UNIVERSIDAD
DE LA REPUBLICA
URUGUAY

Topological Optimization of
Fault-Tolerant Networks meeting
Reliability Constraints

Nelson Sebastidn Laborde Castillo

Programa de Posgrado en Informatica
Facultad de Ingenieria, PEDECIBA - Informatica
Universidad de la Reptblica

Montevideo — Uruguay
Diciembre de 2020

UNIVERSIDAD
DE LA REPUBLICA
URUGUAY

Topological Optimization of
Fault-Tolerant Networks meeting
Reliability Constraints

Nelson Sebastian Laborde Castillo

Tesis de Maestria presentada al Programa de
Posgrado en Informética, Facultad de Ingenieria de
la Universidad de la Reptublica, como parte de los
requisitos necesarios para la obtencién del titulo de

Magister en Informética.

Director de tesis:
Dr. Ing. Franco Robledo

Director académico:

Prof. Ing. Omar Viera

Montevideo — Uruguay
Diciembre de 2020

Laborde Castillo, Nelson Sebastian

Topological Optimization of Fault-Tolerant Networks
meeting Reliability Constraints / Nelson Sebastian
Laborde Castillo. - Montevideo: Universidad de la
Republica, Facultad de Ingenieria, PEDECIBA -
Informatica, 2020.

X1V, 136 p.: il.; 29, Tcm.

Director de tesis:

Franco Robledo

Director académico:

Omar Viera

Tesis de Maestria — Universidad de la Repiblica,
Programa de Informética, 2020.

Referencias bibliograficas: p. 90 — 101.

1. Topological Network Design, 2. Network Reliability,
3. Simulation, 4. Network Optimization, 5. Backbone,
6. RVR, 7. Metaheuristics, 8. VNS. I. Robledo, Franco.
I1. Universidad de la Reptublica, Programa de Posgrado en

Informatica. III. Titulo.

INTEGRANTES DEL TRIBUNAL DE DEFENSA DE TESIS

Dr. Sebastian Basterrech (Professor VSB-Tech. University Ostrava CZ Rep. - Revisor)

Dr. Ing. Gerardo Rubino (Directeur de Recherche, INRTA /Rennes, Francia)

Dr. Ing. Rail Ruggia (PEDECIBA Informatica - Presidente de Mesa)

Montevideo — Uruguay
Diciembre de 2020

iv

(Dedicatoria) A mis Padres
Ricardo y Rosario, a mi
Hermano Santiago y a mi

Familia.

Agradecimentos

Quisiera agradecer a mis tutores, Dr. Ing. Franco Robledo y Prof. Ing.
Omar Viera, por el apoyo, guia y gran paciencia durante todo el proceso de

desarrollo de esta Tesis.

Agradezco la participacion del Dr. Ing. Pablo Romero en el intercambio

de ideas y su colaboracion en la revision y mejora de este trabajo.

Agradezco a Ing. SebastiAn Ressi e Ing. Alvaro Rivoir por su
colaboraciéon con ideas y sugerencias, basadas en su experiencia con trabajos

previos, en la misma temética que el presente trabajo.

Agradezco profundamente el honor de tener al Dr. Sebastidin Basterrech

como revisor de este trabajo.

A mi amigo y colega Ing. Julio Cesano por alentarme a inscribirme junto
a él, en el programa de Maestria PEDECIBA.

Un agradecimiento muy especial a mi familia, a mi esposa Mara y a mis
hijos Maite y Guillermo, por todo el apoyo, comprension y motivacion que me
dieron durante el desarrollo de este trabajo, el cuél estd enteramente dedicado

a ellos.

vi

RESUMEN

En una red las entidades relevantes son nodos y conexiones entre nodos, y en
general el principal objetivo buscado es lograr una comunicaciéon segura entre
nodos de esta red, ya sea para redes telefonicas y de comunicacion de datos,
de transporte, arquitectura de computadores, redes de energia eléctrica o
sistemas de comando y control. La optimizacion relativa al costo de una red
y la confiabilidad de la misma, relacionada con la supervivencia de esta, son
los criterios predominantes en la selecciéon de una solucién para la mayor
parte de los contextos. Un tema interesante que ha atraido un gran esfuerzo
es como disenar topologias de red, con un uso minimo de recursos de red en
términos de costo que brinde una garantia de confiabilidad. A pesar que por
anos el costo ha sido el factor primario, la confiabilidad ha ganado rapida-
mente en relevancia. Con sistemas de transmision de fibra 6ptica de alta
capacidad formando la columna vertebral de la mayoria de las redes actuales
y junto con el rapido desarrollo de la tecnologia de comunicaciéon de redes y
el crecimiento explosivo de las aplicaciones de Internet, la confiabilidad de la
red parece cada vez mas importante, tanto para areas tradicionales como la
industria de defensa, finanzas y energia, y Aareas emergentes como la
computacion confiable, la computacion en la nube, internet de las cosas (IoT)
y la préoxima generacion de Internet, la supervivencia del trafico por sobre los
fallos de red se ha convertido ain en méas critica. En ese sentido podemos
diferenciar, a grandes rasgos, dos de los principales problemas a resolver en el
analisis y diseno de topologias de red. Primeramente la obtenciéon de una red
optima en algtin sentido, siendo este definido por ejemplo mediante la
obtencion de la maxima cantidad posible de caminos disjuntos entre pares de
nodos, esto sujeto a determinadas restricciones definidas segin el contexto.
El segundo problema es la evaluacion de la confiabilidad de la red en funcion
de las confiabilidades elementales de los nodos y conexiones entre nodos que
componen la red. Estas confiabilidades elementales son probabilidades de
operacion asociadas a los nodos y conexiones entre nodos. Ambos problemas
estan fuertemente relacionados, pudiendo tener que comparar en el proceso

de busqueda de redes 6ptimas la confiabilidad entre soluciones candidatas, o

vil

luego de obtener una solucién candidata tener que evaluar la confiabilidad de
la misma y de esta forma descartarla o no. El presente trabajo se centra en la
resolucion del problema enfocado en ambos puntos planteados. Para ello
modelamos el problema de diseno de la topologia de red sobre la base de un
modelo definido como Generalized Steiner Problem with Node-Connectivity
Constraints and Hostile Reliability (GSP-NCHR) extension del mas conocido
Generalized Steiner Problem (GSP). El presente problema es NP-duro,
dedicamos un capitulo para presentar resultados teoricos que lo demuestran.
Nuestro objetivo es atacar de forma aproximada el modelo GSP-NCHR de
tal modo de poder resolver la optimizacion de la red y luego medir la
confiabilidad de la solucién obtenida. Para ello optamos por desarrollar la
metaheuristica Variable Neighborhood Search (VNS). VNS es un método
potente que combina el uso de busquedas locales basadas en distintas
definiciones de vecindad, el cual ha sido utilizado para obtener soluciones de
buena calidad en distintos problemas de optimizacién combinatoria. En lo
referente al calculo de confiabilidad de la red, nuestro modelo GSP-NCHR
pertenece a la clase N'P-duro, por eso desarrollamos Recursive Variance
Reduction (RVR) como método de simulacion, ya que la evaluacion exacta de
esta medida para redes de tamano considerable es impracticable. Las pruebas
experimentales fueron realizadas utilizando un conjunto amplio de casos de
prueba adaptados de la libreria travel salesman problem (TSPLIB), de
heterogéneas topologias con diferentes caracteristicas, incluyendo instancias
de hasta 400 nodos. Los resultados obtenidos indican tiempos de coémputo

altamente aceptables acompanados de 6ptimos locales de buena calidad.

Palabras Clave: Disenio Topolégico de Redes, Confiabilidad de Redes,
Simulacién, Optimizacién de Redes, Red Dorsal, RVR, Metaheuristicas,
VNS.

Como resultado de esta tesis, se ha logrado la siguiente publicacion: "A
GRASP/VND Heuristic for the Generalized Steiner Problem with
Node-Connectivity Constraints and Hostile Reliability" que serd publicada en
"Proceedings of the 8th International Conference on Variable Neighborhood
Search (ICVNS Marzo 2021). Khalifa University, Abu Dhabi, U.A.E." Este

viil

articulo serd publicado por Springer en "Lecture Notes in Computer Science
(LNCS) series.”

X

ABSTRACT

The relevant entities in a network are its nodes, and the links between them.
In general, the goal is to achieve a reliable communication between different
pairs of nodes. Examples of applications are telephonic services, data
communication, transportation systems, computer systems, electric networks
and control systems.

The predominant criterion for the design of a reliable and survivable
system is the minimum-cost in most contexts. An attractive topic for
research is to consider a minimum-cost topological optimization design
meeting a reliability threshold. Even though the cost has been the primary
factor in the network design, recently, the network reliability has grown in
relevance. With the progress of Fiber-To-the-Home (FTTH) services for the
backbone design in most current networks, combined with the rapid
development of network communication technologies, and the explosive
increase of applications over the Internet infrastructure, the network
reliability has supreme importance, for traditional communication systems
but for the defense, business and energy, and emergent fields such as trusted
computing, cloud computing, Internet of Things (IoT) and Next Generation
Networks (NGN), the fault tolerance is critical.

We can distinguish two main problems to address in the analysis and
design of network topologies. First, the robustness is usually met under
multi-path generation. Therefore, we require certain number of node-disjoint
paths between distinguished nodes, called terminals. The second problem is
to meet a minimum-reliability requirement in a hostile environment, using
the fact that both nodes and links may fail. Both problems are strongly
related, where sometimes the minimum-cost topology already meets the
reliability threshold, or it should be discarded, and the design is challenging.

This thesis deals with a topological optimization problem meeting
reliability — constraints. The Generalized Steiner Problem with
Node-Connectivity Constraints and Hostile Reliability (GSP-NCHR) is
introduced, and it is an extension of the well-known Generalized Steiner
Problem (GSP). Since GSP-NCHR subsumes the GSP, it belongs to the class
of N'P-Hard problems. A full chapter is dedicated to the hardness of the
GSP-NCHR, and an analysis of particular sub-problems. Here, the
GSP-NCHR is addressed approximately. Our goal is to meet the topological

requirements intrinsically considered in the GSP-NCHR, and then test if the
resulting topology meets a minimum reliability constraint.

As a consequence a hybrid heuristic is proposed, that considers a Greedy
Randomized construction phase followed by a Variable Neighborhood Search
(VNS) in a second phase. VNS is a powerful method that combines local
searches that consider different neighborhood structures, and it was used to
provide good solutions in several hard combinatorial optimization problems.
Since the reliability evaluation in the hostile model belongs to the class of
NP-Hard problems, a pointwise reliability estimation was adopted. Here we
considered Recursive Variance Reduction method (RVR), since an exact
reliability evaluation is prohibitive for large-sized networks.

The experimental analysis was carried out on a wide family of instances
adapted from travel salesman problem library (TSPLIB), for heterogeneous
networks with different characteristics and topologies, including up to 400
nodes. The numerical results show acceptable CPU-times and
locally-optimum solutions with good quality, meeting network reliability

constraints as well.

Keywords: Topological Network Design, Network Reliability,
Simulation, Network Optimization, Backbone, RVR, Metaheuristics,
VNS.

As product of this thesis, the following publication has been achieved: "A
GRASP/VND Heuristic for the Generalized Steiner Problem with
Node-Connectivity Constraints and Hostile Reliability" to be published in
the "Proceedings of the 8th International Conference on Variable
Neighborhood Search (ICVNS March 2021). Khalifa University, Abu Dhabi,
UA.E. The article will be published by Springer in the Lecture Notes in
Computer Science (LNCS) series.”

xi

Contents

Acronyms

1 Introduction

1.1 Comntext
1.2 Problem
1.3 Goals.
1.3.1 General Goal
1.3.2 Specific Goals o000
1.4 Expected Results oL
1.0 Methodology
1.6 Conclusions e
1.7 Structure of this Thesis
2 Background
2.1 Concepts on Network Optimization
2.2 Graph-Theoretic Terminology
3 Problem Definition
3.1 Motivation
3.2 Choosing a Metaheuristic.
3.3 Choosing a Reliability Evaluation Method
3.4 Problem Formulation

4 Problem and Analysis
4.1 Model
4.2 Hardness
4.3 Special Sub-Problems L.

xii

xii

10
10
12

14
14
16
16
17

4.4 Minimum-Weight k-Connected Spanning Networks with Relia-

bility Constraints 33

4.41 MWKECSNP ILP Formulation based on Bienstock
Theorem 34
4.4.2 Particularcase k=2 oL 40
5 Related Work 43
5.1 Topological Network Design 43
5.2 Network Reliability 47
6 Algorithms 50
6.1 Network-Design L. 51
6.2 Construction 52
6.3 Local Search, 54
6.3.1 Local Search 1. KeyPathLocalSearch 55
6.3.2 Local Search 2: KeyTreeLocalSearch 57
6.3.3 Local Search 3: SwapKeyPathLocalSearch 58
6.4 Variable Neighborhood Search (VNS) 60
6.5 Recursive Variance Reduction (RVR) 63
7 Results 70
7.1 Introduction 70
7.2 Description of the Test-Set 71
7.3 Numerical Results 74
7.3.1 Resulting Topologies 7
74 Key Questions Lo 81
8 Conclusions 86
9 Future Work 88
Bibliography 90
10 Appendix 102
10.1 Feasibility - Local Search Phase 102
10.2 Feasibility - Construction Phase 106
10.3 Graphical Tools 110
10.4 Validation Tests 115

10.4.1 Greedy Construction

10.4.2 Local Search
1043 RVR

List of Figures

xiv

Glossary

e GSP: Generalized Steiner Problem.

e GSP-NC: GSP with Node-Connectivity Constraints.

e GSP-EC: GSP with Edge-Connectivity Constraints.

e GSP-NCHR: GSP with Node-Connectivity Constraints and Hostile
Reliability.

e GSP-ECHR: GSP with Edge-Connectivity Constraints and Hostile
Reliability.

e SNDP: Survivable Network Design Problem.

e GSNDP: Generalized Survivable Network Design Problem.

e GNDP: Generalized Network Design Problem.

e VCSNDP: Vertex Connectivity Survivable Network Design Problem.

e SN-MSP: Survivable Network with Minimal Steiner nodes Problem.

e SMT: Steiner Minimal Tree.

e MCSP: Minimal Connected Sub Graph Problem.

e MST: Minimum Spanning Tree.

e TSP: Travel Salesman Problem.

e BNDP: Backbone Network Design Problem.

e KSP: K Shortest Paths.

e WAN: Wide Area Network.

e IP: Internet Protocol.

e MPLS: Multiprotocol Label Switching.

e ZDD: Zero Decision Diagram.

e CMC: Crude Monte Carlo.

e RVR: Recursive Variance Reduction.

e RNN: Random Neural Network.

e SMBS: Stochastic Monotone Binary System.

1

GRASP: Greedy Randomized Adaptive Search Procedure.
IoT: Internet of Things.

GA: Genetic Algorithm.

RL: Relocation Heuristics.

VNS: Variable Neighborhood Search.

ILS: Tterated Local Search.

TS: Tabu Search.

VND: Variable Neighborhood Descent.

VNDS: Variable Neighborhood Decomposition Search.
BVNS: Biased Variable Neighborhood Search.
PVNS: Parallel Variable Neighborhood Search.

Chapter 1

Introduction

1.1 Context

This thesis is developed for the Master in Informatics, under the Program for
the Development of Basic Sciences (PEDECIBA), and Universidad de la
Republica (UdelaR). This work is developed under the framework of a more
general network planning project for modern communication networks. This
is generally a complex and demanding task, which is accomplished by
optimization as a main tool, and combines a quantitative analysis and
evaluation as a primary element in the cycle of optimization. In this thesis,
we wish to develop a research activity that includes the design of
highly-reliable massive telecommunication networks. Given the previous
experience in this field, it is essential to assist on decision-making, which is
extremely useful for the design of fiber-optics communications.

The information revolution shocked the world during the XX and XXI
centuries, and it represents one of the most relevant revolutions in history.
The impact was even greater when sharing digital information, allowing
cooperation and convergence between both technologies and people. At the
beginning, telephonic networks' were considered to satisfy the data
communication needs. Currently, the situation is much different, and data
networks were adapted to pursue different goals, normally by means of
service integration and traffic needs. The data networks allow the multiple
convergence of different communication technologies permanently, even when

the original deployment has more than a century. The interconnection allows

I'Network: it can be considered as a set of nodes and a set of links between them.

hub, storage and centrality of information that is sparse among distinct
continents. As a result, jobs, e-commerce, business and other routine
activities are speed-up, and a great variety of on-line services are available
anytime and anywhere, with anything at hand (i.e., a cell-phone). The
network design task, combining different traffic and services, among many
other factors, is not easy at all, but the contrary. This task is complex, and
the design, network dimensioning and optimization® represents hard decisions
to make. This complex task must be simultaneously accomplished with the
development of a network topology® that meets a specific reliability
threshold! suitable for the context. A large number of sites with different
characteristics are interconnected during the network design, in order to meet
a pre-established reliability bound at the minimum cost.

The goal in every topological design® is to adapt the technological
requirements from the context as much as possible, meeting the budget
constraints imposed by the project (which implies the cost of infrastructure
but also factors related with an expected quality of service). In this work we
address a topological design of highly-reliable networks®, adding different
optimization phases by means of quantitative evaluations in order to

determine if the desired reliability parameter is achieved.

1.2 Problem

During the first phase of this thesis, a literature review was performed. As a

result, we defined the problem under study with the following two items:

e Given a network where the potential link-costs are known, design a
minimum-cost network meeting predetermined connectivity and
reliability constraints (inputs of the problem).

e Perform a quantitative analysis of the results, in terms of cost.

2Optimization: a field of mathematics that assists on decision making, by means of a
minimization /maximization of a quantity, using a specific criterion.

3Network Topology: physical configuration in which nodes are interconnected in a net-
work.

4Reliability: the probability of correct operation of a system on given conditions during
a specific period of time.

5Topological design: stage of the network planning process which consists in the physical
location of the network components and their interconnections.

6Structural Reliability: probability of correct operation of a system, given the occurrence
of failures on the network components.

In this context, it is relevant to dispose of methods for the topological
network design meeting certain connectivity requirements (i.e., two
node-disjoint paths between nodes) and simultaneously, some network
reliability requirement (measured in probabilistic terms) exceeding a
predefined threshold (problem data). The problem involves a mixture of
structural reliability and topological survivability” of a network. In a first
phase, a literature review is performed and, in a second phase, different
solutions to the problem are proposed. The third phase is the
implementation of the selected methodology. Finally, in the fourth phase, an
experimental analysis is carried out to measure quantitatively the quality of
the solution obtained following the designed methodology, and to determine,

if possible, how good are the returned solutions.

1.3 Goals

1.3.1 General Goal

Develop a heuristic® whose result is the design of a network topology (i.e.,
associated graph) meeting connectivity requirements between pairs of nodes
(problem data) and a minimum reliability threshold (problem data). Answer
key-questions, in order to understand the interplay between topological

survivability and structural network reliability.

1.3.2 Specific Goals

The author of this thesis is proposed to perform an in-depth study of the
concepts of Structural Reliability and Topological Survivability. A specific
goal is to get skills in network reliability and planning, particularly on the
topological design of strategic complex networks with critical/relevant
applications [59]. Learn network planning tools and how to implement
efficient algorithms to tackle NP-Hard problems’, such as the problem

addressed in this thesis.

"Topological survivability: is to accomplish certain network connectivity levels.

8Heuristic: method and exploratory algorithms for the resolution of problems, where the
solutions are discovered as a result of the progress achieved during a search.

YN'P-Hard: so far, these problems cannot be solved efficiently (in polynomial-time with
respect to the size of the input).

1.4 Expected Results

Macroscopically, it is expected to offer a methodology that serves as a base-step
for decision-making in the development of fault-tolerant telecommunication
networks. This is typically the case of a backbone network design'® of a Wide
Area Network (WAN), (i.e., Internet). In order to meet these objectives, the

following tasks should be performed:

e Understand the mathematical model associated to the problem to solve.

Perform a literature review.

Get a better insight of the following concepts:

— Topological network survivability.

— Structural network reliability.

Explore different approaches to propose an approximate solution.

Select and implement a solution.

Measure the quality of the results obtained.

1.5 Methodology

In a previous stage to the development of a solution for the problem, the
author performed a literature review, understanding the main concepts and
related fields of knowledge. As far as I know, the object under study in this
thesis is novel. I can find a scarce number of close problems from the
scientific literature. In fact, the closest works from the literature either deal
with network reliability, or network optimization independently, but not
both. The first stage of this project is focused on understanding the problem
and propose a formal (mathematical programming) definition. Given that,
the problem under study belongs to the NP-Hard class, an exact evaluation
algorithm is prohibitive for large networks. As a consequence, a
metaheuristic is adopted. In terms of the optimization problem, several
metaheuristics were studied to potentially address the problem''. Among
those metaheuristics we can find GRASP (78, 92, 91| and its particular

version for GSPNC [23, 96], Genetic Algorithms [4, 78], Tabu Search [78, 76],

19Backbone: is the skeleton or main core of a network.
U Metaheuristic: particular heuristics that serve as a template to solve a very large class
of computational problems.

Variable Neighborhood Search or VNS [53, 50, 52| and Tterated Local Search,
or ILS [78, 70, 69]. The selection of a metaheuristic provides opportunities to
use a powerful and flexible tool, that can be easily combined with hybrid
method or specific heuristics suitable for the problem. Once analyzed and
understood a variety of potential metaheuristics for our network optimization
problem (the construction phase of our topological network design), the
decision was to adopt VNS. This metaheuristic is based on a simple principle:
a systematic variation of neighborhood structures during the search. The
accuracy to switch neighborhood structures is essential. VNS has shown its
effectiveness by means of several experiments showing equal or better results
than most metaheuristics for a great variety of combinatorial optimization
problems, which makes this selection attractive.

Analogously, for the stage of network reliability analysis, different
evaluation techniques were studied. An exact network reliability evaluation
belongs to the class of ANP-Hard problems, for our hostile model of
simultaneous links and node-failures. Therefore, simulation methods were
considered'?, such as Crude Monte Carlo, or CMC [75] and Recursive
Variance Reduction or RVR [21, 23, 18]. Even though Crude Monte Carlo
proposed an unbiased reliability estimation, this technique is not suitable for
highly reliable scenarios, since it does not satisfy the property of bounded
relative error. An outstanding method for variance reduction is RVR, which
was selected in this thesis. The implementation is not trivial, but there is
both, practical and theoretical evidence that RVR presents much reduced
variance than CMC [16]. In practice, RVR is suitable for the reliability

estimation on large networks, even under highly reliable scenarios [64].

1.6 Conclusions

In this thesis we study the topological design of highly-reliable networks,
tackling two sub-problems clearly identified: the network optimization
problem and the minimum network reliability requirements. The network
optimization problem is here addressed using metaheuristics, since it is an
NP-Hard problem [47, 116, 97], and therefore, the application of exact

methods is prohibitive in terms of computational time, even for networks

12Simulation: is to perform repetitions of a model under a fixed assumption.

7

with small and moderate size. For that reason, we decided to adopt Variable
Neighborhood Search, (VNS). The reasons to support this decision will be
exposed in Chapter 3. In terms of the network reliability evaluation method,
simulation methods are used, since exact reliability evaluation methods are
also prohibitive. The Recursive Variance Reduction (RVR) method was
selected for the pointwise reliability estimation in our hostile environment of
simultaneous link /node failures. The reasons to select RVR are also discussed
in Chapter 3. We do not have access to public benchmark data for our
network optimization problem' in order to compare the quality of the
results, having to simulate network test instances. Nevertheless, the
CPU-times are acceptable, and the returned solutions are locally-optimal,
with good quality in terms of costs reduction. It is worth to note that the
related literature from the scientific community is scarce, and the problem

under study is novel.

1.7 Structure of this Thesis

This thesis is organized in the following manner. Chapter 1 serves as an
introduction, and contains the motivation of this thesis, some elements of the
problem under study and comments on the selected methodology for its
resolution. Chapter 2 presents the terminology that will be used throughout
this thesis. A description of the problem and reasons to select VNS and RVR
as the building-blocks of our resolution is provided in Chapter 3. Chapter 4
formally presents the Generalized Steiner Problem with Node-Connectivity
Constraints and Hostile Reliability (GSP-NCHR) with a mathematical
programming formulation. Tts AP-Hardness is established, and particular
cases are also discussed. The related work for the selected resolution methods
is covered in Chapter 5. Full details of the algorithmic resolution is presented
in Chapter 6. The experimental tests together with a quantitative analysis of
the results is included in Chapter 7. Chapter 8 presents Concluding remarks,
and Chapter 9 points out trends for future work and possible research fields
that extend or complement this thesis. An Appendix is devoted to validation
tests, some special procedures involved in the algorithmic design and a

visualization tool for graphs that is also a product of this thesis. In order to

3Benchmark: technique used to measure the performance of a system or part of it,
commonly in relation with a parameter of reference.

experimental reproducibility the source code, data testset and other

materials are available at https://github.com/slaborde/NetworkDesign

https://github.com/slaborde/NetworkDesign

Chapter 2

Background

This chapter includes the basic terminology from Network Optimization,
Complexity and Graph Theory that will be used throughout this thesis. The
reader is invited to consult the books [54, 34, 75, 95| for additional

terminology.

2.1 Concepts on Network Optimization

1.

Graph: a set of nodes and links between them. The links could be
directed; in that case we have a directed graph.

Network: a weighted graph, where the weight is a function on the nodes
and /or links that represent either costs, capacities or probabilities.
Backbone: is the skeleton or main core of a network. A fixed network
could have more than one backbone (i.e., Internet).

Reliability: is the probability of correct operation of a system.
Topological Design: stage of the network planning process, which consists
of the location of the network components and their interconnections.
Survivability: is the ability of a system, sub-system, equipment, process
or procedure of its correct functioning during and after an alteration.
Topological Survivability: is to meet certain network connectivity levels
of the network. It is precisely the existence of a pre-established number
of node-disjoint (or link-disjoint) paths between every pair of terminal
nodes.

Heuristic: exploration methods or algorithms to solve problems, where

the solutions are discovered by the evaluation of the progress achieved

10

10.

11.
12.
13.

14.

15.

16.

17.

18.

