
state-of-the-art results in most datasets. We also explore 
different Deep Learning architectures for this task such as 
Convolutional Neural Network (CNN) and Graph Convolutio- 
nal Network (GCN) architectures and their combination. We 
show that using residual connections improves performan- 
ce but that in some cases FCN outperform CNNs. In the GCN 

Genome enabled prediction of complex traits aims to pre- 
dict a measurable characteristic of an organism using their 
genetic information. We benchmarked several popular Ma- 
chine Learning models: Bayesian and penalized linear regre- 
ssions, kernel methods, and Decision Tree ensembles. Thro- 
ugh exhaustive hyperparameter tuning we outperform
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trait prediction is formulated as a node regression problem on 
a population graph. We evaluate the transferability of these 
graphical models and find that the extent to which they 
exploit neighborhood information is limited. 
A Python library is in process to be released at 
github.com/farielberry-lab.
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● Hetereogeneity in heritability, genetic 
architecture, marker and sample. 
dimensions among datasets enhances 
model performance analysis. 

● Model performance showed high 
variance with respect to train/test splits.

● Hyperparameter tuning alone enabled 
surpassing the state of the art in Jersey, 
Yeast and Wheat datasets (not shown). 

● Holstein proved to be more challenging.

Something old: Evaluation of classical methods for benchmarking
● Individuals (n): 5024 German Holstein bulls.
● Genotypes (p): 42.551 SNPs after quality control filtering.
● Phenotypes: somatic cell score (SCS) and milk yield (MY). 
○ SCS is governed by many small effect loci.
○ MY is determined by a few moderate effect loci and 

many small effect loci
● Experiments were repeated 10x using random splits.
○ Hyperparameter searches and fine tuning were done 

using randomized five-fold cross-validation.
○ Results can be found on https://www.comet.ml/dna-i 

Dataset and experiments settings

Something borrowed: Convolutional Neural Networks (CNN) + Residual CNN (ResNet)
● CNNs are a classical architecture used in image analysis.
● AlexNet-like CNN, residual CNN, with their corresponding 

single and multitrait variants were tested.
● The ResNet made the difference in MY prediction.

Something new: Graph Convolutional Networks (GCN) 

● You can't win them all.
● Grid search and fine tunning parameters is crucial. Out of 

the box methods will not (ever) work.
● There is still room for improvement with non-linear deep 

learning methods and ...
● ... massive amounts of data and computational power.

Conclusions
● Build a graph with an individual's parameter in nodes and a 

similarity measure between nodes as edge's weights.
○ CNN output in each node

● Define a convolution supported in the graph for data 
aggregation.
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