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ABSTRACT 
 
1. Individual trophic specialisation (ITS) has many important  consequences for 

ecological and evolutionary processes. An old hypothesis highlighting the rel- 
evance of ITS is the niche variation hypothesis (NVH), which proposes that 
populations  composed of trophically specialised individuals have a wider 
population  niche than  populations  composed of more generalist individuals. 
Pinnipeds are a good model to test the NVH because they are mostly gen- 
eralist species, living in  dense colonies, and  exhibiting variation  in  trophic 
niche width among  populations. 

2. We tested the NVH in pinnipeds using longitudinal isotopic data: published 
δ13C and δ15N data obtained from sequential sections of whiskers (vibrissae) 
from individuals belonging to 14 populations. To the best of our knowledge, 
this is the first study evaluating the NVH by using longitudinal isotopic data. 

3. We compiled studies that published raw data on δ13C and δ15N for pinniped 
whisker segments to estimate the within-individual and the between-individuals 
components of variance, the total niche width (TNW), and ITS. One-dimensional 
(i.e. δ13C or δ15N) and multi-dimensional  (i.e. δ13C and δ15N) analyses were 
used. Also, we tested whether  an  evolutionary component  would affect the 
degree  of  ITS  among   pinniped   species  with  different  levels  of  shared 
ancestry. 

4. Our  results indicate that, in line with the NVH, pinniped  populations  com- 
posed  of  more  specialised individuals  tend  to  show  wider  trophic  niches. 
When analysing each sex separately, the hypothesis is supported  for females 
but  not  for males. 

5. We believe that physiological and behavioural differences between sexes may 
explain this  result. In  females, high TNW is mainly related to  greater dif- 
ferentiation among individuals, while in males, it is mainly related to high 
diversity of resources consumed  by all individuals. 
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RESUMEN EN ESPAÑOL 
 
1. La especialización trófica individual (ITS) tiene importantes  consecuencias en 

procesos ecológicos y evolutivos. Una antigua hipótesis que destaca la relevancia 
de ITS es la hipótesis de variación de nicho (HVN), que propone que las 
poblaciones compuestas por  individuos  especializados a nivel trófico tienen 
un nicho poblacional más amplio que aquellas compuestas por individuos 
generalistas. Los pinnípedos  son  un  buen  modelo  para  probar  el HVN  ya 
que,  en  su mayoría, son  especies generalistas que viven en  densas colonias 
y presentan  variaciones en la amplitud  del nicho trófico entre  poblaciones. 

2. Pusimos  a  prueba  la  HVN  en  pinnípedos  por  medio  de  datos  isotópicos 
longitudinales: datos publicados de δ13C y δ15N  obtenidos  de secciones se- 
cuenciales de bigotes (vibrisas) de individuos pertenecientes a 14 poblaciones. 
Hasta donde sabemos, este es el primer estudio que evalúa la HVN utilizando 
datos isotópicos longitudinales. 

3. Recopilamos estudios que publicaron  datos de δ13C y δ15N para segmentos 
de vibrisas en pinnípedos, para estimar los componentes de varianza intra- e 
inter-individual, el nicho total poblacional (TNW) e ITS. Se utilizaron análisis 
unidimensionales (cada isótopo por separado, δ13C o δ15N) y multidimen- 
sionales (ambos isótopos juntos). También evaluamos si los diferentes niveles 
de ascendencia entre  las especies de pinnípedos  afectaron el grado de ITS. 

4. Nuestros  resultados  indican  que,  en  línea con  la HVN,  las poblaciones de 
pinnípedos  compuestas por individuos más especializados tienden  a mostrar 
nichos tróficos poblacionales más amplios. Al analizar cada sexo por separado, 
la hipótesis es sustentada para hembras pero  no  para los machos. 

5. Las diferencias fisiológicas y de comportamiento  entre ambos sexos explicarían 
estos resultados. En las hembras, un  amplio TNW se relacionaría principal- 
mente  con  una  mayor diferenciación entre  los individuos, mientras  que en 
los machos se relacionaría principalmente con una gran diversidad de recursos 
consumidos  por  todos los individuos. 

