
Refactoring an electric-market simulation
software for massively parallel computations

Franco Seveso, Raúl Marichal, Ernesto Dufrechou, and Pablo Ezzatti

Instituto de Computación (INCO), Universidad de la República, Montevideo,
Uruguay

{franco.seveso, rmarichal, edufrechou, pezzatti}@fing.edu.uy

Abstract. In the last two decades, Uruguay has been immersed in the
process of significantly changing its energy generation matrix, especially
by the introduction of wind and solar sources. In this context, SimSEE, a
simulation and optimization software designed to help decision-making in
generating and distributing electrical energy, is extensively used. The de-
sign of this tool is conceived for conventional CPUs and follows a sequen-
tial execution paradigm. This paper focuses on a refactoring of SimSEE
that enables leveraging massively-parallel hardware platforms, seeking
to adapt the tool for the increasing size and complexity of Uruguay’s
electric market. We extend our previous ideas about reorganizing the
software architecture to exploit the parallelism in each time-step of Sim-
SEE’s simulation. In more detail, we present two variants following this
parallelism pattern, a straightforward parallel version that requires repli-
cating the used memory and a variant that implies limited performance
restrictions but requires a minimal memory overhead.

Keywords: Coarse-grained parallelism · Electric energy generation ·
Stochastic Dynamic Programming · Memory Usage.

1 Introduction

In the last two decades, the Uruguayan electricity generation matrix experienced
important changes, mainly due to the constant incorporation of new generation
sources such as wind and solar farms [16]. This brings important challenges to
efficiently using and distributing the available resources, making demand and
generation capacity prediction necessary. The SimSEE (Electric Power Systems
Simulator) is a software tool that allows users to make customized simulations
of an electric energy generation system. Its principal purpose is to aid in the
decision-making process, both in the long term (investment planning) and in
the short term (system operation and market simulation) [7]. It was developed
at the Universidad de la República, by engineers of the Instituto de Ingenieŕıa
Eléctrica (IIE) of the Facultad de Ingenieŕıa (FING), between the years 2006
and 2008, maintaining a constant evolution up to now [10, 6]. The tool is tailored
to represent the reality of Uruguay’s electric market. Hence, its most intensive

2 F. Seveso et al.

users are the Uruguayan public agency managing the electricity generation mar-
ket, called ADME [3] and the Uruguayan public company that generates and
distributes electric energy (UTE).

This work’s motivation is to adapt the simulation tool to increase the number
of actors (e.g., power sources) and complexity of the models while maintaining
the accuracy levels and simulation runtime constraints, such as keeping bounded
simulation times. For this purpose, we aim to leverage the computational power
offered by modern massively parallel hardware platforms, such as heterogeneous
servers equipped with GPUs. These platforms have shown an impressive evolu-
tion in the last decades and have become a vital piece of the HPC landscape [5,
4, 11].

This effort is an extension of [13], where we identify the SimSEE bottlenecks
by evaluating different realistic cases and propose a new software architecture
design for the SimSEE to exploit the massively parallel computations. Specifi-
cally, this work presents two different variants of SimSEE following the previ-
ously described parallelism pattern. First, a direct parallel version that requires
replicating the used memory, and second, we design a new variant that implies
concrete performance restrictions but requires a minimal memory overhead for
each simulation trajectory computed in parallel. In other words, a parallel ver-
sion that offers scalability in memory use.

The rest of the work is organized as follows. Section 2 synthesizes the ar-
rived results of the previous work. In Section 3 we present different variations
to implement the previously proposed and discussed parallel design. Next, in
Section 4, the experimental evaluation results of the implementations are sum-
marized. Finally, Section 5 presents our conclusions and some future lines of
work.

