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Abstract

The aim of this thesis is to provide new insights in the structure of the asymptotic symmetries
for gravity and gauge theories by studying phase space extensions.

In the first part of this work, dedicated to asymptotic symmetries in General Relativity, we
present a correction term for the super-angular momentum and an extension of the phase space
of gravity at null infinity. In this extension the superrotation group Diff(S2) acts canonically,
thus generalizing the Bondi-Metzner-Sachs group as a symmetry of the system. We discussed
this results in the context of covariant phase space formalism, making connections with the ex-
tended corner symmetry results. By considering Eintein-Yang-Mills theory, we show an exten-
sion of the phase space of gravity coupled to a non-abelian gauge theory where the generalized
Bondi-Metzner-Sachs group acts canonically.

The second part deals with phase space extensions in Yang-Mills and Maxwell Theories.
First, we construct the linearized extension for the asymptotic symmetries in Yang-Mills in or-
der to accommodate a large gauge transformation with associated subleading charges. Then,
the inclusion of higher order large gauge transformations in the abelian case is done, where it is
shown that we can obtain an infinite hierarchy of asymptotic symmetries. Each asymptotic sym-
metry has a corresponding subn-leading charge, compatible with the subn-leading soft photon
theorems. Finally, in the non-abelian case, working in the self dual sector of the theory we pro-
pose an extended phase space alongwith a perturbative-likemethod to compute the asymptotic
symmetry algebra.

Resumen

El objetivo de esta tesis es aportar nuevos resultados sobre la estructura de las simetrías asin-
tóticas para gravedad y teorías de gauge, mediante extensiones de espacios de fase.

En la pimer parte de este trabajo, dedicada a las simetrías asintóticas en RelatividadGeneral,
presentamos un término correctivo en el super-momento angular y un espacio de fase exten-
dido para gravedad en infinito nulo. En esta extensión, el grupo de super-rotaciones Diff(S2)

actúa canónicamente, generalizando el grupo de simetrías asintótico de Bondi-Metzner-Sachs.
En el contexto del formalismo de espacios de fase covariantes, conectamos nuestros resultados
con los trabajos en el grupo de simetrías en esquinas extendido. Tomando Einstein-Yang-Mills,
mostramos que la extensión del espacio de fase gravitacional acoplado a una teoría de gauge
mantiene la acción canónica del grupo Bondi-Metzner-Sachs generalizado.

La segunda parte de la tesis trata las extensiones de espacios de fase en las teorías de Yang-
Mills y Maxwell. Primero, construímos la extensión linearizada para el grupo de simetrías as-
intóticas en Yang-Mills, de forma que contenga las transformaciones de gauge de orden r asoci-
adas a las cargas subdominantes. Luego, hacemos la inclusión de transformaciones de gauge de
orden más grande en el caso abeliano, mostrando que se puede obtener una jerarquía infinita
de simetrías asintóticas. Cada simetrías está asociada a una carga subn−dominante, compati-
ble con los teoremas subn−dominantes para fotones suaves. Finalmente, en el caso no abeliano
y trabajando en el sector autodual de la teoría, proponemos una extensión del espacio de fase
junto con un método perturbativo para calcular el álgebra de simetrías asintóticas.
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Introduction

0.1 Introduction

General Relativity and Gauge Theories 1 are clear examples of the deep roots that Geome-
try has in the current physical theories that model nature. One can argue that the principle of
invariance, coming from any type of gauge symmetry, is the philosophical descendant of Eu-
clid’s Elements: there are classes of objects which are invariant with respect to their particular
position in space. In a modern paraphrasing of this idea, physical laws are independent of any
particular coordinate system or local trivialization. As in any geometric theory, the study of
symmetries is central. They contain the information to understand, organize and classify the
objects within the confines of the model.

The aim of this thesis is to provide new insights in the structure of the symmetries in gravity
and gauge theories, by showing extensions of the structures defined on their solution spaces in
order to accommodate more physical information, in the form of conserved quantities.

In the following paragraphs we give a (shallow) review of the topic.

Symmetries and gauge theories

In a physical theory, the connection between symmetries and physics is provided by the sem-
inal works by Noether [1], where it is shown that conserved quantities and the existence of a
variational principle that is invariant under symmetry transformations are equivalent.

