
gr-tempest: an open-source GNU Radio implementation of
TEMPEST

Federico Larroca, Pablo Bertrand, Felipe Carrau, and Victoria Severi
Universidad de la República, Uruguay. Email: {flarroca,pablo.bertrand,felipe.carrau,victoria.severi}@fing.edu.uy

Abstract—Like all time-varying voltage and current, a video interface
connecting a PC to its monitor emits electromagnetic waves. The attack
commonly known as TEMPEST (or Van Eck Phreaking) consists in re-
ceiving this signal and inferring the image being displayed on the monitor;
that is to say, pointing an antenna to a PC and spying the monitor. This is
a particularly interesting application for Software Defined Radio (SDR),
as it requires modeling the signal and implementing a custom receiver.
However, and although the first public demonstrations date back to the
mid-80s by Wim Van Eck, no open-source implementation was available
until Martin Marinov’s TempestSDR was published in 2014. TempestSDR
consists of a module written in C that takes care of the signal processing,
plug-ins for various models of SDR hardware, and a Java-based GUI.
This results in a multi-platform software that, although functional, it is
difficult to extend or tweak. For instance, new plug-ins have to be written
for new SDR hardware, or including filters or other DSP blocks in the
signal’s flow is not straightforward at all.

To remedy this we developed gr-tempest, an open-source GNU
Radio-based implementation of TEMPEST (available at https://github.
com/git-artes/gr-tempest). This is an on-going project whose objective is
to enable simpler experimentation by taking advantage of GNU Radio’s
functionalities and support. We describe the mathematical principles
behind the TEMPEST attack and present how gr-tempest works.
Furthermore, we show several real-world examples including both VGA
and HDMI, and the fundamental differences between both types of
signals. Finally, some of the advantages of using GNU Radio’s framework
are showcased by introducing modifications to the DSP chain that allows
significant improvements of the resulting image with respect to the
original method used in TempestSDR.

Index Terms—side-channel attack, eavesdropping attack, compromis-
ing emanations, software defined radio

I. INTRODUCTION

TEMPEST is the name given by the United States’ National
Security Agency to the problem of involuntary electromagnetic
emanations that could be compromising in terms of security [1].
It has a long history going back to the second World War, when
Bell Lab’s researchers found that, when being operated, their 131-
B2 encryption machine produced spikes on a distant oscilloscope. A
careful examination of these spikes could reveal the hidden message.

The first unclassified technical report regarding TEMPEST was
published several years later by Wim van Eck [2] in 1985 and it
focused on Cathode Ray Tube (CRT) monitors, their cables, and
eavesdropping the video being displayed. As a consequence, the term
Van Eck Phreaking is sometimes used to refer to TEMPEST in the
context of video eavesdropping from compromising emanations. In
2003 Markus Kuhn publishes a report on how to spy (and protect)
modern video displays [3]. The spying system incorporated FPGA
boards and an AM receiver, obtaining better results but still requiring
high-cost equipment with specific and fixed characteristics.

Around the same time, Software-Defined Radio started to gain
traction. In a nutshell, the idea is to implement in software as much
as possible of a radio communication system, most of which were
traditionally implemented in hardware. Typically it consists of a
generic hardware that basically moves the signal from pass-band
to base-band, performs sampling and feeds these samples to an

Fig. 1: SDR-based TEMPEST implementation. The spying PC is
equipped with an SDR hardware from which it receives discrete sam-
ples and may in turn configure some parameters (fc, fs and G stand
for carrier frequency, sampling frequency and gain respectively). The
RF Circuit may include further amplifiers and/or filters.

ordinary PC, which in turn processes them in order to receive the
message. Transmission is also possible depending on the hardware,
in which case samples are fed by the PC to the generic hardware. This
paradigm is increasingly extending not only as the preferred research
and development method in industry, but due to the availability of
low-cost hardware it is also used for teaching [4], [5].

The problem of TEMPEST, which requires a custom receiver and
much experimentation, is a clear example of an application where
SDR acts as a facilitator (see Fig. 1 for the basic setup). In this
context, Martin Marinov published TempestSDR in 2014 [6], the first
open-source implementation of TEMPEST. It consists of a collection
of plugins that interface with the SDR hardware, some modules that
perform the signal processing, and a GUI from which the system
may be controlled and the spied image is displayed.

