save them in XML �les, for a latex loading for the same application and

vice-versa. This tool was useful in order to see the resulting graphs during the

validation tests, and to de�ne input graphs as well. GraphViewer interface is

illustrated in Figure 10.5

110

Figure 10.5: GraphViewer interface.

In order to save the results of the algorithms, we write a �le in XML format,

and then we choose XML, since this is standard for the information formatting.

The format is the following. A root tag called Graph contains the information

of all the graph. Inside the Graph tag, three tags are found: Nodes, Edges and

Connectivities :

� Nodes is a sequence of node tags that represents each of the nodes.

� Edges is a sequence of edge tags that represents each of the edges. Each

edge contains the information of the nodes that are linked.

� Connectivities is a sequence of connectivity tags that describe

connectivities between each pair of terminal nodes.

<?xml version="1.0" standalone="yes"?>

<Graph xmlns="http://tempuri.org/Graph.xsd">

<Nodes>

<Node>

<NodeId>0</NodeId>

<IsTerminal>True</IsTerminal>

<Enabled>True</Enabled>

<R>1</R>

<X>16</X>

<Y>117</Y>

111

</Node>

<Node>

<NodeId>1</NodeId>

<IsTerminal>False</IsTerminal>

<Enabled>True</Enabled>

<R>1</R>

<X>97</X>

<Y>194</Y>

</Node>

</Nodes>

<Edges>

<Edge>

<Node1Id>0</Node1Id>

<Node2Id>5</Node2Id>

<Enabled>True</Enabled>

<Cost>1</Cost>

<R>1</R>

</Edge>

<Edge>

<Node1Id>5</Node1Id>

<Node2Id>8</Node2Id>

<Enabled>True</Enabled>

<Cost>1</Cost>

<R>1</R>

</Edge>

</Edges>

<Connectivities>

<Connectivity>

<Node1Id>0</Node1Id>

<Node2Id>7</Node2Id>

<Value>2</Value>

</Connectivity>

</Connectivities>

</Graph>

Figure 10.6 shows the XML structure used to save the information.

112

Figure 10.6: XML Structure.

In order to visualize the result of an execution, this is, the XML �le gener-

ated by NetworkDesign, we use the application illustrated in Figure 10.7.

Figure 10.7: GraphViewer Application.

This application allows to create a new graph, modify it, and it greatly

simpli�es the creation of test-cases, standardization, and visualization. In

order to modify the properties of some node or some edge, it su�ces a double-

click over it and edit the corresponding grid that is shown on the right. In order

to add a new node we choose Edit and New-node, as shown in Figure 10.8.

113

Figure 10.8: Adding New Node (spanish dialogue).

Similarly, if we wish to add a new edge, we just do a click on the center of

a node and move to the destination node (see Figure 10.9):

Figure 10.9: Intuitive way to create edges.

Other options include to access the connectivity matrix and edit its values.

The numbers on the tags represents the numbers of the terminal-nodes, and the

values from the text-boxes are the connectivity requirements (see Figure 10.10

for a graphical illustration).

114

Figure 10.10: Connectivity Matrix.

Some auxiliary functionalities were included, such as Dijkstra algorithm

between a pair of nodes [37], and the global cost of the graph.

10.4 Validation Tests

The goal of this section is to perform validation tests for the di�erent

algorithms that were implemented during this thesis. First, validation tests

for Greedy algorithm and the three local searches of our VND proposal takes

place. Then, we consider six small-sized networks in order to determine the

correctness of our RVR implementation. The networks were selected in order

to �nd the exact network reliability analytically, and thus compare the RVR

estimation easily. It is worth to remark that here we not present the results

of the algorithms (shown in Chapter 7), but only test validations are

performed, using a graph generation algorithm. In this way, a random graph

generation allow us to achieve random test cases, and these graphs do not

depend on the algorithm to test. Recall that the results considered

well-known test-cases taken from TSPLIB [90].

115

10.4.1 Greedy Construction

Several test-cases were applied for our Greedy construction [31, 96]. Given

that this algorithm is not deterministic, we considered small graphs. Here, we

illustrate one validation. All the tests for the mentioned algorithms as well as

other implementations can be found in the class Test.h. Figures 10.11-10.15

illustrate the operation of Greedy algorithm [31, 96]. Its correctness under

several test-cases was con�rmed. In the example, the ground graph GB has

cost equal to 100 (see Figure 10.11).