 
 
 
 
INTRODUCTION 

 
Historically, individuals from  the  same  population  have 
been considered ecologically equivalent (Colwell & 
Futuyma 1971, Abrams 1980). However, it has become 
increasingly clear that individuals of many populations 
cannot be assumed to be homogeneous (Bolnick et al. 2003, 
Bolnick et al. 2010, Ingram et al. 2018). In an ecological 
context, diversification among individuals related to their 
use of different  trophic  resources is commonly  referred 
to  as individual trophic  specialisation (ITS). ITS implies 
that individuals of a single population consume a narrower 
subset of the resources used by the population as a whole, 
once the variation related to age, sex, or distinct morphol- 
ogy is removed (Bolnick et al. 2003). 

Among-individual variation in ecological attributes (e.g. prey 
preferences) could have deep consequences for individual fit- 
ness (e.g. Cucherousset et al. 2011, Kernaléguen et al. 2016, 
Costa-Pereira  et  al.  2019)  and  can  affect population  and 

community dynamics (Bolnick et al. 2003, Quevedo et al. 2009, 
Araújo et al. 2011, Cloyed & Eason 2016) through several 
mechanisms (Bolnick et al. 2011). In this sense, trophic spe- 
cialisation can change the strengths of interspecific interactions 
and food-web structure, and has many important consequences 
for ecological and  evolutionary processes. These community 
changes, in turn, can alter the stability, abundance, and extinc- 
tion risk of populations, as well as the potential for coexistence 
among species (Araújo et al. 2011, Hart  et al. 2016, Costa- 
Pereira et al. 2018). Moreover, it has been proposed that ITS 
could affect the ability of a population to cope with environ- 
mental disturbances (Okuyama 2008, Vindenes et al. 2008, 
Araújo et al. 2011), which could be of paramount  importance 
in the current context of global environmental change. Thus, 
studying trophic variation among individuals can help us un- 
derstand  the ecology and  evolution of populations  (Bolnick 
et al. 2003, Bolnick et al. 2011). 

An old hypothesis highlighting the relevance of ITS is 
the niche variation hypothesis (NVH), which proposes that 
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a population’s niche expansion is achieved by an increase 
in  resource  use variation  among  individuals (i.e. higher 
ITS; reflecting a population  composed of more  specialist 
individuals,       see       below;       Van       Valen       1965, 
Roughgarden 1972). One potential mechanism to explain 
the NVH is intra-specific competition; an increase in 
population abundance leads to top-ranked resources be- 
coming scarce under high competition, making individuals 
expand their diets towards different and, sometimes, less 
profitable resources. The emerging pattern is a low dietary 
overlap among individuals (Svanbäck & Bolnick 2005, 
Bolnick et al. 2007, Araújo et al. 2011). Decades ago, 
studies analysing individual specialisation were conducted 
at the morphological level (Schoener 1986). However, cor- 
relation between morphology and diet is often weak or 
absent,  so  this  approach  to  testing  NVH  is  not  ideal 
(Werner & Sherry 1987). New techniques to study feeding 
habits have been used to test the NVH from estimations 
of resource use variation among individuals, providing 
contrasting results (Bolnick et al. 2007, Costa et al. 2008, 
Bison  et   al.  2015,  Cachera  et   al.  2017,  Maldonado 
et al. 2017). Thus, testing the NVH properly should  in- 
clude a direct estimation of diet diversity at the individual 
level in  relation  to  population  total  niche width  (TNW; 
Bolnick et al. 2007). 

From an operational perspective, ITS is usually estimated 
by decomposing the overall variance in the diet of a 
population  (TNW) into two components  of variance, the 
within-individual component (WIC) and the between- 
individuals  component   (BIC).  The  ITS is  calculated as 
the  ratio  between BIC and  TNW,  which tends  to  be  1 
for populations  largely composed of specialist individuals 
and close to 0 for populations  mostly composed of gen- 
eralist   individuals   (Roughgarden   1972,  1974,  Bolnick 
et al. 2002). 