19.

during the search of a final result. Even though the exploration is
algorithmic, an evaluation is empirical. They are normally employed to
address hard combinatorial optimization problems, and trade
optimality for computational feasibility.

Metaheuristic: particular heuristics that serve as a template to solve a
very large class of computational problems.

Optimization: maximization of an objective function (e.g., gains,
velocity, efficiency, others), or minimization (e.g., cost, time, risk, error,
others) subject to a feasible set of one or multiple constraints. The con-
straints mean that not every decision (solution) is feasible. In systems
engineering, an optimization process implies the enhancement of a
system, with the available resources (bandwidth, CPU, memory, etc.).
Combinatorial Optimization: an optimization problem where the feasible
set is finite.

Locally-optimum solution: best solution in a set of neighbor solutions.
Globally-optimum solution: best solution in the solution feasible set .
N'P: is the set of decision problems that can be solved in polynomial-
time by a non-deterministic Turing machine.

NP-Hard: the set of problems H such that every problem L € NP can
be reduced to H in polynomial-time. An N'P-Hard problem is at least
as hard as any problem in the class NP. In fact, if we solve a problem
from the class N'P-Hard, then we can solve all the problems from the
NP class.

NP-Complete: the set of N'P decision problems that belong to the N'P-
Hard class. This class represents the hardest decision problems belonging
to the N'P-class.

Simulation: repetitive experimentation with a model with a fixed
hypothesis.

Greedy Algorithm: iteratively picks the cheapest item, in order to build
the best solution of a combinatorial optimization problem. In most
cases, Greedy does not find the globally-optimum solution, but a good
approximation.

Neighborhood: a set of solutions that include a specific member z. We

s the set of all possible points (sets of values of the choice variables) of an optimization
problem that satisfy the problem’s constraints, potentially including inequalities, equalities,
and integer constraints.

11

can freely use these neighborhood, meeting the following clauses:

x belongs to all its neighborhoods.

A set that contains a neighborhood of z is also a neighborhood.

The intersection of two neighborhoods of x is also a neighborhood.

For every neighborhood V' of x, there exists another neighborhood
U of x such that V is a neighborhood of all the points of U.

2.2 Graph-Theoretic Terminology

In this section we present basic graph-theoretic terminology that will be used
throughout this thesis [96].

1. Adjacency: two nodes u and v are adjacent if the link {u,v} belongs to
the graph. In directed graphs the order matters, and we denote (u,v)
to the ordered pair. We also say that the link {u,v} is adjacent to both
nodes u and v.

2. Degree: the degree d(v) of a node v is the number of adjacent links to v.
A node is isolated if it has degree 0.

3. Induced graph: given a graph G = (V, E) and a set U C V, the induced
graph G(U) denotes the graph in the node-set U, with those links from
G whose extremes are included in U.

4. Path: non-empty graph P = (V,E) such that V = {vq,..., v} and
E = {(v1,v9), (v2,v3), ..., (vg_1,vx) }. The nodes v; and vy are connected
by P, and v; and v are the extremes of P. The remaining nodes are
internal nodes.

5. Cycle: given a path P = {vy,..., v}, the graph C obtained by the
concatenation between P and {vg, v} is a cycle.

6. Node-Disjoint Path: two paths p and g are node-disjoint if p N g =
{v1, v}, being v; and vy, the extremes of both p and ¢. A generalization
for multiple disjoint paths is straight.

7. Independent Paths: two paths p; and p; are independent if p; N py = 0,
this is, p; and p, do not share nodes in common.

8. Subgraph: given a graph G = (V, E), H = (V', E') is a subgraph of G if
V'CV, E'CFE and Y(u,v) € E', u,v € V'.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

Connected Graph: a graph G = (V, E) is connected if for each pair of
nodes u,v € V there exists a path that connects v and v in G.

Tree: a graph G = (V, E) is a tree if it is connected and for all the links
e € E, the graph G' = (V, E '\ {e}) is not connected.

Spanning Tree: given a connected graph G = (V| E), a subgraph H =
(V, E’) is a spanning tree if H is connected and for all the links e € E,
H' = (V,E"\ {e}) is not connected.

k-Node Connectivity: a graph G = (V, E) is k-node connected if for all
u,v € V, there exist at least k node-disjoint paths in G that connect
them.

Terminal nodes: a distinguished node-set T that belongs to the
backbone are called terminal-nodes or fixed nodes. These nodes
generally correspond to access points in the local networks.

Matriz with the connectivity requirements: R = {r;;}ijer is a matrix
that stores, for every pair of terminal nodes i, € T, a non-negative
integer r; ;. The requirement r; ; means that we must construct ; ; node-
disjoint paths between the terminal nodes ¢ and j.

Backbone Network Design Problem (BNDP): given a network Gp
equipped with a terminal-set 7', find the minimum-cost network
Hp C Gp that meets the connectivity requirements R for the
terminal-nodes 7.

Key-node: consider a feasible solution Gy, that meets the connectivity
requirements R. A key-node is a non-terminal node v € V', whose degree
d(v) is three or greater.

Key-path: consider a feasible solution G, that meets the connectivity
requirements R. A key-path is a path belonging to G, such that the
internal nodes are non-terminal nodes with degree 2, and whose extremes
are either terminals or key-nodes.

Key-tree: consider a feasible solution G, that meets the connectivity
requirements R, and v € G4, a key-node. The key-tree rooted at v is
the tree composed by all the key-paths belonging to G, where v is one
of the extremes. Topologically, this is a set of key-paths that share a

key-node as a common extreme.

13

Chapter 3

Problem Definition

3.1 Motivation

Recently, the traditional design of copper lines, the redundancy and
survivability ! were not consider a relevant issue. This is due to the fact that
multiple routes were mandatory, given the limited capacity of copper lines.
For instance, several central sites were required, commonly called gateway 2.
As a consequence, the communication networks were not originally deployed
in order to have enough robustness under single point of failures, or failures
on the network sites. The arrival of fiber-optics communication and its high
capacity brought sparse networks. The network design is more relevant, and
requires a smart engineering. In particular, it must be fault tolerant and
highly reliable. In telephonic services, we are only interested in the network
topology. In this case the network is a set of nodes or offices and fiber-optics
that interconnect them. The survivability is the existence of a pre-established
number of node-disjoint paths [55]. In practice, a low-cost network is first
deployed, and an optimization process takes place, where the costs are
considered (either routing or traffic costs). In a telephonic service, the offices

are classified according to their importance in the following way:

e Special offices or terminals, meeting a high survivability level.
e Ordinary offices, that should be simply connected to the network, and

e Optional offices, that could be included or not in the network.

ISurvivability: is the ability of a system, sub-system, equipment, process or procedure of
its correct functioning during and after an alteration.

2Gateway: in a communication network, a gateway is a network element equipped in
order to interact with other networks using different protocols.

14

It is known the pair of offices that accept a potential link, with a
corresponding cost between them. The problem can be summarized in the
selection of potential fiber-optics links that should be deployed in order to

meet survivability aspects at the minimum cost, such that:

e The elimination of a single link does not disconnect two terminals.
e The elimination of a single office does not disconnect two special offices

or terminals.

Topologically, this is to build two node-disjoint paths between the terminal
nodes. A major refinement could establish three or more node-disjoint paths
between some terminals, increasing the level of survivability under potential
disasters or multiple node failures and/or link-cuts. This example can be
easily extended to other context with similar characteristics, and summarizes
the basis for the first phase of the problem under study in this thesis. A
metaheuristic serves as a template or a generic framework * to solve a wide
variety of hard combinatorial problems. A construction algorithm is needed
to address a minimum-cost network design meeting connectivity requirements.
Here, a metaheuristic is also considered for optimization, that will be discussed

in Section 3.2.

In the previous example of a telephonic service, let us assume that each
network component (nodes and links) have an associated elementary reliabil-
ity (operational probability), which is known. We want to determine the
network reliability for the topology that results from the first optimization
phase. The goal in this second phase is that the resulting topology meets a
certain reliability threshold established for the network operator or user. For
that purpose, it is necessary to consider an algorithm to find the reliability

measure for a given network. This topic is discussed in Section 3.3.

The final solution simultaneously solve both phases, using a multi-start
optimization process followed by quantitative network reliability evaluations

to determine if the networks meets the reliability threshold.

3Framework: in software development a framework is a structure in which another soft-
ware projects can be organized and developed.

15

3.2 Choosing a Metaheuristic

There is a large class of potentially useful metaheuristic to address the
problem at hand. After an analysis of possible metaheuristics, Variable
Neighborhood Search (VNS) was selected. Why VNS?

The decision is not only based on a variety of metaheuristics that are
potentially applicable to solve a specific problem, or if there is controversy for
a particular context. This approach not only shortens the decision, but also
makes it difficult, since commonly there is not available information to
perform the correct decision. The first step is to consider the desirable
qualities of a metaheuristic, and determine if these qualities are met. In this
sense, VNS is based on a simple principle, not yet deeply explored, which is
the systematic variation of neighborhood structures during the search. The
accuracy to switch the different structures is crucial. Its effectiveness has
been tested over different combinatorial problems and experiments, showing
equal or better results than most metaheuristics, and faster. VNS has
reached optimality or almost optimality in several datasets of a wide variety
of problems, with moderate or reasonable CPU-times [55]. A possibility is to
find extensions to this metaheuristic [53, 50, 52| or adding VNS to other
metaheuristics, obtaining a hybrid proposal. Even though this is not the
main goal of this thesis, a flexible algorithmic design is delivered in the
search of a solution, and it could enrich the possibilities of future work.
GRASP and VNS are powerful methodologies that were widely used. These
metaheuristics are very efficient, being excellent methods to address

NP-Hard combinatorial problems related with telecommunications.

3.3 Choosing a Reliability Evaluation Method

An essential part of this thesis is to define a network reliability measure, given
a topology and the elementary reliabilities of its components. Here we consider
the hostile network reliability model, where both links and Steiner (optional)
nodes * fail independently. The exact reliability evaluation belongs to the
class of N'P-Hard computational problems. As a consequence, there are exact

methods that run in exponential time, or approximative methods. Given the

4Non terminal nodes belonging to V-T.

16

hardness of the underlying model, an exact method is prohibitive for large-sized
instances. Several Monte Carlo based simulation methods are available in the
literature. The simplest approach is Crude Monte Carlo (CMC)[41], where
the goal is to pick independent replicas of the system and take decisions on it,
based on an averaging of observations. Even its simplicity, it is not suitable for
highly-reliable systems, which is the target of this thesis. CMC is unbiased, but
its mean square error (i.e., its variance) is large under rare-event scenarios. An
alternative is Recursive Variance Reduction (RVR) method [75, 21, 18]. This
method is selected since RVR is also unbiased, and presents smaller variance
than CMC. This property has been proved experimentally and mathematically
as well [21, 23, 18|. Furthermore, RVR is suitable for a large variety of models,
such as Stochastic Monotone Binary Systems (SMBS) °, and our hostile model
belongs to this family[14, 19].

3.4 Problem Formulation

The object under study in this thesis is a combinatorial optimization
problem, that promotes an interplay between network reliability and
topological network design. The problem is called Generalized Steiner
Problem with Node-Connectivity Constraints and Hostile Reliability, and we
will use the acronym GSP-NCHR for short:

Definition 1 (GSP-NCHR). Given a simple undirected graph G = (V, E), a
set of distinguished nodes T C 'V (called terminals), a matriz with link-costs
{¢ij}uper and a matriz with connectivity requirements R = {r;}ijecr.
Further, we assume that the links may fail, and the elementary reliabilities
are Pg = {pc}ecr, and Steiner nodes belonging to V. — T also have an
elementary reliability Py_7 = {pytvev_r. Given a reliability threshold pun,
the goal is to build a minimume-cost topology Gs C G meeting both the
connectivity requirements R and the reliability threshold: Ri(Gs) > Dmin,
being K =T the terminal-set.

The following notation is used in the definition of the GSP-NCHR:

o {¢i;}i e is a matrix that returns the link-cost ¢; ; for all (i, j) € E.

5SMBS is a mathematical model of multi-component on-off systems subject to random
failures. This model is an extension of network reliability models (where the components
are either nodes or links).

17

R = {r;;}ijer is a matrix with the connectivity requirement between
different pairs of terminals. Specifically, the positive integer r; ; denotes
the number of node-disjoint paths between the terminals 7,7 € T that
are required in the solution.

Rk (Gg) denotes the probability that the random graph Gg spans the
terminal set K = T, where both links and Steiner nodes may fail with
respective probabilities Pr and Py,_p. Throughout this thesis we will
consider the terminal-set as iK' = T, unless stated otherwise. This model

is known in the literature as the hostile network reliability model.

It is worth to note that node-disjoint paths are required in the GSP-NCHR.

If edge-disjoint paths are required instead, we consider the alternative GSP-

ECHR. The main goals of this thesis is to answer the following key-questions:

1

How many feasible networks there exists given the full probabilistic model
(Pmin, Pe, Pv_1)?

What is the sensibility of the model with respect to the elementary
reliabilities? For instance, for any given threshold (p,, = 0.98), what
happens if we fix p, = 0.99 but we pick different values for the
elementary link reliabilities p. € {0.99,0.97,0.95}7 How many feasible
networks survive? Analogously, if we fix p. = 0.99 and
o € {0.99,0.97,0.95}.

How many networks survive on average, for any given probabilistic
model? Understand the sensibility of the model with respect to the
connectivity requirements r; ; € {2,3,4}.

Is it better to improve the elementary reliability of links, or the reliability

of Steiner nodes, in order to meet a demanding reliability threshold?

Currently, there is no polynomial-time algorithm to test whether a given

network meets a minimum reliability threshold. Given the hardness of this

decision problem, we will consider a relaxation for the GSP-NCHR without

reliability constraint during the first phase of this thesis. In fact, in order

to answer the key-questions, we will produce a full-algorithm to solve the
relaxed GSP-NCHR, that is called GSP-NC. In a second phase of this thesis,

we will count the number of feasible solutions returned by our algorithm for the

general GSP-NCHR. This phase considers a pointwise reliability estimation

method called Recursive Variance Reduction (RVR). Chapter 4 provides a

formal definition of both problems.

18

Chapter 4
Problem and Analysis

In this chapter, the problem under study is formalized by means of a
combinatorial optimization problem. Its hardness is established. Particular

sub-problems are briefly discussed.

4.1 Model

Given an instance (G,C, R, T, Pg, Py_7, ppmin) for the GSP-NCHR, where G
is the ground graph, C' = {¢; ;}(j)ep is the matrix with the link-costs, R =
{ri;}ijer is the matrix with connectivity requirements between terminal nodes
T C V, Pg the elementary reliabilities of the links, Py _r the reliability of
Steiner (optional) nodes and py,, is the reliability threshold. The goal is
to find the minimum-cost subgraph Gg C G meeting both the connectivity
requirements R and the reliability threshold Rx(Gs) > pmin, being K = T

the terminal-set. Consider three sets of decision variables:

(i3)

wo _)1 if(i,j) € E is used in a pathu —i —j —v
0 otherwise

1 if(i,) € E is used in the solution
T(;qi) —
47) 0 otherwise

) { 1 if the Steiner node i € V. — T is used in the solution

0 otherwise

In this thesis, we introduce the GSP-NCHR as the following combinatorial

optimization problem:

19

min E Ci 3 i 5

(i.9)eE
sit. Tij >y Yo V(7)) € B, Vu,v € Tu# v

(4.1)
Zyuv > 1y Vu,v €T, u#v (4.2)

(ui)eE
Zyuv > 1y Vu,v €T, u#v (4.3)

(el
Z y"v Z y >0, VpeV —{u,v}, Vu,v e T,u#v (4.4)

(i:p)€l(p) (p,7)€l(p)
Y < Mi, VseV-T (4.5)

(st)eE
(i) € 10,1} V(i,j) € E (4.7)
2, €{0,1}VieV-T (4.8)
y(UG{Ol}‘v’(Zj)GE Yu,v €T, u#v (4.9)

The objective is to minimize the global cost of the solution. The set of
Constraints (4.1) state that links are one-way. The connectivity requirements
are expressed by means of Constraints (4.2) and (4.3). Constraints (4.4)
represent Kirchhoff law, or flow conservation [42]. Constraints (4.5) state
that an incident link to a Steiner node can be used only if the Steiner node is
considered in the solution. Observe that M is a large real number; M = |E|
can be used in the model without loss of generality. The minimum reliability
threshold is established with Constraint (4.6) which denotes the subgraph
induced by decision variables {w;;}¢jjcp. Finally, the set of constraints
(4.7-4.9) state that all the decision variables belong to the binary set {0, 1}.
All these constraints are important because we want robust networks where
reliability exceeds a pre-established minimum threshold, not only want

robustness by guaranteeing disjoint paths between pairs of terminal nodes.

20

4.2 Hardness

In this section, we show that the GSP-NCHR belongs to the class
of N'P-Complete problems. Recall that the Generalized Steiner Problem
(GSP) already belongs to this class:

Definition 2 (Generalized Steiner Problem). Given an undirected graph G =
(V,E) and a matriz with link-costs C = {c¢; j}jck, o terminal-set T C'V and
a matriz with requirements R = {r;;}i jer, the goal is to find the minimum-
cost subgraph Gs C G such that every pair of terminals 1,5 € T s connected
by at least r; ; disjoint paths.

If we consider the GSP with T" = V and r;; = 2 for all ¢,5 € V, the
minimum-cost is not greater than n = |V if and only if G has a Hamiltonian
Tour. Since Hamiltonian tour belongs to Karp list of NP-Complete
problems [58], then GSP is N'P-Hard. Further, the GSP also belongs to the
NP set [116], since both the feasibility can be accomplished by Menger
theorem [36], and the cost of a feasible solution is found in an additive

manner. Therefore, the GSP belongs to the class of N'P-Complete problems.
Theorem 1. The GSP-NCHR belongs to the class of N'P-Hard problems.

Proof. Consider an arbitrary instance (G,C, R,T) of the GSP. Consider the
instance (G,C, R, T, Pg, Py_1,pmin), where the probabilities are trivially
selected as p. = 0,Ve € E, p, = 1,YVv € V — T, and p,;, = 1. It is straight to
see that the mapping = : (G,C,R,T) — (G,C,R,T, Pg, Py_1, pmin) can be
accomplished in polynomial-time, and, by inclusion, the GSP-NCHR is at
least as hard as the GSP. Therefore, the GSP-NCHR is N'P-Hard. O

The same result holds if we consider edge-disjoint requirements instead, and
the GSP-ECHR is also N'P-Hard. Theorem 1 can be strengthened considering

strong inapproximability results of special sub-problems [43].

4.3 Special Sub-Problems

In the first phase of this thesis, we will tackle a relaxation of the GSP-NCHR:

Definition 3 (GSP-NC). This is the relazation of GSP-NCHR, without
Constraint 4.6. Specifically, given a simple undirected graph G = (V, E), a set

21

of distinguished nodes T C V' (called terminals), a matriz with link-costs
{¢ij}ujer and a matriz with connectivity requirements R = {r; ;}ijer, build

a minimum-cost topology Gs C G meeting the connectivity requirements.

In this thesis we develop a full algorithm for the GSP-NC. Then, we study
the number of feasible solutions for the GSP-NC that also meet the reliability
threshold. The key-questions of this thesis are strictly related with the number
of feasible solutions for the GSP-NC that are also feasible for the GSP-NCHR.
In this way, we study the interplay between topological network design and
reliability analysis. Furthermore, a sensibility on the reliability parameters

and connectivity constraints is also discussed.

Source-Terminal Reliability

Let T = {s,t} be the terminal-set (known as source-terminal model) with
rs+ = 1. If [denotes the length of the shortest path P,; between s and t:

Lemma 1. The threshold p,.;, is met with the shortest path if and only if
!

Observe that a globally optimum solution is met with the shortest path
Gs = P, under identical costs if [satisfies the previous inequality. The

shortest path P, is found using Dijkstra algorithm [37].

Proposition 1. If there exists a feasible single path Ps, for the source-terminal

scenario with identical probabilities p; ; = p, then the globally optimum solution

for GSP-NCHR can be found.

Proof. By hypothesis, there exists a feasible path P;; that meets the reliability
threshold p,.;,. In particular, the threshold is met by the shortest path. By
Lemma 1, p' > ppin. Consider the greatest integer h such that p" > pin:

. lOQ(ﬁmm)
h= L—log)] (4.10)

The globally optimum solution for GSP-NCHR is obtained applying Cheng-
Ansari algorithm [46], finding the minimum cost among all the paths with
lengths i € {l,...,h}. O

22

All-Terminal Reliability

Under the all-terminal reliability model, all the nodes are terminal, i.e., T' =V,
and there are no Steiner (optional) nodes. Consider the cheapest or Minimum
Spanning Tree Gg = T'. If T respects the reliability threshold, then the globally

optimum solution is met.

Proposition 2. Under the all-terminal reliability model, a Minimum Spanning

Tree T' achieves the globally optimum solution if and only if [],cr Pe = Pmin-

Proposition 3. For the case source-terminal: T = {s,t}, Pp = {pij}aj)cE,
Prnr = {1}vev\r, 7st = 1, ¢ij = ¢, Y(i,5) € E, and a given pyy, the global
optimal solution of the GSP — NCHR can be computed in polynomial time.

Proof. Given a path p communicating s and ¢ in G, the reliability condition

H Dij = Pmin-

(i.5)€p

for this path is:

This constraint can be established by the following equation by applying
logarithm to both sides of the inequality.

Z (_ log(pij)) < _log(pmin>‘

(i,5)€p

Let us consider the matrix P = {—log(pij) }ij)ep- The length-bounded
Dijsktra Algorithm is applied until the first path that satisfies the reliability
condition is found. The length-bounded Dijsktra Algorithm computes the
shortest path between two nodes with the condition that this path has no

more than [edges (hops), being [a pre-established parameter.

23

Algorithm GSP-NCHR _Source _ Terminal;
Input: G = (V,E), T ={s,t}, P, ¢, pmini

I+ 1;
found_solution <— FALSE;
while (I < |E| — 1) and not(found_solution) do
[p, cost] < Restricted _Dijkstra(G, P,s,t,1);
/* It is computed the bounded shortest path from s to ¢ based in the matrix p */
/* the path found p has no more than [hops */
if cost < —log(pmin) then
found solution <+ TRUE;
optima_l_solution — D
optimal _cost <1 - ¢
9 else [<1+ 1;
11 end_while;
12 if (found_solution) return (optimal _solution,optimal _cost);

B WN =

o~NOo O

Figure 4.1: GSP-NCHR Source-Terminal Pseudo-code.

If the GSP-NCHR instance has a feasible solution, algorithm 4.1 returns
the global optimum for this particular case.
O

Let us analyze the following particular case: T' = {s,t}, rs; = k > 1. In the
case that the costs and the probabilities (in edges or nodes) are not uniform,
the problem is NP-Hard.

We will analyze the following sub-cases:

i) Non-uniform costs in the edges, uniform edge probabilities, uniform node
probabilities (i.e. Py = {1}ver\7)-
ii) Uniform costs in the edges, non-uniform edge probabilities, uniform node

probabilities.

In any case, to know if there are feasible solutions, it is enough to use the

Suurballe Algorithm [109] in the following way.
Note: The Suurballe Algorithm [109][110] computes in polynomial time the
k-node-disjoint paths (or the k-edge-disjoint paths) from s to ¢ of minimum

total edge cost, for a given integer k.

We denote by G the graph equal to G but such that each edge e € F is
weighted by —log(p.). We will denote C' = {—log(pe) }ecr-

24

Proposition 4 (Existence of Feasible Solutions for (i) and (ii).). Let
L = {li}ic1.x be the k-node-disjoint paths (resp. k-edge-disjoint paths) with
minimum sum of costs over G between s and t considering C. Then there

will be feasible solution if;

k

Z Z —log(pe) < —10g(Pmin)-

=1 e€l;

Proof. It L = {l;};c1. were not feasible, we would have Hle [Tecs, Pe < Prmin
which would imply Zle Zeeli log(pe) < log(pmin)- O

Analysis of (i): Suurballe Algorithm must be used with the addition of us-
ing the Grotschel Algorithm when calculating a path that interlinks the
remaining r paths.

Analysis of (ii): Since the costs of the edges are uniform, say equal to co,
then the maximum possible cost is bounded by m - ¢y, where m is the
number of the edges in the graph. It is enough to find the £ minimum
logprob path (3_ ., log(pe) > log(pmin)) with lower cost than i-cg, with

t = 1..m. The algorithm is presented below.

Note: The Grotschel Algorithm [2] computes in polynomial time the short-
est path between a pair of nodes of a simple graph with the restriction that
the length of the computed path (in terms of number of edges) does not ex-

ceed a given number of edges. This number is a parameter of the algorithm.

Algorithm GSP-NCHR _Source _Terminal _k _ Connectivity;
Input: G, C,T = {s,t}, P, M\ Pmin;

i < 0; optimum < FALSE;

repeat
i1+ 1;
Ly, < the k paths given by Suurballe(@, C,k, s,t, i) using Alg_Grotschel;
if costo(Ly) < —log(pmin) then optimum < TRUE;

until optimum or i = m

if optimum return Lj;

else return “There is no solution”

ONOSOR WN M

Figure 4.2: GSP-NCHR Source-Terminal Pseudo-code with r,; = k > 1, and
edges with uniform costs.

Lemma 2. For the case All Terminal: T =V, C = {cj}ujek

25

Pg = A{pij}ijyee, and a given ppy, the GSP — NCHR can be formulated as

the following Integer Linear Programming Problem:

(GSP — NCHR_All_Terminal) min » _ ¢;; - i (4.11)
1,jJER
S.a.

/ * Connectivity constraints * /

> ay=n-—1, (4.12)
(i,5)eE
/ * Reliability restriction * /

> (= log(pyy)) - w5 < —108(Pmin),
(1,5)eE

(4.13)
/ * Binary decision variables * /

Tij S {O, 1}, V(Z,j) e k. (414)

Proof. Equation 4.11 minimizes the global connectivity cost. Equation 4.12
indicates that the spanning subgraph must have n — 1 edges, where n = |V/|.
This condition forces that the topology to be a spanning tree of V.
Equation 4.13 is the reliability condition for a feasible solution. Finally
(equation 4.14), the decision variable z;; € {0, 1} indicates whether or not an

edge (i,7) € E will be part of the solution.]

