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Abstract 
One control strategy for gastrointestinal nematodes (GIN) is genetic selection. This study´s objective was to compare eggs 
per gram of feces (FEC) and fiber diameter (FD) estimated breeding values (EBV) and genomic EBV (GEBV) in Corriedale 
breed. Analysis included 19547 lambs with data, and 454, 711 and 383 genotypes from 170, 507 and 50K SNP chips, 
respectively. A univariate animal model was used for EBV and GEBV estimation, which included contemporary group, 
type of birth and dam age as fixed effects, and age at recording as covariate. Differential weights (α) were considered in 
the genomic relationship matrix (G), and the best fit models were identified using Akaike´s Information Criterion (AIC), 
which were later used for GEBV and accuracies estimation. The use of α only impacted on low density SNP chips. No 
differences were observed in mean accuracies for the whole population. However, in the genotyped subgroup accuracies 
increased by 2% with the 170 SNP chip (α=0.25), and by 5% (α=0.5) and 14% (α=0.75) with the 507 SNP chip. No 
differences were observed in FD EBV and GEBV mean accuracies. These results show that it is possible to increase 
GEBV accuracies despite the use of low-density chips. 

Keywords: accuracy, Corriedale, FEC, GEBV 

 

Resumen 

Una alternativa para el control de los nematodos gastrointestinales (NGI) es la selección genética. El objetivo de este 
trabajo fue comparar las precisiones de los valores de cría (EBV) y los EBV genómicos (GEBV) del recuento de huevos 
por gramo en heces (HPG) y diámetro de fibra (DF) en la raza Corriedale. El análisis incluyó 19547 corderos con datos 
fenotípicos y 454, 711 y 383 genotipados con paneles o chips de 170, 507 y 50K SNP, respectivamente. Los EBV y GEBV 
se estimaron con un modelo animal univariado que incluyó los efectos fijos: grupo contemporáneo, tipo de nacimiento y 
edad de la madre, y edad al registro como covariable. Se consideraron pesos diferenciales (α) en la matriz de relaciones 
genómicas, identificándose los modelos con mejor ajuste con el criterio de información de Akaike (AIC), que fueron utili-
zados para la estimación de los GEBV y sus precisiones. El uso de α solo impactó en el ajuste con paneles de baja 
densidad. No se encontraron diferencias en las precisiones promedio de la población total. En cambio, en el subgrupo de 
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animales genotipados las precisiones aumentaron 2% con 170 SNP (α=0.25), y con 507 SNP 5% (α=0.5) y 14% (α=0.75). 
No hubo diferencias en precisiones de los EBV y los GEBV de DF. Los resultados muestran que es posible aumentar las 
precisiones de los GEBV aun con paneles de baja densidad. 

Palabras clave: precisión, Corriedale, HPG, GEBV 

 

Resumo 

Uma alternativa para o controle de nematóides gastrointestinais (NGI) é a seleção genética. O objetivo deste trabalho foi 
comparar as precisões dos valores genéticos estimados (EBV) e dos EBVs genômicos (GEBV) da contagem de ovos por 
grama de fezes (OPG) e diâmetro de fibra (DF) na raça Corriedale. A análise incluiu 19547 cordeiros com dados e 454, 
711 e 383 genotipados de 170, 507 e 50K SNPs, respectivamente. Foram estimados os EBV e GEBV com um modelo 
animal univariado que incluiu efeitos fixos de grupo contemporâneo, tipo de nascimento e idade da mãe e idade no registro 
(covariável). Pesos diferenciais (α) foram considerados na matriz de relações genômicas, identificando os modelos com 
melhor ajuste via critério de informação de Akaike (AIC), os quais foram utilizados para estimar o GEBV e suas precisões. 
O uso de α somente impactou no ajuste com painéis de baixa densidade. Não foram encontradas diferenças na precisão 
média da população total. Em contraste, no subgrupo de animais genotipados as precisões aumentaram 2% com 170 
SNPs (α = 0.25), e com 507 SNPs 5% (α = 0.5) e 14% (α = 0.75). Não houve diferenças na precisão de EBV e GEBV de 
DF. Os resultados mostram que é possível aumentar a precisão de GEBVs mesmo que se utilizem painéis de baixa 
densidade. 

