
Teaching a Robot the optimal operation of an
Electrical Energy System with high integration of

renewable energies

Ruben Chaer
Facultad de Ingeniería

Universidad de la República
Administración del Mercado Eléctrico

Montevideo, Uruguay
rchaer@fing.edu.uy

Juan Felipe Palacio
Administración del Mercado Eléctrico

Montevideo, Uruguay
fpalacio@adme.com.uy

Vanina Camacho
Administración del Mercado

Eléctrico
Montevideo, Uruguay

vcamacho@adme.com.uy

Pablo Soubes
Administración del Mercado

Eléctrico
Montevideo, Uruguay

psoubes@adme.com.uy

Ignacio Ramírez
Facultad de Ingeniería

Universidad de la República
Montevideo, Uruguay
nacho@fing.edu.uy

Ximena Caporale
Facultad de Ingeniería

Universidad de la República
Administración del Mercado Eléctrico

Montevideo, Uruguay
xcaporale@adme.com.uy

Damián Vallejo
Facultad de Ingeniería

Universidad de la República
Administración del Mercado Eléctrico

Montevideo, Uruguay
dvallejo@adme.com.uy

I Abstract—This work shows different strategies for a Robot to learn the optimal operation of a diverse electrical energy
generation system including resources such as thermal, hydroelectric, wind, solar generators and energy accumulators. The large
number of variables in these systems results in a huge state space. Thus, computing an explicit representation of the cost function
over said space, which is at the heart of most current optimization methods, becomes infeasible. The strategies presented here aim
at solving the aforementioned problem by learning an implicit representation of the cost function over the state space. Another key
idea is to keep the complexity of the representation at a minimum, in order to obtain a solution which captures the most relevant
characteristics of the cost-to-go of the system, with the least possible parameters.

Index Terms—Energy, Optimization, Dispatch, Approximate Dynamic Programming, Optimal Policy Learning.

II INTRODUCTION

The optimal dispatch of energy systems can be posed as a dynamic stochastic optimization problem. In principle, the
optimal operation of such system can be obtained using the classical algorithm, known as Bellman's Recursion [1]. That work
also introduces what is known as Bellman’s Curse of Dimensionality, which establishes that the computational cost of the
Bellman's Recursion algorithm increases exponentially with the dimension of the state space of the system, thus quickly
becoming infeasible.

The advent of renewable energy sources and the diversification of electrical systems has resulted in a significant increase in
the number of additional state space variables. As mentioned, this poses a serious problem to the current solutions in use by
governments to optimize their power operation. The case of Uruguay is no different: its software, known as SimSEE
(Simulación de Sistemas de Energía Eléctrica) [2], has been in use and in active development for several years by the state-run
ADME (Administración del Mercado Eléctrico).

The current implementation of SimSEE already incorporates strategies to alleviate the computational burden. In particular,
it is capable of solving the problem at three different time scales: long-term, to estimate the future balance between offer and
demand; mid-term, to program the use of the water reservoir and the fuel import schedule, and short term, for the dispatch of
the different units and the exportable energy blocks and their minimal prices, in a probabilistic manner, with daily and hourly
details for the next 168 hours. SimSEE also includes the ability to approximate the state space with different number of
dimensions by means of statistical methods (dimensionality reduction). This allows for state space representations of different
dimensions for different time scales, so that the Curse of Dimensionality can be kept at bay.

However, even such techniques are insufficient for coping with the significant increase in state space variables due to the
recent diversification of the Uruguayan power grid. This work presents the first results in an effort to overcome these
difficulties by switching to new state space and cost function representation paradigms beyond linear dimensionality reduction
and uniform quantization of state space variables. We have implemented these techniques directly into SimSEE and tested

them on a simplified state space model; this simplification is done mainly so that the results can be easier to interpret and we
can gain intuition on the properties of the new models.

The rest of the document is organized as follows. Section II defines the general problem and notation. Section III describes
the experimental setting in detail, Section IV shows and discusses our preliminary results, and Section V draws some
conclusions from them.

This work is based on the results of the research project “Planificación de inversiones con energías variables, restricciones
de red y gestión de demanda”, made in 2019-2020 with Uruguay’s Fondo Sectorial de Energía of Agencia Nacional de
Investigación e Innovación (ANII) funding.

III BACKGROUND

Below we provide a brief introduction to the problem of optimal operation and, in particular, to the basic methodology behind
the resolution of said problems, known generally as Approximate Dynamic Programming. See [3,4,5] for more.

We represent the dynamics of a discrete-time as follows:

X k+1= f (X k , uk ,r k , k), (1)

wherek is the time step, X kis the state variable at time step k , rk represents the non-controllable inputs (e.g. rain, wind, etc.),
anduk is a control vector (e.g. power dispatched by each generation unit). We define the cost incurred at a given time step as:

cek=ce (X k , rk , uk , k) (2)

Let J (X s , k+1)represent the expected value of the optimal future operation beginning at stateX s. The Optimal Operation

Policy is the one that minimizes the expected value of the sum of (2) and J (X s , k+1)

(3)

We assume that rk is known at the beginning of the time stepk , so that it is possible to solve the optimization problem of
that time step and thus estimate the expected value by averaging the solutions obtained from pseudo-random ensembles ofrk .