Let us consider the following Linear Programming Problem:

(P) : min Z Cij - Tij

ijEE
s.a.
Z Tij > n—1,
(i.j)EE
> (= log(pi)) - wi; < —108(Pmin);
(¢,4)eE

T4 > 0, V(Z,j) € FE.

26

The P formulation is a lineal relaxation of the problem
GSP — NCHR__All_ Terminal. The Lagrangean relaxation of P is given by

the following formulation:

15)\17)\2 : min Z Cij . xij +)\1 . (n — 1) — Z .I’ij + /\2 . — log(pmm) + (log(p”))
i,jEE (1.J)EE (i.9)eE

S.a.
Lij > O, V(Z,]) € FE.
(4.15)

Regrouping terms we have:

15)\17>\2 : min Z (Cij —)\1 —+)\2 . log(pij)) . J]Z‘j +)\1 . (n — 1) — /\2 . log(pmm)
i,jeEE
S.a.

Lij > 0, V<Z,j) e k.

If 3(z,7) € E such that (c;; — A1+ A2-log(p;;)) < 0, then we set all variables
;5 to zero except x;;. In this way, if T3 — +00 the feasibility is preserved and

the objective function tends to —oo. In order to avoid this, we impose that:

(ci5 = M + X - log(py)) = 0, ¥(i, j) € E.

Since we are minimizing, the optimum of Py, y, with positive coefficients is
obtained with x;; = 0 V(4, j) € E. The objective function of the Dual Problem
D of the primal problem P is given by:

O(X) = ®(A\i, A2) = A1 - (n— 1) — Xg - log(pymin)-

The complete formulation of D dual problem of P is:

27

D: max A\; - (n—1) — Ay - log(pmin)
s.a.
cij = A1 — Ay - log(pis), V(4,7) € E.
A1, Ao > 0.

The feasible region of D is:
FD = {()\1,)\2)|Cij 2)\1 —)\2 . log(pij), (Z,j) € Eﬂ7)\1,)\2 Z 0} .
Let us consider a system of equations given by two lines r y 7:

T A — Ao - log(pij) = cijs
7o A — Ao - 10g(puw) = Cuo-

Assuming that r and 7 are not parallel, the resolution of this system is the

point:
(Cuv — Cij)
A = ey G5 o0 ().
1 CJ+ log(;;;i) Og<pj>
(cuv — ci5)
)\2 - P -
log(puv)

Let (A1, A2) be the point given by:
Coy (Cuv — ¢ij) (cuv — ci5)
AL, Ag) = DN, M)A = ¢ + —5—21 i), Ay = ————2
(1 2) argmaX{ (1 2)| 1 cz]+ log(%) Og<pz])7 2 log(%))
(w,v) € E,(i,j) € E.
Let us define \; and)\, by:

A1 = min {c;;|(i,j) € E}.

_ .
Xy = mind —9___|(;.j GE}.
’ {—log(pz‘j)’(7)
We consider the following points: A = (A;,0), B = (0,)\;), and C =
(A1, Aa).

28

Let Xrt) = (AP0 APy e given by:

(AP APy = arg max {®(A), ®(B), ®(C)}.
(Ag‘”’”,)\g’pt)) = arg max {Xl(n — 1), = A2 10g(Prmin), Xl(n —1)— X log(pmm)})

The point X@rt) is the global optimum of D and the optimal value is:
(NP = A\ (1~ 1) = A7 Log (piin).

Since the duality gap is zero between P and D, the value @(X(Opt)) is also
the global optimal value of P.

Lemma 3. The Integer Linear Programming Problem associated with GSP —
NCHR for the All-Terminal case has as lower bound, the value:

)\gopt) (n _ 1) — /\gOpt) log(pmin)v

being)\5"”“ and Ag"pt) the values computed above.

Proof. We know that P is a lineal relaxation of GSP — NCHR_All_Terminal.
Furthermore, @(X(Opt)) is the optimal value of P, completing the proof. O]

Lemma 4. For the case All Terminal: T = V, C = {cjtaujee
Pp = Apijtajer, and a given ppmy, the following Integer Linear
Programming Problem is a multi-objective formulation that provide an
approzimation to the optimal value of the GSP — NCHR.

(P): min Y a-(c-ai)+ 8- Y (—log(py)) - zi;

t,jeE (i.)eE
S.a.
E xij =N —]_,
(i.4)eE

Ti; € {0, 1}, V(Z,j) e F.

Proof. Fixed a > 0 and 8 > 0 the objective have two components which are

minimized:

29

° EMGE a - (¢ij - x;;), influencing directly in the minimization of the cost
associated with the spanning tree for V.

o B- (i en(—1log(pij)) - i), linked directly to the reliability maximiza-
tion of the required network topology (a spanning tree covering the set
V).

The constraint Z(i jep iy = m — 1 guarantees that the computed feasible

solution is a spanning tree for V. [

By relaxing the constraint z;; € {0,1}, V(i,7) € E by z;; >0, V(4,j) € E,

we have the problem:

(Pr): min Y (a-cy+ 8- (—log(py))) - =i

1,jeE
S.a.
E Tijg =N — 1,
(i.j)ek

Tij Z 07 \VI(Z,j) € FE.

The Lagrangean relaxation of Py, is given by the following formulation:

(PY): min Y (o ey + B+ (—log(py)) — M) @i+ Ar - (n — 1)

i,jEE
s.a.

If 3(,j) € E such that (a - ¢ + B+ (—log(ps;)) — A1) < 0, then we set
all variables x;; to zero except x3;. In this way, if 2;; — 400 the feasibility is
preserved and the objective function tends to —oo. In order to avoid this, we

impose that:

(o7 Cij + ﬁ . (— lOg(pZ])) —)\1 Z O, V(Z,]) € E

The global optimal solution for the problem F_’S-:\l) satisfying that

constraints is accomplished by setting x;; = 0, V(7,j) € E. Under these

conditions the value of the objective function is the objective function of the

30

Dual problem of P, (let us denote it by D) which is given by:
(I)()q) =)\1 . (TL - 1)

The Dual Problem D can then be formulated as:

(D) : max M\, -(n—1)
s.a.
a-cj+ B (=log(pi)) = M, V(i j) € E,
A >0

Let us consider:

v = argmax {a - ¢;; — (- log(pi;)|(i,7) € E}.

Thus, yi = a - ¢; — 8 - log(p;;) for a certain (i,7) € E. The global
optimal solution of the Dual problem D is A; = va; and the optimum value is

Yar - (n—1).

By the Duality Theorem for Linear Programming Problems we have that

the duality gap is zero, and the optimum value of P is also:
Y- (n—=1) = (a-c; — B -log(p;;)) - (n—1).

Theorem 2. Fized a p,,i, value there exist & and B for the problem P such
that if E C E is the solution edge set, it is fulfilled that:

- Z 1Og(pij) < _log(pmin).

(i,j)ekE

Proof. Let us consider the following values for & and B: & > 0 arbitrary,

> Gigyer log(pij) &y)

where {Z;;}(j)er are the values of the decision variables for the globally

optimal solution of the following Linear Programming Problem:

31

(M) : max — Z log(pij) - @i

i,jeER
S.a.
= > log(py) - iy < —10g(pmin)
,jeEE

Lij > O, V(Z,j> e FE.

Since when solving (M) the set of values {Zij}ujyep fulfills the first

constraint of the (M) model, we have that:

— > log(py;) - &5 < —log(Pmin)-
i,jEE

By dividing this inequality by the left side we have that the B value

satisfies:

10g(Ppmin)
Z(i,j)eE log(pij) - i

1<fB=

Let us consider now:

Z (—log(pi;)) < 8 Z —log(pi;)) (199 Bymin) B) Z (—log(pyy)) =
(i§)€E

(i.)eE ij)€ Z(z,])eE 0g(pij) - Tij

Z(i,j)eE log(pi;)
Z(i,j)eE log(pij) - &4

= (—log(pmin)) - (> < (—1og(pmin)),

where in the last inequality we wuse that it is fulfilled:
(>, e i 108(pij))<1

Z(i,j)eE log(pij)-&ij

Then with B defined above it is satisfied:

—) log(py) < —10g(pmin).

(i,j)ek

32

as required, and completing the proof. O

4.4 Minimum-Weight k-Connected Spanning
Networks with Reliability Constraints

In the work [6] Bienstock introduce important theorems related to the
“ Minimum-Weight k-Connected Spanning Networks" (denoted by MWkCSN)
Problem under the hypothesis of triangular inequality in edge costs. The
MWEKCSN is a particular case of the “Generalized Steiner Problem" (GSP)
taking r;; = k V7,5 € V. We will denote by MWKECSNP the version of the
MWKkCSN with edge-connectivity requirements. In this section the
MWKCSN problem is defined. Structural theorems for the MWkCSN are
introduced which characterize global optimum solutions. Moreover, we
formulate the MWKECSNP as an Integer Linear Programming Problem
taking into account the characterization given by the Bienstock’s Theorem
for the edge-connectivity version. We extend the MWKECSNP problem by
adding the reliability constraint used in the GSP-NCHR formulation. We
denote this problem as MWKECSNP RC. We formulate the
MWEKECSNP _RC problem as a Integer Linear Programming Model, and we
make a study of relaxations and lower bounds by applying Lagrangean

relaxations and Duality Theory.

Definition 4 (MWKCSN). Ek-connected network design with triangle
wequality: given a complete graph with edge weights that satisfy the triangle
inequality, and an integer k, find a minimum-weight k-edge (or k-vertex)

connected spanning subgraph.

Theorem 3 ([6]). For any set of vertices V' with nonnegative symmetric weight
function d(-,-) satisfying the triangle inequality and any k > 2, there exist a
minimum-weight k-edge connected subgraph G = (V, E) satisfying the following

conditions:

(I) Every vertex of G has degree k or k + 1;
(II) Removing any 1,2,...., or k edges of G does not leave all the resultant

connected components all k-edge connected.

33

Theorem 4 ([6]). For any set of vertices V' with nonnegative symmetric
weight function d(-,-) satisfying the triangle inequality and any k > 2, there
exist a minimum-weight k-vertex connected subgraph G = (V, E) satisfying

the following conditions:

(I’) If |V| > 2k every vertex of G has degree k or k + 1;
(II) Removing any 1,2,...., or k edges of G does not leave all the resultant

connected components all k-edge connected.

In [6] the authors prove that for £ > 3 a minimum weight k-edge connected
subgraph can have a value strictly less than a minimum-weight k-vertex
connected subgraph. In the case k = 2 |77] Monma prove that the class of
minimum-weight 2-edge (respectively 2-vertex) connected subgraphs can be
restricted to the class of 2-edge (respectively, vertex) connected subgraph
G = (V, F) satisfying conditions (/) and (/1) defined above. Furthermore,
they prove that the global optimal values of MW2ECSNP (edge-connectivity)
and MW2VCSNP (vertex-connectivity) for the same instance are equal.

4.4.1 MWKECSNP ILP Formulation based on

Bienstock Theorem

In this point we introduce an exact formulation for the MWKECSNP when
the triangular inequality is satisfied by the costs of the edges.

Decision variables:

, if the directed edge (i, 7) is used in a path communicationg u with v
u,v

Yiig) = in the sense u — 71— 7 —v; u,v € V;

0, otherwise.

{ 1, if the edge (7,7) € E is used in the solution
Tij =

0, otherwise.

34

Binary-Integer Linear Programming Model for the MWKECSNP:

PywrEecsnp @ min g Cij * Tyj
(i.J)eE

S.a.

Yooyl =k Yuu e,

(u,0)eE
Z ij)>k Yu,v €V,
(3,v)EE
Sowih = D ypty =0, Yu,v e Vivp e V\ {u, 0},
(&p)EI~ (p) (p.d)ET (p)

Y zi<k+1,YoeV,
(vi)eE

zi; € {0,1}, V(i j) € By € {0,1}, V(i,j) € E,Vu,v € V.

Next, we introduce an exact model for solving the MWKECSNP with
Reliability Constraints. The formulation is also a Binary-Integer Linear

Programming Model:

Pywkecsnyp re @ min E Cij * T
(i.)€E

S.a.

Z y(u)>k; Yu,v eV,

(u,i)EE
Z y(jv >k, Yu,v eV,
(jv)eE
Z Y Z Yiui) = 0, Yu,v € ViVp € VA {u, v},
(i.p)€l~(p) (p.g)€I*(p)

Yiq T Yon < gy Yu,0 € V, V(i j) € E,
Z Tyi <k+1,YveV,

(vi)eERE

Z —log(pij) - wi; < —10g(Pmin), V(i) € E,

(i,5)EF

1y € 40,13, V(i,j) € EsyiY) € {0,1}, (i, j) € E,Yu,v € V.

35

Let PMWKECSNP_ rc be the following model resulting of the linear relax-

ation in [0, 1] of the z;; and y ;")) variables:

Pywrkecsyp ro @ min E Cij * Tij
(i.))eE

S.a.

Zy >k, Yu,v €V,

(ui)eE
Z y(jv >k, Yu,v eV,
(jv)eE
Z y({,;)_ Z y(p]) >0, Yu,v € V;Vp € V \ {u, v},
(i,p) €I~ (p) (pJ)EIT(p)

y()+y(Jz)<$”,VUUEVV(Zj) € F,
Z Ty <k+1,YveV,

(vi)eRE

Z _log(pij) g < - log(pmm)a \V/(Z,j) S E7
(3,7)EE
0 S Tij S 17 \V/(Z,j) € E70 S ?JELZ’E) S]-7 \V/(l,]) S E,VU,U eV

(L , , .
Now, let P]E/[IZVKECSNP_RC be a Lagrangian relaxation of Pywrxrecosnvp re

36

formulated as follows:

P(L) © min Cii * Tis
MWKECSNP RC * ij * Lij

(1,)EE
D DR LR B T
u,veV (u,i)eE
T Z Ay Z ij)
u, eV (jv)eE
LD DID DR N B DI TR DN 7
u,weV peV\{uv} (p.d)El*(p) (i.p)el~(p)
DL D Ay (T Y6 5'51)
u,veV (i,j)€E
veV (vi)eE

A Z —log(pij) - zij + log(pmin)
(i.j)EE

+ 30 A (2 - 1)

(i,5)eE

Lij > 07 V(Zaj) € E70 < yz:;) < 17 V(Zaj) € E,VU,U eV.

Let us denote: A" = > uvev Mgy Notice that the following points are

satisfied for the ISJ%ZVKECSNP re formulation:

u,v

¢ (k - Z(u,i)eE y?fi)> is minimum when Z(u ner Yo = g+ (u), where
g7 (u) is the degree of node w.

° (k - Z(jﬂ))EE yé’%) is minimum when Z(]v cE y(] v) = gf(v)’ where
g~ (v) is the degree of node v.

u,v

* XCpperte Wips) 2imer-Yip) 15 minimum when
Z(m YeI+ (o) y(D = = 0 and Z (ipel-m) Yo 7p)) = g~ (p) where g~ (p) is the
degree of node p.

o ['ixed z;;, the expression (y(”) + y(]) — x;;) is minimum when y(”)

Y = 0.
® D vev s (Z(m)eE Toi — k- 1) =2 qer s Ty — (K +1) - 3,00 AL

37

By considering these points we provide the following formulation for the

f’]%VKECSJ\,PiRC which considers only the {z;;} variables.

P(L) © min Cii * Tis
MWKECSNP RC * ij * Lij

(3,7)EE

+) AN (k=g (u)
u,veV

+) N (k=g (v))
u,veV

Y > AT (=g ()

u,veV peV\{u,v}

+ > AT ()

(.J)EE
(i,)eE veV

+ X | Y —log(piy) - wij + 1og(pmin)
(i.j)eE

Z)\(w (x5 — 1)

(i,j)€E

T4 > 0, v<2,j) S

Lemma 5. If the lambda parameters satisfy: \"" > 0, A\y’" > 0, A3 > 0,
)\y}j) >0, A2 >0, \¢ >0, and A?J > 0, then P(MW KECSNP_RC s a relazation

of PywKkECSNP RC-

38

By regrouping terms we can formulate PA’]%V kEcsnp re as follows:

JE/[IBVKECSNPiRC - min Z (Cij -)‘51 Dy A5 — Xe - log(pij) +)\(7])> " Lij
(.5)€E
+ YA (k= g ()
u,veV
+ > A (k=g (v))
u,veV

> > AT (g)

uweV peV\{uw}

—(k+1)-> N
veV

+ A6 - 1og(Pmin)

_ Z AGS)

(i,9)EF

Lij 2 O, V(Z,j) e k.

If 3(z,7) € E such that (c;5 — AP 4 AL — g - log(p;;) +)\(;’j)) < 0, then we
set all variables x;; to zero except x;:. In this way, if ;; — +o00 the feasibility
is preserved and the objective function tends to —oo. In order to avoid this,

we impose that:

cij — A7+ AL = X - log(piy) + A > 0,Y(i, 5) € B.

The global optimal solution for the problem P]Ef‘ZVKECSNP re Satisfying
that constraints is accomplished by setting x;; = 0, V(i,j) € E. Under these
conditions the value of the objective function is the objective function of the
Dual problem of PMWKECSNPﬁRC (let us denote it by lA)MWKECngiRc) which

is given by:

P = Y AT k=gt @) Nk =g @) = Y AT (g (p)

u, eV pEV\{u,v}

—(k+1)- YA+ Ao - log(pmim) — D AF.

veV (i,J)eE

39

The Dual Problem D]WWKECSNP_RC can then be formulated as:

A

Dywipcsnp re: max d(N)
S.a.
cij — M AL — g - log(py) + A >0, V(i,j) € E
AV A >0, Yu,v eV
AyP >0, Vu,v € V, ¥p e V\ {u,v}
A >0, 9(i,5) € E
As >0, VoeV
Ag >0
A8 >0, (i, §) € E.

—

Theorem 5. Let cfopt = @(Aopt) be the global optimal wvalue of

[)]\4WKECSNP_RC. Then, a?opt s a lower bound for the globally optimal value

of PywKECSNP RC-

Proof. We know that Pywrkecsve re 1S a lineal relaxation of
PMWKECSNP RC- MOI‘GOVGI‘, de duality gap between P]WWKECSNP RC and
Dywrrcsnp re 1s zero since they are Linear Programming Models, thus

completing the proof. O

4.4.2 Particular case k£ =2

For the particular case & = 2 we have the problems MW2ECSNP and
MW2VCSNP, formally expressed by:

MW2ECSNP: 2-edge-connected network design with triangle inequality:
given a complete graph with edge weights that satisfy the triangle
inequality, find a minimum-weight 2-edge-connected spanning
subgraph.

MW2VCSNP: 2-vertex-connected network design with triangle inequality:
given a complete graph with edge weights that satisfy the triangle
inequality, find a minimum-weight 2-vertex-connected spanning

subgraph.

In [77] Monma prove that the optimal value of both problems under the

same instance coincide. For this reason they denote both problems

40

indistinctly as MWTCSNP (Minimum weight two-connected spanning
network problem). The MWTCSNP belongs to the class of NP-Complete
problems |[77].

Monma introduce an important theorem which characterizes global
optimum solutions of the MWTCSNP. We will provide the statement of the
Monma Theorem below; the details of the demonstration the reader can find
it in |77].

Theorem 6 ([77]). For any set of vertices V' with distance function d(-,-),
there exists a minimum-weight two-connected graph G = (V| E) satisfying the

following conditions:

(a) Every vertex in G has degree 2 or 3.
(b) Deleting any edge or pair of edges in G leaves a bridge in one of the

resulting connected components of G.

Let us denote by:

V)= (ATt) N2) = D AT (g ()

uveV peV\{u,v}

=3 Z)\v +)\6 10g pmzn Z)\(Z]

veV (i,)eE

Let us consider the following problem:

41

ﬁMWTCSNPﬁRC . max \il(X)
s.a.
Cij —)\ff’j) + AL — ¢ - log(pi;) +)\(7i’j) >0,V(i,j) € E
AT A >0, Yu,v eV
A3 >0, Yu,v € V,Vp e V\ {u,v}
A >0,9(i,j) € E
As >0, YoeV
Ag >0
A >0, v(4, §) € E.

We introduce the following theorem.

—

Theorem 7. Let d\" = W(\yp) be the global optimal wvalue of

Monma

_D]WWTCS]VpiRC. Then, cigfﬁty)ma 15 a lower bound for the globally optimal

value of the Pyywrosnp re problem.

Proof. We know that }A’MWTcngiRc will be a lineal relaxation of
Pywresnp re. Furthermore, de duality gap between pMWTCSNP_RC and
[)MWTCSNP_RC is zero since they are Linear Programming Models, thus

completing the proof. O

Notice that d%{ma is a lower bound for both the edge-connectivity version of
MWTCSNP (i.e. MW2ECSNP) and the vertex-connectivity version of
MWTCSNP (i.e. MW2VCSNP) since both problem coincide in global

optimality.

42

Chapter 5

Related Work

In this chapter we revisit the related work, as well as some works where
GRASP and/or VNS methodologies were provided for specific combinatorial
optimization problems. Previous works on the Recursive Variance Reduction
(RVR) method under different contexts are also cited.

5.1 Topological Network Design

Robledo and Canale [97] develop a GRASP methodology for the backbone
design of telecommunication networks. Robledo considers GRASP for the
design of a WAN topology [96], using local searches based on Random Neural
Networks (RNN). Risso also develops a GRASP combined with evolutionary
algorithms for the design of IP/MPLS networks [94].

Resende covers a wide spectrum of GRASP algorithms for several hard
combinatorial optimization problems [91, 93], combining Greedy notion with
randomization, local searches and even post-optimization methods such as
path-relinking as well as parallel continuous GRASP. In [72|, different ways
to implement GRASP for a multi-objective problem are suggested, specially
using path-relinking. In [39], GRASP combined with external path-relinking is
considered to minimize the differential dispersion. In [38], GRASP is developed
to tackle the graph coloring of convex graphs. In [32], a GRASP algorithm
is defined for solving a large-scale single row facility layout problems. In the
p-next center problem, we must assign users in the centers in order to minimize
the worst distance between a user and its closest center. A GRASP and VNS

for solving the p-next center problem was proposed in [69].

43

In [113], a fully deterministic algorithm of time complexity O(k*log(n))
was presented for the Vertex Connectivity Survivable Network Design
Problem (VCSNDP), being k£ the maximum connectivity requirement for the
problem. This work outperforms previously randomized algorithms. In [44],
an enhancement in the computational order with polynomial time for the
first proposal authored by Williamson [43] is proposed. The key concept is a
combinatorial characterization of redundant links. The order is reduced from
O(k*n*) to O(k*n? + kn®\/log(log(n))).

Agrawal, Klein and Ravi [1] developed an approximation algorithm with
logarithmic factor for the Generalized Steiner Problem with Edge
Connectivity (GSP-EC). More recently, Jain [56] presented a factor-2
approximation algorithm for the GSP-EC, where a feasible solution of a
linear programming relaxation of the problem is first found, and the solution
is iteratively built. Sartor and Robledo proposed a GRASP/VNS heuristic
for the GSP-EC [103]. Kortsarz, Krauthgamer and Lee [61] introduced the
first inapproximability result for the Generalized Steiner Problem with Node
Connectivity (GSP-NC) when there are no Steiner nodes.

There are several works that develop approximation algorithms for the
GSP and sub-problems. In [89], the authors develop approximations for the
2-node connectivity versions stated in [49]. Subsequent articles [48, 44, 115]
extend those methods to give approximation algorithms for the GSP-EC
without multiple links.

An important particular case for the GSP-NC occurs in the
minimum-cost k-node connected spanning graph. In |27, 33, 51| the authors
propose approximation algorithms. The reader is invited to consult the
references [26, 28, 40, 45]. These articles offer different approximation
algorithms and their respective approximation ratios. Some works study the
particular case of identical costs, usually known as the minimum cardinality
augmentation. Sartor and Robledo solved the GSP-EC [105] and
GSP-NC [104, 106] with a GRASP proposal. In [84] E. Paolini explores a
generalized formulation that extends the original GSP to infinite sets in
metric spaces. In [117], the GSP is addressed in Halin graphs (obtained
connecting the leaf-nodes of a tree in a cycle). In [71], Mahjoub and Pesneau
study the particular 2-edge connected Steiner subgraph polytope. The au-
thors find polynomial-time cutting-plane solutions for particular cases, where

the terminals have special dispositions. As a consequence, they generalize the

44

previous analysis for Halin graphs presented in [117]. In [86] authors propose
an hybrid Lagrangean heuristic with GRASP and path-relinking for set
k-covering, the hybrid GRASP Lagrangean heuristic employs the GRASP
with path-relinking heuristic using modified costs to obtain approximate
solutions for the original problem. Computational experiments carried out
test instances show experimentally that the Lagrangean heuristics performed
consistently better than GRASP as well as GRASP with path-relinking. In
|88] Fuzzy GRASP hybridized with path relinking is implemented for solving
a variant of the vehicle routing problem with additional risk constraints,
namely the Risk-constrained Cash-in-Transit Vehicle Routing Problem
(RCTVRP), authors conclude that proposed algorithm outperforms all
existing methods from the literature for solving RCTVRP.

In |79, 80], S. Nesmachnow presents an empirical evaluation of several
simple metaheuristics (VNS is among them) to address the GSP, with
promising results. In [85], M. Pedemonte and H. Cancela developed an Ant
Colony Optimization (ACO) to solve the GSP using parallel computing in
order to reduce the CPU-time. In [81], another proposal of ACO for the GSP
is presented to tackle the GSP in general graphs, outperforming previous
heuristics.

In [99, 98], an integer linear programming formulation was solved using
branch-and-cut for the Generalized Network Design Problem (GNDP),
applied to two-types of survivability structured: rings and 2-edge connected
topologies. In |65], the same formulation is considered in order to solve the
{0,1,2} Survivable Network Design Problem or {0,1,2}-GSNDP, that
extends the GNDP and has a direct application for the design of backbone
networks.

In [8], the Generalized SNDP or GSNDP with hop-constraints is discussed,
studying the static problem (given link-reliabilities) and dynamic problem with
an upgrading, where the elementary reliabilities can be increased, with an
associated cost. In [108|, a compilation of several techniques is performed,
showing a comparison for the GSP, SNDP and the minimal connected subgraph
problem (MCSP).

