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Abstract—In the continuous fight against Bellman's Curse of Dimensionality, this work presents the first steps towards  learning the
Optimal Operation Policy of the electricity generation system of Uruguay, Brazil, Paraguay and Argentina with the infrastructures
projected  for  the  year  2030.  The Operation Policy  under  consideration  involves  76 state  variables:  one associated  to the  surface
temperature anomaly of the Pacific Ocean in the N34 area, and 75 related to the hydroelectric reservoirs. The proposed methodology
includes the design and training of  two alternate neural network architectures combined with modern techniques devised for variance
reduction and exploration, which were key to the success achieved.

Keywords—Approximate Stochastic Dynamic Programming,  Reinforcement Learning, Machine Learning, Optimal operation of
hydrothermal systems.

I. INTRODUCTION

THE optimal operation of hydro-thermal systems has been a challenge for decades for the operators of the electro-energy
systems. This is a specially important topic for Latin American countries, which are characterized by a high hydroelectric
component. Programming  the operation of an electro-energy system involves determining which resources will be used to
guarantee the supply of the energy demand in the following hours, days, months, years, so that the overall cost is minimized
and quality and safety standard are complied with. In the presence of energy reservoirs (e.g., hydroelectric lakes), the problem
becomes a Stochastic Dynamic Programming (SDP) problem. In 1957 Richard Bellman published [1] a detailed solution to
the SDP problem which is now known as the Bellman recursion. In the same publication, Bellman stated that the solution
suffers from what he called the "curse of dimensionality" which expresses that the proposed algorithm quickly becomes
unusable with the increase in the dimension of the space of states of the system and the stochastic processes to be considered.

One of the seminal works in the fight against the Bellman Curse is [2], in which the technique known as Stochastic
Dual  Dynamic  Programming  (SDDP),  widely  used  in  Brazil,  is  developed.  The  approach  used  by  SDDP  is  based
approximating the Future Cost function based on a series of successive relaxations. In each iteration, the Lagrange multipliers
associated with the dynamic constraint of the system allow, in theory, to adjust the representation of the Cost-to-go function
(also called state value function) by adding, to the approximate representation, planes tangent to said function. The method is
elegant because it has a convergence criterion associated with obtaining an upper and lower bound for the expected cost of the
future operation in the deterministic case. In the case of systems with relevant random components, the technique suffers from
problems similar to those of the Bellman curse due to the need to apply successive approximations on a tree of possible future
scenarios.  Although  some  techniques  have  been  proposed  to  reduce  the  variability  of  solutions  [3] with  the  massive
incorporation of variable renewable energy, the representation of stochastic processes becomes of paramount importance and

therefore it is expected that the SDDP technique must be improved.
Another strategy to solve the SDP problem approximately is known as Rolling Horizons (RH)  [4].  This strategy has

advantages when it comes to resolving the use of resources in a relatively short time horizon.  This method performs a forward
exploration step after which, with the information gathered, the time step is advanced and a new exploration is performed with
a new time horizon.  The success of the strategy relies on the hypothesis that there is a time horizon after which the decisions of
the present have no effect and therefore it is possible to decide a present action by evaluating  the consequences over a limited
horizon. In practice, in systems with reservoirs capable of storing energy for months or years, the aforementioned hypothesis
clearly does not hold, and the Operation Policy achieved is far from optimal.
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Traditionally, the problems derived from Bellman's Curse of Dimensionality were exclusively of hydro-thermal system
operation.  Nowadays, with the trend towards decarbonized systems,  variable energies and energy stores, the operators of all
systems are joining the cause against this curse  [5], [6] and [7].

In [8], after comparing different Approximate Dynamic Programming alternatives, the authors conclude that  "none of these
techniques works reliably in a way that would scale to more complex problems". Our work challenges this view by developing
a system capable of operating a complex electro-energetic system in a satisfactory way By learning an optimum Operation
Policy (OP) through a reinforcement learning loop.This work can be sseen as an extension of  [9] , where the authors presented
a success case of learning the optimal operation of an energy system in Uruguay. In the present work, the problem is scaled to
consider the joint operation of the systems of Uruguay, Brazil, Paraguay and Argentina, with the infrastructure projected for the
year 2030. The work [9] implies the learning of an OP in a state space of 6 dimensions, whereas in the present case, the state
space has 76 dimensions.

II. NOTATION

The dynamic of the power system is modeled as in (1), where k  is an integer that identifies the time-step, Xk  is the
state-vector of the system at the beginning of the step k , rk  is the vector of non-controlled inputs (like rainfall, wind,

etc.) and uk is the vector of controllable inputs (typically the power to be delivered for each generation unit, or power line).