The theories on which Noether’s theorems are valid are called Lagrangian Theories, where
a variational principle can be stated in terms of the action (integral of the lagrangian). The
equations of motion are given by the Euler-Lagrange equations. Roughly speaking, Noether’s
theorems establish a one to one correspondence between symmetries of the Lagrangian (i.e.,

1The word gauge has different meanings in different contexts. In some texts Gauge Theories refer to any field
theory invariant under local transformations, such as Maxwell, Yang-Mills or General Relativity. In others, the defi-
nition is restricted to those that are invariant under local transformations based only on actions of Lie groups, leaving
General Relativity in a special category. Throughout this thesis we are using both connotations, the meaning in each
casewill be clear from the context. The general term “gauge symmetry” denotes any type of local symmetry, whether
it comes from diffeomorphisms or Lie group actions.

1



Chapter 0

field transformations that leave the action invariant) and conserved quantities associated to
currents.

Within the family of symmetries that leaves the Lagrangian invariant we distinguish be-
tween global symmetries and local symmetries. Local symmetries, or gauge symmetries, are the
set of symmetries that can be parametrized using arbitrary functions on the spacetime, while
global symmetries are transformations independent of the points in spacetime.

Gauge theories, by definitions, are those lagrangian theories that admit non-trivial local
symmetries. These symmetries generate gauge transformations, which are linear maps from local
function to the set of global symmetries of the Lagrangian. In the absence of boundaries, pure
gauge-invariant theories (such as gravity) have no non-trivial global symmetries, and therefore
via the Noether theorem the only conserved current is the trivial one. Therefore, boundaries
are essential to the study of the conserved quantities. This leads us to the boundary conditions
analysis.

Boundary conditions

The Euler-Lagrange equations are, usually, an intricate system of highly non-linear partial dif-
ferential equations (PDE). Such is the case of general relativity, where the equations to solve
are

Ric− 1
2

Rg = 8πT, (1)

or Yang-Mills case,
d(∗F ) + [A, ∗F ] = 4π J. (2)

As anyPDE,wehave to provide a domain onwhich this equations are solved and a set of suitable
boundary conditions to have awell-defined structure in the solution space. The first step is to set
the topology of the spacetime under consideration. In most of the radiative cases, one assume
that the topology is that of asymptotically flat manifolds: each Cauchy slice is diffeomorphic to
a spacial slice of Minkowski, outside a connected compact region. Within this compact region
are the sources (black holes, neutron stars, charged objects) of the fields. In a neighbourhood
of null infinity we have vacuum solutions.

The second ingredient are the boundary condition. The boundaries in a spacetime are lo-
cated at infinity and in the source region, e.g. the near horizon region of black holes. In this
thesis we will be interested in the former. The boundary at infinity can be regarded as part of
the space after a compactification procedure. Thus, it acquires a physical meaning and posses
a geometric structure. Since we are in a Lorentzian theory, the structure of infinity is not as
simple as in the Euclidean case. We have time (future and past), null (future and past) and
spatial infinity, denoted by i±, I ± and i0 respectively. Upon fixing certain coordinates, which
fixes partially the gauge, one can define the solution spaces by prescribing the decay rate of the
fields near infinity. The space of null generator of I ± is called celestial sphere.

The choice of I ± as the boundaries has many purposes: it gives a geometrical definition
of asymptotic flatness, definitions for incoming and outgoing radiation (whether it is gravita-

2



Chapter 0

tional or other) and provides a framework with a natural kinematical structure to define the
S−matrix for gravity, among others (see the seminal paper [2] by Penrose). Regarding the
S−matrix program, extensive research has been conducted since the first works by Ashtekar
and collaborators, [3–6].

Radiative solutions and their symmetries

In order to study relevant families of solutions, certain frameworks have to be adapted. As we
mention above, I is naturally suited to study radiative solutions.

In a gauge theory such as electromagnetism or Yang-Mills, radiative fields have very precise
decays in a neighbourhood of I , due to the finiteness of the energy integrals. Therefore, once
a coordinate system has been selected, the fall offs can be immediately computed by imposing
the vector potential to decay as 1/r, the Euclidean distance to the origin, towards null infinity.