2 The SimSEE and previous results

As we stated previously, SimSEE (Electric Power Systems Simulator) is a soft-
ware tool that allows users to make customized simulations of an electric energy
generation system. It is based on Stochastic Dynamic Programming techniques,
it allows to simulate the contribution of multiple energy sources, including ther-
mal, solar, hydro-electric or wind energy, to a specific electrical network. For
this reason in the simulation different and random realizations of these stochas-
tic processes, called trajectories, are executed, and the results are expressed in
terms of the expected value or as distributions or probabilities of exceedance.
Its principal purpose is to aid in the decision-making process both in the long
term (investment planning) and in the short term (system operation and market
simulation) [7]. It was developed at the UDELAR, by engineers of the Instituto
de Ingenieŕıa Eléctrica (IIE) of the Facultad de Ingenieŕıa (FING) in the Pascal
programming language [12].

In the previous work were designed and evaluated different realistic test cases,
varying the scenarios between three classes: hourly, daily, and weekly (i.e., short,
mid, and long-term). Since the SimSEE is a legacy complex system developed in

Refactoring an electric-market software for massively parallel computations 3

Pascal and is being used by ADME, the main goal of these tests was to exhibit the
most resource-consuming procedures in the simulation routine and then, with a
fine-grain approach, efficiently implement a parallel version of those procedures.
This approach avoids re-implementing the entire simulation routine, a task of
serious difficulty and resource demand. The experimental results showed that
none of the procedures represent an important bottleneck since a single execution
of these procedures is not demanding enough, deriving that the cost came from
the number of calls or invoked. Nevertheless, we found that an important part
of the simulation runtime is invested in Simplex resolution routines. In Figure 1,
for example, we can see the proportion of Simplex-related operations (middle
green rectangle), and Table 1 shows how many times some of these procedures
are called into the simulation. Based on this, we propose a strategy to exploit
parallelism by designing a new simulation scheme focused on a coarse-grain
approach instead of including fine-grain parallelism.

Fig. 1. Graphical representation of simulation call map with a daily playroom. The
area of each rectangle is proportional to the runtime of the corresponding procedure.

Table 1. Top 5 procedures for the daily playroom simulation.

Procedure Perc. (%) CPU Cycles Calls Unit

PASOBUSCARFACTIBLEIGUALDAD4 29.0 3.349× 1011 1.348× 106 USIMPLEX

LOCATE ZPOS 20.3 2.344× 1011 5.991× 107 USIMPLEX

INTERCAMBIAR 15.4 1.780× 1011 8.258× 106 USIMPLEX

MEJORPIVOTE 6.1 6.991× 1010 5.972× 107 USIMPLEX

CAMBIO VAR COTA SUP EN COLUMNA 4.1 4.719× 1010 5.670× 1010 USIMPLEX

The simulation algorithm can be divided into two main loops. The first and
outer loop iterates through the trajectories, line (3) in Algorithm 1, and for each
of these trajectories, there is a second loop (5) that sets up and solves, for each
time step (7), an optimization problem using the Simplex algorithm, represented
by a matrix, based on the work of Rutishauser et al. [14]. Since each trajectory
is independent, in [13] we redesigned the routine interchanging the loops and

4 F. Seveso et al.

structures related to solving, for the different trajectories, the simplex matrices
associated with each time step in parallel. Note the (parallel) for of trajectories
in line 11 of the Algorithm 2, solving independent simplex matrices.

Algorithm 1 Simular + cargarSala

1 room = cargarSa la (r o om f i l e)
2 // Simulat ion
3 prepare (room)
4 for Tra j e c t o r i e s :
5 T r a j I n i t (room)
6 for t ime s t ep s :
7 s implex matr ix = simplex (room)
8 s o l v e (s implex matr ix)
9 end

10 end

Algorithm 2 Simular’ + cargarSalas

1 rooms = carga rSa l a s (r o om f i l e)
2 // Simulat ion
3 for i in Tra j e c t o r i e s :
4 prepare (rooms [i])
5 T r a j I n i t (rooms [i])
6 end
7 for t ime s t ep s :
8 for Tra j e c t o r i e s :
9 spx array [i] = simplex (rooms [i])