Palavras-chave: precisão, Corriedale, OPG, GEBV  

 

1. Introduction 

Uruguay´s main production system is based on nat-
ural pastures. Because of favorable climatic condi-
tions, sheep can graze all year long, but this has the 
disadvantage of animals being exposed to gastroin-
testinal nematodes (GIN). These are the most prev-
alent parasitic infections in grazing sheep world-
wide, which cause important economic losses to the 
sheep industry, because of the decrease in meat 
and wool production, as well as the increase in costs 
associated to anthelmintic control. In Australia, 
Lane and others(1) estimated losses of AUD 436 mil-
lion per year.  

Anthelmintic drugs are used as the main control 
method, but its frequent and indiscriminate use has 
favored anthelmintic resistance development. This 
situation resulted in the onset of alternative control 
strategies, one of them being the selection of genet-
ically resistant animals. Animal´s ability to resist par-
asitic infections is genetically determined, with vari-
ability between breeds as well as between individu-
als from the same breed(2). Resistance is the ability 
of an animal to initiate and maintain an immune re-
sponse to prevent or eliminate a parasitic infection 
after it is installed, and it is quantified through nem-
atodes egg count per gram of feces (FEC). In Uru-
guay, since 1994, GIN genetic resistance is in-
cluded in the Corriedale National Genetic Evalua-
tion (www.geneticaovina.com.uy), using FEC meas-
ured in lambs as selection criterion and estimated 
breeding value (EBV) estimation with the Best Lin-
ear Unbiased Predictor methodology (BLUP)(3). 

FEC is a moderately heritable trait (h2 ~ 0.3) with a 
great variability between individuals(4-6). 

Nowadays, in most countries, the EBV estimation 
for selection of genetically superior animals is based 
on genealogical and phenotypic records, but in the 
last years, medium-density single nucleotide poly-
morphism (SNP) arrays have emerged as an addi-
tional source of information. Genomic information is 
a complementary tool in genetic evaluations for low 
heritability, long generation interval or difficult to 
measure traits. Genomic selection (GS) is a type of 
marker assisted selection where a great number of 
genetic markers (mostly SNP) distributed along the 
genome are in linkage disequilibrium (LD) with ge-
nomic regions associated to quantitative trait loci 
(QTL)(7). The procedure consists of estimating all 
SNP effects simultaneously from individuals with 
phenotypic and genotypic information (reference 
population), and later using these effects to predict 
genomic EBV (GEBV) from selection candidates 
that don´t have phenotypic records(8). 

Each SNP effect can be estimated using different 
assumptions about its distribution(9). In genomic 
BLUP (GBLUP) a normal distribution with equal var-
iances for the markers effects is assumed(7)(10-11). In-
vestigations carried out by Hayes and others(12), 
VanRaden and others(13), and Cole and others(14) 
have showed that assuming equal variance for each 
SNP produced little or no loss of accuracy for most 
traits. In 2009, Misztal and others(15) proposed to in-
tegrate genomic information in a single step genetic 
evaluation using single step genomic BLUP 
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(ssGBLUP), where the additive relationship matrix 
(A) is combined with the SNP based genomic rela-
tionship matrix (G) to create an H matrix(9)(16-17). The 
main idea is to use all available information (pheno-
types, genotypes and pedigree) in a model to pre-
dict GEBV for all individuals simultaneously(18). 

The use of genomic information in GEBV estimation 
allows to significantly increase genetic gain through 
EBV accuracy increase in young animals(7). Nowa-
days, GS has been implemented in several sheep 
breeding programs in Australia(19-20), New Zea-
land(21) and France(22-23). Concerning EBV accura-
cies, Auvray and others(21) reported increases be-
tween 0.09 and 0.37 when using GBLUP instead of 
BLUP, for eight traits and four different breeds, with 
a genotyped population of 13420 animals. Accura-
cies for milk production trait increased from 0.26 to 
0.42 when ssGBLUP method was used(23), and be-
tween 0.05 and 0.3 increases for the same trait in 
six different dairy sheep breeds(24). Regarding FEC 
trait, Torres and others(25) reported EBV accuracies 
increases between 0.046 and 0.073. 