The general purpose hardware resulted in an affordable system,
specially when compared with the equipment available in the mar-
ket [7]. However, given its self-contained nature, TempestSDR is
not straightforward to modify or update. For instance, new modules
have to be written as new SDR hardware is released (or drivers are
updated). Arguably more importantly, it is not easy to experiment
with modifications or extensions to the signal processing chain.

In order to address the above issues, we developed and present
here gr-tempest (code available at https://github.com/git-artes/
gr-tempest). Instead of coding the complete system, we rely on GNU
Radio [8], an extremely popular framework for SDR software. GNU
Radio basically provides a framework to interconnect the blocks
that compose the receiver. Furthermore, several signal processing
blocks (ranging from simple mathematical operations to filtering) are
already included, as well as blocks to interface with virtually all SDR
hardware. Finally, new blocks are relatively easy to implement: the
developer has to focus on implementing a few methods, and GNU978-1-6654-4185-8/21/$31.00 ©2022 IEEE

Fig. 2: The signal as generated in the video cable and the parameters
involved. In red, the order by which pixels are sent over the cable.
During the blanking intervals zero-valued pixels are sent.

Radio takes care of, for instance, executing all blocks involved in the
receiver chain.

The rest of the article is structured as follows. The next section
presents TEMPEST in more detail, describing the mathematical
model of the resulting electromagnetic signal. In Sec. III we discuss
the implications of this model on the SDR hardware and software
requirements, and we further refine the signal model to consider the
hardware involved. Then, in Sec. IV we present a first version of
gr-tempest, which basically emulates TempestSDR and will help
to illustrate some of its disadvantages. We showcase the advantages
of using GNU Radio by extending the vanilla system in Sec. V. These
modifications rely on the refined model we derive in this article and
have a significant impact on the resulting image quality. The article
is concluded in Sec. VI.

II. TEMPEST: MATHEMATICAL PRINCIPLES

To fully understand TEMPEST we need to first describe the signal
on the cables, which will in turn generate electromagnetic fields
which are what we will ultimately spy on. For simplicity we will
first focus on the analog case (i.e. VGA), and leave the digital (i.e.
HDMI) case for the end of this section.

A. Analog Displays

In this case, the signal on each of the three color pins is basically
a PAM (Pulse Amplitude Modulated) signal, with a Non-Return-
to-Zero shape (i.e. a rectangular pulse). The height of each pulse
corresponds to the intensity of the corresponding pixel (spanning
between 0 and 0.7 V), which are generated sequentially starting from
the top-left part of the image, and finishing at the bottom right.
Furthermore, and mostly due to historic reasons, both a horizontal
and vertical blanking intervals are included (see Fig. 2).

The figure also introduces the parameters used for the involved
magnitudes. Since a full frame is formed by Px ×Py pixels and are
transmitted at a refresh rate of fv , the duration of each pixel is given
by the expression:

Tp =
1

PxPyfv
. (1)

The stream parameters are standardized by the VESA [9] to guar-
antee compatibility between systems and monitors. The resolutions
are noted as px × py@fv (with for instance Px = px + bx),

Fig. 3: The spectrum of the signal on the cable (X(f), in red) results
from the multiplication of the Fourier Transforms of the pulse (P (f),
in black) and the pixel sequence (Xs(f), in blue).

so they are defined by the vertical and horizontal video size at a
certain refresh rate. An example of resolution relevant to this work
is 1920×1080@60 Hz. The rest of the parameters, such as blanking
sizes bx and by , are obtainable from the standard once the resolution
is known.

We thus have that the voltage signal in each of the three color
cables is:

x(t) =
∑
k

x[k]p(t− kTp), (2)

where x[k] is the intensity of pixel k and p(t) a rectangular pulse
with width Tp. The Fourier transform of (2) reveals that the spectrum
of the signal is

X(f) = P (f)Xs(f), (3)

where P (f) is the Fourier transform of the pulse p(t) and Xs(f) =∑
k x[k]e

−j2πkfTp . This corresponds to the Discrete-time Fourier
Transform (DTFT) of the pixel sequence evaluated at ω = 2πkfTp

(thus with a period of 1/Tp).
Figure 3 shows an illustrative example of (3). Note that x[k] is a

sequence that typically presents high auto-correlation Rx[l] around
lags l = ±1, l = ±Px (since neighboring pixels, both horizontally
and vertically tend to be similar), and l = ±Px×Py (since pixels of
successive frames also tend to be similar). This results in a spectrum
Xs(f) with the highest levels of energy centered at low frequency,
as the one depicted in blue in Fig. 3 (a pattern that is repeated every
1/Tp, since as we mentioned before Xs(f) is periodic). In any case,
this is the signal that has the information about the pixel values.