In gravity, the notion of energy is not locally but globally defined. This lead to the concept
of asymptotically flat spaces, which tries to capture the essence of a localized system emitting
gravitational radiation. Bondi, Metzner, van der Burg [7] and Sachs [8, 9], introduce a set of
coordinates well suited to study such spaces, called Bondi gauge. In such coordinates, some of
the metric coefficients are taken to vanish, and this imply that some of the gauge freedom is
resolved. The surviving local symmetries (called residual gauge symmetries) are set to satisfy the
decay prescription for themetric components that do not vanish. They are responsible for one of
the main discoveries in those works: when decaying to a flat metric, far away from sources, the
gravitational field not only exhibits Minkowski’s isometries (the Poincaré group) but an infinite
dimensional group, called theBMS group. This group can be seen as the Lorentz subgroup times
(semi-directly) with the infinite abelian subgroup of supertranslations. This symmetries act on
the radiative modes of the metric, which are located on null infinity, I + ∪I −, leaving fixed
the celestial sphere metric.

The key feature of this discovery is that any strengthening of the boundary conditions that
restricts the supertranslations imply a cancelling of the radiative modes. In other words, the
infinite dimensional BMS group and radiative degrees of freedom on the boundary are two
faces of the same coin.

In terms of the symmetries in the solutions, the general covariance on general relativity
imply that any diffeomorphic solution remains a solution of the equations of motion. But in any
given generic solution, the group of exact symmetries contains only the identity: there are no
Killing fields in an arbitrary solution to the Einstein equations. Nevertheless, the residual gauge
symmetries can be shown to satisfy asymptotically the Killing equation,

∇(aξb)
r→+∞−→ 0, (3)

which is the expected behaviour if onewant to recover Poincaré. The BMS leaves fix the celestial
metric, defined in the space of null generator of I +.

3
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Noether theorems: what is conserved?

In terms of the Noether’s theorems, one expect conserved quantities if in the presence of sym-
metries. This implies that the LGT or the BMS elements have charges associated to them. Nev-
ertheless, the concept of charge is not a trivial one when dealing with gauge invariant theories.
In the case of gravity, general covariance implies an ambiguity in the definitions of the Noether
charges, since every symmetry is the trivial global symmetry. The generalizedNoether theorem,
proved by Barnich, Brandt and Henneaux in [10], allows to deal with codimension 2 forms car-
rying the conserved quantities.

The case of electromagnetism in Minkowski background is more clear: we have a gauge
symmetry, parametrized by a function Λ, which leaves invariant the action. The Euler-Lagrange
equations are a linear PDE system,

d ∗ F = 4π J, (4)

which immediately implies that the conserved quantity (J) is a corner term. By imposing the
minimal boundary condition that allow radiative degrees of freedom at I +, the possible Λ’s
reduce to Λ(x) = λ(x)+ o(r0), where the leading function is independent of u. By taking λ ≡ 1,
we have the total electric charge of the system,

Q =
∫

S2
∗F . (5)

In the general case of an arbitrary function on the sphere, the gauge freedom is what is called
Large Gauge transformations (LGT). The charges are a generalization of the usual electric charge,
the latter computed taking λ(x) ≡ 1. These charges can be shown to be conserved by Campiglia
and Eyheralde [11] when going from I − to I +.

In gravity, the charge definition is more subtle. With the techniques from covariant phase
space formalism, in [12] Iyer andWald define the charges associated to a Cauchy slice, in terms
of the symplectic structure.

Link with quantum theory

The underlying structure of the symmetries in both general relativity and gauge theories is
fundamental to the problem of quantization. The charges become observables whose canonical
commutation with the fields generate the quantum symmetries.

In a quantum theory, one seeks an S-matrix that contains the scattering information between
in states and out states in the form of scattering amplitudes. The more symmetries we have for
the S−matrix, the more information we have about the quantum theory.

It is natural to ask whether the BMS group provides a symmetry of the S-matrix. In the
seminal work [13], Strominger showed how to map BMS+ with BMS−, and defined a diagonal
group, BMS0 ⊂ BMS+× BMS−, which satisfies that its infinitesimal generators commute with
the S-matrix. The explicit conservation law,

b+S − Sb− = 0, ∀(b+, b−) ∈ BMS0 (6)

4
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can be written as aWard identity between any given scattering amplitude with the same ampli-
tude with a soft graviton insertion. It is in this point when the soft theorems for gauge bosons
appeared as the link between asymptotic symmetries and the S−matrix.