Xk +1=f (Xk , rk ,uk , k) (1)

The funcion (2) represents the cost of operation during the step  k  as the sum of the fuel consumed by the thermal
generators, the imports minus the exports, and any other operational cost including the cost of rationing, in the event that not all
the energy demand is fulfilled.

ck=c( Xk , rk ,uk , k ) (2)

 The OP (3) is a mapping  that assigns a control vector uk  to different values of the system state and the non-controlled
variables at step k .

uk=OP ( Xk ,r k , k ) (3)

Let  J ( X s , k+1 ) be the state-value function. This function represents the expected value of the optimal future operation
beginning at state  X s. The  Optimal Operation Policy  is  the one  that  minimizes the expected value of the sum of (2)  and

J ( X s , k+1 ) and corresponds to the solution of the optimization problem:

(4)

Notice that equations (1)-(3) assume that the non-controlled inputs are known at the begging of each time-step, but nothing is
assumed about the future of them.

The non-controlled inputs are modeled as random process without memory (white noise) with given distributions. If the
random processes need to be modeled with dynamics, a corresponding model with its state variables is incorporated in (1) and
the white noise that feeds such models is represented in the rk vector. Notice that, whether or not to consider dynamics in
the random processes involved may depend on the time scale of the steps. For a time-step of one hour, the wind power must be
represented as a process with dynamics because the wind can not change at the same time in all wind farms of the country
during one hour. There is a strong correlation of the wind power between consecutive hours. But if the time-step is a week or a
month, representing the wind power as a process with dynamics does not make sense.
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J ( X , k )=⟨min
u

{ce ( Xk ,uk ,rk ,k )+J ( X s ,k+1) }

         @|u∈Ω ( X k ,r k ,k )
X s= f ( Xk ,uk ,r k ,k ) ⟩

rk



III. THE LEARNING LOOP

Knowing (1) and (2) and having an initial estimation of J, it is possible to simulate possible realizations of the
operation of the system. In our case, to perform the simulations we use the SimSEE [10] platform. Carrying out a set of

simulations, adding for each trajectory the costs actually incurred, a new estimation of the function J is obtained. Fig. 1 shows
that learning loop.

At  the  end  of  each  set  of  simulations  there  are  trajectories  of  the  type:  (Xki , Jki
h )  where  the  subscript

k=1.. NSteps  denotes the time step and the index  i=1 ...NTrajectories  the number of the simulated trajectory (or

realizations). Each trajectory is determined by an initial state  X1 i  and by a random seed that uniquely determines the

performance of all stochastic processes during the simulation of that trajectory. The J ki
h

 values are calculated from the

simulation result and the Jh−1 ( X ,k ) estimate using the equation:

J ki
h= ∑

p=k

p=k+nTD

q( p−k )ceki+qnTD+1 Jh−1( X(k+nTD+1 ,i )
s , k+nTD+1)

(5) 

Where q  is the money discount factor and ceki  is the cost incurred in stage k  of the simulation of trajectory i

computed with (2) and X (k+nTD+1 ,i )
s =f (X (k+nTD ,i) , rki , uki , k ) , that is the state projected by (1). 

The nTD  (number of time-difference steps) determines the numbers of ceki  added in the sum of the (5).
So far the proposed formulation is standard, the details described below on the initialization of the trajectories, the

evolution of the state of the system in sections of nTD steps within the trajectories, the use of Common Random Numbers
and the modeling of the variations of the state value function are, in our opinion, what makes the difference between whether
the Robot learns or not.

A. Initial states, random seeds and trajectories

At the beginning of each simulation stage, a set of initial states and random seeds is fixed and the trajectories are
initialized with the cartesian product of both sets. For reasons of variance reduction, the information of each random seed is
treated separately. This brings with it the need to consider a set of different initial states, so that the trajectories associated
with the same random seed are different and therefore manage to collect information.

B. Where is the OP information?

Note that in determining the control vector  uk  in the problem of (4), the absolute value of function  J  is

irrelevant. The control solution is the same if we add a constant value to J . The OP's information is found in directional

derivatives  ∂
∂ X

J .  Taking  this  into  consideration,  the  representation  of  J  is  adjusted  to  represent  the  differences

J ki−J kj  for each set of new information instead of J (X ki , k) . 