In  the  last decades, stable isotope  analysis, mainly of 
carbon (δ13C) and nitrogen (δ15N), has emerged as a key 
method  to  investigate trophic  habits in wild populations 
(Forero & Hobson 2003, Perga & Gerdeaux 2005, Crawford 
et al. 2008). Carbon and nitrogen isotopes are used to 
estimate the feeding sources and the trophic position, 
respectively, at  different  temporal  scales, depending  on 
the moment  of production  and  the turnover  rate of the 
tissue analysed (DeNiro & Epstein 1978, 1981, Post 2002, 
Bearhop et al. 2004). Nutrient source, composition, and 
characteristics of primary producers, and regional oceano- 
graphic phenomena  (e.g. occurrence of upwellings) shape 
isotopic landscapes (Graham  et al. 2010) and are propa- 
gated up the food web. In the South Atlantic Ocean, for 
instance,  there  is  an  opposite  latitudinal  trend  of  δ13C 
and  δ15N, where Polar and  Temperate environments  are 
15N-enriched  and  13C-depleted compared  to  the  Tropics 
and  Subtropics  (Graham   et  al.  2010).  Furthermore,   a 

general and  well-known isotopic gradient  exists between 
the 13C-enriched coastal/benthic environment,  where pri- 
mary production is based on macrophytes and macroalgae, 
and the 13C-depleted oceanic region, where phytoplankton 
predominates  (Cherel & Hobson  2007). 

Considering this, isotopic data from metabolically inert 
tissues with continuous growth (e.g. tooth dentin or whisk- 
ers) represent sequential archives that allow the inference 
of foraging tactics at the individual level over long periods 
of   time   (i.e.   Franco-Trecu   et   al.  2014,  Kernalaguen 
et al. 2015b). Carbon and nitrogen isotopic values obtained 
from sequentially sampled tissues (i.e. tissues that produce 
chronologically ordered data) from different individuals 
belonging to a single population allow the characterisation 
of the contribution of each individual to the population 
TNW (Bolnick et al. 2003). In other words, stable isotope 
analysis of  sequential  samples of  a  given tissue permits 
the estimation of both ITS and TNW (Bolnick et al. 2002, 
Araújo  et  al.  2007, Newsome  et  al.  2007)  and,  hence, 
allows the main prediction  of the NVH to be tested (i.e. 
a positive correlation between ITS and TNW). Previous 
studies  testing  the  NVH  through  isotope-based  metrics 
used one-dimensional approaches (i.e. evaluated one iso- 
tope, Maldonado et al. 2017). However, a multi-dimensional 
approach was recently proposed (Ingram et al. 2018), which 
has the advantage of capturing the multi-dimensional  na- 
ture of the trophic niche (Costa-Pereira et al. 2019, Service 
et al. 2021). 

Pinnipeds are a good model in which to test the NVH 
for several reasons. First, they are considered generalist 
species with a diverse diet composition (Smout et al. 2014). 
Second, their ecological opportunity  (i.e. diversity of avail- 
able resources) should differ among populations,  and for 
this reason, they are expected to exhibit variation in TNW. 
Third, they usually form large breeding colonies and live 
in sympatry, which may favour a high degree of intra- 
specific and  inter-specific  competition   (e.g.  Páez-Rosas 
et al. 2014). In  addition,  there  are several studies using 
stable isotope analysis in sequential segments of pinnipeds’ 
whiskers aimed at answering various questions associated 
with trophic  ecology and/or  estimating the degree of ITS 
(e.g. Franco-Trecu et al. 2014, Kernalaguen et al. 2015a, 
b, Botta et al. 2018, Lima et al. 2019, Rosas-Hernández 
et al. 2019). 