In [29], an experimental study is carried out using exact algorithms over
2-node connected graph with more than one-hundred nodes, showing the
computational feasibility of this solution. In [57], the Survivable Network

with Minimum Steiner nodes Problem (SN-MSP) is addressed, by means of a

45

natural transformation from SN-MSP into SNDP, such that a factor « for
SNDP implies a factor aO(k?) for SN-MSP. In [68] the SNDP is tackled
using stochastic models. Several algorithms are proposed, in particular a
branch and cut to solve the SNDP with an acceptable optimization which
shows to speed-up the CPU time. A fast and easy-to-implement technique to
strengthen cuts is also suggested. In [111] the SNDP is addressed. In
practice, the approximate solution is far from optimal. Then, in this work, an
enumeration of optimal solutions is carried out with a compact data
structure, called Zero-Suppressed Binary Decision Diagrams (ZDD). The
authors show that this method works for several real-world instances.

In [102], the SNDP with mixed node and link requirements is considered.
The authors propose a cutting plane algorithm for an integer linear
programming formulation. In [83], the GSNDP for Wireless networks is
considered, where the link-activity depends on some parameters and the cost
is a function of them. The model proposed is a generalization of several
connectivity problems previously addressed in the literature, such as
Node-Weighted Steiner Network, Power Optimization and Minimum
Connected Dominating Set.

In [12] several heuristics such as VNS, Tabu Search and Relocation
Heuristic (RL) are developed to solve the Partitioning signed networks
problem. The authors shows that the combination of multi-step relocation
heuristics with Tabu Search and VNS produce a fast node-partition
algorithm for signed networks that is competitive with existent
metaheuristics. VNS is considered in [112] to solved the well-known Steiner
Minimal Tree Problem (SMT) in sparse graphs. The authors obtained better
results than previous heuristics.

In [25], VNS is adapted to solve a network clustering problem with similar
results obtained by machine learning approaches such as clustering k-Means.
This work also solves the sum-square of the distance between all the node-pairs,
using a novel VNS approach. A modified VNS heuristic is considered in [82]
for a k-Means Clustering problem. There, the authors compare k-VNS versus
traditional k-means and j-means algorithms. It is worth to remark that VNS
outperformed the traditional approaches, specially in large datasets. A hybrid
VNS/GA proposal is proposed in [35] to solve the Multicriteria route planning
in public transit networks. The hybrid proposal outperforms pure VNS and
GA solutions, in both quality and CPU-time. In [30], VNS is developed to

46

solve the k-labelled spanning forest problem, with a strong impact in multi-
modal transportation networks. The goal is to build a spanning forest of
the ground graph, having the least number of connected components and an
upper-bound in the number of labels to use. In [66], the authors consider on
one hand VNS, and GRASP on the other, to solve the Capacitated Connected
Facility Location problem, that combines locations with Steiner trees. This
problem gains relevance for its applications in the last-mile in Fiber-To-The-
Home (FTTH) services. Both heuristics obtain solutions with high quality
in reduced times. In [107], the same heuristics were employed for the Three-
Layer Hierarchical Ring Network Design problem, that is widely used in large
telecommunication networks. Better results were obtained using VNS.

In [118], VNS is considered to solve a relay design problem. Given a set of
products that will be routed through the network, the relay problem implies
to select a route for each product and determine the locations for the relays
were the product should be re-processed at certain distance intervals. A VNS
is proposed, were different local searches look for the routes for each product
and the optimal place for retransmission for a given set of routes, that are
found with an implicit enumeration that by means of a dynamic
programming algorithm. The experiments confirm that VNS with optimal
retransmission assignment outperforms all the existent algorithms from the
literature. Several implementations of VNS has been developed for the
Traveling Salesman Problem as well, showing that VNS is competitive [55].
Exact solutions for the TSP and extensions can be found in [100]. The reader
can appreciate that the CPU-times provided by the exact solutions are longer

than the heuristics, and in particular VNS proposal for the TSP.

5.2 Network Reliability

It is worth to remark that there are scarce works that jointly deal with a
topological network optimization under reliability constraints. Javiera
Barrera et. al. proposed a topological network optimization, trying to
minimize costs subject to K-terminal reliability constraints [5]. The authors
consider Sample Average Approximation (SAA) method, which is a powerful
tool for N'P-Hard combinatorial problems and stochastic optimization [60].
They conclude that suboptimal solutions could be found if dependent failures

are ignored in the model. The scientific literature also offers topological

47

optimization problems meeting reliability constraints, or reliability
maximization under budget constraints, which is known as network synthesis.
The reader can find a survey on the synthesis in network reliability in [7].
More recent works propose a reliability optimization in general stochastic
binary systems [19], even under the introduction of Sample Average
Approximation [87]. Building uniformly most-reliable graphs is an active and
challenging research field, where the goal is to find graphs with fixed nodes
and links with maximum reliability evaluation in a uniform sense, for the
whole compact set of elementary reliabilities p € [0,1]. There are pairs of
nodes and links where such uniformly most-reliable graphs do not exist [9].
The interested reader can consult [3]| for conjectures in this field. A strictly
related problem to ours is to consider topological modifications (i.e., moving
links, or path replacements, among many others) in order to increase the
reliability measure. This problem is not mature, and a recent work propose a
novel reliability-increasing network transformation |15]. There, E. Canale et.
al. show that any graph with a cut-point can be transformed into a
biconnected graph with greater reliability. The reader can find alternative

measure such as the average reliability and its hardness in [10].

Most works in the field of network reliability analysis deal with its
evaluation rather than its maximization. The literature on network reliability
evaluation is abundant, and here we can mention distinguished works on this
field. A trade-off between accuracy and computational feasibility is met by
simulations, given the hardness of the classical network reliability
models [101]. Macroscopically, Monte Carlo methods consider independent
replications of a complex system, and by means of statistical laws find
pointwise estimations, in order to make decisions on the system. The reader
is invited to consult an excellent book on Monte Carlo methods authored by
Fishman [41], which was inspirational for network reliability, numerical
integration, statistics and other fields of knowledge. In our particular case we
deal with the hostile network reliability model, where both links and
non-terminal nodes fail independently. Its reliability evaluation belongs to
the class of N’P-Hard problems as well [19].

H. Cancela y El Khadiri propose a Monte Carlo-based algorithm for a
variance reduction, called Recursive Variance Reduction method, or

RVR [16]. This formulation allows a meaningful reduction in variance, and

48

the product between time and variance is also reduced when compared to
Crude Monte Carlo. Furthermore, the variance is mathematically proved to
be always better in RVR than in CMC. A novel Monte Carlo-based method
is proposed in [64], based on a dynamic importance sampling. The goal is to
recursively approximate a variance-zero importance sampling estimation,
which is adequate for rare event scenarios (i.e., highly-reliable networks in
particular). The approximation is based on properties of mincuts. It is worth
to remark that this approximate zero-variance proposal achieves the bounded
relative error property, meaning that asymptotically, when the rarity of the
individual failures tends to zero, the relative error is bounded. Furthermore,
it converges to zero under special conditions stated in the article.

In [18] and [22], RVR is combined with Importance Sampling (IS) for
static network reliability models. The authors present two estimators:
Balanced RVR (considers a uniform distribution to choose the first
operational link of a cutset) and Zero-Variance Aproximation RVR tries to
imitate the zero-variance estimator [64]. In [17, 13|, RVR is extended to a
large variety of models, and its variance is again smaller than the one
obtained using CMC. In [14], the applicability of RVR is extended to
Stochastic Monotone Binary Systems (SMBS), and approximative methods
are discuss for the reliability evaluation of SMBS in general. First, two
variants of Monte Carlo are presented, and RVR is finally generalized for
SMBS. In [21] a novel method RVR-MonteCarlo is presented. This method is
based on series-parallel reductions and partitions that consider both pathsets
and cutsets to recursively reduce the original problem to an equivalent
problem with smaller networks. Good results were obtained for rare events,
with a meaningful improvement with respect to state-of-the-art variance
reduction methods. In [114], the traditional RVR is combined with
integer-programming algorithms to find better cutsets. The accuracy of RVR
is improved using this special selection of cutsets. In [20]| shows that the
well-known series-parallel reductions can be incorporated in the recursive

variance reduction simulation method, leading to a more efficient estimator.

49

Chapter 6
Algorithms

A literature review of the potential algorithms to implement was carried out,
considering scientific literature and documents provided by the Computer
Science institute (InCO) provided by the advisors. The proposal is driven by

the following criteria:

1. Simplicity: it must be simple.

2. Efficiency: it must assume reasonable (non-prohibitive) time on a PC.
3. Reproducibility: it should be specified clearly.

4. Effectiveness: it must find globally optimum solutions in most of the

instances under study.

It is hard to determine the correct metaheuristic, since the available
information is scarce, and the problem addressed in this thesis is novel. A
possible approach is to determine simple heuristics that comply the previous
criteria in previous problems, related with topological network design.
VNS [53, 50, 52| has shown to be efficient in multiple problems (see
Chapter 5 for further details). Its effectiveness has been tested over several
datasets with optimal or near-optimal solutions, in moderate or at least
reasonable times for small and medium-sized instances. A valuable element is
its simplicity. This metaheuristics is modern, and it has a lower number of
related work in contrast with other metaheuristics. Another valuable fact is
that VNS is capable of hybridization or extensions, combining other

metaheuristics.

Additionally, the algorithm should be selected in an ad-hoc manner

specifically for our problem. The network reliability evaluation under the

20

hostile model belongs to the class of N’P-Hard problems. Consequently, an
exact reliability evaluation for large networks is currently prohibitive. A
valuable alternative is to consider Monte Carlo-based methods for simulation,
such as RVR |75, 21, 23, 18|. Usually, Crude Monte Carlo is the most simple
estimation approach for network reliability. However, its variance is large for
highly reliable systems, which is our focus. It presents large variance and,
consequently, its accuracy does not meet our requirements. This is the reason
why we selected RVR |75, 21, 23, 18|. Furthermore, this celebrated method
had success in terms of reliability estimation under a large variety of
scenarios. Section 6.5 presents outstanding properties of RVR method (see
Chapter 5 for further details on its potential applicability to other scenarios).
It is worth to mention that RVR works in general for monotone systems, and
our hostile network reliability model is monotone. Our main algorithm is
presented in Section 6.1. A greedy construction is followed by multiple local

searches in a VNS, and the reliability estimation is carried out using RVR.

6.1 Network-Design

NetworkDesign executes different phases that solve the problem of this thesis.

Essentially, we can identify three phases:

1. Construction Phase
2. Survivability Phase
3. Reliability Phase

Construction Phase receives the ground graph and returns a feasible
solution for the GSP-NC!, which will be introduced in a Survivability phase.
This second phase considers a metaheuristic to address the problem, trying
to provide an improvement of the received solution in terms of cost, and
preserving feasibility. Finally, the Reliability phase is in charge of the
reliability estimation. Figure 6.1 presents a pseudocode for NetworkDesign.
It receives the ground graph Gpg, a number of iterations iter and a positive
integer k£ to find the k shortest paths during the Construction Phase, a
reliability threshold p,.;, and number of iterations simiter during the

simulations carried out in the Reliability Phase.

!'During this chapter, the feasibility is always related to the relaxed problem with no
reliability constraint, this is, the GSP-NC.

o1

Algorithm 1 sol = NetworkDesign(Gp,iter, k, pmin, simiter)

1: 04 0; P+ 0; sol < 0

2: while i < iter do

3: g+ ConstructionPhase(Gp, P, k)

4: gso < SurvivabilityPhase(g, P)

5. rel « Reliability Phase(gso, simiter)
6: if rel > p,,in, then

7 sol < sol U {gso }

8 end if

9: end while
10: return sol

Figure 6.1: Pseudocode for the main algorithm: NetworkDesign.

NetworkDesign will collect all the feasible solutions found in a set sol. In
Line 1, sol is initially the empty set, a counter of iterations is 7 = 0 and a set
of paths between the different terminals is also empty. During the while-loop
of Lines 2-9, the three phases are called in order (Lines 3-5), and a feasibility
test takes effect (Lines 6-8). The algorithm returns sol, that contains all the

feasible solutions obtained during the execution (Line 10).

6.2 Construction

In a trade-off between simplicity and effectiveness, a Greedy Randomized
solution has been developed [31, 96]. This algorithm builds a feasible solution
based on paths, trying to combine speed and optimality in terms of cost. It
builds a graph meeting the connectivity constraints between the terminals
R = {r;;}ijer. Specifically, given i, j € S, there exist r; ; node-disjoint paths
that connect ¢ and j in the graph. From now on, Sg) is the set of terminal
nodes, following the terminology of the backbone design from Wide Area
Networks. Figure 6.2 receives the ground graph Gpg, the matrix with

link-costs C, the connectivity matrix R, and the parameter k.

52

Algorithm 2 (sol, P) = Greedy(Gp,C, R, k)

1: gso1 < (Sg),q)), My < Tij; P@j < (Z),\V/’l,j € S(D])? AiJ — O,VZ,] € Sg)
2: while Elmi,j >0 Ai,j < MAX_ATTEMPTS do
3 (1,)) « ChooseRandom(Sg) tmy; > 0)

4: G+ Gg \ Pi,j

5. for all (u,v) € E(G) do

6: Cyp € Cyp X 1{(%”)%9501}

7. end for

8 L,+ KSP(k,i,j,G, O)

9: if Lp = () then

10: Ai,j — Ai,j + 1; Pi,j — @, My <= Ti;

11: else

12: p < Select_Random(Ly,); gsol < gsar U {p}
13: Pi,j — Pi,j U {p}, My <= My j — 1

14: (P, M) < General Update Matriz(gso, P, M, p,i,j)
15: end if

16: end while
17: return (gs., P)

Figure 6.2: Pseudocode for the Construction Phase: Greedy.

In Line 1, the solution g,y is initialized only with the terminal nodes S%
without links, M = {m; ;}; jer stores the unsatisfied requirements, so initially
m;; =r; foralli,je 5Y) and the matrix P = {Piuj}z',jesg) that represents the
collection of node-disjoint paths is empty for all P, ;. Additionally, the matrix
A= {A"J}z‘,jesg
fails to find 7; ; node-disjoint paths between i, j is initialized correspondingly:
Ay =0Vi,jesW.

The purpose of the while-loop (Lines 2-13) is to fulfill all the connectivity

) that controls the number of attempts that the algorithm

requirements, or detect all the pair of terminals 7, j € Sg) that could not fulfill
the connectivity requirements during MAX ATTEMPTS. Each iteration
works as follows. A pair of terminals (7, j) is uniformly picked at random from
the set S(DI), provided that m;; > 0 (Line 3). The graph G is defined in Line 4
discards the nodes that were already visited in the previous paths. Therefore,
if we find some path between ¢ and j in G, it will be included.

In the for-loop of Lines 5-7, an auxiliary matrix with the costs C' = ¢;; is
defined, where the links belonging to g, have null cost. This allows to use al-

ready existent links from gy, without additional cost, and add them to build

93

a new node-disjoint path. The k-Shortest Paths from ¢ to j are computed in
Line 8 using the costs from the matrix C. These paths are stored in a list L,.
The function K'SP is implemented efficiently using Yen algorithm [73], that
finds the k-Shortest Paths between two fixed nodes in a graph. In Line 9, we
test if the list L, is empty. In this case we re-initialize P, ;, m;;, and add a
unit to A;;, since ¢ and j belong to different connected components. If the
list L, is not empty, a path p is uniformly picked at random from the list L,,
and it is included in the solution (Line 12). The path p is added to P, ;, and
the requirement m, ; is decreased a unit (Line 13). The addition of the path
p could build node-disjoint paths from different terminals. Consequently, the
method General Update Matrix finds these new paths. Greedy returns a
feasible solution ¢, equipped with all the sets P = {R‘J}mesg of

node-disjoint pairs between the different terminals (Line 17).

The reader can find a proof of feasibility for Greeedy, as well as details of

the auxiliary functions K SP and General Update M atrix in the Appendix.

6.3 Local Search

The construction phase does not return even a locally-optimum solution.
Therefore, VNS combines different local searches in order to systematically
modify the neighborhoods and find a better solution [78, 52, 12]. Here, three
different local searches are proposed, each one based on different
neighborhood structures. It is worth to mention that only one of them, called
SwapKeyPathLocalSearch, updates the set of paths P. This seems a

subtlety, but it means in fact a major implementation decision.

If we decide to update the set P during a local search, in successive
iterations we can either use this set or not, but the risk is to loose the
updated version of P in a different local search that considers P. As a
consequence, the execution of SwapKeyPathLocalSearch is independent of
the iterations which KeyPathLocalSearch and KeyTreeLocalSearch are

implied. This is properly illustrated in the following sections.

54

6.3.1 Local Search 1: KeyPathLocalSearch

Before the detailed description of this local search, some auxiliary concepts and
a neighborhood structure are in order. First, recall the concepts of key-node

and key-path:

Definition 5 (key-node). A key-node in a feasible solution v € gy is a Steiner

(non-terminal) node with degree three or greater.

Definition 6 (key-path). A key-path in a feasible solution p C g 1S an
elementary path where all the intermediate nodes are non-terminal with degree

210 gso1, and the extremes are either terminals or key-nodes.

Definition 7 (Neighborhood Structure for key-paths). Given a key-path in a
feasible solution p € gso, a neighbor-solution is Gso = {gso \ P} U{D}, where p
18 other path that connects the extremes from p, and preserves feasibility. The
netghborhood of key-paths from gs, is composed by the previous operation to
the distinct key-paths belonging to K, , = {p1,....pn}, the decomposition of
Jsol tnto key-paths.

KeyPathLocalSearch builds neighbor solutions with an iterative
replacement of key-paths with the same key-nodes, preserving feasibility. The
process is repeated until no additional improvements are feasible, and a
locally-optimum solution is met for this neighborhood system. A pseudocode
for KeyPathLocalSearch is presented in Figure 6.3. Tt receives the ground
graph Gp, link-costs C' and a feasible solution g,,. The variable improve is
set to TRUE in Line 1. This variable is useful to determine whether there
exists an improvement or not during the replacement of key-paths of the
algorithm. The while-loop of Lines 2-14 looks for neighbor solutions, studying
each key-path from the solution ¢, and replacing by new key-paths in order
to reduce the cost of the global solution, preserving feasibility. Each iteration
works as follows. The variable improve is set to FALSFE in Line 3. The
decomposition of ¢, into key-paths is found in Line 4. The internal
while-loop of Lines 5-13 studies the key-paths from K(gs,) one-by-one,
looking for a cheaper and feasible replacement. A key-path that was not
previously studied p € K(gs,) is uniformly picked at random in Line 6. The
network 4 induced by the nodes NODES(p) U Sp \ NODES(gset) is

computed in Line 7 (recall that Sp is the set of terminal nodes following the

95

traditional terminology from WAN network design). The set on the right,
S = Sp \ NODES(gs0), is precisely the terminal nodes not belonging to gsq.
Observe that fi does not possess nodes from gy, \ p, except for u and
v. Then, all the paths connecting v and v belonging to [re-establish the
feasibility of gso \ p. Consequently, the shortest path from u to v in [is
found in Line 8. The cost between p and the original path p is compared
in Line 9. If p is cheaper than p, the key-path p is correspondingly replaced
by p in gss (Line 10), and the variable improve is set to TRUFE (Line 11),
in order to re-start the local search from Line 2. On the other hand, if p
is not cheaper than p, the while-loop of Lines 5-13 picks another key-path
not studied before, until all key-paths are studied. The process is finished
as soon as there are no possible improvements, or there are no key-paths to
study. The best neighbor solution g, is returned in Line 15. A proof that
KeyPathLocalSearch preserved feasibility is provided in the Appendix.

Algorithm 3 g,, = KeyPathLocalSearch(Gg, C, gso)

1: improve < TRUE

2: while improve do

3: amprove + FALSE

K(gsot) < {p1,---,pn} {Key-path decomposition of gz}

while not improve and J key-paths not analyzed do
p < (K(gsot)) {Path not analyzed yet, with extremes u and v}
< NODES(p)USp\ NODES(gso) > {Induced subgraph [}
p < Dijkstra(u,v, f1)
if COST(p) < COST(p) then

10: Gsol < {gSOl \p} U {ﬁ}

11: improve < TRUFE

12: end if

13: end while

14: end while

15: return g,

Figure 6.3: Pseudocode for Local Search 1: KeyPathLocalSearch [96].

26

6.3.2 Local Search 2: KeyTreeLocalSearch

First, a neighborhood structure is in order. Recall the concept of key-tree:

Definition 8 (Key-tree). Let v € gso be a key-node belonging to a feasible
solution gso. The key-tree associated to v, denoted by T, 1s the tree composed

by all the key-paths that meet in the common end-point (i.e., the key-node v).

Definition 9 (Neighborhood Structure for key-tree). Consider the key-tree
T, € gso To0ted at the key-node v, where gy, is a feasible solution. A neighbor
of gsor 1S Gsot = {gso \ Tv} U{T'}, being T' another tree that replaces T, with
identical leaf-nodes, and preserving feasibility. The neighborhood of gs, is
composed by all the neighbor solutions obtained with an iterative application

of the previous operations, for the different key-trees belonging to gso-

Based on this neighborhood structure, we define a second local search that
replaces key-trees (note that the previous local search was a replacement of

key-paths).

Algorithm 4 g,, = KeyTreeLocalSearch(Gg,C, gsol)

1: @mprove < TRUFE

2: while improve do

3: improve < FALSE

4: X + KeyNodes(gso) {Key-nodes from gy}

5. S < Sp\ NODES(gs0)

6: while not improve and 3 key-nodes not analyzed do
7: v < X {Key-node not analyzed yet}

8: [gsot, improve] < General _RecConnect(Gg, C, gsor, v, S)
9: end while

10: end while

11: return gy

Figure 6.4: Pseudocode for Local Search 2: KeyT'reeLocalSearch |96].

Figure 6.4 presents a pseudocode for KeyT'reeLocalSearch. The rationale
is to iteratively build neighbor solutions using a replacement of key-trees,
preserving feasibility. The process is repeated until no possible improvement
exists. It receives the ground graph Gp, link-costs C' and the feasible solution
gsol- The variable improve is set to TRUE (Line 1). The while-loop of

a7

Lines 2-10 looks for better neighbors solutions, studying each key-node from
the current solution g¢.,, and a replacement takes place if corresponds. The
while-loop is repeated whenever an improvement is found. Each iteration
works in the following manner. The variable improve is set to FALSE in
Line 3. The set X of all the key-nodes from g,, are obtained in Line 4. In
Line 5, the set of Steiner nodes S not belonging to g, are computed. The
internal while-loop of Lines 6-9 studies every key-node belonging to X,
together with its associated key-tree, trying to find a cheaper key-tree for
replacement. A key-node v € X is uniformly picked at random in Line 7.
The algorithm called General RecConnect is called in Line 8, to find a
replacement that is both feasible and cheaper than T,. The description of
General _RecConnect, and a proof of feasibility are found in the Appendix.

If this search is successful, this algorithm returns an improved neighbor
solution in Line 8, and the solution is updated in the same line. Additionally,
the variable improve is set to T'RU E/, and the local searches proceeds in Line 2.
If General RecConnect fails to find a replacement, the internal while-loop
considers an alternative key-node not previously studied, or this loop is finished
if all the key-nodes were studied.

The process is finished as soon as there are no possible improvements, or
there are no key-trees to study. The best neighbor solution g, is returned in
Line 11.

6.3.3 Local Search 3: SwapKeyPathLocalSearch

The following neighborhood structured will be useful:

Definition 10 (Neighborhood Structure for key-path replacement). Given a
key-path p C gso from a feasible solution g, a neighbor solution for gz, s
Gsot = {gsot \ p} U {m}, being m the set of nodes and links that will be added
to preserve the feasibility of the solution gso. The set m could be empty, if the
deletion of a key-path from gso is already feasible. The neighbor of key-paths
from gso1 s composed by the previous neighbor solutions to each of the different
key-paths belonging to the K(gso1) = {p1,---,Pn}, the decomposition of gso into
key-paths.

SwapKeyPathLocalSearch iteratively builds neighbor solutions,

removing key-paths and reconstructing a feasible solution using the

o8

information stored in the matrix P (of node-disjoint paths), generated by
Greedy algorithm during the Construction phase. The process is finished
only when no feasible improvements are possible. Figure 6.5 shows a
pseudocode for SwapKeyPathLocalSearch. Tt receives the ground graph
Gp, the link-costs C', a feasible solution g¢,,; and the matrix with the

node-disjoint paths P obtained by the Greedy randomized construction.

The variable improve is set to TRUE in Line 1. This variable is useful to
determine whether there exists an improvement or not during the replacement
of key-paths by paths. The while-loop of Lines 2-9 looks for neighbor solutions,
studying each key-path from the solution g, and replacing by nodes and links,
or simply deleting the key-path improving the cost, whenever the resulting
network is feasible. Each iteration works as follows. The variable improve is
set to FALSE in Line 3. The decomposition K (gs,) of gso into key-paths is

found in Line 4.

The internal while-loop of Lines 5-8 studies the key-paths from K(gs.)
one-by-one, looking for a cheaper and feasible replacement with nodes and
links. A key-path that was not previously studied p € K(gso) is uniformly
picked at random in Line 6. The routine FindSubstitute KeyPath is called in
Line 7. It deletes the key-path from the current solution and tries to
re-connect the extremes by nodes and links, preserving feasibility. If, in addi-
tion, the resulting solution is cheaper, the variable improve is set to TRUF,
and the solution is effectively replaced. Otherwise, the following key-path is
studied. The process is finished as soon as there are no possible improve-
ments, by replacements from key-paths to nodes and links , or there are no
key-paths to study. The best neighbor solution g,y is returned in Line 10. A
proof of feasibility for SwapKeyPathLocalSearch and the auxiliary
algorithm FindSubstitute K ey Path are found in the Appendix. The diversity
(in terms of neighborhoods structures) of the three local searches explains

the effectiveness of our VNS, as we will see in the Results (Chapter 7).

29

Algorithm 5 g,, = SwapKeyPathLocalSearch(Gg,C, gso, P)

1: @mprove < TRUFE
2: while improve do
3: improve < FALSE
K (gsot) < {p1,---,pn} {Key-path decomposition of gz}
while not tmprove and d key-paths not analyzed do
p < (K(gso)) {Path not analyzed yet}
(gsol, improve) < FindSubstitute KeyPath(gso, p, P)
8 end while
9: end while
10: return g,

Figure 6.5: Pseudocode for Local Search 3: SwapKeyPathLocalSearch [96].