C. Common Random Numbers (CRN)

As shown, the important thing is to represent the differences of the value function of the state by the movement of
the state (possible in a time step as a consequence of the control action). In the case of generation systems, the J-value
function is a distribution with a huge dispersion compared to the possible variation of its expected value by movement of the
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Fig. 1: The learning loop.



state  in  a  time step.  For  this  reason,  the  comparison  of  the  J (X k
i , k )−J (Xk

j , k )  differences  through simulations
requires the use of variance reduction techniques such as the use of CRN. This is a key aspect, it is decisive!, as is mentioned
in [11].

D. State evolution mode

In order to apply (5), the system must evolve following the dynamics of (1) during simulation. Fixing the value of
nTD  in our algorithm, it is determined during how many steps, within each simulated trajectory, the system will evolve

according to (1). For ex. if  nTD=30 , the trajectories will start with an initial state and an average of 30 steps will be
simulated, evolving the system according to (1) and after those 30 steps, the position of the system will be fixed (for each
trajectory) in a new randomly determined state to continue with the system dynamics for another 30 steps and so on until the
entire simulation horizon is covered.

In each iteration of the learning loop, (5) carries information nTD  steps from the future to the present. In that

sense, the longer the time horizon considered, the more iterations of the learning loop will be necessary for J h(X , k )  to

reflect the future consequences of moving the state. In this sense, increasing the nTD  parameter would seem convenient.
In the example case presented, with multi-annual reservoir stocks, the consequences of the decisions are observed for at least
the following 3 years. With a weekly step simulation, if nTD=1  were set this would imply at least 52*3 = 156 iterations

of the learning loop for the relevant future information to reach the present at least once. On the other hand, if nTD=156
were set, in one iteration there would already be information on the possible future consequences within 3 years. But possibly,
depending on the time constants associated with the state variables, the trajectories associated with the same random seed,
although associated with different initial states, converge to a single trajectory, thus losing the ability to collect information on
the spatial differences of the state value function. This is why it is important that the nTD  value be less than the emptying
time of the lakes for which an operation policy is to be formed.

In the implementation carried out, the sections of steps with evolution according to the dynamics of the system are
randomly offset for each group of trajectories associated with the same random seed at the beginning of each iteration of the
learning loop. With this, it is possible to cushion more quickly the effects caused by the consideration of said sections.

IV. PARAMETRIC NETWORK SERIES

Luckily for  us,  the signals  and processes involved in the planning of energy dispatch usually exhibit  smooth regular
patterns. This can be exploited to impose parsimonious approximations which extrapolate reasonably to unseen states. Our
proposed method combines the flexibility of Neural Networks (NNs) with prior information about the problem. In a nutshell,
the value function, which is a function of state and time, is approximated by a time-step neural network. The architecture of the
network is the same for all time slots, reflecting the fact that the structure of the system itself does not change abruptly. The
parameters vary across the networks, although in a controlled way: the variation of each parameter is penalized during the
training process. 

The general idea is depicted in Fig. 2.

In generic form, we can represent the estimate of the value function of iteration h  as:

J h(X , k )=M ( X , k ,θk) (6) 

Where θk  are vectors of fitting parameters for our model, that are trained by minimizing the following loss function:

L=∑
k , g

Lkg+λ∑
k

‖θk‖
2+β∑

k =2
‖θk−θk −1‖

2 (7) 

Where, the elements of the first sum have the expression:

Lkg=
1

4 N2 ∑
i≠ j∈g

((M ( Xkj ,θk)−M (X ki, θk))−(J kj−Jki))
2 (8) 

Where g  is the set of indexes that identify the trajectories associated with each random seed. As already mentioned, the
information collected during the simulation is used to adjust the model based on the spatial differences of the value function
associated with the same random seed.

The second summation in (7) corresponds to a Ridge regularization on the set of parameters with weight λ .
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And  finally  the  third  summation  corresponds  to  the
regularization that  penalizes  the  abrupt  variation of  the  model
parameters with the passage of time with weight β .

The  learning  starts  with  a  Null  Policy  (NP)  defined  as:

J 0(X , k )=0  for  all  state  and  time.  This  would  be  the
Operation Policy  with  zero  derivatives  in  all  directions  of  the
state space. The NP is not as silly as it may seem at first glance,
because the operating restrictions of the hydroelectric lakes are
represented in the dispatch problem as restrictions with penalties
for going below certain levels, which put at risk the availability of
power from hydroelectric plants, and by restrictions that penalize
the operation at high levels due to the effects of flooding of the
lake on the surrounding lands. The penalties are established in
MUS$/(m.day) which leads to the fact that even with the NP, the

operation is generally within the reasonable operation zones.