Figure 10.11: Validation of Greedy Construction: ground graph GB.

At the beginning, the solution consists of terminal nodes only, �nding node-

disjoint paths between terminal nodes iteratively; see Figures 10.12-10.14. A

low-cost feasible solution is met after Greedy execution. Its cost is equal to

30. The reader can appreciate that at least 2 node-disjoint paths can be found

for every pair of terminal nodes (Figure 10.15).

116

Figure 10.12: Validation of Greedy Construction.

Figure 10.13: Validation of Greedy Construction.

117

Figure 10.14: Validation of Greedy Construction.

Figure 10.15: Validation of Greedy Construction.

118

10.4.2 Local Search

The VND phase considers three local searches. These algorithms include

randomization, and several validations using small-sized networks were

considered as in Greedy algorithm. Here we illustrate some validations (the

tests for the mentioned algorithms can be found in the class Test.h.)

KeyTreeLocalSearch

Figures 10.16-10.20 illustrate the operation of KeyTreeLocalSearch. The

ground graph GB from Figure 10.16 has initial cost of 54. Figure 10.17 shows

that the �rst selected node is 1. The key-tree is marked with red lines.

Figure 10.18 shows another key-tree that replaces the �rst one. After this

replacement, the cost of the resulting graph is 51. The second node selected

by the algorithm is node 5. The corresponding key-tree is marked in

Figure 10.19. A contraction of node 5 takes place, since all the branches of

the key-tree go directly to node 7; therefore, node 5 is eliminated. The result

is illustrated in Figure 10.20. The successive steps cannot �nd new

improvements, and the �nal cost after this local search is 38.

Figure 10.16: Validation of KeyTreeLocalSearch: ground graph GB.

119

Figure 10.17: Validation of KeyTreeLocalSearch: Key-Tree

Figure 10.18: Validation of KeyTreeLocalSearch: Replacement

120

Figure 10.19: Validation of KeyTreeLocalSearch: Key-Tree rooted at node 5.

Figure 10.20: Validation of KeyTreeLocalSearch: result after the elimination of
node 5.

121

KeyPathLocalSearch

We apply KeyPathLocalSearch over the same ground graph GB. The cost of

the initial graph is 54. A single key-path replacement takes e�ect, as it can be

appreciated from Figure 10.22. The cost of the resulting graph is 49.

Figure 10.21: Validation of KeyPathLocalSearch: ground graph GB.

Figure 10.22: Validation of KeyPathLocalSearch: after the replacement of the
key-path.

122

SwapKeyPathLocalSearch

In order to carry out the validation test for SwapKeyPathLocalSearch,

recall that this local search considers the connectivity matrix, since the

remaining local searches do not delete redundancies. In this local search,

some key-paths could be discarded, if the resulting solution is feasible. As we

can appreciate from Figures 10.23 and 10.24, the initial cost is 54 as well as

in the previous validation tests, and the connectivity requirements are 2 in all

the cases. From Figure 10.25 we can appreciate the key-path 0 − 5, that is

replaced by the link {0, 1}. The cost of the resulting graph after the

replacement is 48. Figure 10.27 shows that the key-path 6 − 1 is eliminated,

resulting the graph from Figure 10.28, whose cost is 47. Then, the algorithm

eliminates the key-path 9 − 10 and adds the link {2, 10} (see Figures 10.29

and 10.30), and the partial cost is reduced to 43. The key-path 1 − 2 from

Figure 10.31 is eliminated, decreasing the cost to 40. Finally, the key-path

0 − 1 − 5 − 8 − 4 is replaced by the path 0 − 7 − 4, as illustrated in

Figures 10.33 and 10.34. The cost of the �nal graph is 29. We can appreciate

that the global cost after this local search is much lower than in the

remaining local searches, since the redundancies in the connectivity

requirements are eliminated, preserving feasibility.

Figure 10.23: Validation of SwapKeyPathLocalSearch: ground graph GB.

123

Figure 10.24: Validation of SwapKeyPathLocalSearch: connectivity matrix R.