6.4 Variable Neighborhood Search (VNS)

VNS |78, 53, 50, 52] is supported by a systematic modification of neighborhood
structures, hence it requires a finite set of predefined neighborhoods. This
represents a major difference with respect to most local search algorithms that

use a fixed neighborhood structure. VNS is based on three simple facts [78]:

1. A locally-optimum solution for one neighborhood structure is not neces-
sarily for another one.

2. A globally-optimum solution is locally-optimum under all neighborhood
structures.

3. In most problems, a locally optimum solution with respect to one or

many neighborhood structures are relatively close.

The last observation is empirical, and it implies that a locally-optima
provides information about the globally-optimum solution. Sometimes they
share common features. Nevertheless, those features are usually not known.
Therefore, it is natural to perform an organized exploration of the vicinities
of a local optima, until an improvement is met. The facts 1-3 suggest that
several neighborhood structures should be employed to address a
combinatorial optimization problem. The change of neighborhood structures
can be performed either in a deterministic or a stochastic way, or even in a

hybrid manner. Here, we considered a purely deterministic change of local

60

searches, called Variable Neighborhood Descent or VND [53], which consists
of an iterative replacement to the current solution for a better one, whenever
an improvement is feasible. If a change of neighborhood structure takes place

whenever a locally-optimum solution is met for some structure, a VND is
obtained [53].

A general template for VND is presented in Figure 6.6. It receives an
objective function f for the combinatorial problem, a feasible solution x and
a collection of neighborhood structures N'S. Observe that the resulting
solution provided by VNS is a locally-optimum solution with respect to all
the kpnee = |NS]| neighborhood structures, and the possibility to reach a
globally optimum solution is greater than using a single structure [53|. In the

following paragraphs, we detail our VNS implementation.

Algorithm 6 © = VND(f, z, NS)

1: @mprove < TRUFE
2: while improve do
3: localsearch < 1

4: while localsearch < |IN'S| do

5: x' < BestNeighbor(localsearch,)
6: if f(2') < f(z) then

7: x < 2’5 localsearch < 1

8: else

9: localsearch < localsearch + 1
10: end if

11: if localsearch > |N'S| then

12: improve < FALSE

13: end if

14: end while
15: end while
16: return z

Figure 6.6: General Template for VND.

Our implementation follows a VNS with minor variations; see Figure 6.7
for a pseudocode. It receives the current solution G and the matrix P with
node-disjoint paths from G, previously obtained by our Greedy Randomized

construction phase, and a collection of local searches cls.

61

Algorithm 7 G = VNS(G,cls, P)
Lk < 0; kpaz < size(cls);
2: G + SwapKeyPathLocalSearch(G, P)

3: notimprove < 0
4: while notimprove < k4, do

5. G < LocalSearch(cls[k], G)
6: cost < GetCost(G)
7. newcost < GetCost(G)
8 if newcost < cost then
9: cost < newcost
10: notimprove <— (
11: G+ G
12: else
13: notimprove < notimprove + 1
14: end if

15: k<« (k+1)modkax
16: end while
17: return G

Figure 6.7: Pseudocode for our specific VNS proposal.

In Line 1, the number of local searches k,,,, and a pointer of current local
search are initialized. SwapKeyPathLocalSearch is introduced in Line 2,
which considers the matrix P as an input. Recall that
SwapKeyPathLocalSearch is not compatible with the other local searches.
For that reason, it is executed at the beginning of the algorithm only once
and it is not considered further as a part of the previously mentioned
neighborhood structures. Nevertheless, it is included in our VNS
implementation, and it is essential to achieve considerable improvements in
the initial solutions coming from the Construction phase. In Line 3, the
variable notimprove is set to 0. In the while-loop of Lines 4-15, the local
search k takes effect, until there is no feasible improvement (Line 5). If an
improvement is achieved, both the cost and the solution are updated
(Lines 6-11). Otherwise, the variable notimprove is increased a unit
(Line 13). In all cases, the following structure is visited in a cyclic-way
(Line 15). Here there is a difference with respect to the general template
from Figure 6.6, since we proceed with the following structure in a cyclic

order, instead of returning to the first structure. This is to avoid the

62

hierarchy imposed by a traditional VNS scheme, since our local searches are
equally relevant. Finally, the resulting solution is returned in Line 17. It is
worth to remark that this algorithm can be configured for N arbitrary local

searches, that can be parameterized by the collection cls.

6.5 Recursive Variance Reduction (RVR)

The rational behind RVR [75, 21, 23, 18, 24] is to reduce the original problem
to a problem with a smaller network that is derived or built from the original.
The method is recursive, building several (smaller) networks successively, and
it stops when we find a network that is always connected or disconnected, no
matter the states of its components. The target is a pointwise estimation for
the unreliability QQx for a given terminal-set K. However, it can be extended
to a larger family of stochastic monotone binary systems. The definitions
pseudocodes and properties presented in this section are extracted from [75].
The reader can consult Chapter 5 for further information. Consider a network
G = (V,E) equipped with a terminal set K C V, v € V and e € E. The

following terminology will be used:

e The network is K-connected when for every u € K and every v € K,
there exists a path that connects u and v (operational state).

e R(G) denotes the reliability (the probability that the network is
K-connected).

e Q(G) =1— R(G) denotes the unreliability.

e D C VUE is an extended K-cut if G’ = (V — D,E — D) is not K-
connected.

e G — {e} is the network whose node-set is V', link-set is £ — {e} and
terminal-set K.

e G —{v} is the network whose node-set is V' — {v}, the link-set consists of
FE minus all the links incident to v, and the terminal-set is now K — {v}.

e If d is a component (node or link), G|d denotes the derived network,
setting the operational probability of d to 1 (d is a perfect component).

e (& x d denotes the reduced network, setting the operational probability
of d to 1. If d = e = {u,v}, G * e denotes a link-contraction. If the
nodes v and v are identified with the node w, the terminal-set is K’ =
K —A{vi, v} U{w}, if v; € K or vy € K, or simply K’ = K otherwise.

63

The goal is to build an unbiased pointwise reliability estimator with
smaller variance than Crude Monte Carlo [75]. For that purpose, the

following properties are considered:

Property 1. Let G = (V, E) the network equipped with the terminal-set K =
{vi,..., vk} The following relations hold for the reliability R(G) and unreli-
ability Q(G):

R(G) = (H m) R(Gloi|va) - . [vke)) (6.1)

veK

QG)=1- (H rv) + (H m) Q(Glor|val . . . i) (6.2)

veK veK

Property 1 means that the reliability R(G) can be found setting perfect
terminal nodes, and multiplying the result of the resulting network by the

products of the elementary reliabilities for the terminal nodes.

Property 2. Let G = (V, E) the network equipped with the terminal-set K,
and consider an arbitrary component d. Then: R(G|d) = R(G x d).

Property 2 means that we can contract perfect components, and the
reliability is preserved. The RVR method considers this property in order to
successively reduce the size of the network. Consider the structure function
¢ : G — {0,1}. For every state of the system, the function ¢ equals 1 if and
only if the system is K-operational, or 0 otherwise.

Consider N independent replicas of the system, and the averaging provided

by CMC for the unreliability evaluation:

N

Y = %;(1 — $(X — 1)) (6.3)
Clearly, if we denote Y =1 — ¢(G), then E(Y) = E(Y) = Q(G), and CMC is
unbiased for the reliability. The goal of RVR is to build an unbiased random
variable Z(G) for the unreliability, with smaller variance than CMC (see
Property 3). Such random variable is built using extended K-cuts, and it is
expressed as a function of |D| random variables Y (G;) that corresponds to

the states of the original network.

64

Property 3. Consider a network G = (V, E) equipped with perfect terminal-
set K (r, =1 for allv € K). Further, consider the following notation:

D ={dy,dy,...,dp} an estended K-cut from G.
Ap the event all the components from D fail.

Q(D) = Pr(Ap) = H|.D| (1 —1ry,): the probability of the event Ap.

=1

B; the event: the components from D; = {d,...,d;_} fail but d; works.
V' a random variable independent of Y (G;) ruled by the probabilities:

Pr(V =v) = Pr({B,})/(1 = @p) = 74, H(l —r4,)/(1 = Qp),
forall 1 < v < |D|.

Then, the following random variable:

D]

Z(G)=Qp+(1-Qp) Z Liv=i Y (G5),
i=1
1s unbiased for the unreliability, and presents smaller variance than CMC:

E(Z(G)) = Q(G)
Var(Z(G)) = (Q(G) = @p)R(G) < Q(G)R(G) = Var(Y(G))

|D

i=

glvziY(Gi) corresponds to Z(G,), which is constructed

using an extended K-cut D, and it is expressed in terms of |D| random

The summation
variables Y (G;) each corresponding to different states of the original network.

Property 3 states that the random variable Z is unbiased, and it presents
smaller variance than the original Y. Therefore, RVR always have smaller
variance than CMC. Observe that the collection of the events B; and Ap is a
partition of the possible network states. If the event Ap holds, a cutset is found;
otherwise, we can study a derived smaller network. Intuitively, this partition
of a random variable into indicator random variables reduce the variance.

Based on the Properties 1-3, the following recursive random variable F' is

considered:

65

1if G is not K — connected
F(G)=< 0if K is a single node
Qp+ (1 —-Qp) Z'lﬂ Liv=iy F(G;) otherwise

An independent sample of F' for a network G is considered to develop RV R
method. The algorithm is detailed in Figure 6.8

Algorithm 8 RV R(G, K, p,, p.)

1. Test:

e If G always K-connected, return 0.
e If (G is never K-connected, return 1.

Find an extended K-cutset D = {dy,...,dp}
Find @p (all the components from D fail)

Pick a sample v of the discrete random variable V'
Build G, =G —{dy,...,d,_1} x d,

Recursive step: return Qp + (1 — Qp)RV R(G,)

SR ol

Figure 6.8: Pseudocode for RVR method.

RVR can be implemented in a variety of network reliability models, such
as all-terminal Ry, source-terminal Ry, and K-terminal Ry, among many
others (the reader can find a validation of RVR in the Appendix). Further, it
is suitable for our hostile network reliability model, where both links and non-
terminal (Steiner) nodes may fail. The necessary functionalities for Graph
class were implemented in order to apply RV R to the structure previously

designed. Its implementation in blocks is described in Figure 6.9.

66

Algorithm 9 R = Rel(G, seed, N, K, p,, pe)

1. s =0 counter for the mean value
2. ss = 0 counter for the variance
3. Set(seed)
4. for i =1 to N do
e =G
e t =1— RVR(G', K, py,pe)
¢ s=s5+x
o 55 =55+ 2°
5. end for
6. esp=s/N
7. var = 1/N(N —1)(ss — s?/N)
8. return (esp,var)

Figure 6.9: Implementation - Graph Class for Reliability evaluation.

The class RV R considers an algorithm to find the reliability estimation
using the homonym algorithm (see Figure 6.10). It receives the network, a seed
for the pseudo-random number generator ((unsigned)time(0) is used) and a
number of iterations. Figure 6.10 shows the implementation of RV R, where
the variable terminals counts the number of terminals in the network. This
number is decreased, either by node-elimination or contraction. The function
¢ states whether the terminal-set K belongs to the same component or not
(see Figure 6.11). This is verified using depth first search (DFS) algorithm.
The node-failure implies a non-operational state, so this test is part of our
algorithm. The variable boolean is returned accordingly.

The auxiliary functions used in Figure 6.10 are briefly described:

o GetK FExtendedCut: a terminal node v € K is picked and considers the
set of adjacent nodes and incident links whose elementary reliabilities
are strictly smaller than 1, adding those components to D.

e AllFailedProb: finds the product of the unreliabilities of all the compo-
nents belonging to D.

e GetRandomlitem: considers a uniformly distributed continuous variable

in [0,1] and picks a sample of the discrete random variable V. Then,

67

Algorithm 10 RV R(G, K, p,, p.)

If terminals=1, return 0
Elseif ¢(G,K) = 1, return 1.
Else

D := GetK ExtendedCut(Q)
Qp = AllFailedProb(D)
index = Get RandomItem(D)
¢ := Dlindezx]

remove(G, D, index — 1)
add(G, c)

return Qp + (1 — Qp) x RVR(G)
. EndIf

LN O W

—_—
= O

Figure 6.10: Pseudocode for the RVR implementation.

Algorithm 11 boolean = ¢(G, K)

1: for all v € K do

2: if NonOperational(v) then
3 boolean + 0

4 end if

5. end for

6: reached < 0

7. v < RandomTerminal (K)
8: reached < DFS(v)

9: if reached = |K| then

10: boolean + 1

11: else

12: boolean <+ 0

13: end if

14: return boolean

Figure 6.11: Pseudocode for the Structure Evaluation ¢.

68

it returns the corresponding index for the component selected from the
extended cut D.

e Remove: deletes from G all the components until the position index — 1.
If some terminal node is involved in the set, the variable terminals is
decreased.

e Add: sets the elementary reliability of the component to 1 and determines
whether it is possible to contract the component or not. If positive, the
contraction takes effect. If a link is perfect and some of the adjacent nodes
belongs to the terminal-set K, then the identification w belongs to the
new terminal-set w. If parallel links appear with elementary reliabilities
r1 and 79, a single link replaces both parallel links, with the elementary

reliability r = ry +ry — rirs.

We can appreciate how the network is successively reduced step-by-step,
since the number of components is reduced in each step, either by eliminations
or contractions. Therefore, the number of recursive calls is not greater than
V| + |E|. Additionally, the most demanding operation is the rule-evaluation,
with order O(|V]). Therefore, the computational order for RV R method is
O(|[V]| x ([V|+ |E])). In order to carry out several independent executions of
this simulation, an iterative implementation is considered, the mean value of

F(G) is then estimated by an averaging over the sample:

and its variance using the following expression:

1

NN 1) (Fi — E(F))?

WE

Var(F) =

i=1

For convenience, it can be computed using unbiased estimations for the first

and second moments:

1 NN AR
Var(F):m ZFZ_N<;FZ>

i=1

The mathematical models were extracted from [75].

69

Chapter 7

Results

7.1 Introduction

In order to understand the effectiveness of this proposal, an extensive
computational study was carried out wusing our main algorithm
NetworkDesign. Recall that NetworkDesign involves a Construction Phase
using Greedy, followed by a Local Search Phase with VNS (with three local
searches, to know, KeyTreeLocalSearch, KeyPathLocalSearch and
SwapKeyPathLocalSearch) and the introduction of RVR, for the reliability
evaluation. The underlying probabilistic model is precisely the hostile model,
where both links and Steiner nodes fail [67]. Given the monotonicity of this

model, the application of RVR is suitable for this purpose.

The experimental analysis was carried out in a laptop Pentium Core I5,
8GB. We selected p,,i, = 0.8 in all the instances under study and £ = 5 for
Greedy. The parameter k was selected using preliminary tests under random
graphs generated using our algorithm for the construction of test-graphs,
looking for different values of k. The value £ = 5 showed acceptable results
for those preliminary tests. Since this thesis proposes a reliability-centric
design, it makes no sense to establish a threshold that is lower than 80%.
The elementary reliabilities for both Steiner nodes and links are close to the

unit. In fact, we are focused on the design of highly-reliable networks.

70

7.2 Description of the Test-Set

After a literature review, a possibility is to build a test-set for the
computational analysis using random graphs. We considered a random graph
generation for the different algorithms involved in the solution, and for
preliminary tests in the main algorithm NetworkDesign.

In order to highlight the effectiveness of our proposal, we finally consid-
ered well-known instances from the Travelling Salesman Problem (TSP),
extracted from the TSPLIB [90]. To the best of our knowledge, there are no
benchmarks available for our particular problem. Therefore, we decided to
adapt the instances from a well-known library with full accessibility.

Some instances from TSPLIB were selected, and then they were modified
to get complete graphs, with the corresponding euclidean costs on the links.
Specifically, we selected the following instances under study: att48, berlin52,
brazil58, ch150, d198, eil51, gr137, gr202, kroA100, kroA150, kroB100,
kroB150, kroB200, lin105, prl152, rat195, st70, tsp225, uld9, rd100 and
rd400. Observe that the suffix is the number of nodes in the corresponding
instance (e.g., kroA100 has 100 nodes). The first column from Table 7.1
contains the name of the instance. The following columns, from the left to

the right, contain respectively:

e 9% T: the percentage of terminal nodes in the graph. We considered 20%,
35% y 50% for our test-set. Then, we have 3 classes of instances for each
TSP instance.

% Rel: the elementary reliabilities for Steiner nodes and links,

respectively.

% Req: this is the percentage of pairs (terminal nodes) that should meet

a connectivity requirements r; ; € {2, 3,4}, respectively.

Iter N D: iterations considered in NetworkDesign, according to %T.
Iter RV R: iterations considered in RV R method.

e #: number of generated instances.

The constraint imposed by the reliability threshold is carried out in a
subset of test-cases, and the corresponding results are detailed in Section 7.3.
The abbreviation NA (for non-applicable) appears for those instances were
the reliability threshold is not performed. On the other hand, our Greedy

construction and the application of VNS takes place over the whole test-set.

71

If the name includes (E), this means that the instance is a variation of the
corresponding instance, with different connectivity requirements. The number
of iterations for NetworkDesign is established in Iter ND = 100 for those
instances with relative small CPU times (minutes), and Iter ND € {20,50}
for instances with more demanding CPU times. The number of iterations for

the RVR method is Iter RV R = 10%, selected again using preliminary tests.

Table 7.1: Test-Set

Problem %T %Rel | % Req Iter ND | Iter RVR | #
att48 20-35-50 | 99-95 | 100-0-0 | 100-100-100 10* 3
berlin52 20-35-50 | 99-95 | 100-0-0 | 100-100-100 10 3
brazil58 20-35-50 | 99-95 | 100-0-0 | 100-100-100 10* 3
ch150 20-35-50 | 99-95 | 100-0-0 | 100-100-100 10% 3
d198 20-35-50 | 99-95 | 100-0-0 20-20-20 NA 3
eil51 20-35-50 | 99-95 | 100-0-0 | 100-100-100 10% 3
gr137 20-35-50 | 99-95 | 100-0-0 100-20-20 NA 3
gr202 20-35-50 | 99-95 | 100-0-0 | 100-100-100 10* 3
kroA100 20-35-50 | 99-95 | 100-0-0 | 100-100-100 NA 3
kroA150 20-35-50 | 99-95 | 100-0-0 100-20-20 NA 3
kroB100 20-35-50 | 99-95 | 100-0-0 | 100-100-100 NA 3
kroB150 20-35-50 | 99-95 | 100-0-0 100-20-20 NA 3
kroB200 20-35-50 | 99-95 | 100-0-0 20-20-20 NA 3
lin105 20-35-50 | 99-95 | 100-0-0 | 100-100-100 NA 3
prls2 20-35-50 | 99-95 | 100-0-0 20-20-20 NA 3
rat195 20-35-50 | 99-95 | 100-0-0 20-20-20 NA 3
st70 20-35-50 | 99-95 | 100-0-0 | 100-100-100 10% 3
tsp225 20-35-50 | 99-95 | 100-0-0 50-50-50 10% 3
ulb9 20-35-50 | 99-95 | 100-0-0 20-20-20 NA 3
rd100 20-35-50 | 99-95 | 100-0-0 | 100-100-100 NA 3
rd400 20-35-50 | 99-95 | 100-0-0 50-50-50 10* 3
berlin52(E) 20 99-90 | 65-25-10 100 10* 1
eil51(E) 20 99-90 | 65-25-10 100 10* 1
att48(E) 35 99-90 | 65-25-10 100 10% 1
st70(E) 35 99-90 | 65-25-10 100 10% 1
brazil58(E) 50 99-90 | 65-25-10 100 10% 1
eil51(E) 50 99-90 | 65-25-10 100 10 1
kroB100(E) 20 99-90 | 65-25-10 100 10* 1
lin105(E) 20 99-90 | 65-25-10 100 NA 1
kroA100(E) 35 99-90 | 65-25-10 20 10* 1
rd100(E) 35 99-90 | 65-25-10 20 NA 1

A second test-set is considered in order to answer strategic questions that

72

represent the main goals of this thesis: the sensibility of the solution to
perturbations in the elementary reliabilities. Different values for the
elementary reliabilities for both Steiner nodes and links were used.
Specifically, the nine combinations for p,,p. € {0.99,0.97,0.95} were
introduced in different instances, being p, and p. the elementary reliabilities
for Steiner nodes and links e = (4, j) respectively. The details of the second

test-set are presented in Table 7.2.

Table 7.2: Test-Set (2)

Problem % T % Req | Iter _ND | Iter _ RVR | #
att48 20-35-50 | 100-0-0 100 10 3
att48(E) 20 0-100-0 100 10* 1
att48(E) 20 0-0-100 100 107 1
att48(E) 35 65-25-10 100 107 1
berlin52 | 20-35-50 | 100-0-0 100 10 3
berlin52(E) 20 65-25-10 100 107 1
brazil58 | 20-35-50 | 100-0-0 100 104 3
brazil58(E) 50 65-25-10 100 101 1
eil51 20-35-50 | 100-0-0 100 10 3
eil51(E) 20 65-25-10 100 107 1
eil51(E) 50 65-25-10 100 107 1
kroA100 35 100-0-0 100 107 1
kroA100(E) 35 65-25-10 100 104 1
kroB100 20 100-0-0 100 101 1
kroB100(E) 20 65-20-10 100 101 1
ch150 20-35-50 | 100-0-0 100 104 3
gr202 20-35-50 | 100-0-0 100 104 3
tsp225 20-35-50 | 100-0-0 100 107 3
rd400 20-35-50 | 100-0-0 100 107 3

For instance, in the first row we can see that we generate 3 instances for
att48 with respective percentage of terminal nodes 20-35-50, where the
connectivity requirements are r;; = 2 (100-0-0). For each instance of att48,
one-hundred feasible solutions were found, using 10 iterations of the RVR
method with the nine possible scenarios of elementary reliabilities:
99 — 99,99 — 97,99 — 95,97 — 99,97 — 97,97 — 95,95 — 99,95 — 97,95 — 95.

It is worth to mention that thousands of hours of CPU times were
required for this thesis in order to accomplish this number of generated

instances, considering the number of iterations involved in the search of

73

locally optimum solutions during the VND, and the corresponding reliability
evaluation. Section 7.3 reports the numerical results. As a consequence, the

answers to the strategic questions of this thesis are provided in Section 7.4.

7.3 Numerical Results

Table 7.3 shows the results for each TSP instance under study. The first
column contains the name of the instance. Column 2 shows the percentage of

terminal nodes, and the remaining columns present, in order:

e %IG: percentage of improvement of Greedy in relation to the original

cost of the instance.

%IV NS: percentage of improvement of VNS, in relation with the out-

put of our Greedy construction.

R: average for the reliability estimation.

e Var: average for the estimated variance.

Table 7.3: Numerical Results

CPU: average CPU-time per iteration of NetworkDesign.

Problem | % T | %IG | % IVNS | CPU (s) | R Var
att4s 20 | 99.27 | 34.61 11.466 96.7 | 7.608E-07
att4s 35 | 98.6 | 36.83 29.769 94.3 | 3.448B-06
att4s8 50 | 98.22 | 37.1 65.904 92.7 | 5.322E-06
berlin52 20 | 98.98 | 30.55 30.605 93.7 | 3.294E-06
berlin52 35 | 99.06 | 33.93 33.433 93.8 | 3.19E-06
berlin52 50 | 98.02 | 33.48 106.945 | 90.7 | 6.487E-06
brazil58 20 | 98.92 | 31.96 62.377 88.5 | 6.722E-06
brazil58 35 | 99.25 | 39.45 68.891 86 8.347E-06
brazil58 50 | 98.75 | 35.26 103.553 | 91 7.093E-06
ch150 20 | 99.76 | 37.51 9222.552 | 85.59 | 1.029E-05
ch150 35 | 99.72 | 36.65 546.652 | 88.03 | 9.033E-05
ch150 50 | 99.69 | 34.42 1203.054 | 88.8 | 8.974E-05
d198 20 [99.9 | 32.22 320.142 | NA | NA
d198 35 | 99.86 | 34.12 2086.376 | NA | NA
d198 50 | 99.81 | 33.39 5548.639 | NA | NA

74

Table 7.3 — Numerical Results (cont.)

Problem | % T | %IG | % IVNS | CPU (s) | R Var
eilbl 20 99.34 | 38.79 14.87 96 1.183E-06
eilb1 35 98.54 | 36.11 39.017 94.2 | 3.736E-06
eilol 20 98.56 | 37.32 44.798 93.7 | 4.284E-06
grl37 20 99.79 | 36.31 137.496 NA NA
gr137 35 99.71 | 34.18 404.061 NA NA
gr137 20 99.68 | 34.61 976.369 NA NA
gr202 20 99.89 | 32.43 028.162 82.31 | 1.224E-05
gr202 35 99.75 | 34.56 3511.698 | 84.14 | 1.11E-05
gr202 20 99.74 | 33.36 9505.629 | 83.03 | 1.279E-05
kroA100 20 99.61 | 36.77 44.225 NA NA
kroA100 35 99.53 | 38.23 101.498 88.97 | 8.525E-05
kroA100 20 99.45 | 35.89 280.833 NA NA
kroA150 20 99.83 | 36.7 102.712 NA NA
kroA150 35 99.75 | 36.3 412.97 NA NA
kroA150 20 99.7 | 32.32 2035.062 | NA NA
kroB100 20 99.68 | 38.71 17.301 90.14 | 6.251E-05
kroB100 35 99.59 | 36.32 03.74 NA NA
kroB100 50 99.49 | 34.98 191.722 NA NA
kroB150 20 99.84 | 37.49 112.099 NA NA
kroB150 35 99.77 | 36.05 665.676 NA NA
kroB150 20 99.73 | 34.53 1327.528 | NA NA
kroB200 20 99.89 | 36.14 279.156 NA NA
kroB200 35 99.84 | 35.06 2234.738 | NA NA
kroB200 20 99.8 | 33.82 7448.424 | NA NA
lin105 20 99.74 | 35.89 9.439 NA NA
lin105 35 99.61 | 37.04 86.855 NA NA
lin105 20 99.5 | 364 245.246 NA NA
prls2 20 99.79 | 37.14 281.166 NA NA
pris2 35 99.77 | 36.86 808.477 NA NA
prls2 50 99.74 | 36.88 1673.465 | NA NA
rat195 20 99.88 | 37.31 280.948 NA NA
rat195 35 99.82 | 34.7 1925.985 | NA NA
rat195 20 99.8 | 34.99 4599.873 | NA NA

75

Table 7.3 — Numerical Results (cont.)