In 2014, Periasamy and others(26) identified 170 
SNP associated with 76 candidate genes involved 
in immune response to GIN resistance, and Raschia 
and others(27) found that eight of them were signifi-
cantly associated with FEC in Corriedale sheep un-
der artificial infection. In turn, INIA [National Agricul-
tural Research Institute] developed a 507 SNP chip 
with the Affymetrix company that contains 174 SNP 
related to FEC trait and 258 paternity SNP 
(FMV_2_2011_1_6356_ANII project)28. 

Even though this study is focused on GIN genetic 
resistance, with FEC as selection criterion, we also 
included fiber diameter (FD) for comparison rea-
sons since it is a highly heritable trait and EBV ac-
curacies are affected by this parameter(29). This trait 
is also a relevant selection breeding objective for the 
Corriedale breed in Uruguay(30). 

The aim of this study was to evaluate the contribu-
tion of three different SNP arrays in GEBV accuracy 
increase as compared to traditional genetic evalua-
tion for FEC and FD traits. Due to the small number 
of genotyped animals, this study was focused on 
GEBV accuracies. 

 

2. Materials and methods 

2.1 Phenotypic Data 

From 2000 to 2019, FEC and FD records were col-
lected from 19547 Corriedale animals belonging to 
29 farms (24 stud flocks, 3 experimental units and 2 

progeny testing centrals). Genealogical information 
from 40056 animals was provided by Uruguay´s Ru-
ral Association (ARU) and the Uruguayan Corrie-
dale Breeders Society, who also provided the per-
formance and management data.  

FEC as well as FD traits are routinely registered at 
the National Genetic Evaluation, but the first one is 
not mandatory. FEC sampling was performed at 
278±69 days mean age according to the protocol 
used for genetic evaluations(30) and FD sampling 
was made at shearing (364±42 days mean age). 
Due to FEC´s non normal distribution, data was 
transformed to natural logarithm, Loge (FEC+100) 
as described in Ciappesoni and others(31). Descrip-
tive statistics for both traits are presented in Table 1. 

 

Table 1. Descriptive statistics for fecal egg counts 
(FEC), Loge (FEC+100) and fiber diameter (FD) for 

N=19547 

Trait Mean SD Min Max 

FEC 1310 2158 0 37400 

Loge (FEC+100) 6.49 1.24 4.61 10.53 

FD (µ) 24.98 3.03 16.60 38.80 

 

Fecal samples were collected from the animal´s rec-
tum using plastic bags, identified, stored with ice gel 
packs and taken to the laboratory as described at 
the INIA N°6 Card(32). Samples were processed at 
parasitology laboratories at INIA Tacuarembó, INIA 
Las Brujas or the Uruguayan Wool Secretariat 
(SUL, by its Spanish acronym), where FEC were as-
sessed using a modified McMaster technique with a 
sensitivity of 100 eggs per gram of feces(33). 

2.2 Genotypic Data 

Blood samples were collected by jugular´s vein 
puncture using tubes with K2 EDTA anticoagulant 
(BD Vacutainer, USA), and afterwards DNA was ex-
tracted according to Medrano and others(34) protocol 
with modifications. NanoDrop 8000 spectrophotom-
eter (Thermo Scientific, USA) was used for DNA 
quantification and purity evaluation. DNA integrity 
was checked with a 1% agarose gel with 0.5X TBE 
buffer (Tris-Borate-EDTA, Thermo Scientific, USA) 
during 25 minutes at 100V. Finally, DNA samples 
were stored at -80°C until genotyping. 

For this study, genotypes from three different SNP 
chips were used: 454 animals with 170 SNP (Inter-
national Atomic Energy)(26), 711 animals with 507 
SNP (Charrúa Panel, Affymetrix)(35-36) and 383 ani-
mals with 50K SNP (Illumina Ovine SNP50 Bead-
Chip v1 and v2, Affymetrix Oviser Axiom 50K). For 
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the 50K chip, 33236 SNP in common between Illu-
mina and Affymetrix platforms were used.  