10 end
11 (p a r a l l e l) for Tra j e c t o r i e s :
12 s o l v e (spx array [i])
13 end
14 end

Pseudocode of the original SimSEE simulation scheme (Algorithm 1)
and the reorganization proposed in [13] (Algorithm 2)

3 Proposal

As discussed in the previous section, the strategy behind the massively parallel
version of the simulation is to process independent trajectories at the same time,

Refactoring an electric-market software for massively parallel computations 5

solving in parallel multiple simplex matrices. To implement this design, the data
associated with each trajectory must stay independent from the others. In other
words, each trajectory needs its playroom, which is a data structure that holds all
the information about the electrical system being simulated, including the state
variables of each power source, such as the water level of hydroelectrical plants.
In the original version, the playroom is created by the procedure cargarSala

reading a configuration file associated with the room line by line. This room
is instantiated once and used throughout the whole simulation. Therefore, the
cost of the cargarSala in the original algorithm is constant for any number of
trajectories, which is why it was not taken into account in the previous work
evaluation. Depending on the room, this procedure can take several computation
cycles, mainly conditioned to the number of entities and historical information.
Then, in the simulation phase, as trajectories are run sequentially for each time
step, the state variables of the playroom can be reset for each new trajectory. If
trajectories run in parallel, sharing the state variables is impossible, so a certain
degree of data replication is necessary.

In the following sections, we propose different implementations to load multi-
ple playrooms and, considering the cost of in/out and file reading [9], we advance
in implementing routines that use the playroom file once and create multiple
rooms. On the other hand, it is important to highlight that memory usage multi-
plication is a very limiting strategy when trying to massively parallelize systems.
In other words, one of the essential characteristics to reach in parallel patterns
is the scalability in memory usage [9, 8]. We design, implement and evaluate a
version where the different rooms share certain structures through pointers or
references, using SimSEE native classes. Later we present another version with
a simple structure to store the reference pointers for the shared units between
the rooms, avoiding the list searches of the first.

3.1 Loading the playrooms for massively-parallel trajectories, naive

A straightforward strategy to address the problem of independent playrooms is
to create a collection of rooms, with a size equal to the number of trajectories,
by calling the procedure cargarSala multiple times. As an early result, Table 2
shows the outcome of this implementation. The table shows the elevated cost
of instantiating these rooms, with linear growth of the elapsed time to load the
rooms and simulation time due to the preparation of the rooms in the Simular’
procedure.

Table 2. Elapsed time (ms) of room load (cargarSala) and simulation (Simular)
comparison for both strategies in hourly playroom (see Section 4.2 for details about
test cases and the runtime environment).

of
cargarSala Simular Loop of cargarSala Simular’

Trajectories

256 4125 27828 968844 161094

6 F. Seveso et al.

For reasons previously described, we studied the procedure cargarSala in
detail and evaluated the possibility of implementing a new procedure capable of
instantiating multiple rooms efficiently.

3.2 Improving the playrooms replication, base

Although the previous implementation returns the expected collection, it need-
lessly repeats procedures when loading the different rooms. Since all rooms are
equal and loaded from the same file, we can improve this implementation in
different ways, such as refactoring some of the procedures or optimizing the
access to the file for reading. Considering the above, we modified the strategy
initially used to load the rooms, deriving this procedure in cargarSalas. Unlike
cargarSala, this implementation reads the text file associated with the room
once, line by line, and instantiates simultaneously many structures and units as
rooms are needed.

Although cargarSalas is also a naive version, it allows fulfilling the task
of loading multiple rooms, avoiding multiple file reads and the implied runtime
overhead. However, this strategy implies a large memory usage since it instanti-
ates every single structure for the room N times.