The expected value of the future cost of operation using the NP, estimated by simulating the operation on a set of 100
realizations of the stochastic processes, resulted in: kMUS$ 28 (twenty-eight thousand million dollars). Value that will be used
as a point of comparison of the operation policies learned by the Robot, based on simulations on the same set of realizations.

A. Why not a single net?

Naturally, one could use a single parametric function to model the whole value function across all time steps. We carry out
tests defining a single NN for the entire time horizon, adding inputs representing the time and the first five annual harmonics to
allow the Robot to have the notion of the time location and adapt to the annual cycles. Two time inputs marking the distance
(with exponential  decay)  to  the start  and end of  the simulation horizon were added to allow the Robot  to  adapt  to  the
availability of forecasts (at the start) and to the end of the horizon (end times, emptying of the lakes). After 200 iteration of the
learning loop with this NN structure the achieved cost-to-go was of kMUS$ 26, this is a  7% reduction from the null policy.

The structure of a NN per time Fig.2 , with a hidden layer of 12 neurons followed by a output layer of one neuron. This
structure achieved a cost-to-go of kMUS$ 21 after 20 iteration of the learning loop, this is a 25% reduction from the null policy.

From these two tests we said that the structure of Fig.2 is better that a single NN with time positioning inputs, but we will
still  continue  testing  both  structures,  since  for  some  systems  in  particular,  in  shorter  time  horizons  such  as  weekly
programming, the structure of a single neural network may be competitive.

Additionally, the possibility of using the β  parameter to soften the control actions indicated by the operation policy is
an attractive instrument for system operators. As an example, it is not to be expected that the value of water in a reservoir can
change radically from one hour to the next. This type of regularization on the parameters can be introduced by the model
structure organized in a time-step model.

V. MODELING OF ELECTRO-ENERGY SYSTEMS

The complete generation of the four countries (Uruguay, Argentina, Paraguay and Brazil) was modeled, identifying the
following regions,  which can be identified in  Fig.3 ,  in  the modeling:  UY:  Uruguay.  AR_ComPat:  South of  Argentina
including Comahue and Patagonia demand. AR_Mer: The rest of Argentina (Center and North). Corresponds to the area of
greatest demand. PY: Paraguay. BR_SE: Brazil South-East. Corresponds to the area of greatest demand. BR_S: South Brazil.
It corresponds to the area of Rio Grande do Sul including Porto Alegre. BR_NE: Brazil Northeast. BR_N: North Brazil. The
BR_Fic region is a fictitious region used to reflect the restriction of transmissions within Brazil. 

The detailed parameters of the different generators were obtained from the different sources detailed below. Likewise, the
information corresponding to the historical series of Demand and water flows to the different hydroelectric plants that allowed
the construction of the corresponding stochastic models.

For Uruguay, the model (SimSEE) was obtained from the ADME website [12] corresponding to the 2022 Supply Guarantee
Report that models the system until the year 2030.

For Argentina, information was obtained from the CAMMESA seasonal programming database [13], supplemented with
information from the Energy Transition Plan [14] of the Ministry of Energy to have the system configuration for the year 2030

(scenario called REN 20).

For Paraguay, the two most important hydroelectric plants,
Itaipú and Yacyretá, were included when modeling the system of
Brazil and Argentina respectively. Two additional hydroelectric
plants were considered. The Acaray hydroelectric plant, modeled
as a run-of-river plant, with 4 units of 70 MW, adding two units
in 2030 and one hydroelectric plant, modeled with a reservoir, on
the Iguazú River of 100 MW from the year 2028. The rest of the
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Fig. 2: Parametric network series.

Fig. 3: Set of interconnecting nodes and arcs used in
SimSEE to model the four countries.
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information on the current system was obtained from the ANDE website, in particular, from the Generation and Transmission
Master Plan 2021-2040 [15], [16].

The information for Brazil was obtained from the database of the monthly programming for December 2021 [17] published
by the CCEE, covering until the year 2025. This configuration was complemented with the information from the Plano Decenal
de Expansão de Energia 2031 [18].

VI. MODELLING REGIONAL EXCHANGES

Currently there are two types of exchanges between countries. Some based on agreements associated with the construction
of large infrastructures, such as the Salto Grande, Itaipú and Yacyretá hydroelectric plants, and others based on occasional
offers. The logic with which the latter occur has been changing and will surely change in the future. 

Each country values the water in its reservoirs, prioritizing its use for national demand, and only those resources that do not
compromise national supply are traded in occasional exchanges.