For genomic data quality control the PREGSF90 
program was used(37-38) and consisted in the exclu-
sion of sexual markers, monomorphic, minor allele 
frequency <0.05 and call rate <90%; and the exclu-
sion of individuals with call rate <90%. SNP and in-
dividuals after quality control are presented in Table 
2. Regarding SNP in common, only the 507 SNP 
chip has some markers from the 50K SNP chip (91 
SNP).  

 

Table 2. Number of SNP and individuals after quality 
control. G matrix weights (α) and A matrix weights (β) 
calculated according to VanRaden(11) for 50K, 507 and 

170 SNP chips 

Chip SNP Animals Α Β 

50K 29325 375 0.99 0.01 

507 373 702 0.75 0.25 

170 148 454 0.75 0.25 

 

2.3 Animal Welfare 

Fecal samples extraction protocol as well as blood 
extraction protocol were approved by INIA´s Animal 
Ethics Committee (Approval number INIA_2018.2).  

2.4 Statistical Analysis 

EBVs were estimated based on phenotypic and 
pedigree records through BLUP methodology. 
GEBVs were estimated based on phenotypic and 
pedigree records as well as genotypes through 
ssGBLUP methodology. Variance components 
were estimated using the AIREML algorithm (Aver-
age Information Restricted Maximum Likelihood)(39) 

and afterwards used as initial values for EBV and 
GEBV prediction using BLUPF90 family of pro-
grams(40). 

For breeding values estimation and (co)variance 
components a univariate animal model was used: 

y= Xb + Zu + e 

where y is the observations vector for each trait 
(Loge (FEC+100) or FD); X is the fixed effects inci-
dence matrix; b is the vector of fixed effects; Z is the 
additive genetic effects incidence matrix; u is the 
vector of direct additive genetic effects, and e is the 
residual effects vector. Under the infinitesimal 
model, it is assumed that u ~𝑁 (0, A σ2u) with pedi-
gree-based approach, and that u ~𝑁 (0, H σ2u) with 
genomic approach (being σ2u the additive genetic 
variance) and that 𝑒 ~𝑁 (0, I σ2e). Fixed effects in-

cluded in the model were as follows: 467 contempo-
rary groups (birth year, sex, stud-flock, and man-
agement group), type of birth (2 levels: unique or 
multiple), mother´s age (3 levels: 2, 3 and ≥ 4 years) 
and age at recording as covariate (age at FEC and 
age at shearing). 

H is the relationship matrix that combines pedigree 
and genomic information and was estimated using 
ssGBLUP. This matrix inverse was calculated ac-
cording to Aguilar and others(9): 

H−1 = A−1 + (
0 0
0 G−1 −  A22

−1) 

where A−1 is the inverse of the pedigree relation-

ship matrix, G−1 is the inverse of the genomic ma-

trix, and A22
−1 is the inverse of the pedigree relation-

ship matrix of genotyped animals. 

G matrix calculation was computed according to 
VanRaden´s(11): 

Gw = w ∗ G +  (1 − w) ∗ A22 

where the weighted G matrix (Gw) is used with a 
formula that includes the number of SNPs (m): 

w =  
0.052

(0.052 +
0.125

m
)

′ 

PREGSF90 program(37) uses the same formula but 
with α and β: 

G = αG +  βA22 

Default values are α=0.95 (G matrix weight) and 
β=0.05 (A matrix weight). These weights are used 
for G matrix blending, to make it positive definite so 
it can be inverted(11). Calculated weights for 170, 
507 and 50K SNP are presented in Table 2. 

The Akaike Information Criterion (AIC)(41) was used 
for model comparison: 

AIC = 2k − 2ln (L) 

where 2ln(L) is the model´s goodness of fit (L is the 
maximum likelihood), and k is a complexity meas-
urement (number of estimated parameters). 

AIC values were estimated with the AIREML algo-
rithm. BLUP and ssGBLUP models were compared 
with different weights assigned to G matrix, and 
delta AIC was calculated (ΔAIC; difference between 
two values). According to Burnham & Anderson(42), 
models with ΔAIC less than 2 are equivalent, be-
tween 4 and 7 are somewhat different, and >10 are 
conclusively different. Afterwards, only models with 
ΔAIC higher than 10 were considered, this is to say, 
models where including SNP information showed a 
difference compared to BLUP. 
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To understand the impact of these models on the 
genetic evaluation, EBV and GEBV accuracies 
were estimated for the different chips, according to 
Aguilar and others(43): 

acc = √1 −
PEVi

(1 + Fi)σu
2

 

where σu
2  is the additive genetic variance, PEVi is 

the prediction error variance of animal i and Fi is the 
inbreeding coefficient. 