Furthermore, since the pulse shape is (approximately) rectangular,
P (f) will result in a sinc(fTp) shape, with a null every 1/Tp (see
the black curve in Fig. 3). The actual spectrum of the signal in the
cable (depicted in red in Fig. 3) is the multiplication of both P (f)
and Xs(f). Note that its baseband components will not propagate
(and are thus not drawn in Fig. 3). In order to receive the largest
energy through an antenna we should tune our receiver to one of the
harmonics at multiples of 1/Tp. However, this is precisely where the
nulls of P (f) lie, resulting in a highly distorted signal.

Finally, and this is is also true for the digital display case, note that
we will actually receive a combination of the signals corresponding
to all three colors.

B. Digital Displays

The most important difference between VGA and HDMI is that
each color now has an 8-bit depth, that is then encoded into a 10-bit
word [10]. The encoding process is known as Transition-Minimized
Differential Signalling (TMDS), and is divided into two stages. First,
each bit of the original byte is either XOR or XNOR with the previous
one (the first bit is left as-is), and the 9th bit indicates which operation

54

87
.4 88 10
8

14
8.

5
17

4

21
6

29
7

44
5.

5
47

0

51
2

TV
 (V

H
F

Lo
w

)

TV
 (V

H
F

H
ig

h)

FM U
H

F

fp 2fp 3fp

50 MHz 50 MHz 50 MHz

f
(MHz)

Fig. 4: The first three harmonics of fp = 1/Tp for the 1920 ×
1080@60Hz resolution, and the most important expected interfer-
ences. The second harmonic is the one used in our experiments.

took place. Secondly, the number of 0s and 1s in the stream are
evened out by inverting (or not) the first eight bits in this word. The
tenth bit indicates whether this inversion took place. Furthermore,
during blanking two bits of control data are transmitted, where each
of the four possibilities are represented by a 10-bit word.

The result is a signal x(t)

x(t) =
∑
k

b[k]p(t− kTb), (4)

where Tb is the bit time and b[k] is the voltage level representing the
k-th bit (which may be either unipolar or polar signaling depending
on the mode). That is to say, very similar to the VGA case (i.e. (2)),
but with a 10 times shorter period (i.e. Tb = Tp/10) and b[k] now
referring to the bits that represent each pixel.

The resulting spectrum is relatively similar to the one obtained
by VGA (cf. Fig. 3), although Tp is naturally now substituted by
Tb. Furthermore, note that Xs(f) will not have most of its energy
at baseband due to the encoding (for instance, there is no DC if
differential mode is used). However, correlation between pixels is still
true, and we should thus expect an Xs(f) with the largest components
at multiples of 1/Tp. All things considered, the resulting spectrum
X(f) should now have most of its energy at the harmonics of 1/Tb

plus a multiple of 1/Tp.

III. TEMPEST AND SOFTWARE DEFINED RADIO

The characterization of the signals we presented in the previous
section has some important consequences regarding both hardware
and software. For the sake of clarity, we will focus on the 1920 ×
1080@60Hz resolution (i.e. the popular 1080p video mode) in the
VGA case.

A first aspect to consider is that at this resolution, the pixel rate
fp = 1/Tp is roughly equal to 148.5 MHz. This means that strong
interference should be expected at, for instance, the first harmonic
(which should be the one with the strongest energy of X(f)). In our
experiments we have thus used the second harmonic (see Fig. 4).

Secondly, only extremely high-end SDR hardware is capable of
operating at a sampling rate that exceeds the 100 MSps. If budget is
a constraint, then one may operate at 50 MSps for around 1000 USD
or less (see for instance [11], [12]). This means that the system will
actually receive a decimated version of x(t) (i.e. roughly one sample
out of every three pixels).

More in detail, let hLPF (t) be the impulse response of the low-
pass filter used by the SDR before sampling the signal (see Fig.
5) and Hch(f) the transfer function of the base-band representation
of the channel. For instance, if we are tuning our SDR to fc =
2/Tp, and using the same notation as in Fig. 3, we would obtain
Hch(f) = P (f − 2/Tp) [13, Ch. 9]. Naturally, other impairments

Fig. 5: Diagram of the SDR hardware. The parameters configurable
from software are highlighted in blue. SDR software typically works
with a complex value for each sample, where the in-phase and
quadrature components correspond to the real and imaginary parts
respectively.

may be incorporated to Hch(f) (such as attenuation or the transfer
function of the VGA connectors and cable that act as an antenna), but
in any case we may only assume an approximate (at best) knowledge
of Hch(f).