Problem | % T | %IG | % IVNS | CPU (s) | R Var
st70 20 99.44 | 39.84 39.852 91.9 | 4.072E-06
st70 35 99.3 | 39.56 63.65 90.6 | 5.743E-06
st70 20 99.16 | 36.37 128.195 91.3 | 7.027E-06
tsp225 20 99.88 | 34.98 1658.773 | 84.75 | 1.141E-05
tsp225 35 99.85 | 34.65 4684.367 | 84.64 | 1.249E-05
tsp225 20 99.82 | 33.26 12088.726 | 87.19 | 1.092E-05
uld9 20 99.81 | 35.84 333.263 NA NA
uld9 35 99.76 | 36.14 864.992 NA NA
uld9 20 99.75 | 35.61 1278.13 NA NA
rd100 20 99.68 | 37.15 22.421 NA NA
rd100 35 99.5 | 34.54 126.822 NA NA
rd100 20 99.42 | 36.13 245.827 NA NA
rd400 20 99.94 | 35.84 5000.214 | 80.94 | 14.22E-05
rd400 35 99.94 | 33.54 9000.103 | 85.37 | 11.89E-05
rd400 20 99.93 | 33.16 19000.70 | 86.43 | 11.51E-05
berlin52(E) | 20 98.45 | 25.25 34.209 99.3 | 4.848E-07
eil51(E) 20 98.47 | 28.45 29.623 99.6 | 2.707E-07
att48(E) 35 97.45 | 31.74 62.967 99.4 | 4.93E-07
st70(E) 35 98.52 | 31.87 135.508 99.3 | 6.549E-07
brazil58(E) | 50 97.48 | 31.84 172.636 99.4 | 4.825E-07
eil51(E) 50 | 97.26 | 32.67 74473 | 99.1 | T.942E-07
kroB100(E) | 20 99.37 | 30.25 39.255 99.87 | 1.219E-06
lin105(E) 20 99.33 | 31.95 64.409 NA NA
kroA100(E) | 35 98.99 | 35.88 225.505 99.81 | 1.828E-06
rd100(E) 35 99.15 | 35.3 130.008 NA NA
Average NA |99.39 | 35.03 1026.003 | 91.38 | 2.33E-05

The improvement of VNS over the constructed solution in Greedy, IV NS, is
bounded between 25,25% and 39,84%, according to the instance an its

characteristics on the test-set.

76

The minimum threshold p,,.;, = 0.8 is widely exceeded in all the instances
where the average reliability R was estimated. For those instances in which
the elementary reliabilities were established in 99%-95% respectively for
nodes and links, the range of reliabilities is bounded between 82,31%-96,7%,
while a range of 99,1% y 99,87% is observed with elementary reliabilities
99%-90%.

The estimated variance is reduced in average in all the instances under
study. This suggests that the RVR method is accurate, even under reliability
failures of ¢ = 1072 for both Steiner nodes and links. This fact is discussed
in Section 7.4. In general, the CPU times are non-prohibitive and in general
are acceptable under all the test-set. In Section 7.3.1, illustrative examples of
resulting networks returned by NetworkDesign are presented to explain the

instances defined in the previous tables.

7.3.1 Resulting Topologies

Brazil58

Consider Brazil58 instance with at least %20 of terminal nodes, elementary
reliability in Steiner nodes %99, link-reliabilities %95 and %100 of 2
node-disjoint paths between each pair of terminal nodes as the connectivity
requirement. Figures 7.1 and 7.2 show correspondingly the ground graph Gp
and the output of NetworkDesign. The resulting cost is 25106, and the
reliability is 0.917399. In Figure 7.1, the ground graph is illustrated, and the
the excluded nodes and links are colored in grey. In Figure 7.2, red nodes are
the terminals that do not fail, and Steiner nodes are represented in orange.

To simplify, all the links have unit-cost.

Berlin52

Consider Berlin52 instance under identical conditions, with at least %20 of
terminal nodes, elementary reliability in Steiner nodes %99, link-reliabilities
%95 and %100 of 2 node-disjoint paths between each pair of terminal nodes
as the connectivity requirement. Figures 7.3 and 7.4 show correspondingly the
ground graph G and the output of NetworkDesign. The resulting cost is
4534.109370, and the reliability is 0.844772. In Figure 7.3, the ground graph is

77

o
: o
i E20
P
xS

GRaguy 3T 1 -\
AW el o
ssas

o
e 2 iy gak
Sl e S o o
T e

.
< =
e = -
e :
; we
o 2 an

Figure 7.1: Brazil58: ground graph Gp.

Figure 7.2: Brazil58: resulting topology.

78

illustrated, and the excluded nodes and links are colored in grey. In Figure 7.4,
red nodes are the terminals that do not fail, and Steiner nodes are represented

in orange. To simplify, all the links have unit-cost.

s

L eesn =R HEm P

e :@:‘: . o]

Figure 7.3: Berlin52: ground graph Gp.

79

Figure 7.4: Berlinb2: resulting topology.

80

7.4 Key Questions

Our particular interest is to answer the following questions that relate the
network optimization and reliability evaluation stages that were addressed

throughout this work.

Question 1. How many feasible networks there exists given the full

probabilistic model (pmin, Pe, Py_1) ¥

We will restrict our attention to the number of feasible networks that we
can find, for specific values in the probabilistic model. Nevertheless, this
information gives us an insight of the level of feasibility provided by our main
algorithm NetworkDesign, which serves as a guide, and to offer partial
answers. Consider p,,;, = 0.98 and different percentage of solutions that
survived for the pair of identical elementary reliabilities in Steiner nodes and
links %99-%99. The respective percentages under different instances is
presented in Table 7.4. We can appreciate that, in general, the number of
solutions that meet the reliability threshold is high. Indeed, it is 100% of the

returned solutions in most instances.

Question 2. What s the sensibility of the model with respect to the
elementary reliabilities? For instance, for any given threshold (ppmin = 0.98),
what happens if we fix p, = 0.99 but we pick different values for the
elementary link reliabilities p. € {0.99,0.97,0.95}? How many feasible
networks survive? Analogously, if we fix p. = 0.99 and p, € {0.99,0.97,0.95}.

Consider the threshold p,;,, = 0.98. Tables 7.5 and 7.6 present the
percentage of feasible solutions under different scenarios.

On one hand, if we fix the node-reliability and reduce the elementary
link-reliabilities, a notorious reduction in the number of feasible solutions is
observed, even reaching 0 in almost-all the instances under study when the
link-reliabilities are %95. It is worth to note that the feasibility is also 0
specially in large networks when the link reliabilities are %97. This pattern
for the results is reasonable, since the number of links is also increased when
the size of the network is larger.

On the other hand, if we fix the link-reliabilities and reduce the
node-reliabilities, the reduction in the reliability is less important than in the

previous setting, in terms of the percentage of feasible solutions. We can

81

Table 7.4: Percentage of feasible solutions such that R > 0.98

Rel %99-%99 | % Feasible solutions with R > 0.98
att48 120 100
att48 T35 100
att48 T5H0 100
eil51 T20 100
eil51 T35 100
eil51 TH0 100

berlin52 120 100

berlin52 T35 100

berlin52 T50 100

brazil58 T20 99

brazil58 T35 97

brazil58 T50 100
ch150 T20 100
ch150 T35 100
ch150 T50 100
gr202 T20 99
gr202 T35 100
gr202 T50 100

tsp225 T20 100
tsp225 T35 100
tsp225 TH0 100
rd400 T20 100
rd400 T35 100
rd400 T50 100

82

Table 7.5: Solutions such that R > 0.98 (p, fixed)

Rel %99-%x | %99-%99 | %99-%97 | %99-%95
att48 T20 100 90 12
att48 T35 100 53 0
att48 T30 100 20 0

berlinb2 T20 100 41 0

berlin52 T35 100 50 0

berlin52 T50 100 1 0

brazil58 T20 99 15 0

brazil58 T35 97 0 0

brazild8 T50 100 3 0
ch150 T20 100 0 0
ch150 T35 100 0 0
ch150 T50 100 0 0
gr202 T20 99 0 0
gr202 T35 100 0 0
gr202 T'50 100 0 0
rd400 T20 100 0 0
rd400 T35 100 0 0
rd400 T50 100 0 0

appreciate that if the number of terminal-nodes is decreased, the
corresponding reduction in the percentage of feasible solutions that exceed
the threshold p,,;, is not as steep as in the previous case. This is coherent,
since larger networks have more perfect terminal nodes (recall that Steiner
nodes are optional). Nevertheless, the global effect of network expansion is a
corresponding reduction in the percentage of solutions that exceed the
reliability threshold, since the number of Steiner nodes is increased. This

reduction is not as steep as in the previous case.

Question 3. How many networks survive on average, for any given
probabilistic model? Understand the sensibility of the model with respect to

the connectivity requirements r; ; € {2,3,4}.

Consider pi, = 0.98. The notation name TX X (Z1—7Z2—7Z3) means the
name of the graph, T X X is the percentage of terminal-nodes and Z1—-72—73
the percentage of terminal nodes with connectivity requirements 2, 3 and 4
respectively. For example, eil51 T50 (65-25-10) means that the instance is
eil51, with 50% of terminal nodes, where 65% have connectivity requirement

2, 25% have requirement 3 and 10% have requirement equal to 4.

83

Table 7.6: Solutions such that R > 0.98 (p. fixed)

Rel %x-%99 | %99-%99 | %97-%99 | %95-%99
tt48 T20 100 100 99
att48 T35 100 98 96
att48 T30 100 100 99

berlinb2 T20 100 100 80

berlin52 T35 100 99 93

berlin52 T50 100 100 100

brazil58 T20 99 29 41

brazil58 T35 97 43 9

brazild8 T50 100 99 81
ch150 T20 100 60 20
ch150 T35 100 98 76
ch150 T50 100 100 97
gr202 T20 99 80 30
gr202 T35 100 69 16
gr202 T'50 100 100 76
rd400 T20 100 16 2
rd400 T35 100 98 80
rd400 T50 100 100 100

From Table 7.7, we can appreciate that an increase in the network
connectivity requirements necessarily imply a corresponding increase in the
percentage of networks that meet the reliability threshold, and vice-versa.
This is a nice interplay between topological network design and network
reliability analysis: a more robust network in a deterministic manner
(node-disjoint paths) is translated into a most-reliable network (under

probabilistic models), and vice-versa.

Question 4. Is it better to improve the elementary reliability of links, or the

reliability of Steiner nodes, in order to meet a demanding reliability threshold?

We can appreciate from Tables 7.5 and 7.6 that an increase in the
link-reliabilities have a better impact than a corresponding increase in

node-reliabilities.

84

Table 7.7: Solutions such that R > 0.98 (case %99-%97)

Rel %99-%97

% Feasible solutions with R > 0.98

att48 T20 (100-0-0) 90
att48 T20 (65-25-10) 100
att48 T20 (0-100-0) 100
att48 T20 (0-0-100) 100
eil51 T20 (100-0-0) 76
eil51 T20 (65-25-10) 100
eil51 T50 (100-0-0) 54
eil51 T50 (65-25-10) 100
berlin52 T20 (100-0-0) A1
berlin52 T20 (65-25-10) 100
brazil58 T50 (100-0-0) 5
brazil58 T50 (65-25-10) 100
kroA100 T35 (100-0-0) 0
kroA100 T35 (65-25-10) 100
kroB100 T20 (100-0-0) 3
kroB100 T20 (65-25-10) 100

85

Chapter 8
Conclusions

The object under study in this thesis is the topological design of highly
reliable networks. Our goal is to combine purely deterministic aspects such
as topological network design with probabilistic models coming from network
reliability. For that purpose, the Generalized Steiner Problem with
Node-Connectivity Contraints and Hostile Reliability (GSP-NCHR) is here
introduced. The GSP-NCHR belongs to the class of N’P-Hard problems [47],
since it subsumes the Generalized Steiner Problem (GSP). Therefore, the
CPU-times are prohibitive, even for medium and small-sized networks. This
promotes the development of approximative methods for its solution. For
that reason, we considered a heuristic solution. Variable Neighborhood
Search (VNS) was selected mostly because of its simplicity, flexibility and
effectiveness (the reasons are detailed in Chapter 3). It is worth to remark
that the network reliability evaluation under the hostile model also belongs
to the NP-Hard class. Therefore, we adopted an outstanding pointwise
reliability estimation, known as Recursive Variance Reduction (RVR)
method, which can be applied in general to arbitrary Stochastic Monotone
Binary Systems. Since the hostile model is monotone, RVR is suitable for
this model (a more detailed justification is provided in Chapter 3). The
object-oriented language C++ was considered [62]| for the implementation of
the whole developed algorithms in this thesis, which includes a representation

of random graphs, validation, and testing different algorithms.

To the best of our knowledge, the GSP-NCHR is presented for the first
time in this thesis. In fact, the related work that simultaneously addresses a

topological network optimization meeting reliability constraints is scarce.

86

Therefore, no benchmarks for this problem are available in the scientific
literature. In order to study the effectiveness of our heuristic, we adapted
instances taken from TSPLIB [90]. The improvement provided by the VNS
phase after Greedy Construction ranges between 25.25% and 39.84%,
depending on the instance under study and its characteristics. This
improvement is satisfactory, for all the instances under study. In real-life
scenarios, this means a notorious economical saving. The average reliability
for all the networks range between 82.31% and 99.87%, depending on the
elementary reliabilities for Steiner-nodes and links, and the
connectivity-requirements. The estimated variance was always small, even
under highly-reliable scenarios, showing the accuracy of RVR. In fact, the
simple approach provided by CMC fails to estimate the reliability for
highly-reliable scenarios, providing the incorrect value of unit reliability and
zero variance [75]. The networks here proposed meet the minimum reliability
requirement, and feasible solutions were always returned (the reader can find
the numerical results in Chapter 7). The CPU-times per-iteration is
acceptable, since the time is non-prohibitive, even for large-sized instances. It
is fair to remark here that the network reliability estimation using RVR is
not considered in this time for some instances.

In order to answer the strategic questions of the thesis, several remarks are
in order. When the elementary reliability of both Steiner and links is high
(99%-99%), the percentage of networks that achieve the reliability threshold
is high, being 100% for most of the instances under study. On one hand, when
we fix the node-reliabilities but the elementary reliabilities are dropped, we can
appreciate an important degradation of this percentage, meeting 0 in almost-all
instances when the link-reliabilities are 95%. A similar degradation occurs for
large-sized instances when the elementary reliabilities are degraded (99%-97%).
On the other hand, when only the elementary reliabilities of Steiner nodes
are degraded, the percentage of resulting networks that fulfill the reliability
threshold is not rapidly deteriorated. In summary, the network reliability
is more sensible to link-reliabilities. When the number of terminal-nodes is
increased, the number of solutions that meet the reliability threshold is greater.
This is coherent, since the number of perfect nodes is increased. A reduction
in the reliability can be observed for larger networks, since the number of
Steiner nodes is increased. Finally, we can conclude that when the connectivity

requirements are increased, the resulting networks present greater reliability.

87

Chapter 9

Future Work

The interplay between topological network design and network reliability is
not well understood yet. In this thesis some local searches were proposed,
essentially using key-path and key-tree replacements, in order to reduce costs
preserving feasibility. A current research line is to develop strong reliability-
increasing transformations, that replace links and /or paths in order to increase
the reliability of the resulting network. The development of local searches that
increase reliability and reduce costs would enrich the current solution, and
it is part of future work. In terms of implementation of the algorithms and
experimental analysis, the following elements are relevant for the author of this

thesis:

e Variable neighborhood search is both simple and powerful. The
possibility to introduce VNS in another metaheuristic in a hybrid
manner [53, 50] is an interesting development to empower the solution
of our network optimization problem. Tabu Search or TS [78, 76, 11]
generally considers a neighborhood search, exploiting different
memory-types and movements. At first, there are two ways to combine
VNS with TS: using some memory-type to guide the search during
VNS, or to include VNS in TS. GRASP
methodology [23, 34, 78, 92, 91, 96] could be also used together with
VNS, and it results a hybrid metaheuristic attractive for future work.

e VNS is based on a systematic modification of the neighborhood during
the search, and it requires a finite set of neighborhood structures. Here,
we considered three local searches: KeyPathLocalSearch,
KeyTreeLocalSearch and SwapKeyPathLocalSearch. Another local

88

search in order to enrich our VNS proposal is also a hint for future
work.

Several proposals extend VNS, providing new characteristics. For the
resolution of large-sized instances, we can find Variable Neighborhood
Decomposition Search (VNDS), Biased VNS (BVNS) and Parallel
Variable Neighborhood Search (PVNS). The study of applicability to
the current problem will empower the optimization algorithm.

A fair comparison with another metaheuristic, such as GRASP, using an
identical test-set is desirable.

An optimization of the algorithms developed in this thesis using parallel
computing would achieve better CPU-times and find exact solutions for

large-sized instances.

89

1]

2]

13l

4]

[5]

6]

|7l

8]

19]

Bibliography

AGRAWAL, A., KLEIN, P., AND RAvVI, R. When trees collide: An approx-

imation algorithm for the generalized steiner problem on networks. SIAM
Journal on Computing 24, 3 (1995), 440-456.

ALEVRAS, D., GROTSCHEL, M., AND WESSALY, R. A network dimensioning

tool.

ARCHER, K., GRAVES, C., AND MirLAN, D. Classes of uniformly most
reliable graphs for all-terminal reliability. Discret. Appl. Math. 267 (2019),
12-29.

ARRAGA, S., AND AROZTEGUI, M. Algoritmos Genéticos Paralelos para el
Problema General de Steiner en Grafos, 2002.

BARRERA, J., CANCELA, H., AND MORENO, E. Topological optimization
of reliable networks under dependent failures. Oper. Res. Lett. 43, 2 (2015),
132-136.

BIENSTOCK, BRICKELL, M. On the structure of minimum-weight k-

connected spanning network. Society for industrial and applied mathematics
3, 3 (1990), 320-329.

BorscH, F., SATYANARAYANA, A., AND SUFFEL, C. A survey of some

network reliability analysis and synthesis results. Networks 54, 2 (2009), 99—
107.

BoTrTON, Q., FORTZ, B., AND GOUVEIA, L. On the hop-constrained surviv-

able network design problem with reliable edges. Computers and Operations
Research 64 (2015), 159 — 167.

Brown, J. I., AND CoOX, D. Nonexistence of optimal graphs for all terminal
reliability. Networks 63, 2 (2014), 146-153.

90

[10] BrOowN, J. 1., Cox, D., AND EHRENBORG, R. The average reliability of
a graph. Discret. Appl. Math. 177 (2014), 19-33.

|[11] BrUNI, M., BERALDI, P., AND KHODAPARASTI, S. A hybrid reactive

grasp heuristic for the risk-averse k-traveling repairman problem with profits.
Computers and Operations Research 115 (2020), 104854.

[12] Brusco, M. J., AND DOREIAN, P. Partitioning signed networks using

relocation heuristics, tabu search, and variable neighborhood search. Social
Networks 56 (2019), 70 — 80.

[13] CaNaLE, E., CANCELA, H., ROMERO, P., AND ROBLEDO, F. Recur-
sive variance reduction in reliability analysis. Tech. rep., Instituto de Com-

putacion., Facultad de Ingenieria. Universidad de la Repiblica. Montevideo,
Uruguay., 2014. Technical Report 14-15 UR.FI-INCO.

[14] CANALE, E. A., CANCELA, H., Piccini, J., ROBLEDO, F., ROMERO, P.,
RUBINO, ., AND SARTOR, P. Recursive Variance Reduction method in
Stochastic Monotone Binary Systems. Proceedings of the 7th International
Workshop on Reliable Networks Design and Modeling (RNDM) (2015), 135—
141.

[15] CaNALE, E. A., ROBLEDO, F., ROMERO, P., AND VIERA, J. Building
reliability-improving network transformations. In Proceedings of the 15th In-

ternational Conference on the Design of Reliable Communication Networks
(2019), TEEE, pp. 107-113.

[16] CANCELA, H., AND EL KHADIRI, M. The recursive variance-reduction
simulation algorithm for network reliability evaluation. ITEEE Transactions
on Reliability 52, 2 (2003), 207-212.

[17] CaNcELA, H., EL KHADIRI, M., RUBINO, G., AND TUFFIN, B. A Recur-
sive Variance Reduction Technique with Bounded relative Error for Commu-
nication Network Reliability Estimation. In 6th St Petersburg Workshop in
Computer Simulation (Saint Petersburg, Russia, 2009).

[18] CANCELA, H., EL. KHADIRI, M., RUBINO, G., AND TUFFIN, B. Recursive
Variance Reduction Estimators for the Static Communication Network Re-
liability Problem. In 8th International Workshop on Rare Event Simulation
(RESIM 2010) (United Kingdom, 2010).

91

[19] CANCELA, H., GUERBEROFF, G., ROBLEDO, F., AND ROMERO, P. Reli-
ability maximization in stochastic binary systems. In Proceedings of the 21st

Conference on Innovation in Clouds, Internet and Networks and Workshops
(2018), IEEE, pp. 1-7.

|20] CANCELA, H., AND KHADIRI, M. E. Series parallel reductions in rvr re-
liability evaluation. Tech. rep., Investigacion Operativa — InCo — Pedeciba

Informatica, Facultad de Ingenieria. Universidad de la Republica. Montev-
ideo, Uruguay., 1996. Technical Report INCO 96-01.

[21] CancELA, H., KHADIRI, M. E., AND RUBINO, G. A new simulation

method based on the RVR principle for the rare event network reliability
problem. Annals of Operations Research 196, 1 (2012), 111-136.

|22] CANCELA, H., KHADIRI, M. E., RUBINO, G., AND TUFFIN, B. Balanced
and approximate zero-variance recursive estimators for the network reliability

problem. ACM Transactions on Modeling and Computer Simulation 25, 1
(2014).

|23] CANCELA, H., ROBLEDO, F.; AND RUBINO, G. Network design with node
connectivity constraints. In Proceedings of the 2008 IFIP/ACM Latin Amer-
ica Conference on Towards a Latin American Agenda for Network Research
(New York, NY, USA, 2003), Association for Computing Machinery, p. 13-20.

[24] CANCELA, H., AND URQUHART, M. Adapting rvr simulation techniques

for general network reliability models. Computers, IEEE Transactions on 51
(05 2002), 439-443.

|25] CARRIZOSA, E., MLADENOVIC, N., AND TODOSIJEVIC, R. Variable neigh-
borhood search for minimum sum-of-squares clustering on networks. FEuro-
pean Journal of Operational Research 230, 2 (2013), 356 — 363.

[26] CHEN, Z.-Z. Approximating unweighted connectivity problems in parallel.
Information and Computation 171, 2 (2001), 125 — 136.

[27] CHERIYAN, J., JORDAN, T., AND NUTOV, Z. On rooted node-connectivity
problems. Algorithmica 30, 3 (2001), 353-375.

|28] CHERIYAN, J., SEBO, A., AND SZIGETI, Z. Improving on the 1.5-
approximation of a smallest 2-edge connected spanning subgraph. SIAM
Journal on Discrete Mathematics 14, 2 (2001), 170-180.

92

[29] CuimaNI, M., KANDYBA, M., LJUBIC, 1., AND MUTZEL, P. Strong for-
mulations for 2-node-connected steiner network problems. In Proceedings of

the 2nd International Conference on Combinatorial Optimization and Appli-
cations (Berlin, Heidelberg, 2008), Springer-Verlag, p. 190-200.

|30] ConsoL1, S., AND PEREZ, J. A. M. Variable neighbourhood search for
the k-labelled spanning forest problem. FElectronic Notes in Discrete Math-
ematics 47 (2015), 29 — 36. The 3rd International Conference on Variable
Neighborhood Search (VNS'14).

[31] CorMEN, T. H., LEISERSON, C. E., RIveEsT, R. L., AND STEIN, C.
Introduction to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.
Chapter 16, Greedy Algorithms.

[32] CraAVO, G., AND AMARAL, A. A grasp algorithm for solving large-scale

single row facility layout problems. Computers and Operations Research 106
(2019), 49 - 61.

[33] CzumAJ, A., AND LINGAS, A. On approximability of the minimum-cost
k-connected spanning subgraph problem. In Proceedings of the Tenth Annual
ACM-SIAM Symposium on Discrete Algorithms (USA, 1999), SODA ’99,
Society for Industrial and Applied Mathematics, p. 281-290.

|34] pE KEREBI, G. I. F., MANEYERO, M., ROBLEDO, F., AND SABIGUERO,
A. Modelo de Confiabilidad en Redes, 1996.

[35] DB, O., MoALiC, L., MANIER, M.-A., AND CAMINADA, A. An ad-
vanced ga—vns combination for multicriteria route planning in public transit
networks. Ezpert Systems with Applications 72 (2017), 67 — 82.

[36] DIESTEL, R. Graph Theory. Springer International Publishing, Graduate
Texts in Mathematics, 2017.

[37] D1sksTRA, E. W. A note on two problems in connexion with graphs. Nu-
merical Mathematics 1, 1 (1959), 269-271.

[38] DOS SANTOS DANTAS, A. P., [DE Souza|, C. C., AND Di1As, Z. A grasp
for the convex recoloring problem in graphs. Flectronic Notes in Theoretical
Computer Science 346 (2019), 379 — 391. The proceedings of Lagos 2019, the
tenth Latin and American Algorithms, Graphs and Optimization Symposium
(LAGOS 2019).

93

[39] DUARTE, A., SANCHEZ-ORO, J., RESENDE, M. G., GLOVER, F., AND
MARTI, R. Greedy randomized adaptive search procedure with exterior path

relinking for differential dispersion minimization. Information Sciences 296
(2015), 46 — 60.

[40] FERNANDES, C. G. A better approximation ratio for the minimum k-edge-
connected spanning subgraph problem. In Proceedings of the Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (USA, 1997), SODA ’97,
Society for Industrial and Applied Mathematics, p. 629-638.