Figure 10.25: Validation of SwapKeyPathLocalSearch: key-path to replace.

124

Figure 10.26: Validation of SwapKeyPathLocalSearch: link replacement.

Figure 10.27: Validation of SwapKeyPathLocalSearch: resulting key-path.

125

Figure 10.28: Validation of SwapKeyPathLocalSearch: resulting graph.

Figure 10.29: Validation of SwapKeyPathLocalSearch: key-path to replace.

126

Figure 10.30: Validation of SwapKeyPathLocalSearch: link replacement.

Figure 10.31: Validation of SwapKeyPathLocalSearch: redundant key-path.

127

Figure 10.32: Validation of SwapKeyPathLocalSearch: resulting graph.

Figure 10.33: Validation of SwapKeyPathLocalSearch: key-path to replace.

128

Figure 10.34: Validation of SwapKeyPathLocalSearch: link replacement.

10.4.3 RV R

Here we provide details of our validation tests for Recursive Variance

Reduction (RVR). The pre-condition is that the implementation does not

present run-time errors, but the potential existence of logical errors were not

discarded, which are avoided during the validation process shown in the

following paragraphs. Six small-sized topologies are presented with di�erent

elementary reliabilities, in which an exact reliability evaluation is analytically

possible. Finally, we compare the exact reliability values with the resulting

RVR estimation, expecting small gaps. The validation tests are based on the

section under the same title presented in the work [75]. The following target

network reliability measures are considered:

� RV : G→ [0, 1], or all-terminal reliability measure. This is the probabil-

ity that all the nodes are mutually reachable in the resulting graph.

� Rs,t : G× V × V → [0, 1], or source-terminal reliability measure. This is

the probability that s and t are connected by some path in the resulting

graph.

� RK : G × K → [0, 1], or K-terminal reliability measure. This is the

probability that all the terminal-set K belongs to the same connected

component in the resulting graph.

129

The six validation tests will be presented in order. We will denote Rs,t, RK

or RV to the exact reliability evaluation according to the scenario under study,

R̂ to the reliability estimation using RVR and V̂ to its estimated variance.

The number of independent samples in RVR is selected as N = 104. Terminal

nodes are represented using black circles, while Steiner nodes are represented

using white circles.

Case I: Single Link

Consider �rst just a direct link between two-terminal nodes. Figure 10.35

illustrates the network, together with the elementary reliability. The source-

terminal reliability is Rs,t(G) = pp′p′′. The results from Table 10.1 shows a

perfect estimation of RVR with a null gap, and practically null variance.

p p′′
p′

Figure 10.35: Single link with simultaneous node/link failures.

Table 10.1: RVR Validation Test: single link

Instance Rs,t R̂ V̂
p = p′ = p′′ = 0.9 0.729 0.729 3.13631E − 17

Case II: Two-Path

The second test consists of an elementary path composed by two links, with

elementary reliability p′. The end-points have reliability p, while the central

point has reliability p′′ (see Figure 10.36). The source-terminal reliability

between the end-points is Rs,t = p2(p′)2p′′. Table 10.2 shows a small gap

between the correct value Rs,t and its estimation R̂. The estimated variance

is reduced as well.

p
p′′

p
p′ p′

Figure 10.36: Elementary path with simultaneous node/link failures.

130

Table 10.2: RVR Validation Test: elementary path

Instance Rs,t R̂ V̂
p = p′ = p′′ = 0.9 0.59049 0.593354 3.3341E − 06

In the following cases we consider perfect terminals only, with possible

failures of Steiner nodes.

Case III: Triangle

Consider the complete graph composed by three terminal-nodes, or the triangle

K3, with identical elementary link-reliabilities p (see Figure 10.37). A complete

graph with high elementary reliabilities for both links and nodes is therefore

highly-reliable. Observe that if two or more links fail, the system is down.

Otherwise, the system works. By elementary combinatorics, the all-terminal

reliability is in this case RV =
(
3
0

)
p3 +

(
3
1

)
p2(1 − p) = p3 + 3p2(1 − p), where

the �rst term means that no link fails, and the second means that precisely

one link fails. From Table 10.3 we can observe that the gap between RV and

R̂ is smaller than 10−3, and the variance is extremely small, showing a good

performance of RVR, as expected for small-sized networks.

p

p

p

Figure 10.37: Triangle with link failures.