The memory used in the simulation is mainly given by the initialization of
each room. For example, the sizes of the evaluated rooms (hourly, daily and
weekly) result in around 90MB, 3.8MB, and 2.4MB, respectively, when mapped
to Pascal objects. Therefore, simulating 1000 trajectories of a hourly playroom
will require around 90GB of memory, making this cargarSalas implementation
not scalable and unfeasible when the number of trajectories grows for devices
with limited memory resources.

3.3 Sharing references to avoid memory allocations, RefCat

A reasonable conclusion from the previous discussion, can be that the main
restriction for the inclusion of massively parallel techniques in the SimSEE is
the multiplication of the memory usage. This motivated a detailed study of the
units created in cargarSalas, looking for possible instances unchanged between
the different trajectories. The Dynamic Parameters record or simply record are
particular cases of a valid structure for this approach. Based on [15], the dynamic
records can be defined as the system allowing the various playroom entities to
change their parameters at runtime. A dynamic record consists of a start date,
a periodicity, and a set of parameters depending on the type of entity that it
belongs to. The actors or other entities that require parameters that may vary
over time must specify in their records what those parameters are, and the
system automatically updates them when the indicated date is reached, both
in simulation and in optimization. Each record will be valid from its start date
until another replaces it. In other words, if an actor has a single record at the
beginning of the simulation, it will be valid for the entire simulation horizon.
If the actor has a record at the beginning and another in the middle, the first
record will be valid until half of the simulation, then it will be replaced by the

Refactoring an electric-market software for massively parallel computations 7

second one that will follow until another replaces it or the simulation finishes.
Basically, represent historical states of the entities, and remain invariant through
the simulation.

In the particular case of the hourly room (VATES [1]), it has about 2000
records associated with the entities that must be instantiated when loading the
room, which, in the worst case, implies having to instantiate 2000×NTrajectories
records. The simplest solution would be for the same entities from the different
rooms to point to a single instance of the records and somehow share them. The
problem that arises is that many of these records have references or pointers
to the entities within the same room. Due to this, it is impossible to directly
share the records since these references are accessed when computing the vari-
ables to prepare, for example, the simplex matrix at each time step. So, to share
the records it is necessary to have the information of the different references
corresponding to each room and switch those references when computing with
them. Figure 2 shows this problem; while the entities of different rooms must be
independent, the records remain constant through the simulation (red box), and
the main problem is the references to entities in the same room (yellow arrows).

roomK

entity0 entityM

. . .

. . .

record0 recordN

room0

entity0 entityM. . .

record0 recordN.

Fig. 2. Simplified scheme of multiple playrooms. Entities in different rooms must be
different instances, but the files remain the same for the same entity in different rooms
except by the references.

Considering the previously described situation, we implemented a “Reference
Catalogue”, which is responsible for containing the information of references and
maintaining the consistency of the ones for the room when the simulation needs
to use it. The main idea is to map the excessive memory usage of rooms related to
the records, to simple pointers stored in the “Reference Catalogue”, representing
a critical memory usage reduction. The new simulation scheme sharing records is
presented in the Algorithm 3, where the procedure ChangeReferences is added
to set the correct references to entities of different rooms when a trajectory cal-
culates and prepares, for example, the simplex matrix. Note that this procedure
is called twice in the Algorithm 3, in first place (line 3), due to the prepara-
tion of the rooms, initializing the actors, sources and variables of the playrooms
previous to the true simulation stage. The second call (line 9) in the simulation

8 F. Seveso et al.

stage, is needed to set the correct references before the simplex creation for each
time step.