Afterwards, a paired Student´s t-test was used to 
check if these accuracies were statistically signifi-
cant. 

Also, correlation between elements outside the di-
agonal of G and A22 matrices were assessed to de-
tect conflicts between pedigree and the genomic 
matrix. This correlation is expected to be between 
0.5 and 0.9, and values higher than 0.9 show that 
the information between G and A22 matrices is very 
similar(44). 

 

3. Results  

Initially, FEC and FD genetic and residual vari-
ances, and heritability estimates were assessed 
(Table 3), and later used as initial values in breeding 
values estimation. 

Afterwards, AIC for each model was calculated. For 
FD, only the model with 50K SNP showed ΔAIC val-
ues different from BLUP. Furthermore, for FEC this 
model didn´t show any difference, but the models 
with 170 SNP and 507 SNP did (Table 4). In the 
case of models with 507 SNP, the ones with 0.25, 
0.5 and 0.75 α values and the model with 170 SNP 
(with α=0.25) showed differences for this trait. 

Table 3. Additive genetic variance (gV), residual vari-
ance (rV) and heritability (h2) estimates for Loge 

(FEC+100), and fiber diameter (FD) with standard er-
rors 

Trait gV rV h2 

Loge (FEC+100) 0.16±0.02 0.72±0.01 0.18±0.02 

FD 1.89±0.10 1.88±0.07 0.50±0.02 

  
Table 4. Akaike Information Criterion (AIC) and delta 
AIC (ΔAIC) values for BLUP and ssGBLUP models 

(with different weights assigned to G matrix) for Loge 
(FEC+100), and fiber diameter (FD) for 170, 507 and 

50K SNP 
 

Loge (FEC+100) FD  
AIC ΔAIC AIC ΔAIC 

BLUP 52489.5 
 

78358.8 
 

50K SNP α=0.75 52484.6 4.9 78337.8 21      
50K SNP α=0.95 52490.2 -0.7 78336.1 22.7 
50K SNP α=0.99 52491.7 -2.2 78335.9 22.9 
507 SNP α=0.25 52473.1 16.4 78357.6 1.2 
507 SNP α=0.50 52473.5 16 78366.4 -7.6 
507 SNP α=0.75 52478.6 10.9 78386 -27.2 
507 SNP α=0.95 52487.4 2.1 78417.8 -59 
170 SNP α=0.25 52479.4 10.1 78357.3 1.4 
170 SNP α=0.50 52486.5 3 78369.4 -10.6      
170 SNP α=0.75 52501.6 -12.1 78396.7 -37.9 
170 SNP α=0.95 52525.9 -36.4 78445.9 -87.1 

 

To explore which of the AIC selected models opti-
mizes trait selection, mean accuracies for the whole 
population and for genotyped animals were esti-
mated. BLUP estimations were compared to 
ssGBLUP (with different weights assigned to G ma-
trix) (Table 5).

 

Table 5. Mean accuracies estimated with BLUP (EBV Acc) and ssGBLUP (GEBV Acc), and percentage increase for all 
animals (N=37018) and for genotyped animals with 170 SNP chip (α=0.25), with 507 SNP chip (5071 α=0.25; 5072 

α=0.50; 5073 α=0.75) or 50K SNP chip (50K1 α=0.75; 50K2 α=0.95; 50K3 α=0.99) for AIC>10 models, for Loge 
(FEC+100), and fiber diameter (FD). Significant values (*=P<0.05) 

 
All Genotyped 

Trait EBV Acc GEBV Acc Increase (%)  Chip n EBV Acc GEBV Acc Increase (%) 

FEC 0.46 0.46   0 170 407 0.59 0.61 3*  
0.46 0.46 0 5071 639 0.58 0.58 0  
0.46 0.46 0 5072 639 0.58 0.62 7*  
0.46 0.46   0 5073 639 0.58 0.67 16* 

FD 0.61 0.61 0 50K1 313 0.79 0.79 0  
0.61 0.61 0 50K2 313 0.79 0.79 0  
0.61 0.61 0 50K3 313 0.79 0.79 0 
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No differences between EBV and GEBV were found 
for the whole population, with mean accuracy val-
ues of 0.46 and 0.61 for FEC and FD, respectively. 
It was observed that EBV mean accuracies were 
higher for the genotyped group compared to the 
whole population, but this is not surprising since 
samples that are selected for genotyping are the 
most informative animals (rams and dams with 
many offspring) and this impacts directly on the ac-
curacies.  