Table 10.3: RVR Validation Test: Triangle

Instance RV R̂ V̂
p = 0.9 0.972 0.972473 6.21454E − 08

131

Case IV: Triangle with a pending link

Consider a triangle with a pending link presented in Figure 10.38, where the

central node is a Steiner node (and a cut-point, since it disconnect the

network if fails). The K-terminal reliability depends strongly on the

operational reliabilities of the central node and the bridge. A straight

calculation leads to see that RK = p′p′′[p3 + 3p2(1− p)]. From Table 10.4, we

can appreciate that the gaps in the reliability is again smaller than 10−3, and

the variance of the estimator is really small.

p

p

p

p′′p′

Figure 10.38: Triangle with pending link. Potential failure in central node.

Table 10.4: RVR Validation Test: Triangle with a pending link

Instance RK R̂ V̂
p = 0.9, p′ = 0.5, p′′ = 0.9 0.4374 0.438066 3.18052E − 07
p = 0.9, p′ = 0.9, p′′ = 0.5 0.4374 0.437479 4.32176E − 07

Case V: Tree

Consider the tree from Figure 10.39, where the terminals are the leaf-nodes,

and all the links and Steiner nodes operate independently, with identical

reliability. In a tree, the failure of only component disconnects some pair of

leaf-nodes. Consequently, the reliability of trees with several components is

reduced, and it is the product of all the elementary reliabilities of its

components: RK = p9. From Table 10.5, we can appreciate that both the

reliability gap and the variance are greater than in the previous cases.

132

p
p

p

p
p

p

p

pp

Figure 10.39: Tree with failures in links and non-leaf nodes.

Table 10.5: RVR Validation Test: Tree-graph

Instance RK R̂ V̂
p = 0.9 0.387420489 0.391676 1.53487e− 05

Case VI: Wheatstone Bridge

In the Wheatstone Bridge from Figure 10.40, our measure of interest is the

source-terminal reliability Rs,t. It strongly depends on the elementary node-

reliability p′ of Steiner nodes, since these represent intermediate nodes. By

an exhaustive enumeration of pathsets, a closed-form for the reliability can be

obtained:

Rs,t = p2p′+p2(1−p)p′+p3p′(1−p′)+(1−p)p3(p′)2+p3(1−p)2(p′)2+p3(1−p)2(p′)2.

From Table 10.6, we conclude that the reliability gaps and variance are

acceptable.

133

p
p

p

p
p

p′

p′

Figure 10.40: Wheatstone Bridge with failures in links and a couple of nodes.

Table 10.6: RVR Validation Test: Wheatstone Bridge

Instance RK R̂ V̂
p = 0.9, p′ = 0.5 0.64962 0.654653 6.7791E − 06
p = 0.9, p′ = 0.9 0.9383688 0.937484 1.89235E − 06

Comments on the Results

Several validation tests were carried out using di�erent elementary reliabilities

for nodes and links. Some errors were detected during the validation tests,

which served to correct the implementation of RVR with the corresponding

logical modi�cations. Double-precision arithmetic was used for the operations,

with up to 15 digits.