Roughly stated, the soft gauge boson theorem says the following: given an amplitude, the
amplitude with one additional gauge boson exhibits a universal behaviour as the momentum
ω of the added gauge boson tends to zero (is soft), in the sense that it can be written as the same
amplitude times a factor of 1/ω. The factorization can be carried on to the next order in the soft
factor, schematically,

lim
ω→0
A±n+1(q) =

[
1
ω

S(0)±
n + S(1)±

n + O(ω)

]
An, (7)

where A±n+1 is a scattering amplitude of n particles of ± helicity and one gauge boson of four
momentum (ω,~q), andA±n+1 is the same scattering amplitude of n particles. S(0)±

n and S(1)±
n are

the leading and subleading soft factors, respectively.
The leading soft theorems were discovered by Weinberg, [14]. The subleading soft photon

by Low, [15] and the subleading soft graviton by Cachazo and Strominger, [16].
In [17], He, Lysov, Mitra and Strominger showed that if we assume BMS0 is a symmetry

group of the quantum S−matrix, the Ward identities obtained in [13] are precisely Weinberg’s
leading soft graviton theorem. The same result was proven for massless QED, by He, Mitra,
Porfyriadis and Strominger in [18], showing that the soft photon theorem implies a Ward iden-
tity for the S−matrix and the charges associated to the LGT’s. This opened the door for a se-
quence of results in both gravity and gauge theories regarding the connection between soft theo-
rems andWard identities for asymptotic symmetries acting in the S−matrix, see e.g. [16,18–28]
and references therein.

An asymptotic symmetry for the subleading soft graviton

One of the main results of the literature regarding soft theorems and asymptotic symmetries
can be state as follows: in a gauge theory enhancing the symmetries of the S−matrix leads to
include more and more LGT, enlarging the asymptotic symmetries group. The price to pay is a
relaxation of the boundary conditions.

With respect to gravity, there have been some efforts to enhance the Lorentz subgroup of
BMS into an infinite dimensional group. Barnich and Troessaert [29] proposed an extension
into the conformal transformations group on the two dimensional sphere. This extension car-
ries the introduction of fieldswith singularities, focusing only on local properties of symmetries.
The new group includes all Virasoro transformations, which applied to the celestial spherewere
called superrotations, in analogy with the supertranslations. In [30] it was argued that the sub-
leading soft graviton theorem ( [16]) can provideWard identities associated to an extended ver-
sion of the BMS group. However, due to the singular behaviour of the local conformal Killing
vectors, it was not clear how to obtain the subleading soft theorem formWard identities.

Campiglia and Laddha [21, 22] introduced and extension based on the soft theorems for
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gravitons (regarding the infrared behaviour of the fields near null infinity), allowing the group
of diffeomorphisms Diff(S2) to be Lorentz’s group extension. As we have stated before, the
more symmetries we add, the more relaxed the boundary conditions have to be. A natural
question to ask is what kind of solutions are the ones invariant under the generalized BMS
action. In other words, how many degrees of freedom can we add on I , before exhausting
the generalized BMS symmetries. The answer, my friend, is not blowin’ in the wind, but it is
actually in the celestial sphere metric.

As it was showed in [21], the residual gauge transformations satisfy

∇aξa r→+∞−→ 0, (8)

and the leading order in the metric is now a dynamical variable. This implies that the metric
on the celestial sphere is no longer fixed. The usual condition in the radiative space is that
the metric on the celestial sphere is the standard round metric. With the above condition, the
possible metrics are such that the area element is the same as the round one. Therefore, the
metric is not fixed and can be taken as a “boundary field”.

The superrotation charges associated to the entire null infinity were computed in [22], re-
stricting on the valuation of variations to the case of the round metric on the celestial sphere.
Nevertheless, the charge algebra does not Poisson-closes, and therefore a more detailed analy-
sis is needed. In [31] the surface charges associated to finite cuts of I + were computed using
covariant phase space methods. Their algebra was computed, showing extension terms. In the
case of charges on the entire null infinity, i.e., the fluxes of the surface charges, transformation
properties of the supermomentum imply that there should not be any central extensions.

In [32], we show that an extension of the phase space of gravity at null infinity can be de-
fined such that the superrotation group (Diff(S2)) acts canonically. This result is the content of
chapter 1.