We tested the NVH in pinnipeds by using published 
longitudinal δ13C and δ15N data obtained from sequential 
sections of whiskers from different populations. Since most 
pinniped  species are sexually dimorphic,  for populations 
where both  sexes were sampled, we estimated TNW and 
ITS for each population–sex level, following the strict 
definition   of   individual   specialisation  (sensu   Bolnick 
et al. 2003). We analysed data from pinniped species with 
different levels of shared ancestry, so we tested the NVH 
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by using both conventional and phylogenetically informed 
models. Although ITS is mainly driven by ecological con- 
ditions and population size, effects of phylogenetic ancestry 
may influence the predisposition to diversification in trophic 
habits among species. We combined the one-dimensional 
approach, which evaluates each isotope separately, with a 
recently proposed multi-dimensional  approach,  which, in 
our case, integrates information  from two isotopes in a 
single analysis (Ingram  et al. 2018). To  the  best of our 
knowledge, this is the first study evaluating the NVH by 
using longitudinal isotopic data (i.e. several sequential 
measurements for each individual). This is important  be- 
cause this method provides no redundant  information  on 
resource  use by each individual  (in  contrast  to  isotopic 
data  from  different tissues), and  each sample represents 
the diet over a fairly large period of time (in contrast to 
gut content  or  faecal analysis). 

 
 
METHODS 

 
Database description 

 

We  compiled  studies  that  published  raw  data  on  δ13C 
and  δ15N  for  pinnipeds’  whisker segments, by  entering 
the searching terms ‘isotop* AND whisker’ (or ‘vibrissae’) 
in  the  ISI Web of Science, the  Dryad database (https:// 
datadryad.org/),  and the SCAR database (https://data.aad. 
gov.au/trophic/). Also, we included in our database isotopic 
data    from    three    Antarctic   seal   populations    (Botta 
et al. 2018), one fur seal, and one sea lion population 
(Franco-Trecu et al. 2014, Lima et al. 2019), which were 
published, but not available in public repositories. In total, 
we were able to retrieve data for 14 pinniped populations, 
belonging to six otariid and three phocid species (Table 1). 
All these populations were sampled at communal  sites, 
where co-specific share terrestrial ground for breeding and 
aquatic areas for foraging (Table 1, see Appendix S1). 

 
 
Estimation of individual trophic 
specialisation 

 
Many pinniped  species have a strong sexual dimorphism, 
with males being much larger than females (Ralls & 
Mesnick 2009), and  trophic  segregation between sexes is 
commonly observed in these species (e.g. Steller sea lion 
Eumetopias jubatus, Hobson et al. 1997; Antarctic fur seals 
Arctocephalus gazella, Kernalaguen et al. 2015b; and South 
American sea lions Otaria flavescens, Drago et al. 2015). 
Because individuals of different age, sex, or  morphology 
groups  are  expected  to  have  different  niches  (Bolnick 
et al. 2003), the within-individual component  of variance 
(WIC) and the between-individuals component of variance 
(BIC)   were   estimated   for   each   population   and   sex 

separately, considering only adult animals. From these 
values, we estimated the overall isotopic variance 
(TNW=WIC + BIC) and ITS, following the index proposed 
by Roughgarden (1974) and here called ITS (BIC/TNW). 
Pinniped families vary in their whisker growth and reten- 
tion (e.g. McHuron et al. 2016), so inferences made related 
to ITS and TNW have different temporal resolutions. For 
phocids, inferences were made at the intra-annual  resolu- 
tion, while for Otariids, inferences included multiple years. 
 
 
Multi-dimensional and one-dimensional 
approaches 
 
Both  components  of  variance (WIC  and  BIC) and  the 
ITS index were estimated in two different ways. First, by 
a multi-dimensional  analysis, using a generalised linear 
mixed model, with non-informative  priors and 23000 it- 
erations,  of  which  3000 were  burned,  where  δ13C  and 
δ15N were considered as dimensions (Ingram et al. 2018). 
We  used  the  R-structure  posterior  means  as  the  WIC, 
and the G-structure posterior means as the BIC, assuming 
the random  effect of individuals (see Ingram et al. 2018). 
Second, we estimated separately for δ13C and δ15N, through 
the  decomposition  of variances for each population  and 
sex. We assessed differences between sexes in BIC, WIC, 
TNW and  ITS (multi-dimensional  and  one-dimensional) 
by using ANOVAs. 
 