When whole population´s EBV and GEBV accura-
cies were plotted (for models selected with AIC) it 
was observed that, for FEC, there were animals that 
lowered their accuracies when the 170 and 507 
SNP chips with α=0.25 were used (Figures 1 and 2), 
but this tendency decreased when the 507 SNP chip 
with α=0.5 y α=0.75 was used (Figure 2). The 507 
SNP chip with α=0.75 showed the highest increases 
in accuracies. Concerning dams not genotyped with 
genotyped offspring, higher accuracies were ob-
served when the 507 SNP chip with higher α was 
used (Figures 1 and 2).

 

Figure 1. EBV (Acc) and GEBV (Acc_170_0.25 with α=025) correlation for all animals evaluated for FEC trait (r=0.99) 

 

 

Figure 2. EBV (Acc) and GEBV (Acc_507_0.25 with α=0.25; Acc_507_0.5 with α=0.5 and Acc_507_0.75 with α=0.75) 
correlation for all animals evaluated for FEC trait with its correlation coefficients (r=0.99, r=0.99, and r=0.99, respectively) 
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Regarding FD, no differences were observed when 
different α values were used (Figure 3).  

On the other hand, differences in accuracies were 
observed within the genotyped subset (Table 5). 
Concerning FEC trait, the 50K SNP chip didn´t in-
crease estimated breeding value mean accuracies, 
and neither did the 507 SNP chip with α=0.25. By 
contrast, the 170 SNP chip with α=0.25 and the 507 
SNP with α=0.5 and α=0.75 increased GEBV accu-
racies by 3, 7 and 16%, respectively. These per-
centages are not comparable between chips since 
only 3% of animals were genotyped with the three 
chips.  

For animals genotyped with both 170 and 507 SNP 
chips (n=305) it was observed that for FEC trait ac-
curacies lowered slightly but were still significant for 
170 SNP with α=0.25, and 507 SNP with α=0.5 and 
α=0.75, with 2, 5 and 14% increases, respectively. 
For 507 SNP with α=0.25 no difference in GEBV ac-
curacy was observed. 

Scatter plots for animals genotyped with both 170 
and 507 SNP chips for FEC (Figures 4 and 5) 
showed a strong positive correlation between EBV 
and GEBV mean accuracies. In addition, it was ob-
served a lower correlation coefficient and a higher 
accuracy increase when the 507 SNP chip was 

used and as α was increased. Also, in these plots it 
can be observed that even though a high proportion 
of animals increased their GEBV accuracies, others 
with phenotypic data lowered their accuracies when 
ssGBLUP was used, both with the 170 SNP chip 
(with α=0.25) as well as with the 507 SNP chip (with 
α=0.75). In the case of the 507 SNP chip with 
α=0.75, only one animal decreased its GEBV accu-
racy. It was also observed that animals that in-
creased in higher proportion their accuracies were 
the animals with lower initial accuracies (animals 
without phenotypic data and dams whose offspring 
had phenotypic data). The 507 SNP chip (with 
α=0.75) was the one that yielded higher increases. 
There was a third group of data that belonged to an-
imals with higher initial accuracies (mostly rams with 
many offspring that had phenotypic data), that in-
creased their accuracies slightly when the 507 SNP 
chip (with α=0.75) was used, and practically re-
mained without changes when the 170 SNP chip 
(with α=0.25) and the 507 SNP chip (with α=0.5) 
were used.  

Regarding G and A22 matrices off-diagonal ele-
ments, 0.9, 0.8 and 0.7 values were observed when 
170 SNP chip (with α=0.25), 507 SNP chip (with 
α=0.5) and 507 SNP chip (with α=0.75) were used, 
respectively.