By considering Eintein-Yang-Mills theory, we test the compatibility of the previous extension
in other contexts. In chapter 2 we show an extension of the phase space of gravity coupled to a
non-abelian gauge theory where the generalized BMS group acts canonically.

Following the same logic as with the gauge theories, in [25, 33] it is argued that the sub2-
leading soft graviton is equivalent to the conservation of asymptotic charges associated to a
new class of vector fields not contained in the generalized BMS. Further improvement in this
direction has been made by Freidel, Pranzetti and Raclariu, see [28] and references therein.

The phase space extension problem

We arrive at the main subject of this thesis: the study of the phase space extensions in the clas-
sical theories due to the enlargement of the asymptotic symmetries groups.

Aswe have seen, the extra symmetries are not free, they have a price that the relaxation of the
boundary conditions. In general, this implies that the variational principle cannot be translated
with the new boundary condition to the old fields. Two main problems arise when relaxing the
boundary conditions. First, as it was shown in [24], divergences in the asymptotic symplectic
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structure arise, and therefore some kind of projection or renormalization procedure is needed.
Second, even after the asymptotic structure can be defined, the charges can be divergent.

Regarding the first problem, several techniques can be found in the literature to handle di-
vergences in the symplectic structure. At spatial infinity, in [34] it was shown that under parity
condition for the fields, a suitable boundary term can be added to the gravitational Hamilto-
nian, reproducing Poincaré algebra. At null infinity, in [31] it was shown that a renormalization
of the symplectic potential can be done, such that the dynamics on I + can be well defined as a
variational problem.

The second problem can be reformulated as to what is the meaning of the relaxation of the
boundary conditions at I . The case of radiative data is clear, since the energy flux reaching I

is non-vanishing, and there is non-trivial brackets between the charges. In most of the cases,
when dealing with LGT in gravity and the fixing of the boundary conditions, the most artistic
part of the research begins. Given the symmetries we want to include, the recursive application
of infinitesimal variations on the metric eventually stabilizes or produce increasingly larger so-
lution spaces, see e.g. [35,36]. A natural question is then whether the subsequent enlargement
of the phase space can be understood in terms of a clear method.

Covariant phase space formalism

Covariant phase space methods are useful in this particular set ups, [12, 37, 38]. In [39], Frei-
del and Donnelly proposed a general procedure to associate a gauge-invariant classical phase
space to a spatial slice with boundary by introducing new degrees of freedom on the boundary.
Generally speaking, a boundary in a Cauchy slice breaks the gauge invariance of the theory,
since there are now residual gauge transformations that do not leave fixed the boundary condi-
tions. Such is the case of the GBMS, where an arbitrary diffeomorphism changes the metric in
the celestial sphere, or the case of O(r) LGT in Yang-Mills. The boundary degrees of freedom
transform under a group of surface symmetries, and a counter term is added to the symplectic
potential in order to restore gauge-invariance. The residual gauge symmetries are then view as
generators of the surface symmetries. Recently, the existence of an universal symmetry group
for boundaries (“corners”) at both finite distance andnull infinite, called the extended corner sym-
metry group, has been studied (e.g. [40–47]. The canonical representation of the different types
of large gauge symmetries acting on the boundary, in particular supertranslations ( [46]), has
provided insights in the symplectic structure of the phase space of local subsystems.

A missing piece in the literature is the connection between the extension proposed in [32],
where the supertranslations and superrotations act canonically, and the results obtained regard-
ing the extended corner symmetry. In chapter 3 we will provide this missing piece.

Subn-leading soft photon/gluon/graviton theorems and larger gauge transforma-
tions

There are still much more soft theorems from which try to construct asymptotic symmetries
and charges, both in gravity and in gauge theories.
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In [20], it was shown that the subleading soft photon theorem can be interpreted as an in-
finitesimal symmetry of the S−matrix, and explicit formulas for the charges were computed.
In [24], it was shown that this charges can be obtained via the symplectic structure of the ra-
diative phase space electromagnetism, and that they are associated to large U(1) gauge trans-
formations decaying as O(r). In chapter 4 we will provide an answer regarding the sub-leading
charges in Yang-Mills.