 
Conventional and phylogenetic analyses 
 

Using multi-dimensional  and one-dimensional  (δ15N and 
δ13C)  estimations,  we assessed the  relationship  between 
ITS and TNW via linear models. To evaluate whether 
phylogenetic relationships between species affected the 
correlation between ITS and TNW, we also conducted 
generalised    least     squares     phylogenetic    regressions 
(Grafen 1989). We first built a phylogenetic tree contain- 
ing the nine species under study based on the phylogenetic 
tree published by Higdon et al. (2007). Subsequently, we 
estimated the influence of the phylogeny on  ITS by cal- 
culating  Pagel’s λ,  optimised  using  maximum-likelihood 
transformation.  Pagel’s λ is a measure of the phylogenetic 
signal of the residuals of a regression model, which ranges 
from 0 (no correlation between species) to 1 (correlation 
between    species    equal    to    Brownian    expectations; 
Pagel 1999,  Freckleton  et  al.  2002).  Both  conventional 
and  phylogenetic analyses were conducted  separately for 
multi-dimensional and one-dimensional estimations (δ15N 
and δ13C isotopic values) and were run for three datasets: 
(1)  all sex–population  groups,  (2)  only  males, and  (3) 
only females. One population  of Arctocephalus gazella (fe- 
male individuals from Bird Island) that showed an extreme 
value of TNW was excluded from  the  analyses to  avoid 

https://datadryad.org/
https://datadryad.org/
https://datadryad.org/
https://data.aad.gov.au/trophic/
https://data.aad.gov.au/trophic/
https://data.aad.gov.au/trophic/


5 

V. Franco-Trecu et al. Niche variation hypothesis in pinnipeds  

 

 
 

Table 1. Numbers of male and female individuals and numbers of whisker segments analysed, for each of 14 pinniped populations, belonging to six 
otariid and three phocid species. SD, standard deviation 

 
 
 

Species Location of population n Females n Males 

Total number of whisker 
segments (mean ± SD per 
individual) Source 

 

Arctocephalus pusillus Kanowna Island, Australia 6 6 722 (60 ± 14) 1 
Arctocephalus gazella Crozet Island, France 10 0 275 (28 ± 6) 2 
Arctocephalus gazella Kerguelen Island, France 10 0 196 (20 ± 5) 2 
Arctocephalus gazella Antarctica 23 0 686 (30 ± 11) 7 
Arctocephalus gazella Marion Island, South Africa 23 0 709 (31 ± 21) 7 
Arctocephalus gazella Bird Island, South Georgia, UK 7 0 105 (13 ± 3) 7 
Arctocephalus tropicalis Crozet Island, France 10 0 312 (32 ± 6) 2 
Arctocephalus tropicalis Amsterdam Island, France 10 0 317 (31 ± 7) 2 
Arctocephalus australis Isla de Lobos, Uruguay 16 13 580 (21 ± 7) 3, 4 
Otaria flavescens Isla de Lobos, Uruguay 5 3 204 (26 ± 10) 3 
Zalophus californianus Isla San Esteban, Mexico 11 0 713 (65 ± 19) 6 
Hydrurga leptonyx Danco Coast, Antarctica 13 20 322 (9 ± 3) 5 
Leptonychotes weddellii Danco Coast, Antarctica 6 8 235 (17 ± 7) 5 
Lobodon carcinophaga Danco Coast, Antarctica 7 4 132 (10 ± 2) 5 

Sources: 1Kernalaguen  et al. (2015a); 2Kernalaguen et al. (2015b);  3Franco-Trecu et al. (2014); 4Lima et al. (2019); 5Botta et al. (2018); 6Rosas- 
Hernández and Hernández-Camacho (2018); 7https://data.aad.gov.au/trophic/  (Scientific Committee on Antarctic Research (2019), Southern Ocean 
Diet and Energetics Database. doi: 10.26179/5d1aec22f41d5). 

