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Genome enabled phenotype prediction consists of predicting an individual’s physical 
characteristics from its genotype and environment. Accurate trait prediction plays an 
important role in fields such as medicine, agriculture and animal breeding. Moreover, 
sequencing techniques are as powerful and cheap as ever. Still, developing 
high-performing, general predictors remains an unsolved task. Population  structure,  
complexity of traits,  number of samples and SNPs all present significant differences
between datasets, thus affecting model performance.
In this study, we evaluate and compare the performance of four different algorithms 
on plant and animal datasets. These algorithms are Ridge regression, Gradient 
Boosting Machines (GBM), Random Forests (RF), and Support Vector Machines 
(SVM). We outperform the state of the art results in each dataset through an 
exhaustive randomized hyperparameter search. This result shows the importance of 
proper hyperparameter optimization.
Furthermore, we assess the impact of marker encoding by comparing additive and 
one-hot approaches. In addition, we evaluate the importance of marker density by 
eliminating random marker subsets from the genotype matrix. We conclude that 
all models present a negligible loss in performance until a very high portion 
(~95%) of them are missing. 
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Introduction Additive versus One-hot encoding

The plots above show surprising results: in the yeast dataset, performance  remains 
unaffected up until almost all markers (95 percent and above) are deleted, after 
which it rapidly declines.  This may be explained by two factors:  high linkage 
disequilibrium and low amount of quantitative trait loci (QTL). From a signal 
processing point of view, the former means that chunks from the genome (input 
signal) are highly correlated and thus, most markers are redundant. Consequently, 
removing  these  markers  has  little impact on predictive accuracy.

Conclusions and main takeaways

This work was partially funded by project ANII FSDA 
1-2018-1-154364. The experiments presented in this work 
were carried out using ClusterUy  (site: https://cluster.uy)..

This experiment consists of randomly selecting a portion of the genotype's markers 
and deleting them (same markers for all individuals, with an uniform distribution). 
Sequencing techniques are as potent as ever, enabling ever growing sampling rates. 
Although denser sampling may seem beneficial at first glance (more information is 
better than less information), linkage disequilibrium means many of this markers are 
redundant. Moreover, the increase in the input's dimensionality should be matched 
with more sequenced individuals, which is not always the case. This experiment aims 
to evaluate the extent to which denser sampling impacts the model's performance. 
The proportion of deleted markers ranged from 10 all the way up to 99 percent.

Robustness to random marker elimination

Results of the missing markers experiment. The experiment was ran for the yeast dataset, testing each 
model across 10 different splits in 12 of the 46 environments. Each split’s relative change in performance 
(w.r.t. the uncontaminated dataset) is averaged across all environments. The softer lines represents each 
split’s individual results, while the bolder one is the mean across all splits.

Results
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Data description

The results are showcased in the charts below. We only show one environment per 
dataset for clarity purposes. It is important to note that the best performing model 
varies depending on the environment in which the phenotype was measured. For 
each dataset, we compare with the best results available in the literature [1, 2, 3, 4]. 
Each point represents a different train/test split.

We evaluate the models in two plant and two animal datasets: yeast yield, wheat 
yield, Holstein cattle milk yield, and German bulls sire conception rate. 
The yeast dataset contains 1008 individuals with 11,623 binary markers each. Each 
individual was measured in 46 different environments. Yeast is an haploid organism.
The wheat dataset is the smallest one with 599 individuals and 1,447 markers and 4 
different environments. Markers with an allele frequency lower than 0.05 or greater 
than 0.95 were removed, which resulted in 1279 total markers.
The Holstein cattle milk yield dataset consists of 5,024 bulls with 42,551 markers, 
measured in a single environment.
Lastly, the German bulls sire conception rate dataset is made of 1,569 bulls, 
featuring 107,371 markers each. Markers that mapped to sex chromosomes, had 
minor allelic frequencies below 1%, or had a call rate of less than 90% were removed, 
resulting in a total of 95,434 markers.

Results obtained for each model and dataset. 

We consistently outperform previous state of the art results via an exhaustive, 
randomized random hyperparameter search. Even simple models such as Ridge 
regression achieve competitive performance when optimized properly.
Notice the high variability between different splits and the presence of major outliers, 
particularly in the German bulls dataset. This phenomena is mainly caused by the 
incredibly low sample to dimensionality ratio. In the German bulls dataset, this ratio 
is 1569 / 95,434 = 0.016.
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Additive encoding achieved consistently better performance in all three diploid 
datasets. This is an interesting result since markers are categorical variables in 
nature. This performance drop may be caused by the duplication in dimensionality as 
well as the loss of the one-to-one correspondence between variables and biological 
markers. Moreover, we hypothesize that the linkage disequilibrium phenomenon 
further impacts the model’s ability to recognize important markers when the 
genotype is one-hot encoded, since there’s twice as much highly correlated columns.

There’s no single best model that maintains a consistent performance across all 
datasets or environments. However, gradient boosting machines and support vector 
machines tend to produce the most consistent, high-performing results. Model 
ensembling is a promising alternative that could yield more robust results. 

Models in this particular task are very sensitive towards hyperparameter tuning. 
Regardless of the model, exhaustive hyperparameter searches are worth their high 
computational cost. The difference between a poorly and a well tuned model can be 
extremely high. To this end, more sophisticated searching techniques (such as 
bayesian approaches) may yield even better performance.

Regarding marker encoding, the classical additive approach remains better than its 
one-hot counterpart. Other techniques such as target encoding, which keeps the best 
of both worlds (same dimensionality while treating markers as categorical variables), 
are worth exploring.

Lastly, although sequencing techniques are allowing more markers to be sampled, 
this increase shows diminishing returns. These results highlight the impact of the 
number of samples over sample density in this particular task.