[41] FisHMAN, G. Monte Carlo. Springer Series in Operations Research and
Financial Engineering. Springer, 1996.

[42] ForD, D. R., AND FULKERSON, D. R. Flows in Networks. Princeton
University Press, USA, 2010.

[43] GaBow, H. N.; GOEMANs, M. X., AND WILLIAMSON, D. P. An ef-
ficient approximation algorithm for the survivable network design problem.
Mathematical Programming 82 (1998), 13-40.

[44] GaBow, H. N., GOEMANS, M. X., AND WILLIAMSON, D. P. An ef-
ficient approximation algorithm for the survivable network design problem.
Mathematical Programming 82 (1998), 13-40.

|45] GAaLLuccio, AND PROIETTI. Polynomial time algorithms for 2-edge-
connectivity augmentation problems. Algorithmica 36, 4 (2003), 361-374.

[46] GANG CHENG, AND ANSARI, N. Finding all hops k-shortest paths. In Pro-

ceedings of the IEEE Pacific Rim Conference on Communications Computers
and Signal Processing (2003), vol. 1, pp. 474-477.

[47] GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman and Co., USA,
1990.

[48] GoEmANSs, M. X., GOLDBERG, A. V., PLOTKIN, S., SHMOYS, D. B.,
TARDOS, E., AND WILLIAMSON, D. P. Improved approximation algorithms
for network design problems. In Proceedings of the Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms (USA, 1994), SODA ’94, Society for In-
dustrial and Applied Mathematics, p. 223-232.

94

[49] GoEMANS, M. X., AND WILLIAMSON, D. P. A general approximation
technique for constrained forest problems. SIAM Journal on Computing 24,
2 (1995), 296-317.

[50] GomEs, L. M., DiNiz, V. B., AND MARTINHON, C. A. A Tutorial on
Variable Neighborhood Search, 1970.

[51] HANSEN, P. Variable Neighborhood Search. Springer International Publish-
ing, Handbook of Heuristics, 2018.

|52] HANSEN, P., AND MLADENOVIC, N. An Hybrid GRASP+VNS Metaheuris-
tic for the Prize-Collecting Traveling Salesman Problem, 1970.

[53] HANSEN, P., MLADENOVIC, N., AND PEREZ, J. A. M. Variable neighbour-

hood search. Revista Iberoamericana de Inteligencia Artificial 7, 19 (2003),
77-92.

[54] HARARY, F. The maximum connectivity of a graph. Proceedings of the
National Academy of Sciences 48, 7 (1962), 1142-1146.

[55] HORE, S., CHATTERJEE, A., AND DEWANJI, A. Improving variable neigh-

borhood search to solve the traveling salesman problem. Applied Soft Com-
puting 68 (2018), 83 — 91.

[56] JaiN, K. A factor 2 approximation algorithm for the generalized steiner
network problem. In Proceedings of the 39th Annual Symposium on Founda-
tions of Computer Science (USA, 1998), FOCS ’98, IEEE Computer Society,
p. 448,

[57] KAMMA, L., AND NuTOV, Z. Approximating survivable networks with
minimum number of steiner points. In Proceedings of the 8th International
Conference on Approzimation and Online Algorithms (Berlin, Heidelberg,
2011), Springer-Verlag, p. 154-165.

[58] KArRP, R. M. Reducibility among Combinatorial Problems. Springer US,
Boston, MA, 1972, pp. 85-103.

[59] KERIVIN, H., AND MAHJOUB, A. R. Design of survivable networks: A
survey. Networks 46, 1 (2005), 1-21.

95

|60] KLEYWEGT, A. J., SHAPIRO, A., AND HOMEM-DE-MELLO, T. The sample
average approximation method for stochastic discrete optimization. SIAM
Journal on Optimization 12, 2 (2002), 479-502.

|61] KOorRTsARZ, G., KRAUTHGAMER, R., AND LEE, J. R. Hardness of approx-

imation for vertex-connectivity network design problems. SIAM Journal on
Computing 33, 3 (2004), 704-720.

|62] LARMAN, C. UML vy Patrones. Introduccion al andlisis y disenio orientado
a objetos. Prentice Hall, Inc., USA, 2004.

[63] LAWLER, E. L. A procedure for computing the k best solutions to dis-

crete optimization problems and its application to the shortest path problem.
Management Science 18, 7 (1972), 401-405.

|64] L’ECUYER, P., RUBINO, G., SAGGADI, S., AND TUFFIN, B. Approximate

zero-variance importance sampling for static network reliability estimation.
IEEE Transactions on Reliability 60, 3 (2011), 590-604.

|65] LEITNER, M. Integer programming models and branch-and-cut approaches
to generalized 0,1,2-survivable network design problems. Computational Op-
timization and Applications 65, 1 (2016), 73.

|66] LEITNER, M., AND RAIDL, G. R. Variable neighborhood and greedy ran-
domized adaptive search for capacitated connected facility location. In Com-
puter Aided Systems Theory — EUROCAST 2011 (Berlin, Heidelberg, 2012),
R. Moreno-Diaz, F. Pichler, and A. Quesada-Arencibia, Eds., Springer Berlin
Heidelberg, pp. 295-302.

[67] LENA, D., ROBLEDO, F., AND ROMERO, P. A hostile model for network
reliability analysis. J. Heuristics 8, 2 (2017), 489-498.

|68] LJuBIC, 1., MUTZEL, P., AND ZEY, B. Stochastic survivable network design
problems. Electronic Notes in Discrete Mathematics 41 (2013), 245 — 252.

|69] LOPEZ-SANCHEZ, A., SANCHEZ-ORO, J., AND HERNANDEz-DiAz, A.
Grasp and vns for solving the p-next center problem. Computers and Oper-
ations Research 104 (2019), 295 — 303.

[70] Lourenco, H. R., MARTIN, O. C., AND STUTZLE, T. Iterated Local
Search, 2001.

96

[71] MAHJOUB, A., AND PESNEAU, P. On the steiner 2-edge connected sub-
graph polytope. RAIRO Operations Research 42, 1 (2008), 259-283.

[72] MARTI, R., CAMPOS, V., RESENDE, M. G., AND DUARTE, A. Multiob-

jective grasp with path relinking. European Journal of Operational Research
240, 1 (2015), 54 — 71.

[73] MARTINS, E., AND PASCOAL, M. A new implementation of yen’s ranking
loopless paths algorithm. Quarterly Journal of the Belgian, French and Italian
Operations Research Societies 1, 2 (2003), 121-133.

[74] MARTINS, E. Q. V., PAscoaL, M. M. B., AND SANTOS, J. L. E. Devia-
tion algorithms for ranking shortest paths. International Journal of Founda-
tions of Computer Science 10, 3 (1999), 247-261.

[75] MAUTTONE, A. Método RVR en la simulacién de medidas de confiabilidad
en redes, 2000.

[76] MEJiA, M., AND AGUIRRE, P. E. O. Network Topology Optimization
using Tabu Search, 2005.

[77] MoNnmA, C., MUNSON, B., AND PULLEYBLANK, W. Minimum-weight
two-connected spanning networks. Math. Program. 46 (02 1990), 153-171.

[78] MORALES, E. Busqueda Optimizacion y Aprendizaje, 2004.

[79] NESMACHNOW, S. Evaluating simple metaheuristics for the generalized
steiner problem. Journal of Computer Science and Technology 5, 4 (2005).

[80] NESMACHNOW, S., AND PEDEMONTE, M. Metaheuristicas basadas en
adaptacion social para el Problema de Steiner Generalizado. In Actas VI
Congreso FEspanol de Metaheuristicas, Algoritmos Evolutivos y Bioinspira-
dos (MAEB 2009) (New York, NY, USA, 2009), Association for Computing
Machinery, p. 107-114.

|81] NGUYEN, T., AND DO, P. An ant colony optimization algorithm for solv-
ing group steiner problem. In The 2013 RIVF International Conference on
Computing Communication Technologies - Research, Innovation, and Vision
for Future (RIVF) (2013), pp. 163-168.

97

[82] OrLOV, V. 1., KAZAKOVTSEV, L. A., Rozu~ov, I. P., Porov, N. A_,
AND FEDOSOV, V. V. Variable neighborhood search algorithm for k-means
clustering. In Materials Science and Engineering Conference Series (2018),

vol. 450 of Materials Science and Engineering Conference Series, pp. 22-35.

|83] PANIGRAHI, D. Survivable network design problems in wireless networks.
In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Dis-
crete Algorithms (USA, 2011), Society for Industrial and Applied Mathemat-
ics, p. 1014-1027.

[84] PAoLINI, E. Minimal connections: the classical steiner problem and gener-
alizations. Bruno Pini Mathematical Analysis Seminar 3, 1 (2012), 72.

|85] PEDEMONTE, M., AND CANCELA, H. A cellular ant colony optimisation

for the generalised steiner problem. International Journal of Innovative Com-
puting and Applications 2 (2010), 188-201.

|86] PEssoA, L. S., RESENDE, M. G., AND RIBEIRO, C. C. A hybrid la-
grangean heuristic with grasp and path-relinking for set k-covering. Comput-
ers and Operations Research 40, 12 (2013), 3132 — 3146.

|87] PULSIPHER, J., AND ZAVALA, V. Measuring and optimizing system relia-
bility: a stochastic programming approach. TOP (2020), 1 — 20.

|88] Rapousicic, N., DJENIC, A., AND MARIC, M. Fuzzy grasp with path re-

linking for the risk-constrained cash-in-transit vehicle routing problem. Ap-
plied Soft Computing 72 (2018), 486 — 497.

|89] Ravi, R., AND KLEIN, P. When cycles collapse: A general approximation
technique for constrained two-connectivity problems. In Proceedings of the 3rd

Symposium on Integer Programming and Combinatorial Optimization (1993),
pp- 39-55.

[90] REINELT, G. TSPLIB—a traveling salesman problem library. ORSA Journal
on Computing 3, 4 (1991), 376-384.

[91] RESENDE, M., AND RIBEIRO, C. Optimization by GRASP. Springer, 2016.

|92] RESENDE, M. G., AND VELARDE, J. L. G. Grasp: Greedy randomized

adaptative search procedures. Revista Iberoamericana de Inteligencia Artifi-
cial 7,19 (2003), 61-76.

98

|93] RESENDE, M. G. C.; AND RIBEIRO, C. C. GRASP: Greedy Randomized
Adaptive Search Procedures. Springer US, Boston, MA, 2014, pp. 287-312.

|94] Risso, C. Using GRASP and GA to design resilient and cost-effective
IP/MPLS networks. PhD thesis, Universidad de la Republica, 2014.

|95] ROBLEDO, F. Disefio Topologico de Redes. Casos de Estudio: The General-
ized Steiner Problem and The Steiner 2-Edge-Connected Subgraph Problem.
Master’s thesis, Tesis de Maestria. Universidad de la Republica, 2000.

|96] ROBLEDO, F. GRASP heuristics for Wide Area Network design. PhD thesis,

Rennes University, Rennes, France, 2005.

[97] ROBLEDO, F., AND CANALE, E. Designing backbone networks using the
Generalized Steiner Problem. In Proceedings of the 7th International Work-
shop on Design of Reliable Communication Networks (2009), pp. 327-334.

|98] RODRIGUEZ-MARTIN, 1., SALAZAR-GONZALEZ, J.-J., AND YAMAN, H. A
branch-and-cut algorithm for two-level survivable network design problems.
Computers and Operations Research 67 (2016), 102 — 112.

[99] RODRIGUEZ-MARTIN, 1., SALAZAR-GONZALEZ, J.-J., AND YAMAN, H.
Hierarchical survivable network design problems. Electronic Notes in Discrete
Mathematics 52 (2016), 229 — 236. Proceedings of the 7th International

Network Optimization Conference.

|100] RODRIGUEZ-PEREIRA, J., FERNANDEZ, E., LAPORTE, G., BENAVENT,
E., AND MARTINEZ-SYKORA, A. The steiner traveling salesman problem
and its extensions. Furopean Journal of Operational Research 278, 2 (2019),
615 — 628.

[101] ROSENTHAL, A. Computing the reliability of complex networks. STAM
Journal on Applied Mathematics 32, 2 (1977), 384-393.

[102] SADEGHI, E., AND FAN, N. On the survivable network design problem

with mixed connectivity requirements. Annals of Operations Research (2019).

[103] SARTOR, P. Problema General de Steiner en Grafos: Resultados y Al-
goritmos GRASP para la version Arista-Disjunta. Master’s thesis, Tesis de
Maestria. Universidad de la Republica, 2011.

99

[104] SARTOR, P., AND ROBLEDO, F. A heuristic for the edge-survivable general
steiner problem. In Control and Automation, and Energy System Engineering
(Berlin, Heidelberg, 2011), Springer Berlin Heidelberg, pp. 7-16.

[105] SARTOR, P., AND ROBLEDO, F. Solving the generalized steiner problem
in edge-survivable networks. In Control and Automation, and Energy System

FEngineering (Berlin, Heidelberg, 2011), Springer Berlin Heidelberg, pp. 7-16.

[106] SARTOR, P., AND ROBLEDO, F. Grasp algorithms for the edge-survivable

generalized steiner problem. International Journal of Control and Automation
5 (2012), 27-44.

|107| SCHAUER, C., AND RAIDL, G. R. Variable neighborhood search and grasp
for three-layer hierarchical ring network design. In Proceedings of the 12th

International Conference on Parallel Problem Solving from Nature - Volume
Part I (Berlin, Heidelberg, 2012), Springer-Verlag, p. 458-467.

[108] SHEN, H. Approximate algorithms for survivable network design. In 2012
Third International Conference on Networking and Computing (2012), pp. 9—
18.

[109] SUURBALLE., J. Disjoint paths in a network. Networks. 4 (1974), 125-145.

[110] SUURBALLE, J., AND TARJAN., R. A quick method for finding shortest
pairs of disjoint paths. Networks. 14, 2 (1984), 325-336.

|111] Suzuki, H., ISHIHATA, M., AND MINATO, S.-I. Designing survivable
networks with zero-suppressed binary decision diagrams. In WALCOM: Al-
gorithms and Computation (Cham, 2020), M. S. Rahman, K. Sadakane, and
W.-K. Sung, Eds., Springer International Publishing, pp. 273-285.

[112] TrRAN, C. V., AND HA, N. H. A variable neighborhood search algorithm
for solving the steiner minimal tree problem in sparse graphs. FAI Endorsed

Transactions on Context-aware Systems and Applications 5, 15 (12 2018).

[113] TRIPATHI, P. A Deterministic Algorithm for the Vertex Connectivity Sur-
vivable Network Design Problem, 2010. Arxiv:1004.1208v1.

[114] VIJAYARAGHAVAN, V., KIANFAR, K., DING, Y., AND PARSAEIL, H. A

mixed integer programming based recursive variance reduction method for

100

reliability evaluation of linear sensor systems. In 2018 IFEFE 1/th Interna-
tional Conference on Automation Science and Engineering (CASE) (2018),
pp. 836-842.

[115] WILLIAMSON, D. P., GOEMANS, M. X., MIHAIL, M., AND VAZIRANI,

V. V. A primal-dual approximation algorithm for generalized steiner network
problems. Combinatorica 15, 3 (1995), 435-454.

[116] WINTER, P. Steiner problem in networks: A survey. Networks 17, 2 (1987),
129-167.

[117] WooDbs, B. Generalized Steiner Problem in Halin Graphs. Master’s thesis,
University of Waterloo, 2010.

[118] X1A0, Y., AND KONAK, A. A variable neighborhood search for the network
design problem with relays. J. Heuristics 23, 2-3 (2017), 137-164.

101

Chapter 10

Appendix

10.1 Feasibility - Local Search Phase

In this section it is formally proved that the feasibility ! is preserved during
all the local searches from Chapter 6. Additionally, we describe the auxiliary
procedures General RecConnect and FindSubstitute KeyPath, that are used
in the local searches KeyTreeLocalSearch and SwapKeyPathLocalSearch

respectively.
Proposition 5. KeyPathLocalSearch returns a feasible solution [96].

Proof. Suppose that KeyPathLocalSearch does not preserve feasibility. Since
the input is a feasible network, in some iteration we must have the following

conditions:

e A feasible solution gg;.

e The path p computed in Lines 7-8 meets the inequality COST(p) <
COST(p), being p € K(gso) the current key-path.

e The network § = {gsor \ p} U {p} is non-feasible: there exists i,j € T

with less than r; ; node-disjoint paths.

This means that INTERNAL NODES(p) N NODES(gso \ p) # 0. This
is a contradiction, since NODES(p) C NODES(p) U{Sp — NODES(gso)}-
Therefore, g is feasible and satisfies the requirement matrix R, as we wanted

to prove.]

'Here we consider the feasibility of the relaxation, this is, the GSPNC.

102

Procedure General RecConnect

General _RecConnect is used during KeyTreeLocalSearch [96]. Given a
current solution ¢y, and a key-node v € g,,, General RecConnect tries to
find a better key-tree T spanning the leaf-nodes belonging to T, where T, is
the tree associated to v. In order to preserve feasibility, 7" considers only
Steiner nodes not included in g,y and nodes belonging to T,. Additionally,

the links from the extremes of T, are not considered.

Algorithm 12 (g, improve) = General _RecConnect(Gp, C, gsoi, v, S)

cost <— cost_ Key Tree(v, gsol)

Y < Nodes Key Tree(v, gso)

Z < Ends_Key Tree(v, gso)

S«Y\ZUS)

U« A{(i,j)eGp:ic ZjeS}

i «<—< NODES(SNGp) >; i+ pulU

T <+ v

while Jue Z:u ¢ T do
X={ueZug¢T}; u<+ Select_Random(X)
= pA\NAZ —u}
p < Dijkstra(u, T, p)
T+ TU{p}

: end while

. T < RemoveDegreel(S,T)

. if cost(T) < cost then

Gsol < {gsol \ (Y \ Z)} U {T}

improve < TRUE

: else

improve < FALSE

: end if

: return (gso, improve)

[T N S e T e T e T~ SO Gy S ey

Figure 10.1: Pseudocode for General RecConnect [96].

Figure 10.1 presents General RecConnect. It receives the graph Gpg of
feasible connections, the link-costs C' and the current solution g, the current
key-node v and the set of Steiner nodes S not belonging to g,,;. Let T, be
the associated key-tree. Line 2 computes the set of nodes Y belonging to 7.
Line 3 finds the leafnodes Z C Y. The set S = {Y \ Z} U {S} is found in
Line 4. The set S is precisely the Steiner nodes that do not belong to gy

103

neither the extremes of T,. In Line 5, the set U includes all the connections
from Gp with an extreme in Z and the other in S. Clearly, in U there are no
links between nodes belonging to Z. Let i be the network induced by S in
Jsol- The set U is added to ji in Line 6. Note that any spanning tree computed
in [1 is a potential replacement for T}, in g,,;, since the replacement preserves
feasibility. Line 7 forces the root-node v to be included in the new tree, 7T
The while-loop of Lines 8-13 iteratively builds a new key-tree, by adding nodes
from Z to T'. In Line 9, a node u € Z not previously picked is uniformly chosen
at random. The auxiliary network p = i\ {Z — {u}} is considered in Line 10
to find a path from u to 7. The nodes from Z — {u} are not considered, since
these nodes must be the extremes of T'. Line 11 finds the shortest path from u
to T"in p. Let p be that path; then p is added to T. The while-loop of Lines 8-
13 is finished precisely when all the nodes belonging to Z are added into 7'
The Steiner nodes from the extremes are removed from 7T in Line 14. We
remark that those nodes are not necessary to fulfill feasibility. Furthermore,
it is straight to see that a new key-tree can be constructed from 7T, C . The
costs of both T and T, are compared in Line 15. If T is better, the replacement
takes place in the solution g, in Line 16. The indicator variable improve is
set to TRUFE in Line 17 (used in KeyTreeLocalSearch). Otherwise, improve
is set to FALSE in Line 19. Both the indicator variable improve and the

resulting solution gy, are returned in Line 21.
Proposition 6. General RecConnect preserves feasibility [96].

Proof. Following the previous terminology, it is straight to note that T is a

tree after the while-loop of Lines 8-13. The following observations are in order:

e / CT
e / is precisely the extreme-nodes belonging to 7T
e NODES(T)NNODES(gsoqt) =ZUJ, with JCY \ Z

e There exists a root-node § of T' (not necessarily § = v).

If the condition from Line 15 is true, the algorithm finds § = {gso \ 7o, } U{T'}
in Line 16. The feasibility of g is induced by the previous observations. In
fact, the loss of connectivity requirements when 7, is removed is reestablished
with the addition of T. Therefore, General RecConnect returns a feasible

network in Line 19. OJ

Proposition 7. SwapKeyPathLocalSearch preserves feasibility [96].

104

Proof. If SwapKeyPathLocalSearch does not preserve feasibility, in a certain

step the following conditions are met:

e g, is feasible.

e The path D computed in Lines 6-8 satisfy:
COST (P \ {gsa1 \ P}) < COST(p), where p € K(gso) is the current
key-path, so Line 10 takes effect.

e The network ¢ = {gso \ p} UD is non-feasible, and there are less than r; ;
node-disjoint paths between 7, j € Sz()i) in g.

Let p;; € P,; such that p;; C p;;. Consider the path pu.. = {Di; \
p} U {B}. The nodes from X,(P) are excluded from H, hence there are no
nodes from P, ; \ p;; belonging to H, and INTERNAL_NODES (pausz) N
INTERNAL NODES(pij) # 0, for all p;; € P,; \ p;;, which contradicts
that gy, is non-feasible. Therefore, the network G computed in Line 10 is

feasible. To complete the proof it is worth to note that:

e All the paths p € P that include p are updated in Line 10, replacing p
by p. There are r; ; node-disjoint paths in P ; connecting ¢ to j, for all
i,je Sy

e The decomposition of g, into key-paths is repeated in Lines 13-15, where
gsor Was replaced by ¢ in Line 10. Therefore, the feasibility is preserved

during each iteration of the local search.

Proposition 8. KeyTreeLocalSearch preserves feasibility [96].

Proof. Immediate from the feasibility of General RecConnect, which is

proved in Proposition 6. O

FindSubstitute KeyPath

This algorithm is called during SwapKeyPathLocalSearch. It receives the
solution g¢s,, the key-path p and the matrix P of paths between terminal
nodes computed by the Construction phase, called Greedy.

Figure 10.2 presents FindSubstitute KeyPath. 1t deletes the key-path p
given by the parameter of the solution g,, and, using the information provided

by P, it will try to reconstruct a feasible solution. After a feasible solution

105

is met, it returns T RUE if the new solution is cheaper than g, or FALSE

otherwise. The boolean improve and the resulting solution g, are returned.

Algorithm 13 (gs., improve) = FindSubstitute K ey Path(gser, p, P, improve)

cost < cost(gso)
Disable(gsor, p)
Eliminate Paths(P, gso)

if feasible and cost(gs,) < cost then
GJsol < {gsol \ (Y \ Z)} U {T}
improve < TRUE

else
improve < FALSE

10: end if

11: return (g, improve)

Figure 10.2: Pseudocode for FindSubstitute KeyPath.

The cost of the input network is obtained in Line 1. The key-path p is
deleted in Line 2, and all the paths from P that intersect with p are also
removed in Line 3. A feasible solution is search in Line 4. An internal cycle
is executed in this step, while a feasible solution is not found or a maximum
number of iterations MAX ATTEMPTS is met. If the resulting network
is both feasible and cheaper (Line 5), the variable improve is set to TRUE
(Line 6). Otherwise, it is set to FALSE (Line 9). The boolean variable

tmprove and the resulting solution g, are returned in Line 11.

10.2 Feasibility - Construction Phase

In this section, the feasibility of the Greedy Randomized Construction is
proved [96]. Additionally, the methods General Update Matriz and KSP

are explained.

106

(gsol, feasible) < FindCheapestSolution(gse, P, cost, MAX ATTEMPTS)

Algorithm 14 (P, M) = General Update Matrix(Gsy, P, M, p, i, j)

1. forall ke SV k+£i.j:kepdo

2 if m; > 0 then

3 if Nodes(P;;) N Nodes(pir) = {i,k} then
4 Py P U{pam}

5: My g <= My g — 1; My <= Mp; — 1

6 end if

7. end if

8 if my; > 0 then

9 if Nodes(P ;) N Nodes(p,j)) = {k,j} then
10: Brj = Prj U D@}

11: My < Mjk — 1; My j < Mpj — 1

12: end if

13: end if

14: end for

15: return (P, M)

Figure 10.3: Pseudocode for General Update Matrixz [96].

Figure 10.3 presents General Update Matrixz. It receives the solution
obtained so far (during the construction), G, the matrix with paths P, the
connectivity matrix M, the terminals i, j and the path p found between them.
The for-loop of Lines 1-14 studies each terminal node k € Sg), k # 1,7, such
that £k € p. It determines whether there exists a sub-path between £k and
i (resp. j), or not, that must be node-disjoint with the previous paths P,
(resp. Py ;). If this is the case, the set P, (resp. Py ;) is extended, adding
D(ik) (1€SD. P(rj)), and my,y, and my,; (resp. my, ; and m; ;) are decreased a unit.
New paths between intermediate terminals for the path p are also included as

an optimization to this algorithm.

Proposition 9. At the end of General Update Matriz, the following

clauses are mel:

o P, =0 if and only if m;; = r;;.

o Ifm;; =k (with k € {0,...,7,,}), there exists at least r;; — k node-
disjoint paths from i to j in Gy

o The relation |P;;| = r;; — m;; in each iteration of the construction

algorithm.

107

Proof. Tt is assumed that both P and M satisfy the statement when
General _Update Matriz is called. Let us pick i,5 € Sg) as the pair of
terminals and p the path that connects them computed by the construction

algorithm. The cycle studies Vk € Sg), k € p,k # i, 7 the following cases:

o Case I: If m; j; > 0 we know that there exists r; ;—m; ; node-disjoint paths
between ¢ and j in Gyy. Further, if m; ; = r;; we have P,; = (). If the
condition NODES(P,; ;) NNODES(pir) = {i,k} is true, the sub-path
P(ik) is added to Py, since this is node-disjoint with the path belonging
to P . The values m;; and my; are decreased a unit, preserving the
veracity of the clauses.

e Case II: m;; = 0, is analogous.
O

Proposition 10. If A;; < MAX ATTEMPT, Vi,j € SY, the construction

algorithm returns a feasible solution [96].