134

List of Figures

4.1 GSP-NCHR Source-Terminal Pseudo-code. 24

4.2 GSP-NCHR Source-Terminal Pseudo-code with rs,t = k > 1,

and edges with uniform costs. 25

6.1 Pseudocode for the main algorithm: NetworkDesign. 52

6.2 Pseudocode for the Construction Phase: Greedy. 53

6.3 Pseudocode for Local Search 1: KeyPathLocalSearch [96]. . . 56

6.4 Pseudocode for Local Search 2: KeyTreeLocalSearch [96]. . . 57

6.5 Pseudocode for Local Search 3: SwapKeyPathLocalSearch [96]. 60

6.6 General Template for VND. 61

6.7 Pseudocode for our speci�c VNS proposal. 62

6.8 Pseudocode for RVR method. 66

6.9 Implementation - Graph Class for Reliability evaluation. . . . 67

6.10 Pseudocode for the RVR implementation. 68

6.11 Pseudocode for the Structure Evaluation φ. 68

7.1 Brazil58: ground graph GB. 78

7.2 Brazil58: resulting topology. 78

7.3 Berlin52: ground graph GB. 79

7.4 Berlin52: resulting topology. 80

10.1 Pseudocode for General_RecConnect [96]. 103

10.2 Pseudocode for FindSubstituteKeyPath. 106

10.3 Pseudocode for General_Update_Matrix [96]. 107

10.4 Pseudocode for KSP . 109

10.5 GraphViewer interface. 111

10.6 XML Structure. 113

10.7 GraphViewer Application. 113

135

10.8 Adding New Node (spanish dialogue). 114

10.9 Intuitive way to create edges. 114

10.10 Connectivity Matrix. 115

10.11 Validation of Greedy Construction: ground graph GB. 116

10.12 Validation of Greedy Construction. 117

10.13 Validation of Greedy Construction. 117

10.14 Validation of Greedy Construction. 118

10.15 Validation of Greedy Construction. 118

10.16 Validation of KeyTreeLocalSearch: ground graph GB. 119

10.17 Validation of KeyTreeLocalSearch: Key-Tree 120

10.18 Validation of KeyTreeLocalSearch: Replacement 120

10.19 Validation of KeyTreeLocalSearch: Key-Tree rooted at node 5.121

10.20 Validation of KeyTreeLocalSearch: result after the

elimination of node 5. 121

10.21 Validation of KeyPathLocalSearch: ground graph GB. 122

10.22 Validation of KeyPathLocalSearch: after the replacement of

the key-path. 122

10.23 Validation of SwapKeyPathLocalSearch: ground graph GB. . 123

10.24 Validation of SwapKeyPathLocalSearch: connectivity matrix

R. 124

10.25 Validation of SwapKeyPathLocalSearch: key-path to replace. 124

10.26 Validation of SwapKeyPathLocalSearch: link replacement. . . 125

10.27 Validation of SwapKeyPathLocalSearch: resulting key-path. . 125

10.28 Validation of SwapKeyPathLocalSearch: resulting graph. . . 126

10.29 Validation of SwapKeyPathLocalSearch: key-path to replace. 126

10.30 Validation of SwapKeyPathLocalSearch: link replacement. . . 127

10.31 Validation of SwapKeyPathLocalSearch: redundant key-path. 127

10.32 Validation of SwapKeyPathLocalSearch: resulting graph. . . 128

10.33 Validation of SwapKeyPathLocalSearch: key-path to replace. 128

10.34 Validation of SwapKeyPathLocalSearch: link replacement. . . 129

10.35 Single link with simultaneous node/link failures. 130

10.36 Elementary path with simultaneous node/link failures. 130

10.37 Triangle with link failures. 131

10.38 Triangle with pending link. Potential failure in central node. . 132

10.39 Tree with failures in links and non-leaf nodes. 133

10.40 Wheatstone Bridge with failures in links and a couple of nodes. 134

136

	Acronyms
	Introduction
	Context
	Problem
	Goals
	General Goal
	Specific Goals

	Expected Results
	Methodology
	Conclusions
	Structure of this Thesis

	Background
	Concepts on Network Optimization
	Graph-Theoretic Terminology

	Problem Definition
	Motivation
	Choosing a Metaheuristic
	Choosing a Reliability Evaluation Method
	Problem Formulation

	Problem and Analysis
	Model
	Hardness
	Special Sub-Problems
	Minimum-Weight k-Connected Spanning Networks with Reliability Constraints
	MWKECSNP ILP Formulation based on Bienstock Theorem
	Particular case k=2

	Related Work
	Topological Network Design
	Network Reliability

	Algorithms
	Network-Design
	Construction
	Local Search
	Local Search 1: KeyPathLocalSearch
	Local Search 2: KeyTreeLocalSearch
	Local Search 3: SwapKeyPathLocalSearch

	Variable Neighborhood Search (VNS)
	Recursive Variance Reduction (RVR)

	Results
	Introduction
	Description of the Test-Set
	Numerical Results
	Resulting Topologies

	Key Questions

	Conclusions
	Future Work
	Bibliography
	Appendix
	Feasibility - Local Search Phase
	Feasibility - Construction Phase
	Graphical Tools
	Validation Tests
	Greedy Construction
	Local Search
	RVR

	List of Figures