 
 
 

model overfitting (see Appendix S2). All the analyses were 
performed  in  the  free software R (R Core Team 2020), 
using the packages MCMCglmm 2.32 (Hadfield 2010), 
phytools 1.0.1 (Revell 2012), caper 1.0.1 (Orme et al. 2018), 
nlme  3.1.152 (Pinheiro  et al. 2022), and  phangorn  2.8.1 
(Schliep 2011). 

 
 

Null model construction 
 

Given that a positive relationship between ITS and TNW 
could emerge due to co-variation effects (since BIC is 
comprised within TNW and ITS), a null model in which 
each individual fed randomly from the pool of resources 
available in its respective population–sex group was gener- 
ated (Bolnick et al. 2002, 2007). For that purpose, we 
followed a procedure  that  decouples the identity of each 
individual from the columns with its isotopic values, gen- 
erating a new matrix where δ15N and δ13C values of dif- 
ferent whisker portions were randomly assigned to each 
individual. Replicating this procedure 1000 times for each 
population–sex  group  (resampling without  replacement), 
we estimated mean  values of WIC, BIC, TNW, and  ITS 
(with multi-dimensional and one-dimensional methods). 
Both conventional and phylogenetic analyses were con- 
ducted separately between simulated ITS and observed 
TNW, to evaluate whether the observed ITS was not greater 
than  expected by chance  (Zaccarelli et  al. 2013). Then, 
we  assessed the  overlap  between  the  slope  of  the  null 
model and the slope of the observed data based on their 
95% confidence intervals. 

RESULTS 
 
Considering all the population–sex groups, the range of 
values estimated  by  the  multi-dimensional  method  was 
0.22–2.06 for TNW and  0.13–0.76 for ITS. As for δ15N, 
one-dimensional analysis ranges were 0.69–17.29 for TNW 
and 0.55–0.98 for ITS (see Appendix S3). There were no 
differences between sexes for  the  WIC, BIC, TNW, and 
ITS estimates obtained by multi- and one-dimensional 
approaches (see Appendices S4–S6). ITS values estimated 
by the multi-dimensional  method increased with TNW at 
the population–sex level (Fig. 1a). Similar results were 
found for δ15N in the one-dimensional analysis (Fig. 1b), 
but  not  for  δ13C  (Tables 2  and  3).  Null  model  slopes 
did   not   differ  from   zero  (multi-dimensional   analysis: 
P = 0.67, one-dimensional δ15N: P = 0.82, and one- 
dimensional δ13C: P = 0.09; see Table 2). In addition, 
observed values of ITS were not included in the 95% 
confidence interval (Fig. 1a,b), confirming that the positive 
relationship between observed ITS and TNW was not  an 
artefact. 

Regarding differences between sexes, ITS and TNW were 
unrelated in males in both the multi-dimensional  and the 
one-dimensional analysis (Table 2). By contrast, a signifi- 
cant and positive correlation between ITS and TNW was 
observed for females in the multi-dimensional analysis and 
for δ15N in the one-dimensional analysis (explaining 34% 
and  45% of  overall variance, respectively; see Table 2). 
Phylogenetic analyses were congruent  with  conventional 
ones,  indicating  a  positive  and   significant  correlation 

https://data.aad.gov.au/trophic/
https://doi.org/10.26179/5d1aec22f41d5
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between ITS and TNW, both in the multi-dimensional 
analysis and for δ15N in the one-dimensional analysis, for 
all sex–population  groups,  and  for  females (Table 3). A 
positive and significant correlation between ITS and TNW 
for δ13C in males was also detected (Table 3). 

 
 
DISCUSSION 

 
The results presented here provide empirical support  for 
the NVH, showing that  pinniped  populations  with wider 
trophic niches are composed of more trophically distinct 
individuals.  Specifically, the  trophic  component   of  the 
niche represented by the variance of δ15N values showed 
a  strong  positive correlation  with  the  level of  ITS, and 
this was particularly true  for females. These results agree 
with the prediction by Bolnick et al. (2007) that the NVH 
probably holds for many animal populations. 