In order  to  give a  signal  about  the resources available  for  both modalities,  it  was decided to  evaluate  as  occasional
exchanges those that occur between the countries when the difference in marginal costs exceeds 60 US$/MWh. Additionally,
the  energy  spilled  by  each  country  but  that  could  have  been  generated  (turbinable  spills  hydraulic,  wind,  solar,  etc.)  is
quantified.

VII. SOME RESULTS

The Fig.4 shows the expected value of the annual marginal cost, by time slot, in each area represented (Nodes in Fig.3). The
resulting values are compatible with those projected for 2030 by the respective countries. In the case of Paraguay, the marginal
cost is almost equal to that of the south-eastern region of Brazil, to which it is strongly interconnected. Since Paraguay has a
surplus in energy, the marginal cost reflects the loss of income from exports for the supply of 1 MWh of incremental demand.

The Fig.5 shows the volumes
of  energy  that  make  up  the
annual  balance  for  the  four
countries. 

The  Sink  category
corresponds to the energy spilled
that could have been turbined if,
for  example,  the  occasional
exchange  were  allowed  with  a
difference  of  marginal  costs
lower  than  the  simulated  value
of 60 US$/WMh. 

The category TVC_0 corresponds to the energy from thermal power plants associated with co-generation or inflexible
processes that are considered for dispatch with zero variable cost. 

The item TVC_60 corresponds to the energy from thermal power plants, subject to centralized dispatch with a variable cost
less than or equal to 60 US$/MWh. These plants are generally combined cycles fueled by natural gas.

The item TVC_150 corresponds to the energy from flexible thermal power plants, subject to centralized dispatch, with a
variable cost greater than 60 US$/MWh and less than or equal to 150 US$/MWh. These plants are generally combined cycle
fueled with diesel or turbines or motor-generators fueled with diesel or natural gas.

The  Fig.6 shows  the
expected  value  of  international
exchanges  between  the  four
countries for the year 2030.

VIII.  CONCLUSIONS

This  paper  presented  an
application  case  of
reinforcement  learning  applied
to  the  optimal  dispatch  of  a
hydrothermal generation system in a group of four countries with a high integration of hydraulic, wind and solar renewable
energies;  showing  that  it  is  possible  to  achieve  reasonable  operating  policies  even  in  systems  of  the  size  and  level  of
randomness proposed. It is highlighted that for the success of the learning of the Robot, the use of the Common Random
Numbers technique was key to reduce the variance given the level of randomness that the state value function presents, mainly
due to the randomness of hydroelectricity in the countries. considered.
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Fig. 6: Annual excanges [mean-MW].
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Fig. 5: Annual energy balance by country [mean-MW].
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The use of an exploration technique was also key, during the simulations, in which the dynamics of the system are followed
during stretches of pre-established length, at the end of which the system is positioned in random states, within the possible
space, with a distribution that attempts to arrive at a uniform sampling of the values of the state value function.

IX. FUTURE WORKS

One of the best ways to identify/guide future work is to start by identifying the difficulties and limitations encountered.

The main difficulty in the implementation carried out is in the resolution of the dispatch problem in a single MIP-Simplex
with dimensions of more than 5000 variables and of the order of 4000 restrictions. The SimSEE platform has its own MIP-
Simplex solver and for this work it was implemented, that in case the own routine failed, it would call the commonly used
routine of the GLPK project. It was not possible to use only the GLPK routine, since it fails in more cases than SimSEE's own
and sometimes remains in a loop, hanging the Robot. This seems like a minor technical detail, but for those of us who need a
working implementation it is not. The conclusion is that the problem must be divided into dispatch zones, interconnected by
transmission channels, and the dispatch problem must be solved iteratively. We identify this implementation as one of the
necessary future tasks due to the technical feasibility of covering major problems and, additionally, this implementation would
resolve a limitation imposed today regarding the sub-division of the time-stop into equal time bands for all countries. If you go
to a solution by zones with hourly known power-flows by the interconnections, it is possible to use the subdivision into time
bands with different definitions for each zone.

The second observation, on learning loop convergence and on the selection of the structure of neural networks. Since the
learning process is easily parallelizable, it would be easy to launch a cloud of Robots learning the same problem, but selecting a
brain (representation of the state value function) in each iteration of the learning loop based on the shared results among all the
Robots,  thus  mixing  reinforcement  learning  with  the  well-known genetic  algorithms  in  order  to  have  a  mechanism for
improving the representation in addition to learning its parameters.

X. DISCLAIMER

The content of this article is entirely the responsibility of its authors, and does not necessarily reflect the position of the
institutions of which they are part of.
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