Algorithm 3 Simular’ sharing room’s objects

1 rooms , ca ta logue = ca rga rSa l a s (r o om f i l e)
2 for i in Tra j e c t o r i e s :
3 ChangeReferences (rooms [i] , ca ta logue)
4 prepare (rooms [i])
5 T r a j I n i t (rooms [i])
6 end
7 for t ime s t ep s :
8 for Tra j e c t o r i e s :
9 ChangeReferences (rooms [i] , ca ta logue)

10 spx array [i] = simplex (rooms [i])
11 end
12 (p a r a l l e l) for Tra j e c t o r i e s :
13 s o l v e (spx array [i])
14 end
15 end

3.4 Enhancing the access to shared references in the simulation,
RefDicc

In the previously described strategy, when a reference needs to be changed, it
is necessary to search for the new reference within the list of entities and the
“Reference Catalogue” in simulation time. This operation implies a complexity
proportional to the number of references and entities the room has, which can
be substantial depending on the room. To avoid these searches, we propose to
introduce a dictionary (a matrix of pointers), responsible for saving the already
resolved references for all the rooms.

This strategy avoids the unnecessary task of iterating over the list of enti-
ties looking for a reference and then resolving it. By applying these changes, we
convert the complexity of the operation that changes a reference to a constant
order, significantly reducing the computation cost and its impact on the sim-
ulation. In other words, we sacrifice memory consumption to store the already
solved references for each room to avoid repeated operations in simulation time.

4 Experimental evaluation

This section presents the experimental evaluation of our proposal.

4.1 Test cases

To evaluate how the proposed algorithm schemes perform, we vary the simulation
scenarios between hourly, daily, and weekly playrooms, which are representative

Refactoring an electric-market software for massively parallel computations 9

workloads of the SimSEE. Based on VATES [1] the hourly playroom runs to
calculate the optimal energy dispatch in the following week and incorporates the
forecasts of hydraulic contributions to the dams, the forecast of wind and solar
generation, and the forecast of demand for every hour. It has 168 time steps,
composed of three hydro generators with reservoirs and one without, twelve fuel-
fired generators, one wind and one solar generator representing all the country’s
farms, and a CEGH source, that states for modeling multi-variable stochastic
processes, working as a time series synthesizer having common characteristics
with the available time series measures, with two hydrologic state variables.

The daily playrooms are mostly used for seasonal programming, with a
CEGH source for the contribution to basins that also has two hydrologic state
variables, and there are still three hydro generators with reservoirs. This kind of
playroom is the most required by SimSEE users [2].

4.2 Runtime environment

This section contains the environment specification where all the executions and
results proposed in this work were carried out. This environment has an 8-core
processor Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 16 GB of RAM with
Linux operating system.

4.3 Experimental results

The time measurements of the simulation were presented in scale to obtain an
abstraction for the number of trajectories used, but in the same way, the com-
putation time required by the simulation with the strategy of loading multiple
rooms is still a bit distant from the original in terms of efficiency.

As mentioned in the previous section, Table 2 shows how the time of loading
many rooms (repeating the file read) is significantly high, converting this into a
non-viable implementation strategy, and in terms of memory use, it replicates
all the rooms. The first proposed idea to mitigate this problem was reading the
file once, with the implemented procedure cargarSalas. In the new idea, the
runtime is not a problem, but the issue of memory usage keeps present.

Table 3. Peak memory usage (MB) for the different strategies simulating 100 trajec-
tories of hourly, daily and weekly rooms.

Original Full independent Reference Catalogue

Hourly 500 9560 970

Daily 401 780 750

Weekly 142 630 363

In this line, the Vates playroom is the worst case in memory usage due to
its large size and number of records, but for the same reason, it represents an

10 F. Seveso et al.

opportunity to see the profits of the optimization strategy of sharing records
between the rooms. Table 3 reflects the results of this approach. It shows that
the new variant that shares structures using the references catalogue improves
the rooms’ loading stage, using considerably less memory. On the other hand,
for the hourly scenario, with 100 trajectories, the principal disadvantage of this
strategy can be seen in the last columns of Table 4, where the computational
cost is now transferred to the simulation, with the procedure ChangeReferences
implemented with the a “Reference Catalogue”, native system class mainly used
for the playroom’s load.

Table 4. Elapsed time (ms) of Simular, Simular’ and ChangeReferences with 100
trajectories for Hourly, Daily and Weekly playroom, using the reference catalogue.