 

Figure 3. EBV (Acc) and GEBV (Acc_50K_0.75 with α=0.75, Acc_50K_0.95 with α=0.95, and Acc_50K_0.99 with 
α=0.99) correlation for all animals evaluated for FD trait with its correlation coefficients (r=0.99, r=0.99 and r=0.99, re-

spectively) 
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Figure 4. Correlation of EBV (Acc_FEC) and GEBV accuracies (Acc_FEC_170_0.25 with α=0.25) for geno-
typed animals with the 170 SNP chip, evaluated for FEC trait (r=0.93) 

 

 

 

Figure 5. Correlation of EBV (Acc_FEC) and GEBV accuracies (Acc_FEC_507_0.5 with α=0.5 and 
Acc_FEC_507_0.75 with α=0.75) for genotyped animals with the 507 SNP chip, evaluated for FEC trait with its 

correlation coefficients (r=0.91 and r=0.88, respectively) 
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4. Discussion 

Molecular contribution to genetic improvement has 
been widely studied for more than two decades with 
the objective of increasing the rate of genetic pro-
gress. Initial strategies were based on using a few 
molecular markers associated to the trait of interest 
(marker assisted selection), but this approach didn’t 
progress due to the polygenic nature of most eco-
nomically important traits, and therefore, phenotypic 
effects were too small to be statistically signifi-
cant(45). Further developments have expanded this 
concept through the identification of thousands of 
known SNPs. Commercially available high-density 
genotyping arrays and different analysis models 
have made genomic selection implementation pos-
sible. One of these models, ssGBLUP, has allowed 
improvements in GEBV accuracies in sheep pro-
duction traits compared to BLUP traditional 
model(23-25). 

Since genotyping costs in sheep are quite high rel-
ative to the animal´s economic value, other alterna-
tives were sought, like the use of low-density SNP 
chips like the ones that were used in this study. 

One way to compare models is cross-validation, 
where the population is divided in two subsets: train-
ing and validation, but in this work, the low number 
of genotyped animals didn´t allow the use of this 
methodology and instead AIC was used. In 2014, 
Bernal-Vasquez and others(46) compared cross-val-
idation and AIC, and found that both methodologies 
selected the same models; therefore, AIC could be 
used as a reliable alternative method. The AIC 
methodology allowed to select those models that 
optimized FEC and FD traits compared to BLUP tra-
ditional model, that uses only genealogical and phe-
notypical information. FEC models with 170 SNP 
chip (with α=0.25) and 507 SNP chip (with α=0.25, 
α=0.5 and α=0.75) were found to be better than the 
traditional model. By contrast, using the 50K SNP 
chip model for FEC showed no difference to tradi-
tional model (ΔAIC<10). For FD, only models with 
50K SNP chip with α=0.75, α=0.95 and α=0.99 were 
better than the traditional model. 

When GEBV accuracies were estimated for the 
whole population for those models previously se-
lected with AIC, no differences in mean accuracies 
were observed with the use of molecular infor-
mation, probably due to the low percentage of gen-
otyped animals compared to the total evaluated 
population (between 0.8 and 1.7). Nevertheless, an 
increase could be observed in dams not genotyped, 

but which had genotyped offspring, and in geno-
typed animals, mostly when the 507 SNP panel with 
higher α was used. 

For the genotyped subgroup, significant differences 
in mean accuracies were observed in all models se-
lected with AIC, except the 507 SNP chip model 
(with α=0.25) for FEC trait and all 50K chip models 
for FD trait. In the case of FD, the 50K SNP chip 
didn´t increase mean accuracies probably due to 
the low number of genotyped animals (0.8%), and 
also because FD is a trait with higher heritability 
compared to FEC (h2=0.50 versus h2=0.18), so the 
margin to increase accuracies is much lower. FEC 
and FD reported heritability estimates for this study 
agree with previous ones in Corriedale breed in Uru-
guay(30)(47-48). Heritability is a factor that influences 
estimated breeding value accuracy: higher trait her-
itability, higher accuracies. 