Proof. We assume that there exists a subnetwork G, C G that is a feasible

solution. In Line 1, the algorithm initializes:

o (G, with a set of terminal-nodes S(DI), and an empty set of links.
e The auxiliary matrix M with m, ; = r;;, Vi,j € Sg).
e The matrix P = (.

Let us assume that, the conditional if from Line 2 holds in a certain iter-
ation. In Line 3, we pick a pair of terminal nodes i, j € Sg) such that m; ; >
0 uniformly at random. The auxiliary network G = G\ P, ; is computed in
Line 4. If there exists a node-disjoint path from ¢ to j in G, this path is node-
disjoint with respect to the paths belonging to F; ;. The auxiliary costs C as-
sociated to G are found in Line 5, assigning zero-cost to the links that are in-
cluded in G,,. The block of Lines 5-12 look for a new path from i to j in Gy
considering C, using the fact that the condition |P, ;| = 1ij —m;; is met dur-

ing General Update Matriz. Let us discuss two cases:

e —3p C G that connects i to j: in this case, Line 7 updates P; ; and m, ;,
since F; j contains a path that is intersection of two or more node-disjoint

paths that connect ¢ and j. The construction proceeds in Line 2.

108

e Jp C G: apath p is selected from the list L, in Line 9. Sine p SZ Gsol, the
current solution Gy is update in Line 9. In Line 10, m; ; is decreased a

unit.

Based on the construction phase previously described, it is straight to see
that, after the for-loop of Lines 1-14, if m;; = 0, Vi,j € Sg), the resulting

solution G, satisfies the connectivity requirements R.]

We finally give details of K.SP, Yen [73], used to implement the K shortest
paths, without cycles between two fixed nodes s and ¢. This solution belongs
to the class of Deviation Algorithms |74], which builds a pseudo-tree of paths

without cycles.

Algorithm 15 ksp = KSP(G, s,t, k)
1: k3p<—®7X<_®; Fauz < 0
2: p < Dijkstra(G,s,t)
3: if p # () then

40 X+ XU{p}; dp) < s

5. while X # () and kg, < k do

6: k+—k+1

7 pr < GetMinCostPath(X), vF « d(py.)

8: X X —{px}, ksp < ksp U {px}

9: if k4. < k then

10: while v} # ¢ do

11: G + G — Nodes(subpy(s,vF))

12: G+ G — Arcs(vf,vf)

13: G « G — Arcs(starting in vF removed when py was computed)
14: p < Dijkstra(G,vE,t)

15: if p # () then

16: P+ subpy(s,vf) +p, X + X U{p}
17: end if

18: vF — vF

19: end while

20: end if

21: end while

22: end if

23: return ksp

Figure 10.4: Pseudocode for KSP.

Figure 10.4 presents KSP. It receives the graph G, two nodes s and t

109

and an integer k£ > 1 that represents the number of shortest paths without
cycles between s and t. The collection of candidate paths starts as empty
sets in Line 1. Line 2 applies Dijkstra algorithm [37] to find the shortest
path between s and t. If there exists such path p, then p is added to the list
(Line 4). In the while-loop of Lines 5-21, the k shortest paths are computed.
During the iteration k, the last path p, already found in X (Line 7), and
its deviation node v¥, p; is added into ksp and eliminated from X (Line 8).
If the k£ shortest paths are not found yet, new deviation nodes from p; are
obtained during the while-loop of Lines 10-19. Only the nodes from v¥ to t are
analyzed in order to avoid repeated operations. For each node, the shortest
path between v and t is found using Dijkstra (Line 14), and if p is not empty,
a new path is obtained as the concatenation p < subpy(s,vF ;) + p (Line-16)
and added to the list. In order to avoid cycle or previous paths, the nodes from
pr that are ancestors of vF are deleted from G (Line 11), as well as the arcs
(Lines 12-13). In this way, the k shortest paths without cycles between s and
t are found. For each analyzed node, we must apply Dijkstra algorithm whose
complexity is O(m-+nlog(n)) [37]. In a worst case, we must analyze n nodes for
every path pi,...,pg, and the complexity for the KSP is O(kn(m + nlog(n))).
See [63] for further details.

10.3 Graphical Tools

Even though the implementation of graphical interfaces were not mandatory
in this thesis, the author considers it is beneficial to have a graphical tool able
to create graphs in a fast and simple manner, and to visualize them in order to
facilitate the validation tests for the algorithms. For that purpose, a graphical
tool (Graph Viewer) was developed. Graph Viewer allows to create graphs,
and save them in XML files, for a latex loading for the same application and
vice-versa. This tool was useful in order to see the resulting graphs during the
validation tests, and to define input graphs as well. GraphViewer interface is

illustrated in Figure 10.5

110

AL GraphViewer

archivo Edicion Wer Herramientas
g 2
=
Cost 1
Enabled True
R 1
Cost
F: 4wk space’Provecto de GradohGraphl. sl

Figure 10.5: GraphViewer interface.

In order to save the results of the algorithms, we write a file in XML format,
and then we choose XML, since this is standard for the information formatting.
The format is the following. A root tag called Graph contains the information
of all the graph. Inside the Graph tag, three tags are found: Nodes, Edges and

Connectivities:

e Nodes is a sequence of node tags that represents each of the nodes.

e Fdges is a sequence of edge tags that represents each of the edges. Each
edge contains the information of the nodes that are linked.

o Connectivities is a sequence of connectivity tags that describe

connectivities between each pair of terminal nodes.

<?xml version="1.0" standalone='"yes"?>
<Graph xmlns="http://tempuri.org/Graph.xsd">
<Nodes>
<Node>
<NodeId>0</NodeId>
<IsTerminal>True</IsTerminal>
<Enabled>True</Enabled>
<R>1</R>
<X>16</X>
<Y>117</Y>

111

</Node>
<Node>
<NodeId>1</NodeId>
<IsTerminal>False</IsTerminal>
<Enabled>True</Enabled>
<R>1</R>
<X>97</X>
<Y>194</Y>
</Node>
</Nodes>
<Edges>
<Edge>
<Node1I1d>0</NodelId>
<Node2Id>5</Node2Id>
<Enabled>True</Enabled>
<Cost>1</Cost>
<R>1</R>
</Edge>
<Edge>
<Node1Id>5</NodelId>
<Node2Id>8</Node2Id>
<Enabled>True</Enabled>
<Cost>1</Cost>
<R>1</R>
</Edge>
</Edges>
<Connectivities>
<Connectivity>
<Node1I1d>0</NodelId>
<Node2Id>7</Node2Id>
<Value>2</Value>
</Connectivity>
</Connectivities>
</Graph>

Figure 10.6 shows the XML structure used to save the information.

112

& E 2=

| E Edge

tr_\llgdes)
{Mode)

(Edge)

dode {Mode) “dae {Edge) “onnectivity fConnectivity)
E MNodeld skring E MNodelld skring E MNodelld skring
E IsTerminal skring E MNodezld skring E MNodezld skring
E Enabled skring E Enabled skring E Value skring
ER skring E Cost skring
E ¥ skring

Figure 10.6: XML Structure.

In order to visualize the result of an execution, this is, the XML file gener-

ated by NetworkDesign, we use the application illustrated in Figure 10.7.

= GraphViewer
archivo Edicidn Wer Herramientas
84O
|E] Mist
Cost 1
Enabled True
R 1
Cost
F:4work space’\Provecto de GradoGraphl.sml A

Figure 10.7: GraphViewer Application.

This application allows to create a new graph, modify it, and it greatly
simplifies the creation of test-cases, standardization, and visualization. In
order to modify the properties of some node or some edge, it suffices a double-
click over it and edit the corresponding grid that is shown on the right. In order

to add a new node we choose Edit and New-node, as shown in Figure 10.8.

113

aArchivo Yer Herramientas

Muevo nodo

e

Ackivar bodo
Desactivar kodo

Figure 10.8: Adding New Node (spanish dialogue).

Similarly, if we wish to add a new edge, we just do a click on the center of

a node and move to the destination node (see Figure 10.9):

Figure 10.9: Intuitive way to create edges.

Other options include to access the connectivity matrix and edit its values.
The numbers on the tags represents the numbers of the terminal-nodes, and the
values from the text-boxes are the connectivity requirements (see Figure 10.10

for a graphical illustration).

114

=3

T =
6 11 12 14 16 21 31 43 53 EB5 73 81 82 88
0 l_l_l_l_l_l—l_l_l_l_l_l_l_l—
efz [2f2Tzz2]202]z2]2]z2]z2T2]z2]2
| 2|2 (@ 22222022202 222
2fz[z]2] [zfz2]z]z]z2]z2]z2[2]2]zz2
wfafz2[2]2" [z]z2z2T20z2z2]2020z2T2
e[22222020z 22222202
BEEEEE BEEEEEHE
afzfz2f2T2T2zT2Tz [z[z(z[2]2[z2[z
(2 20ofaf2l2]2]2Mz]2]202]2]2
A AAaAE BHEEEE
ssfz 222220202020z [2]z]2]2
ml2z2f2]2z]202]2]202]2 [Jz2]z]2
22222202202 2]2]2/@M2]2
222721222222 z2[2]2 [z
wlz[2[2[2]z[z[z[z[zz[z[z]z2[2

Figure 10.10: Connectivity Matrix.

Some auxiliary functionalities were included, such as Dijkstra algorithm

between a pair of nodes [37], and the global cost of the graph.

10.4 Validation Tests

The goal of this section is to perform validation tests for the different
algorithms that were implemented during this thesis. First, validation tests
for Greedy algorithm and the three local searches of our VND proposal takes
place. Then, we consider six small-sized networks in order to determine the
correctness of our RVR implementation. The networks were selected in order
to find the exact network reliability analytically, and thus compare the RVR
estimation easily. It is worth to remark that here we not present the results
of the algorithms (shown in Chapter 7), but only test validations are
performed, using a graph generation algorithm. In this way, a random graph
generation allow us to achieve random test cases, and these graphs do not
depend on the algorithm to test. Recall that the results considered
well-known test-cases taken from TSPLIB [90].

115

10.4.1 Greedy Construction

Several test-cases were applied for our Greedy construction [31, 96]. Given
that this algorithm is not deterministic, we considered small graphs. Here, we
illustrate one validation. All the tests for the mentioned algorithms as well as
other implementations can be found in the class Test.h. Figures 10.11-10.15
illustrate the operation of Greedy algorithm |31, 96]. Its correctness under
several test-cases was confirmed. In the example, the ground graph Gpg has
cost equal to 100 (see Figure 10.11).

Figure 10.11: Validation of Greedy Construction: ground graph Gp.

At the beginning, the solution consists of terminal nodes only, finding node-
disjoint paths between terminal nodes iteratively; see Figures 10.12-10.14. A
low-cost feasible solution is met after Greedy execution. Its cost is equal to
30. The reader can appreciate that at least 2 node-disjoint paths can be found

for every pair of terminal nodes (Figure 10.15).

116

oA I e O
z @ a i
® . @
® 9 ® .0
i) ® 1 o
. E’
O
: @ . 3 E
7 1 @ 2
] d @7 1
' ®
1
@

Figure 10.12: Validation of Greedy Construction.

Figure 10.13: Validation of Greedy Construction.

117

Figure 10.14: Validation of Greedy Construction.

Figure 10.15: Validation of Greedy Construction.

118

10.4.2 Local Search

The VND phase considers three local searches. These algorithms include
randomization, and several validations using small-sized networks were
considered as in Greedy algorithm. Here we illustrate some validations (the

tests for the mentioned algorithms can be found in the class Test.h.)

KeyTreeLocalSearch

Figures 10.16-10.20 illustrate the operation of KeyTreeLocalSearch. The
ground graph G from Figure 10.16 has initial cost of 54. Figure 10.17 shows
that the first selected node is 1. The key-tree is marked with red lines.
Figure 10.18 shows another key-tree that replaces the first one. After this
replacement, the cost of the resulting graph is 51. The second node selected
by the algorithm is node 5. The corresponding key-tree is marked in
Figure 10.19. A contraction of node 5 takes place, since all the branches of
the key-tree go directly to node 7; therefore, node 5 is eliminated. The result
is illustrated in Figure 10.20. The successive steps cannot find new

improvements, and the final cost after this local search is 38.

Figure 10.16: Validation of KeyTreeLocalSearch: ground graph Gp.

119

Figure 10.17: Validation of KeyTreeLocalSearch: Key-Tree

Figure 10.18: Validation of KeyTreeLocalSearch: Replacement

120

Figure 10.19: Validation of KeyTreeLocalSearch: Key-Tree rooted at node 5.

Figure 10.20: Validation of KeyTreeLocalSearch: result after the elimination of
node 5.

121

KeyPathLocal Search

We apply KeyPathLocalSearch over the same ground graph Gg. The cost of
the initial graph is 54. A single key-path replacement takes effect, as it can be
appreciated from Figure 10.22. The cost of the resulting graph is 49.

Figure 10.21: Validation of KeyPathLocalSearch: ground graph Gp.

Figure 10.22: Validation of KeyPathLocalSearch: after the replacement of the
key-path.

122

SwapK eyPathLocal Search

In order to carry out the validation test for SwapKeyPathLocalSearch,
recall that this local search considers the connectivity matrix, since the
remaining local searches do not delete redundancies. In this local search,
some key-paths could be discarded, if the resulting solution is feasible. As we
can appreciate from Figures 10.23 and 10.24, the initial cost is 54 as well as
in the previous validation tests, and the connectivity requirements are 2 in all
the cases. From Figure 10.25 we can appreciate the key-path 0 — 5, that is
replaced by the link {0,1}. The cost of the resulting graph after the
replacement is 48. Figure 10.27 shows that the key-path 6 — 1 is eliminated,
resulting the graph from Figure 10.28, whose cost is 47. Then, the algorithm
eliminates the key-path 9 — 10 and adds the link {2,10} (see Figures 10.29
and 10.30), and the partial cost is reduced to 43. The key-path 1 — 2 from
Figure 10.31 is eliminated, decreasing the cost to 40. Finally, the key-path
0—1—-5—8—4is replaced by the path 0 — 7 — 4, as illustrated in
Figures 10.33 and 10.34. The cost of the final graph is 29. We can appreciate
that the global cost after this local search is much lower than in the
remaining local searches, since the redundancies in the connectivity

requirements are eliminated, preserving feasibility.

Figure 10.23: Validation of SwapKeyPathLocalSearch: ground graph Gp.

123

Matriz de conec.../X]

o 4 10
T 2 2
ol 2 [>
0z [2

Figure 10.24: Validation of SwapKeyPathLocalSearch: connectivity matrix R.

Figure 10.25: Validation of SwapKeyPathLocalSearch: key-path to replace.

124

Figure 10.26: Validation of SwapKeyPathLocalSearch: link replacement.

Figure 10.27: Validation of SwapKeyPathLocalSearch: resulting key-path.

125

Figure 10.28: Validation of SwapKeyPathLocalSearch: resulting graph.

Figure 10.29: Validation of SwapKeyPathLocalSearch: key-path to replace.

126

Figure 10.30: Validation of SwapKeyPathLocalSearch: link replacement.

Figure 10.31: Validation of SwapKeyPathLocalSearch: redundant key-path.

127

Figure 10.32: Validation of SwapKeyPathLocalSearch: resulting graph.

Figure 10.33: Validation of SwapKeyPathLocalSearch: key-path to replace.

128

Figure 10.34: Validation of SwapKeyPathLocalSearch: link replacement.

10.4.3 RVR

Here we provide details of our validation tests for Recursive Variance
Reduction (RVR). The pre-condition is that the implementation does not
present run-time errors, but the potential existence of logical errors were not
discarded, which are avoided during the validation process shown in the
following paragraphs. Six small-sized topologies are presented with different
elementary reliabilities, in which an exact reliability evaluation is analytically
possible. Finally, we compare the exact reliability values with the resulting
RVR estimation, expecting small gaps. The validation tests are based on the
section under the same title presented in the work [75]. The following target

network reliability measures are considered:

e Ry : G —[0,1], or all-terminal reliability measure. This is the probabil-
ity that all the nodes are mutually reachable in the resulting graph.

e R.;:GxV xV —[0,1], or source-terminal reliability measure. This is
the probability that s and ¢ are connected by some path in the resulting
graph.

e Rk : G x K — [0,1], or K-terminal reliability measure. This is the
probability that all the terminal-set K belongs to the same connected

component in the resulting graph.

129

The six validation tests will be presented in order. We will denote R,;, Rx
or Ry to the exact reliability evaluation according to the scenario under study,
R to the reliability estimation using RVR and V to its estimated variance.
The number of independent samples in RVR is selected as N = 10*. Terminal
nodes are represented using black circles, while Steiner nodes are represented

using white circles.

Case I: Single Link

Consider first just a direct link between two-terminal nodes. Figure 10.35
illustrates the network, together with the elementary reliability. The source-
terminal reliability is R, ;(G) = pp/p”. The results from Table 10.1 shows a

perfect estimation of RVR with a null gap, and practically null variance.

/

P
Pe -

Figure 10.35: Single link with simultaneous node/link failures.

Table 10.1: RVR Validation Test: single link

Instance R R 4
p=p =p"=090.729 | 0.729 | 3.13631F — 17

Case II: Two-Path

The second test consists of an elementary path composed by two links, with
elementary reliability p’. The end-points have reliability p, while the central
point has reliability p” (see Figure 10.36). The source-terminal reliability
between the end-points is Ry, = p*(p')*p”. Table 10.2 shows a small gap
between the correct value R, and its estimation R. The estimated variance

is reduced as well.

/ " !

p p p
Pe & Y

Figure 10.36: Elementary path with simultaneous node/link failures.

130

Table 10.2: RVR Validation Test: elementary path

Instance Rs: R Vv
p=p =p"=0.90.59049 | 0.593354 | 3.3341E — 06

In the following cases we consider perfect terminals only, with possible

failures of Steiner nodes.

Case III: Triangle

Consider the complete graph composed by three terminal-nodes, or the triangle
K3, with identical elementary link-reliabilities p (see Figure 10.37). A complete
graph with high elementary reliabilities for both links and nodes is therefore
highly-reliable. Observe that if two or more links fail, the system is down.
Otherwise, the system works. By elementary combinatorics, the all-terminal
reliability is in this case Ry = (J)p® + (})p*(1 — p) = p* + 3p*(1 — p), where
the first term means that no link fails, and the second means that precisely
one link fails. From Table 10.3 we can observe that the gap between Ry and
R is smaller than 1073, and the variance is extremely small, showing a good

performance of RVR, as expected for small-sized networks.

Figure 10.37: Triangle with link failures.

Table 10.3: RVR Validation Test: Triangle

~ =

Instance | Ry R Vv
p=20.9 [0.972 | 0.972473 | 6.21454F — 08

131

Case IV: Triangle with a pending link

Consider a triangle with a pending link presented in Figure 10.38, where the
central node is a Steiner node (and a cut-point, since it disconnect the
network if fails). The K-terminal reliability depends strongly on the
operational reliabilities of the central node and the bridge. A straight
calculation leads to see that Ry = p'p”[p® + 3p*(1 — p)]. From Table 10.4, we
can appreciate that the gaps in the reliability is again smaller than 1073, and

the variance of the estimator is really small.

Figure 10.38: Triangle with pending link. Potential failure in central node.

Table 10.4: RVR Validation Test: Triangle with a pending link

Instance Ry R \%
p=0.9,p =05, p"=0.9|0.4374 | 0.438066 | 3.18052F — 07
p=0.9,p =09, p"=05]0.4374 | 0.437479 | 4.32176E — 07

Case V: Tree

Consider the tree from Figure 10.39, where the terminals are the leaf-nodes,
and all the links and Steiner nodes operate independently, with identical
reliability. In a tree, the failure of only component disconnects some pair of
leaf-nodes. Consequently, the reliability of trees with several components is
reduced, and it is the product of all the elementary reliabilities of its
components: Rxg = p°. From Table 10.5, we can appreciate that both the

reliability gap and the variance are greater than in the previous cases.

132

Figure 10.39: Tree with failures in links and non-leaf nodes.

Table 10.5: RVR Validation Test: Tree-graph

Instance Ry R %
p=0.9 | 0.387420489 | 0.391676 | 1.53487e — 05

Case VI: Wheatstone Bridge

In the Wheatstone Bridge from Figure 10.40, our measure of interest is the
source-terminal reliability R,;. It strongly depends on the elementary node-
reliability p" of Steiner nodes, since these represent intermediate nodes. By
an exhaustive enumeration of pathsets, a closed-form for the reliability can be

obtained:
Ry, = p*p'+p*(1=p)p'+p°p (1=p')+ (1=p)p* () *+p* (1-p)* (P) *+p* (1-p)* (¢') .

From Table 10.6, we conclude that the reliability gaps and variance are

acceptable.

133

Figure 10.40: Wheatstone Bridge with failures in links and a couple of nodes.

Table 10.6: RVR Validation Test: Wheatstone Bridge

Instance Ry R \%
p=20.9,p =05 0.64962 | 0.654653 | 6.7791F — 06
p=20.9,p =09 0.9383688 | 0.937484 | 1.89235E — 06

Comments on the Results

Several validation tests were carried out using different elementary reliabilities
for nodes and links. Some errors were detected during the validation tests,
which served to correct the implementation of RVR with the corresponding
logical modifications. Double-precision arithmetic was used for the operations,

with up to 15 digits.

134

List of Figures

4.1
4.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
7.3
7.4

10.1
10.2
10.3
10.4
10.5
10.6
10.7

GSP-NCHR Source-Terminal Pseudo-code. 24
GSP-NCHR Source-Terminal Pseudo-code with ry, =k > 1,

and edges with uniform costs. o0 25
Pseudocode for the main algorithm: NetworkDesign. 52
Pseudocode for the Construction Phase: Greedy. 53
Pseudocode for Local Search 1: KeyPathLocalSearch [96]. . . 56
Pseudocode for Local Search 2: KeyTreeLocalSearch [96]. . . 57
Pseudocode for Local Search 3: SwapK eyPathLocalSearch [96]. 60
General Template for VND. 61
Pseudocode for our specific VNS proposal. 62
Pseudocode for RVR method. 66
Implementation - Graph Class for Reliability evaluation. . . . 67
Pseudocode for the RVR implementation. 68
Pseudocode for the Structure Evaluation ¢. 68
Brazil58: ground graph Gp.o 78
Brazil58: resulting topology. 78
Berlin52: ground graph Gg. 79
Berlin52: resulting topology. 80
Pseudocode for General _RecConnect [96]. 103
Pseudocode for FindSubstitute KeyPath. 106
Pseudocode for General _Update_ Matriz [96]. 107
Pseudocode for KSP. 0. 109
GraphViewer interface., .. 111
XML Structure.o 113
GraphViewer Application. 113

10.8

10.9

10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20

10.21
10.22

10.23
10.24

10.25
10.26
10.27
10.28
10.29
10.30
10.31
10.32
10.33
10.34
10.35
10.36
10.37
10.38
10.39
10.40

Adding New Node (spanish dialogue). 114

Intuitive way to create edges. 114
Connectivity Matrix. 0oL 115
Validation of Greedy Construction: ground graph Gg. 116
Validation of Greedy Construction. 117
Validation of Greedy Construction. 117
Validation of Greedy Construction. 118
Validation of Greedy Construction. 118
Validation of KeyTreeLocalSearch: ground graph Gg. 119
Validation of KeyTreeLocalSearch: Key-Tree 120
Validation of KeyTreeLocalSearch: Replacement 120

Validation of KeyTreeLocalSearch: Key-Tree rooted at node 5.121
Validation of KeyTreeLocalSearch: result after the

elimination of node 5. 0oL 121
Validation of KeyPathLocalSearch: ground graph Gp. 122
Validation of KeyPathLocalSearch: after the replacement of

the key-path. L oo 122

Validation of SwapKeyPathLocalSearch: ground graph Gp. . 123
Validation of SwapKeyPathLocalSearch: connectivity matrix

R. 124
Validation of SwapKeyPathLocalSearch: key-path to replace. 124
Validation of SwapKeyPathLocalSearch: link replacement. . . 125
Validation of SwapKeyPathLocalSearch: resulting key-path. . 125
Validation of SwapKeyPathLocalSearch: resulting graph. . . 126
Validation of SwapKeyPathLocalSearch: key-path to replace. 126
Validation of SwapKeyPathLocalSearch: link replacement. . . 127
Validation of SwapKeyPathLocalSearch: redundant key-path. 127
Validation of SwapKeyPathLocalSearch: resulting graph. . . 128
Validation of SwapKeyPathLocalSearch: key-path to replace. 128
Validation of SwapKeyPathLocalSearch: link replacement. . . 129

Single link with simultaneous node/link failures. 130
Elementary path with simultaneous node/link failures. 130
Triangle with link failures. 131
Triangle with pending link. Potential failure in central node. . 132
Tree with failures in links and non-leaf nodes. 133

Wheatstone Bridge with failures in links and a couple of nodes. 134

136

	Acronyms
	Introduction
	Context
	Problem
	Goals
	General Goal
	Specific Goals

	Expected Results
	Methodology
	Conclusions
	Structure of this Thesis

	Background
	Concepts on Network Optimization
	Graph-Theoretic Terminology

	Problem Definition
	Motivation
	Choosing a Metaheuristic
	Choosing a Reliability Evaluation Method
	Problem Formulation

	Problem and Analysis
	Model
	Hardness
	Special Sub-Problems
	Minimum-Weight k-Connected Spanning Networks with Reliability Constraints
	MWKECSNP ILP Formulation based on Bienstock Theorem
	Particular case k=2

	Related Work
	Topological Network Design
	Network Reliability

	Algorithms
	Network-Design
	Construction
	Local Search
	Local Search 1: KeyPathLocalSearch
	Local Search 2: KeyTreeLocalSearch
	Local Search 3: SwapKeyPathLocalSearch

	Variable Neighborhood Search (VNS)
	Recursive Variance Reduction (RVR)

	Results
	Introduction
	Description of the Test-Set
	Numerical Results
	Resulting Topologies

	Key Questions

	Conclusions
	Future Work
	Bibliography
	Appendix
	Feasibility - Local Search Phase
	Feasibility - Construction Phase
	Graphical Tools
	Validation Tests
	Greedy Construction
	Local Search
	RVR

	List of Figures