One-dimensional  analyses clearly indicate that,  in  our 
case, a positive relationship exists between ITS and TNW 
for δ15N values. This, in turn,  suggests that individual 
diversification associated with a larger TNW is driven by 
variation in trophic  level of prey, which is related to the 
prey  species or  size of  prey  consumed.  Most  pinnipeds 
are generalists, and the diversity of potential  prey means 
that  individuals  can  diverge  in  relation  to  the  trophic 
level of prey they consume,  increasing the  TNW in this 
niche axis (Sánchez-Hernández et al. 2021). The diet of 
otariid species includes prey from different trophic levels, 
ranging from decapod species (shrimp  and lobsters) to 
predatory  fish (e.g. largehead hairtail Trichiurus lepturus; 
Franco-Trecu  et  al. 2013, Cárdenas-Alayza et  al. 2022); 
even seabirds have been documented as prey (e.g. Machado 
et al. 2021). Thus, knowing the origin of variation among 

individuals is important  for understanding  the ecology of 
populations and communities (Bolnick et al. 2003, Bolnick 
et al. 2011, Costa-Pereira et al. 2019). 

Male and female pinnipeds differ in their reproductive 
behaviour, which could affect trophic habits in the sexes 
(i.e. Drago et al. 2015, Lima et al. 2021). Specifically, 
males do not experience limitations associated with rear- 
ing pups, and  hence, after a short  reproductive  period, 
they are free to use feeding areas that  are far from  the 
reproductive colonies. In phocids, lactation is continuous 
and short  (days or weeks), but  otariid females perform 
foraging trips during lactation, which usually lasts be- 
tween 4 and 12 months (Schulz & Bowen 2005), restrict- 
ing  foraging  grounds  to  areas  that  are  close  to  the 
breeding   colony   (Le   Boeuf   et   al.   2000,   Meynier 
et al. 2008). Lactation and  pup  care in  otariid  females 
tend  to result in increased foraging site fidelity because 
breeding  females are  only  able  to  visit one  or  a  few 
food patches during  each foraging trip, thus preventing 
a relationship between TNW and potential diversification 
in  the  environments  used for  feeding. This diversifica- 
tion  would be reflected in δ13C values. In addition,  the 
high energetic costs of lactation in pinnipeds (Schulz & 
Bowen 2005) could raise the need for food consumption 
in females during a significant part of the year, produc- 
ing a stronger intra-specific competition  among females 
than  among  males. In  line with these biological differ- 
ences between sexes, we found that the regression model 
constructed  for  females explained  more  variance  than 
the model that  included both  sexes (multi-dimensional: 
34%   for   females,  27%   for   both   sexes;  δ15N   one- 
dimensional: 45% for females, 31% for both sexes). 
Conversely,  the  relationship   between  ITS  and   TNW 

 
 
 

 
 

Fig. 1. Relationship between individual trophic specialisation index (ITS) and total niche width (TNW), estimated by the multi-dimensional method (a), 
and by the one-dimensional method for δ15N data (b). Estimations based on observed data are shown with a dashed line, whereas estimations based 
on the null model are shown with a solid line. Females are shown with stars and males with dots. 
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Table 2. Linear models between indices of individual trophic specialisation (ITS) and total niche width (TNW), obtained in multi-dimensional and one- 
dimensional analyses (δ13C and δ15N), for each observed and simulated (null model) dataset. Slope values are presented with associated standard 
errors in parentheses, P-values, and R2 

 
Multi-dimensional One-dimensional δ15N  One-dimensional δ13C 

 

Dataset n* Slope P-value R2  Slope P-value R2  Slope P-value R2 

Observed sex–population group 18 0.17 (0.07) 0.02 0.27  0.01 (0.004) 0.008 0.31  0 0.87 0.06 
Null sex–population group 18 0 0.67 0.06  0 0.693 0.05  0 0.12 0.09 
Observed females 12 0.21 (0.08) 0.03 0.34  0.01 (0.003) 0.007 0.45  0 0.41 0.03 
Null females 12 0 0.07 0.22  0 0.42 0.03  0 0.38 0.01 
Observed males 6 0.11 (0.13) 0.46 0.07  0.01 (0.01) 0.34 0.03  0.03 (0.02) 0.14 0.32 
Null males 6 0 0.81 0.23  0 0.31 0.01  −0.01 (0.006) 0.21 0.20 

*One-dimensional δ15N estimations have a value of n + 1 because the data available for Zalophus californianus females were only for δ15N. 
 