Furthermore, let Ts = 1/fs be the sampling period used by the
SDR, and f∆ the inevitable frequency difference between the SDR
and the actual harmonic of the pixel rate (i.e. in our case fc =
2/Tp + f∆). Thus, and ignoring possible interference and noise, we
will obtain the following complex signal from the SDR hardware [14,
Ch. 5]:

y[l] =
∑
k

x[k]g(lTs − kTp)e
−j2πf∆lTs , (5)

where g(t) = hLPF (t) ∗ hch(t), hch(t) is the inverse Fourier
Transform of Hch(f) and ∗ stands for the convolution operation. It
is important to highlight that x[k] is a purely real sequence. However,
complex values will be obtained from the SDR due to the presence
of hch(t) and the frequency error f∆, which will constantly rotate
the signal in the complex plane.

Finally, real-time operation at 50 MSps is a very challenging task.
One may always envision an offline operation, where the signal is
recorded and then processed. However, this is both impractical in
terms of storage capacity (the size of the file with the IQ samples
rapidly grows) as well as the attack per se (being able to operate
the system online would be much more interesting). This calls for a
system that is as lightweight as possible, although computing power
is naturally another important constraint (i.e. a relatively powerful
PC will be necessary to operate gr-tempest).

IV. VANILLA GR-TEMPEST

A. Implementation

Let us first discuss an implementation of gr-tempest that
basically emulates TempestSDR. Figure 6 shows the corresponding
flowgraph. This is the term used in GNU Radio to refer to the file
specifying how blocks are interconnected. In this case, it is a simple
succession of six blocks, which we briefly comment now.

1) UHD: USRP Source: The first block is naturally the SDR
hardware. We have used a USRP B200-mini [11], and continuing
with our ongoing example, we are going to use a sampling rate
fs = 50MHz and tune the SDR to the second harmonic of the
pixel rate corresponding to the 1920 × 1080@60Hz resolution (i.e.
fc = 2 × 148.5 = 297MHz). Note that using other SDR hardware
is as simple as changing this block to the one corresponding to the
available model. Virtually all SDR hardware is supported by GNU
Radio. Finally, in all the results we show here we have also used a
combination of low and high pass filters [15], [16] (to act as band

outComplex to Mag

out
Delay

Delay: 415.88k

Float To Short

Scale: -1

out

Fine sampling synchronization

Horizontal px: 740

Vertical px: 1.125k

Correct sampling?: Yes

Max. deviation (%): 13.5135m

Update proba.: 4.0404n

Normalize Flow

Minimum: 10

Maximum: 245

Window: 740

Alpha avg: 10m

Update proba: 100m

UHD: USRP Source

Sync: Unknown PPS

Samp rate (Sps): 50M

Ch0: Center Freq (Hz): 297M

Ch0: AGC: Default

Ch0: Gain Value: 50

Ch0: Gain Type: Absolute (dB)

Video SDL Sink

Input Width: 740

Input Height: 1.125k

Display Width: 2.2k

Display Height: 1.125k

Framerate: 0

Fig. 6: The GNU Radio flowgraph corresponding to the vanilla
gr-tempest.

pass RF filter, absent in the USRP B200-mini), an LNA [17] and a
very simple whip antenna. Although relatively basic, the setup allows
to spy at about 5 meters.

2) Fine sampling synchronization: The second block
is arguably the most challenging one. Recall that we are not sampling
at the pixel rate, but we still need exactly H × V samples for each
frame worth of samples obtained from the SDR hardware (since they
will ultimately be fed to a block that displays video at this resolution).
The integer V has to correspond to the vertical resolution (in this
case Py = 1125; recall that the blanking periods increase the image’s
height and width), whereas H may actually be any integer. By default
we use the closest integer to the horizontal resolution interpolated at
fs (i.e. H = round(Px × fs/fp)) so as to minimize the loss of
information.