In principle, the Bellman’s Recursion allows for the calculation of J (X s , k+1)for any given stateX sand for all time steps
k by repeatedly solving the minimization in (3). However, most often this minimization does not have an analytic form and
must be solved numerically. Moreover, since the state space is usually continuous, only a finite number of points can be
evaluated. The traditional approach is to uniformly quantize the state space. However, the number of points in the quantization
grid grows exponentially as the dimension of the problem increases, turning strategies such as the one described above
impractical.

Different techniques of simplification of the model have been developed to be able to solve the problem in an approximated
manner [4,5,6]. These techniques include, for example, representing the problem at different time scales, and/or representing
the state space with a reduced number of variables, as is currently done in SimSEE.

The method proposed in this work consists of building an implicit representation of the value functionJ (X , k). More
specifically, we train a Neural Network model on pairs of state-value samples obtained via simulations. The model is
constructed iteratively from an initial representation ofJ (X , k), which provides the dynamics for the simulation performed to
train the next representation. The preceding iterations are performed until the representation converges. This procedure is
depicted in Fig.1.

J (X , k)=⟨min
u

{ce (Xk ,uk ,rk ,k)+J (X s ,k+1) }

 @|u∈Ω (X k ,r k ,k)
X s= f (Xk ,uk ,r k ,k) ⟩

rk

There are two important parameters that control the aforementioned algorithm: one is a learning rate, which defines the
influence of past and new samples in a new estimation of J (X , k), and the number of steps n over which the system is

simulated. In the latter case, the algorithm is usually categorized as being one of Time Differences of order n, or TD(n).

For n=1, TD(1), only the evolution during one time step is considered subject to the system’s dynamics. After that time
step, it is supposed that the state of the system jumps to any new state following different exploration strategies not necessarily
bound to (1). On the other extreme, for an horizon of N time steps, the TD(N) considers the whole chronicle of stats and values
up to N according to the system’s dynamics. Once an operation policy that is close to the optimum is attained, following
through with the system dynamics has the advantage that the system states are visited according to their corresponding
probability. On the other hand, at the beginning of the learning process, it is preferable to explore all the state space because the
probabilities are not known in beforehand. Thus, a good strategy is to begin with TD(1), and to increase n as the iterations
progress and the dynamics are more realistic.

At this point, we note that, during operation, the system needs to solve not one, but many instances of the aforementioned
algorithm, one after another. As the system progresses through time, it is to be expected that consecutive solutions do not differ
very much. We can thus exploit this by allowing our method to use the previous solution as a starting point for running the next
problem; this is called a warm restart, a widely used strategy in these situations.

IV THE EXAMPLE

The purpose of this work is to show the first experiments in learning techniques for a Robot intended to operate an electrical
energy generation system in an optimal form. As first trial system, a simplification of the Uruguayan system was selected. The
simplification includes the real model of the hydroelectric plant associated with the country’s larger reservoir with a storage
capacity of full generation of 3 months, Uruguay’s electrical demand and fuel-fired thermal plants.

One of the state variables is the stored volume in this reservoir. The inflow hydraulic streams to the lake are modeled with
the stochastic model used for the real operation. This model has a state variable which combines information from the state of
the central’s basin and the temperature in the surface of the Pacific Ocean which determines the El Niño and La Niña
phenomena, which imply for Uruguay, bias in more or less rain respectively. The possibility of exporting surplus energy to the
region for 25 USD/MWh was also modeled. For a description of the Uruguayan electrical system see [7].

This simple system has the virtue of having non-linearities represented as the one introduced by the variation of the
effective jump of the hydroelectic plant for the effect of the discharged flow, as well as the non-convexity imposed by the type
of spilling of the plant that starts at a given height of the dam being impossible to spill below said height.

Besides, because the system only has two state variables, it allows to graphically visualize the functionJ (X , k)for each
value of the time step k . Fig.2 shows an example of such visualization. As it can be appreciated, the value function J (X , k)
shows high values for low value of x1 (bottom of the lake) and for low values of x2 (more probability of low flows). Fig.2

shows that in this case the function J (X , k) is not convex so the problem will not be properly handled techniques such as
SDDP [3].

Fig. 1: The learning loop.

Given the system, 100 iterations were executed, with 1000 trajectories each one, of the learning loop using TD(1) and with
the following types of structure for the Neural Network:

 2th1PSmax. It is made up from two neurons with a non linear function tanh in layer 1 and one neuron in the output
layer of the type Ponder Soft Max, which corresponds to the linear combination of the inputs pondered by the
coefficients that the Softmax operation returns with the same inputs.

 2th1th. It is made up from two neurons with tanh saturation function in layer 1 and one neuron with tanh as well in the
output layer.

 4th1th. It is made up from 4 neurons with tanh saturation function in layer 1 and one neuron with tanh as well in the
output layer.

In all of the cases, the inputs are the two state variables explained before and the output is the estimated value of J (X , k).