Beyond subleading charges, in the abelian case, subn-leading soft theorems (due toHamada
and Shiu in [48] and Li, Lin and Zhang in [49]) imply the conservation laws of new charges,
[50]. Under this new perspective, large gauge transformations are the ones that generate this
conserved charges (as it was shown for a particular set of conserved quantities by Seraj in [51]
for electromagnetism and by Compère, Oliveri and Seraj in [52] for gravity), and therefore it is
natural to ask more about the phase space structure that enables them to act canonically. As we
will see in chapter 5, this can be done.

In the non-abelian case, the situation is more complicated. The non linearities imply that, if
the charges are associated to LGT via a symplectic structure, then one has to be able to derive
the complete hierarchy of charges, up to arbitrary order. In other words, if we want that the
charge algebra resembles the variation algebra, then the mere presence of commutators imply
an additive gradation in the charge algebra, schematically

[O(rn), O(rm)] = O(rm+n). (9)

The understanding of this structure remains an open problem. , and a partial answer with
respect to the general case in the self-dual sector will be presented in chapter 6.

0.2 Original contributions

The content of this thesis is based on the following papers,

1. M. Campiglia and J. Peraza, Generalized BMS charge algebra, Phys. Rev. D 101 (2020) no.10,
104039, doi:10.1103/PhysRevD.101.104039, [arXiv:2002.06691 [gr-qc]].

2. M. Campiglia and J. Peraza, Charge algebra for non-abelian large gauge symmetries at O(r),
JHEP 12 (2021), 058, doi:10.1007/JHEP12(2021)058, [arXiv:2111.00973 [hep-th]].

3. J. Peraza, Renormalized electric and magnetic charges for O(rn) large gauge symmetries , to ap-
pear. Preprint: [arXiv:2301.05671 [hep-th]].

4. S. Nagy and J. Peraza, Radiative phase space extensions at all orders in r for self-dual Yang-Mills
and Gravity, to appear. Preprint: [arXiv:2211.12991 [hep-th]].

We provide new results within the body of this thesis, which will appear in future works:

• Chapter 2: Einstein-Yang-Mills charge algebra containing the GBMS group.
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• Chapter 3: The connection between the boundary terms in [32] with the ones proposed
in the literature [43,46, 53, 54].

0.3 Conventions

Throughout this thesis, we assume that the base manifoldM is a Lorentzian manifold, with
signature (−+++).

We denote spacetime indices by greek letters frommiddle alphabet, µ, ν, ρ, σ, .... Whenwork-
ing with coordinates on a Riemannian manifold (a sphere, for example), we will denote the
indices with the first letters of the roman alphabet, a, b, c, ....

Scalar fields will be denoted as φ, ϕ, ψ, .... Vector fields onM are denoted by χ, ξ, ..., while
vector fields on a 2-surface will be denoted by V, W, Y, ...

Covariant derivatives associated to metrics are denoted by ∇ forM, D for a metric on the
sphere, and ∂ for the round metric on the sphere.

A nomenclature difference with respect to the literature ( [55], [31],etc.) is the definition
of charge: what we call charge is usually the integral of the charge flux, whereas charge is a
codimension 2 form ( [12]). This change in denomination is due to the equivalence between
Ward identities and the soft theorem statements regarding the scattering processes. We will
discussed this item in chapter 3.

We take units where G = c = 1. The commutator convention we use in Yang-Mills theory
is the following for the covariant derivative,

D := ∂ + [A, ·] (10)

Regarding notation used when integrating quantities on null infinity I +, we denote∫
I

ω,
∫

∂I
ω,

∫
S2

ω, (11)

the integrals on I , on ∂I := I +
+ −I +

− and the celestial sphere S2.
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Asymptotic symmetries in gravity

In this chapter we present the results of [32], where we proved that an extended symplectic
structure can be defined at null infinity on which Diff(S2) acts canonically.

After reviewing Bondi coordinates and Bondi gauge, we introduce the main objects of our
study: the residual gauge transformations that act on the solution space, and whose action lead
to non-vanishing charges.

We review the structure of the BMS group, its action on solution space and its charges. Two
different possible extensions have been proposed to the original BMS group, depending on
which extension for the superrotations is chosen: one can consider the conformal Killing vector
(CKV) on the sphere, or the whole group Diff(S2). The action of both groups on the celestial
metric is different, the later leading to non-trivial asymptotic behaviour and a new extension of
the phase space [24].