In order to produce these H × V samples, we will first compute
the signal’s autocorrelation around a lag corresponding to τ = 1/60
seconds (i.e. the number of samples corresponding to a full frame).
As we mentioned before, since frames tend to be very similar, there
should be a large peak at that point of the auto-correlation. A rational
resampler with an interpolation ratio equal to H × V divided by the
actual position of the peak (in number of samples) will obtain the
H × V samples we need. The estimated peak position is averaged
over each iteration so as to filter-out noise and obtain a more stable
interpolation ratio.

3) Complex to Mag: This block, part of the core of GNU
Radio, simply computes the magnitude of the complex input, and
it is what TempestSDR refers to as Amplitude Demodulation. In
Marinov’s thesis this was used without much analysis (see [6,
Sec. 3.3.1]), probably following Markus Kuhn’s previous work that
used an AM receiver to downconvert the signal. Actually, its most
important impact and utility lies in eliminating the complex exponent
in (5) that would rotate the samples, and intuitively it acts as a
measure of how much energy resides in that sample. However, as
we will see in the next section, this non-linear transformation further
distorts the signal, and much better images may be obtained by
carefully considering the actual model we derived in (5).

4) Delay: At this point we have a stream of real-valued samples
corresponding to a sequence of H×V samples per frame. However,
the beginning and end of each frame was not identified. This block
(part of the core of GNU Radio) delays the signal a number of
samples adjustable by the user. The objective is to manually center
the image.

5) Normalize flow: This block simply prepares the stream to
be displayed, by automatically adjusting its range.

6) Float to Short: In addition to changing the data-type for
the next block, we may optionally negate the stream samples, which
typically increases the visibility of the displayed image.

(a) Spied image when not using the Fine sampling
synchronization block.

(b) Spied image when using the Fine sampling
synchronization block. Note that the image is not centered,
highlighting the role of the Delay block.

Fig. 7: An example of a spied image in the vanilla gr-tempest
on a VGA interface. All images are better viewed in a monitor.

7) Video SDL Sink: This is a block (part of the core of GNU
Radio) which takes a stream of shorts and displays it as a video. The
resolution is adjustable and as we mentioned before we use H × V ,
meaning it will take chunks of this many samples and display it as
a frame (with a frame rate inferred from the incoming sample rate).
Note that the displayed image is interpolated horizontally to restitute
its original aspect ratio (through the Display Width parameter).

B. Experimental Results

An example result of this vanilla gr-tempest may be seen in
Fig. 7 (the spied interface is VGA). The upper screenshot shows the
displayed image when the Fine sampling synchronization
block is not used. Naturally, we obtain a strongly tilted image, which
added to its constant horizontal movement results in a useless system.

On the other hand, a correct interpolation results in a steady
and relatively clear image, where for instance icons are clearly
discernible. Furthermore, the spied image contains only the vertical
borders of the original one. Recall from Fig. 3 that Hch(f) is
roughly a high-pass filter, and that pixels are successively sent on
the horizontal sense (cf. Fig. 2). This, together with the fact that we
took the magnitude of the samples, results in a sort of vertical border
detector.

V. FIRST IMPROVEMENTS

The current version of gr-tempest includes several improve-
ments to the vanilla implementation. Some are mostly focused on
performance and visualization, as the ones we list below:

• Automatic vertical and horizontal centering of the spied image.
That is to say, automatically setting the parameter of the Delay

Fig. 8: A feed-forward frequency correction system that uses the fact
that pixels a line apart (i.e. vertically contiguous) are very similar.

block so that the displayed image is centered. This is achieved by
averaging both vertically and horizontally the image, where low
values are indicative of the blanking periods. This is important
when samples are dropped by the SDR hardware, since if a fixed
delay is used, at that moment the image moves and its position
has to be manually adjusted again.

• Hardware-based resampling. When using a large sampling rate,
necessary to obtain a clearer image, the PC may struggle to
process the signal, resulting in the dropped samples we men-
tioned before. One of the most computationally intensive tasks
is to actually interpolate the signal. In addition to computing the
resampling rate, this is the second task of the Fine sampling
synchronization block. To alleviate the computational
burden we may instead leave this task to the SDR hardware.
Several SDR hardware models support arbitrary sampling rates,
such as most USRPs. We have thus implemented a new block
that computes the correct sampling rate and re-configures the
UHD: USRP Source block accordingly. Actually, all SDR
hardware with a block in GNU Radio that supports message-
based configuration are supported by this feature.

• Frame dropper. For mid-range PCs, even if resampling is per-
formed in hardware, 50 MSps may still be an excessive com-
putational burden. We may lower this even further by dropping
complete frames. That is to say, instead of sampling at lower
rates (and thus obtain a lower-quality image), we may instead
lower the frame rate of the image we display.