The system solved with Bellman's Recursion is done using a 10 value discretization of the state variable x1 (reservoir’s
volume) and 5 values of the state variblex2 (hydrological state variable). This discretization carries a spreadsheet of J (X , k)
of10 ×5=50values for each time step k . Table 1 sums up the complexity of each structure of approximation of J (X , k) as
well as the amount of parameters to train on each time step.

Model Complexity

Classic 50

2th1PSmax 8

2th1th 11

4th1th 17

Table 1 -Number of parameters to train according to model per time step

The models of networks have two additional parameters to calibrate the offset and scale of the output.

Fig. 2: Value function approximation of the model 2thPSmax at iter. Nro 200 for k = 80.

SimSEE
Simulation

Simulated trajectories
(k, X, ce, J)

Update Approx.
Learning Rate

J(X,k)

X1

x2

J(X,80)

V RESULTS

Fig.3 shows the cost-to-go of the first 100 iterations of the learning loop of each trainable model and the horizontal dashed
line next to the 10 MUS$ corresponds to the result of the operation with Bellman's Recursion. This value can be considered as
the minimum reachable, even though lower values could be obtained due to the system’s discretization of the state space for the
resolution of Bellman's Recursion it is an approximation to the problem.

Once the models with 100 iterations of 1000 independent realizations of the stochastic processes each are trained, a 100
realizations simulation was performed starting the system from a given initial state and evolving in each one of the 100
realizations respecting the system’s dynamics in a way that the obtained value for the sum of the costs is comparable between
the different models and with the classic solution.

The training begins in all models with the initial valueJ (X , k)=0; ∀ (X ,k) which leads to give a null value to the stored

water given that the value for the future of the stored water is given by −
∂
∂ x1

J (X ,k)=0.

This leads to that in the first iteration, water is used before the thermal plants which ends up emptying the lake and
imposing then that the most expensive thermal plants are dispatched, this could be avoided saving water for critical moments.
The cost of this operation is 350 MUS$ in the two simulated years.

As it can be observed the model with less parameters 2th1PSmax leads to an operation that in the best points of the training
gets to values inferior to 30 MUS$. Models 2th1th y 2th4th both eventually get in some point of the training to the 10 MUS$.

The trainings of Fig.3 are realized with a 0.7 Learning-Rate. This means that the new information on each iteration of the
loop of Fig.3 is pondered with a factor of 0.7 and the previous approximation J (X , k) with the weight 0.3.

Fig. 3: Convergence of the first 100 iterations of the learning loop for each model.

1 10 100
1

10

100

1000

4th1th
2th1th
2th1PSmax
Classic

N° of policy iteration

C
os

t-
to

-g
o

[M
U

S
$]

 It can be observed that in the training, after the 20 iterations the convergence is slow and noisy. To try the effects of the
Learning Rate, the approximation of iteration 80 of the 2th1th model was considered and 100 more iterations were performed
for the same model but with 0.3, 0.7 and 0.95 Learning Rates. Obtaining the results that Fig.4 which shows that the Learning
Rate should decrease as the learning process advances filtering the noise which is inherent to the stochastic processes with
which the next information of each simulation group is obtained.

VI CONCLUSIONS

We have presented preliminary results of the incorporation of a new learning strategy into the SimSEE platform, applied to
a simplified version of the Uruguayan electro-energetic system. Under this scenario, we were able to compare our initial results
with those obtained using the classic approach already in production in SimSEE, based on Bellman's Recursion. In particular,
we were able to obtain results comparable to the traditional approach (using 50 parameters) with as few as 11 model
parameters. It should also be noted that critical parts of the implemented algorithm are parallelizable and easily reusable in the
real operation process, both greatly simplifying the deployment of our proposed solution on a real-time operation of the
system.

VII DISCLAIMER

The content of this article is entirely the responsibility of its authors, and does not necessarily reflect the position of the
institutions of which they are part of.

REFERENCES

1 DYNAMIC PROGRAMMING Bellman , Princenton University Press. 1957.

2 Open Source software platform for Simulation of Systems of Electrical Energy (SimSEE). https://simsee.org

3 Multi-stage stochastic optimization applied to energy planning.pdf Mathematical Programming. M. V. F. PereiraL. M. V. G. Pinto May 1991,
Volume 52, Issue 1–3, pp 359–375

4 Warren B. Powell. Approximate Dynamic Programming. WILEY 2011.

5 Dimitri P. Bertsekas, John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific 1996.

6 Reinforcement Learning: An Introduction. February 28, 2018 Richard S. Sutton and Andrew G. Barto.

7 R. Chaer et al. Handling the intermittence of wind and solar energy resources, from planning to operation. Uruguay's success. 36th USAEE/IAEE
North American Conference, Washington, DC, September 23 - 26, 2018.

Fig. 4: Effect of the learning-rate after the iteration N°80

1 10 100
1

10

100

1000

Classic

2th1th_lr0.30_i80

2th1th_lr0.95_i80

2th1th_lr0.70_i80

N° of policy iteration begining at iteration 80 of 2th1th_lr07

C
os

t-
to

-g
o

[M
U

S
$]

	II Introduction
	III Background
	IV The example
	V Results
	VI Conclusions
	VII Disclaimer
	References