Playroom Simular Simular’ ChangeReferences

Hourly 7875 274406 261711
Daily 43996 180896 128596
Weekly 14929 36312 19856

Finally, the last version of the refactored SimSEE is evaluated. Specifically,
Table 5 presents the results of applying the structure share techniques between
rooms in terms of memory usage.

Table 5. Peak memory usage (MB) for the different strategies simulating 100 trajec-
tories of hourly, daily and weekly rooms.

Original Full independent Reference Catalogue Reference Dictionary

Hourly 500 9560 970 1068

Daily 401 780 750 760

Weekly 142 630 363 407

The first observation is that, although the Reference Catalogue technique
employs less memory to store the references that need to be changed between
rooms (2K references for VATES), they are solved every time in simulation
when a room needs to make a computation. This resulted in poor performance,
negatively affecting the simulation, as shown Table 4. On the other hand, the
strategy that uses a matrix of pointers to store the already solved references
requires little more memory since it employs as many rows and columns as
trajectories and references, respectively, to store the correct pointers. Moreover,
it significantly reduces the overhead introduced to the simulation by the previous
technique.

When it is not the worst case (for example, Daily Room) and the number of
referenced records contained in the room is not so large, the efficiency of loading
the rooms with this implementation of shared records is not as noticeable as the

Refactoring an electric-market software for massively parallel computations 11

Hourly room, but severely impacts on the simulation time. Like the previous
one, the weekly playroom contains few records, and the improvement is not so
noticeable. Despite this, both daily and weekly playrooms present very good
performance loading rooms.

10%
16%

8%

24%

0%

0%

1%

2%

1%

12%
35%

24%

13%

13%

6%

17%

31%

56%

23%

1% 5%

Hourly Daily Weekly

Other ChangeReferences

Simplex PostProcessing Simplex Solve

Simplex Load Time Step Prep (for)

Prepare rooms for simulate

Fig. 3. Stages percents associated with the simulation of 100 trajectories sharing ref-
erences with a dictionary, for hourly, daily and weekly playrooms.

Figure 3 shows the ratio between the simplex resolution time and the whole
simulation time for the three evaluated scenarios. The first stage (Prepare rooms
for simulation), which performs settings and initializations of the variables nec-
essary for each trajectory during the simulation, consumes 23%, 1% or 5% of
the total of the simulation for the hourly, daily, and weekly respectively. The
second stage, as shown in Figure 3, is composed of “Time Step Preparation”,
“ChangeReferences”, Loading, Solving and Post Processing Simplex, and “Oth-
ers”. Those stages take the largest part of the time within the simulation. The
final stage prints the results of all the simulations in an output file, which is
almost negligible compared to the other stages from the computational point of
view.

Carrying out an analysis of the simulation times with the different strategies,
we can conclude that a large part of the difference between the times occurs in
handling the references. This confirms that the last strategy to optimize sim-
ulation implementation, using a matrix of pointers instead of another complex
structure as a Reference Catalogue, can lead to important savings.

12 F. Seveso et al.

Although this modification does not fully cover the time difference between
the simulations, another important factor is that, in the first stage, certain vari-
ables are initialized, and memory is reserved for each room. These procedures
have a heavy computational weight. Since in the initial version of the simula-
tion, only one room is needed, these initializations are done once, whereas, in
this version, they must be done as many times as rooms are needed. Line 3 in
Algorithm 2 sets a lower bound to optimize the elapsed time of the first sim-
ulation stage. Considering this, the settings and initialization in the first stage
and the ChangeReferences procedure in the second determine this implementa-
tion’s overhead. Therefore, depending on the room, the overhead varies, allowing
rooms with less overhead to be more efficient in the future.

In rooms where the time taken by solving the Simplexes is high, parallelizing
the Simplexes solution in a massively parallel architecture (for example, a GPU)
can save significantly more time than the overhead implied by our change in the
simulation design, accelerating the original model.