With the inclusion of the 170 SNP chip in the genetic 
evaluation a 2% increase in GEBV mean accuracies 
was observed. Regarding the 507 SNP chip, GEBV 
mean accuracies increased 5 and 14% when 0.5 
and 0.75 G matrix weights were used. In addition, it 
was observed that animals with lower initial accura-
cies were the ones that increased their accuracies 
to a larger extent, and that animals that benefited 
less were the ones that already had higher accura-
cies. This study shows that the use of the 507 SNP 
chip increased GEBV mean accuracy, and those in-
creases where enhanced with higher G matrix 
weights. These estimates are lower than the ones 
reported by other authors for GIN resistance; for ex-
ample, Torres and others(25) reported EBV accuracy 
increases from 0.046 to 0.073 when ssGBLUP was 
used compared to BLUP, but in that study a 50K 
SNP chip was used, therefore, with higher SNP den-
sity. The 170 and 507 SNP chips are low-density ar-
rays, so they have low genome coverage, and they 
can´t be used for genomic selection where the 
premise is that a great number of SNP distributed 
across the genome are in linkage disequilibrium 
with genomic regions associated to quantitative 
traits(7). This agrees with a study done in fish popu-
lations where prediction accuracies were calculated 
using different low-density chips, and they found 
that arrays with less than 1000 SNP show a sharp 
decrease in accuracies as well as in estimated her-
itability(49). The only chip utilized here that could be 
used for GS is the 50K array, but no significant dif-
ferences were observed in mean GEBV accuracies, 
probably due to the low number of genotyped ani-
mals.  
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But which could be the reason for the increase in 
mean accuracies when the 170 and 507 SNP chips 
were used? EBV accuracy measures the quantity of 
information used in the prediction of that breeding 
value (own performance and family performance), 
and when genomic information is added, the quan-
tity of information increases due to a better capture 
of family relationships. SNP based pedigree in-
cludes information on unrecorded pedigrees and on 
Mendelian sampling(12), which translate in better ac-
curacies in the estimations. The 507 SNP chip, with 
α=0.75, better performance could be related to the 
higher weight given to the molecular information (G 
matrix) compared to the pedigree (A matrix). Also, 
even though the 507 SNP panel is a low-density 
panel, it is 2.5 times denser than the 170 SNP panel, 
so theoretically there are more chances for SNPs to 
be in LD with QTLs related to FEC resistance. 

According to Lourenco and others(44), the correlation 
between elements outside the diagonal of G and A22 
matrices is expected to be between 0.5 and 0.9, and 
values higher than 0.9 indicate that both matrices 
are very similar, thus a small gain in accuracy is ex-
pected. In this study, the 170 SNP chip (with 
α=0.25), the 507 SNP chip (with α=0.5) and the 507 
SNP chip (with α=0.75) show expected values, but 
the lower value for the 507 SNP chip (with α=0.75) 
indicates higher differences between G and A22 ma-
trices, thus a higher gain in accuracy would be ex-
pected. 

 
5. Conclusions 

It is possible to increase GEBV accuracies for GIN 
genetic resistance with the use of the 170 SNP iden-
tified by Periasamy and others(26), and mainly with 
the 507 SNP chip with a 0.75 G matrix allocated 
weight. In the current study increases were ob-
served only on genotyped animals, not in the whole 
population. To evaluate changes in this population 
it would be necessary a much greater number of 
genotyped animals.  

Genomic selection in the sheep industry is only pos-
sible nowadays in a few developed countries. How-
ever, it is expected that more countries incorporate 
it to their National Genetic Evaluations, mostly in dif-
ficult to measure or low heritability traits. This is go-
ing to be possible as genotyping prices get cheaper 
and more animals could be genotyped. This will al-
low building an adequate training population with 
enough quantity of genotyped animals with me-
dium-density chips (50K SNP) to be able to apply 
genomic selection to the National Genetic Evalua-
tions. GS main strength is that it allows increasing 

GEBV accuracy in young animals that still do not 
have their own phenotypic data. Therefore, this 
study is a first approximation to the incorporation of 
genomic data about Corriedale´s genetic evaluation 
in Uruguay, that shows that it is possible to increase 
breeding values mean accuracies even with the use 
of low-density chips. More research is needed with 
more genotyped animals and higher density chips 
to implement genomic selection in this population. 
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