 

Table 3. Phylogenetic  analyses of the relationship between indexes of individual trophic specialisation (ITS) and total niche width (TNW), obtained by 
multi- and one-dimensional analyses (δ13C and δ15N), for each observed and simulated (null model) dataset. Slope values are presented with associ- 
ated standard error in parentheses, P-values, and Pagel’s λ 

 
Multi-dimensional One-dimensional δ15N  One-dimensional δ13C 

 

Dataset n* Slope P-value λ  slope P-value λ  slope P-value λ 

Observed sex–population group 18 0.18 (0.06) 0.01 0.61  0.01 (0.004) 0.02 0.17  0 0.94 0.07 
Null sex–population group 18 0 0.96 0.40  0 0.93 0.26  0 0.06 0.61 
Observed females 12 0.14 (0.07) 0.06 0.94  0.01 (0.002) 0.007 0.47  0 0.43 0.32 
Null females 12 0 0.16 0.69  0 0.59 0.41  0 0.22 0.43 
Observed males 6 0.09 (0.12) 0.52 0.35  0.02 (0.01) 0.09 0.41  0.04 (0.01) 0.05 0.88 
Null males 6 0 0.55 1.00  −0.01 (0.005) 0.07 0.62  −0.01 (0.005) 0.09 0.61 

*One-dimensional δ15N estimations have a value of n + 1 because only δ15N data were available for female Zalopus californianus. 
 

 
assessed only for males was not  significant for any iso- 
tope. However, the lower number of populations includ- 
ing males (n = 6) than  those with females (n = 13) in 
our  dataset, as well as the  lower mean  sample size for 
male populations  (see Table 1), could affect the output 
of the statistical tests that were conducted. More studies 
analysing trophic habits using stable isotopes in whiskers 
of male pinnipeds  are desirable. 

Phylogenetically informed analyses were, in general, con- 
gruent  with  conventional  ones, which was expected since 
ITS varies dynamically with environmental  conditions (e.g. 
food availability) as well as with population  attributes (e.g. 
density). However, phylogenetic analyses revealed an impor- 
tant phylogenetic signal in δ13C in males (λ value of 0.88) 
associated with a positive and significant relationship between 
ITS and  TNW for this isotope and  sex. We suspect that, 
in agreement with the between-sex differences discussed 
above, if males are less limited in the duration  of their 
foraging trips than females, they can reduce their diet overlap 
by foraging in different areas. This, in turn,  may result in 
males of a single population consuming prey from different 
habitats (e.g. offshore, coastal, and estuarine). 

Although  a  bias  towards  the  publication  of  positive 
results  is  likely  to   exist  (so   that   the   occurrence   of 

individual specialisation prevails among published articles), 
many studies confirm that individuals’ niches are often 
much narrower than population niches (Bolnick et al. 2003, 
2010). This is consistent  with the  hypothesis of Bolnick 
et al. (2003), which states that individual specialisation is 
substantial and common  in natural  populations.  In turn, 
ITS  appears  to  have  a  large  impact  on  TNW  (Bison 
et al. 2015, Maldonado  et al. 2017), as predicted  by the 
NVH  and  as shown  here  by using longitudinal  isotopic 
data from various pinniped species and populations. Future 
work should focus on the identification of the ecological 
and environmental drivers of the relationship between ITS 
and  TNW  (e.g.  population  size, ecological opportunity, 
or diet diversity of each population).  Understanding these 
drivers will enhance our understanding of the mechanisms 
behind this relationship (i.e. intra-specific or inter-specific 
competition) and, hence, understanding of the role of 
individual specialisation within communities and 
ecosystems. 
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