1.1 Bondi coordinates

Throughout the thesis we will be using Bondi retarded coordinates, (u, r, xa), where future null
infinity is given by I + = {r = +∞}. These coordinates are useful in several applications,
since they are well adapted to gravitational wave physics ( [2, 7–9]), from radiation going out
a binary system to scattering processes from past to future null infinity. Advance coordinates
(v, r, xa) are taken when considering I −.

To construct this coordinates, let us consider a foliation of the spacetime M by a family of null
hypersurfaces labeled by u. Their normal vector, nµ = gµν∂νu, satisfies nµnµ = 0 by definition,
so this gives us the first fixing condition, guu = 0. Next, we define angular coordinates on the
transverse two-dimensional Riemannian surfaces to the family of null hypersurfaces, which we
will denote by xa. The condition we impose is nµ∂µxa = 0, which implies gua = 0.

Finally, we impose some condition on r: it satisfies the equation

∂r

(
det gab

r4

)
= 0. (1.1)

The condition given in [7–9] was det gab = r2 det
◦
qab, with ◦qab the standard metric on the round
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sphere S2. Here, we use (1.1) since it allows Weyl rescalings.
A general expression of the metric satisfying the above gauge conditions can be written as

follows,

g = e2β V
r

du2 − 2e2βdudr + gab (dxa −Uadu)
(

dxb −Ubdu
)

, (1.2)

where β, V, gab and Ua are functions of (u, r, xa). The decay rates of each function near I + will
be computed by consistency with Einstein equations, once we define the boundary conditions.

To fix ideas, let see how Minkowski metric is represented in Bondi gauge. Take the coordi-
nate change

r =
√
(x1)2 + (x2)2 + (x3)2, u = r− x0, x̂i =

xi

x3 + r
, (1.3)

where i = 1, 2. Then, the metric reads

η = −du2 − 2dudr + r2◦qdx̂adx̂b, (1.4)

with ◦q the round metric in S2. Observe that a hypersurface at constant r, by taking the limit
r → +∞ tends to I + ∪I −, while a hypersurface at constant u is 45◦ with respect to the t = 0
slice, and parametrizes the spheres at I +.

If we want to work in a neighbourhood ofI −, the coordinate we have to take is the retarded
time

v = r + x0, (1.5)

instead of u. The correspondent Bondi gauge functions for the metric (1.4) are,

β = 0, V = −2r, gab = r2◦qab, (1.6)

with ◦qab the round metric on the sphere. This gives us already some boundary conditions can-
didates to start identifying the asymptotically flat spacetimes. As it is showed in Figure 1.1, the
decays we will take are such that on the exterior region of certain compact set of a Cauchy slice,
the fields are close to Minkowski solution.

Bondi gauge provides well adapted coordinates to represent I +, since it is parametrized by
{(u, xa)} and hast the topology of R× S2. Its two boundaries, denoted I +

± , correspond to the
spheres at u = ±∞. Then, ∂I + = I +

− ∪I +
+ , with orientation provided by the vector ∂u.

The celestial sphere is defined as the space of null generators to I +, denoted as S∞. It can be
showed ( [5]) that S∞ has the topology of S2, and can be parametrized by {xa}.

1.2 Residual Gauge Transformations

Fixing the gauge reduces the possible diffeomorphisms acting on the solution to give another
solution, in the sense that they have to preserve the form of (1.2). The residual gauge transfor-
mations are the remaining diffeomorphisms that have not been fixed by the gauge choice. In
other words, diffeomorphisms that preserve the gauge fixing conditions.
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Figure 1.1: Asymptotically flat spacetimes. I ± indicate the conformal infinity, and scattering
processes (indicated by green and blue lines) occur in the confines of a compact region on each
Σt Cauchy slice.

In the particular case of Bondi gauge, we are looking for diffeomorphisms generated by a
vector field ξµ such that

Lξ grr = 0, Lξ gra = 0, gabLξ gab = 4c(u, xa), (1.7)

where c is a function. This equations can be solved [55] as follows,

ξu = F(u, xa), (1.8)
ξa = Va(u, xa) + Ia, Ia = −∂bF

∫ ∞

r
e2βgabdr, (1.9)

ξr = − r
2

(
∇g

aVa − 2c(u, xa) +∇g
a Ia − ∂bFUb +

1
2

Fg−1∂ug
)

, (1.10)

where g = det(gab) and ∇g is the Levi-Civita connection associated to g. F and c are two free
function on I , and Va is a vector field on the sphere for each u. 1 The boundary conditions
will provide us new constraints to the possible residual gauge transformations, since they will
imply certain fall off for the field near I +.