Tables 6, 7 and 8 show, for each playroom (Hourly, Daily and Weekly), a
comparison of the elapsed simulation times for the developed strategies.

Table 6. Simulation times (ms) for Hourly playroom (VATES) with different imple-
mentations.

#
of Trajectories

Original Refs. Catalogue Refs. Dictionary

2 179 5432 295

4 337 11251 590

8 649 22749 1184

16 1308 43431 2401

32 2590 89255 4913

64 5131 175247 10066

100 7875 274406 15880

128 10280 351584 22119

256 20106 701891 45542

As seen in the previous tables, the implementation obtained after the dif-
ferent optimizations specified throughout this work is just above the sequential
strategy, especially for rooms containing many records. Thus, as previously men-
tioned, the time it takes to solve the simplex in these rooms is constant in all
the implementations, but unlike before, there is now an infrastructure that al-
lows solving trajectories in parallel, creating the opportunity of solving many
Simplexes in parallel using a GPU in the future.

5 Conclusion and future work

In this work, we have refactored a large legacy computational system to expose
parallelism and create the opportunity of accelerating it using GPUs shortly,

Refactoring an electric-market software for massively parallel computations 13

Table 7. Simulation times (ms) for Daily playroom with different implementations.

#
of Trajectories

Original Refs. Catalogue Refs. Dictionary

2 902 3567 933

4 1743 6934 1804

8 3574 13806 3673

16 7168 28041 7483

32 14138 56802 15209

64 28256 114822 31219

100 43996 180896 49113

128 56452 233024 63320

256 113594 480108 128958

Table 8. Simulation times (ms) for Weekly playroom with different implementations.

#
of Trajectories

Original Refs. Catalogue Refs. Dictionary

2 312 714 315

4 616 1412 613

8 1205 2809 1212

16 2406 5585 2398

32 4794 11211 4847

64 9562 22780 9895

100 14929 36312 15657

128 19174 46688 20324

256 38091 94600 40868

extending our initial effort to introduce modern parallelism techniques on the
SimSEE tool. Considering our previous results, we study the principal challenges
and constraints to implementing the proposed massively-parallel version of the
SimSEE.

Concretely, we successfully implemented and evaluated versions of the sys-
tem that allow simulating multiple trajectories in parallel by instantiating as
many playrooms as the number of trajectories. The evaluation involved different
temporal scenarios, facing various problems for some of these cases. The princi-
pal difficulty was the memory scalability, i.e., the memory footprint related to
the rooms’ instantiation. Therefore, we propose multiple optimizations. In the
first place, and common to all the strategies, we instantiate all the rooms by
reading the playroom’s file once, reducing unnecessary serialized I/O activity.
The true optimizations focused on understanding playrooms’ structures, iden-
tifying units that remain invariable through the different trajectories’ room, to
instantiate them once, for all rooms. We successfully implemented a version of
the room’s loading and simulation procedures, considerably more suitable for
a massively-parallel implementation, with a scalable shared-memory variation,
reducing 88% the memory footprint of the hourly case. The downside of this

14 F. Seveso et al.

strategy is the introduction of certain overhead in the simulation routine. To
reduce this overhead, we propose two different variations, one using a native
structure implemented with classes and the other using a simple pointer ma-
trix. We significantly reduced the overhead introduced by the first technique by
sacrificing a very small percentage of memory. For example, in the hourly case,
compared to the fist technique we improved the simulation time by a factor of
17×, by increasing memory usage by only 10%.

In future work, we intend to address the GPU parallelization of the Simplex
solved for all the trajectories in each time step. Additionally, it is interesting to
evaluate the parallelization of other stages of the simulation.

Acknowledgements The authors of this article were partially financed by
project ANII FSE 1 2018 1 153060 Aceleración del SimSEE utilizando GPUs
(SimSEE-MP).