A. Frequency correction

Let us now discuss with some detail some improvements that
actually takes into account the model we derived in (5). As we
mentioned before, in the VGA case there are two factors that
complicates the visualization: the frequency error f∆ and the blurring
produced by g(t). In TempestSDR the former was taken care of by
using the magnitude of the complex sample, whereas the second was
ignored.

However, the frequency error may actually be estimated by using
again the fact that contiguous pixels (both horizontally and vertically)
are typically very similar. Given this observation, and referring as
y[n] to the samples with the sampling rate corrected, a single-shot
estimate of f∆ is

f̂∆ = − 1

H2πT ′
s

arg{y[n]y∗[n−H]}. (6)

This suggests a feed-forward frequency estimation system as the
one depicted in Fig. 8, where the product y[n]y∗[n −H] is filtered
and then its argument is used by a digital frequency modulator to
generate ej2πf̂∆nT ′

s , which is then multiplied by the original y[n] to
correct the frequency error (note that we have used T ′

s to highlight
that the original sampling rate Ts has already been corrected).

After correcting the frequency error, we may take the real part of
the resulting complex, instead of its magnitude. As shown in Fig. 9,
the effect on the spied image of doing this is appreciable in terms

(a) Spied image when using the magnitude of the signal.

(b) Spied image when using the real part of the signal after having
corrected the frequency error by using the system in Fig. 8.

Fig. 9: An example of a spied image comparing the use of the
magnitude of the signal, and its real part after being frequency-
corrected. Note that the text is now clearly legible (e.g. the URL).

of the legibility of the text (where for instance the URL is now
discernible).

Note however that there is a small remaining frequency error.
Indeed, (6) implicitly assumes that the phase different between
samples corresponding to consecutive lines is less than 2π. In any
case, this coarse frequency correction along with taking the real part
of the signal clearly results in a much better image.

B. Equalization

The next natural step in processing (5) is to remove hch(t) from
g(t) = hLPF (t) ∗ hch(t) in order to obtain a deblurred image.
As we mentioned before, we have an approximate knowledge of
hch(t) at best. Even without considering other factors that may affect
the signal, the pulse p(t) used to shape the pixels’ signal is only
approximately rectangular (the VESA standard [9] specifies the pulse
with generous tolerance).

We will nevertheless evaluate the benefits that equalization may
bring by using a simple zero-forcing equalization assuming a per-
fectly rectangular p(t). Recall that Hch(f) = P (f − fc), which has
a null precisely at f = 0 (cf. Fig. 3). We will thus use a FIR filter
heq[n] such that its continuous time equivalent frequency response
is equal to

Heq(f) =
1

P (f − fc) + ϵ
,

with ϵ a small constant. Computing the taps is relatively straightfor-
ward (we have used Numpy) and GNU Radio includes a FIR filter
block where arbitrary taps may be used.

(a) The upper part of Fig. 9b, where we have corrected the frequency
error and taken the real part of the signal

(b) The same part of the image, but we have additionally used a
simple equalization filter.

Fig. 10: An example of the spied image when using (or not) the
equalization, corresponding to the upper portion of the one shown in
Fig. 9. Note how the text is even clearer, and certain images are now
“filled”.

Figure 10 shows the new results and compares it with the ones
obtained when equalization is not used (i.e. Fig. 9). Note how text is
even clearer than before. Furthermore, some of the images now have
“fill”. For instance, the YouTube logo or the padlock on the address
bar, or even the Home or Reload buttons. However, interference is
also highlighted by this somewhat simplistic filter. In any case, this
illustrates both that there is much room for improvement in the image
quality through equalization, and that GNU Radio serves as a great
tool in this experimentation.

VI. CONCLUSION

We have presented gr-tempest, an open-source implementation
of TEMPEST that uses GNU Radio, the most popular SDR frame-
work. This allows, for instance, using any SDR hardware and a very
easy experimentation.

In this sense, we have carefully studied the signal coming from
the SDR hardware in the analog display case (i.e. VGA), derived
a model and implemented some improvements to the base system
that result in a much greater image quality: frequency correction and
equalization. We have discussed a basic approach to the latter with
very encouraging results, and several improvements are foreseeable.
Maybe the most interesting alternative would be to apply a blind
equalization technique [18], where the filter is automatically set and
minimizes the assumptions.