References

1. ADME: VATES [Online] Available at http://latorre.adme.com.uy/vates/
2. ADME: Usos del SimSEE. https://www.simsee.org/simsee/usos.html, accessed:

2021-07-31
3. ADME: Administración del Mercado Eléctrico. https://adme.com.uy/ (2022), [On-

line; accessed 10-June-2022]
4. Baya, R., Porrini, C., Pedemonte, M., Ezzatti, P.: Task parallelism in

the WRF model through computation offloading to many-core devices.
In: Merelli, I., Liò, P., Kotenko, I.V. (eds.) 26th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Processing,
PDP 2018, Cambridge, United Kingdom, March 21-23, 2018. pp. 596–600.
IEEE Computer Society (2018). https://doi.org/10.1109/PDP2018.2018.00100,
https://doi.org/10.1109/PDP2018.2018.00100

5. Bayá, R., Pedemonte, M., Gutiérrez Arce, A., Ezzatti, P.: An asynchronous com-
putation architecture for enhancing the performance of the weather research and
forecasting model. Concurrency and Computation: Practice and Experience 32(19)
(2020), www.scopus.com

6. Camacho, V., Chaer, R.: Hourly model of a combined cycle power plant for simsee.
In: 2020 IEEE PES Transmission & Distribution Conference and Latin America
(T&D LA). pp. 1–5. IEEE (2019)

7. Coppes, E., Tutté, C., Maciel, F., Forets, M., Cornalino, E., Chaer, R.: Sim-
SEE Proyecto ANII FSE 2009 18 Mejoras a la plataforma SimSEE (2012),
https://iie.fing.edu.uy/publicaciones/2012/CTMFCC12

8. CORDIS: REfactoring Parallel Heterogeneous Resource-Aware Applications -
a Software Engineering Approach. https://cordis.europa.eu/project/id/644235
(2014), https://cordis.europa.eu/project/id/644235

9. Dennis, J., Loft, R.: Refactoring Scientific Applications for Massive Parallelism,
pp. 539–556 (02 2011). https://doi.org/10.1007/978-3-642-11640-7˙16

10. Flieller, G., Chaer, R.: Introduction of ensemble based forecasts to the electric-
ity dispatch simulator simsee. In: 2020 IEEE PES Transmission & Distribution
Conference Latin America (T&D LA). pp. 1–6. IEEE (2019)

Refactoring an electric-market software for massively parallel computations 15

11. Igounet, P., Alfaro, P., Usera, G., Ezzatti, P.: GPU acceleration of the caffa3d.mb
model. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C.,
Taniar, D., Apduhan, B.O. (eds.) Computational Science and Its Applications
- ICCSA 2012 - 12th International Conference, Salvador de Bahia, Brazil,
June 18-21, 2012, Proceedings, Part IV. Lecture Notes in Computer Science,
vol. 7336, pp. 530–542. Springer (2012). https://doi.org/10.1007/978-3-642-31128-
4“˙39, https://doi.org/10.1007/978-3-642-31128-4 39

12. Jensen, K., Wirth, N.: PASCAL user manual and report: ISO PASCAL standard.
Springer Science & Business Media (2012)

13. Marichal, R., Vallejo, D., Dufrechou, E., Ezzatti, P.: Towards a
massively-parallel version of the SimSEE. In: 2021 IEEE URUCON.
IEEE (nov 2021). https://doi.org/10.1109/urucon53396.2021.9647142,
https://doi.org/10.1109/URUCON53396.2021.9647142

14. Rutishauser, H., Gutknecht, M., Gautschi, W., Schwarz, H., Henrici, P., Läuchli,
P.: Lectures on Numerical Mathematics. Birkhäuser Boston (1990)

15. Fichas Dinámicas, https://simsee.org/simsee/simsee/ayuda/fichas-parametros-
dinamicos.htm

16. UTE: Wind Energy in Uruguay. https://portal.ute.com.uy/composicion-
energetica-y-potencias (2022), [Online; accessed 18-June-2022]