Regarding digital displays, the base system may be used as-is to
obtain an image as the one shown in Fig. 11. Recall that in this
case 10 bits per pixel are sent, rendering equalization impractical.
A promising approach, and an avenue of research we are currently
exploring, is to instead learn to map from the complex-valued matrix
of the spied image to the original one (in Fig. 11 we are taking its
magnitude as in the vanilla case). This may be achieved through deep
learning, which have obtained remarkable results precisely in image
processing. There are some previous attempts in this sense that strive
at, for instance, detecting letters and numbers, but take the magnitude
of the complex (i.e. they use TempestSDR) [19], [20]. As we have
illustrated here, this may result in an important loss of information. In
fact, and in order to help with this learning, gr-tempest provides
a GNU Radio flowgraph that simulates the spied signal.

REFERENCES

[1] J. Friedman, “Tempest: A signal problem,” NSA Cryptologic Spectrum,
vol. 35, p. 76, 1972.

Fig. 11: An example of the spied image when using HDMI.

[2] W. van Eck, “Electromagnetic radiation from video display units:
An eavesdropping risk?” Computers Security, vol. 4, no. 4, pp.
269–286, 1985. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/016740488590046X

[3] M. G. Kuhn, “Compromising emanations: eavesdropping risks of
computer displays,” University of Cambridge, Computer Laboratory,
Tech. Rep. UCAM-CL-TR-577, Dec. 2003. [Online]. Available:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-577.pdf

[4] A. M. Wyglinski, D. P. Orofino, M. N. Ettus, and T. W. Rondeau, “Rev-
olutionizing software defined radio: case studies in hardware, software,
and education,” IEEE Communications magazine, vol. 54, no. 1, pp.
68–75, 2016.

[5] V. González-Barbone, P. Belzarena, and F. Larroca, “Software defined
radio: From theory to real world communications,” in 2018 XIII Tech-
nologies Applied to Electronics Teaching Conference (TAEE), 2018, pp.
1–7.

[6] M. Marinov, “Remote video eavesdropping using a software-defined
radio platform,” MS thesis, University of Cambridge, 2014.

[7] Rohde & Schwartz, “R&S FSWT test receiver. TEMPEST
measuring receiver with digital signal evaluation,” https:
//www.rohde-schwarz.com/us/products/test-and-measurement/
tempest-tests/rs-fswt-test-receiver 63493-310144.html.

[8] “GNU Radio. The free & open software radio ecosystem ,” https://www.
gnuradio.org/.

[9] “VESA and Industry Standards and Guidelines for Computer Dis-
play Monitor Timing (DMT),” 2013, https://glenwing.github.io/docs/
VESA-DMT-1.13.pdf.

[10] “Digital Visual Interface,” Digital Display Working Group, Standard,
April 1999.

[11] Ettus Research, “USRP B200mini,” https://www.ettus.com/all-products/
usrp-b200mini/.

[12] Nuand, “bladeRF 2.0 micro xA5,” https://www.nuand.com/product/
bladerf-xa5/.

[13] R. G. Gallager, Principles of digital communication. Cambridge
University Press Cambridge, UK, 2008.

[14] M. Rice, Digital Communications: A Discrete-Time Approach (2nd
edition), 2020.

[15] Mini-Circuits, “Low Pass Filter SLP-450+,” https://www.minicircuits.
com/pdfs/SLP-450+.pdf.

[16] ——, “High Pass Filter SHP-250+,” https://www.minicircuits.com/pdfs/
SHP-250+.pdf.

[17] ——, “Low Noise Amplifier ZX60-P103LN+,” https://www.
minicircuits.com/pdfs/ZX60-P103LN+.pdf.

[18] Z. Ding and Y. Li, Blind equalization and identification. CRC press,
2018.

[19] Z. Liu, N. Samwel, L. Weissbart, Z. Zhao, D. Lauret, L. Batina, and
M. Larson, “Screen gleaning: A screen reading tempest attack on mobile
devices exploiting an electromagnetic side channel,” in NDSS Symposium
2021: The Network and Distributed System Security Symposium (NDSS)
2021, 21-25 February 2021. Sl: NDSS, 2021, pp. 1–15.

[20] F. Lemarchand, C. Marlin, F. Montreuil, E. Nogues, and M. Pelcat,
“Electro-magnetic side-channel attack through learned denoising and
classification,” in ICASSP 2020 - 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 2882–
2886.