1Not to be confused with V appearing in (1.2), which is a function of (r, u, xa) in the component uu of the metric.
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1.3 Solution space

We want to define a phase space structure on solutions spaces. The first step on this direction
is to define a precise set of solutions from which one can construct jet bundles, giving certain
differential structure.

In this work, we will be dealing with asymptotically flat spacetimes. They are central in the
understanding of isolated systems and their gravitational radiation, e.e. in the case of binaries
systems [56]. Outside regions with sources we have a vacuum spacetime and therefore we can
assume that the further away we are from them, the more Minkowskian the metric is. This
limit to vacuum metric could be at various rates, which will contain information regarding the
sources.

In the case of scattering of gravitational or any other type or radiation, we can use the notion
of asymptotically flatness as it is shown in figure 1.1: incoming radiation (green) interacts with
sources inside certain region of spacetime. AtI + the “observers” receive the outgoing radiation
(blue).

1.3.1 Boundary conditions

The formal definition of asymptotic flatness is the following: outside a compact region of some
Cauchy slice in a spacetime, K ⊂ Σ, we can map Σ \ K to the set R3 \ B with the euclidean
metric, for some ball B, via a diffeomorphism. Within K there could be in principle any matter
source. Outside K, the matter content vanishes, and therefore we are in vacuum space, so the
equation of motion is simply

Rµν = 0. (1.11)

The previous definition implies certain fall-offs for the metric coefficients in Bondi gauge,
compatible with (1.6), which resembles the fall offs for the functions of the Kerr family [57],

β = o(r0),
V
r
= o(r2), Ua = o(r0), gab = r2qab + rCab + o(r), (1.12)

where qab and Cab are functions of (u, xa). By a conformal rescaling by the function eψ = 1
r , we

can define a metric qab on each S2 ⊂ I +. The pull back of the Bondi metric to this compactified
space gives

qabdxadxb (1.13)

on I +, and therefore a degenerate metric (no du terms). The 2-dimensional metric qab can be
thought as the metric on the celestial sphere S∞: by fixing a null normal n on I +, we can define
a tangential t, whose flow is parametrized by the coordinate u.

Regarding the nature of the metric qab, we can distinguish two different types of prescrip-
tions [58]:

• Asymptotically flat case (AF): (1.12) approaches Minkowski metric as r → +∞. This
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implies
qab =

◦
qab. (1.14)

• Asymptotically locally flat (ALF)2: the local volume form is asymptotically Minkowski,

√
q =

√
◦
q. (1.15)

Both definitions have a characterization in terms of the gauge symmetries that we are im-
posing. Indeed, by taking the fall off and the residual gauge transformations computed in sec-
tion 1.2, we see that the residual gauge symmetries for the AF solutions in Bondi gauge sat-
isfy [55]

∇µξν → 0 (r → +∞), (1.16)

which geometrically states that the residual gauge diffeomorphisms are asymptotically Killing
fields, having a clear conceptual meaning. On the other hand, the residual gauge symmetries
in the ALF case are the ones that satisfy [23],

∇νξν → 0 (r → +∞), (1.17)

which are the asymptotically divergence-free vector fields, preserving the volume form in the
(compactified) transversal spheres. As we will show in this chapter, this volume preserving
condition has deep consequences in the symplectic structure of the phase space.

1.3.2 Solution space

To obtain a parametrization of the solution space, we are solving Einstein equations, while im-
posing the gauge fixing conditions. Since we want the asymptotic behaviour of the solutions near
I +, or in other words, the decay rates far enough of any localized source, we need to compute
recursively the coefficients of the functions in (1.12).

Consider the following expansion in r of the transversal metric,

gab = r2qab + rCab + C(0)
ab +

1
r

C(−1)
ab , (1.18)

with qab satisfying the ALF condition. The gauge fixing condition on the luminosity coordinate
r (1.1) impose several identities for the traces of the successive terms in (1.18), [55, 58],

qabCab = 0 (1.19)
C(0)

ab =
1
4

qabCcdCcd + C
(0)
ab (u, xa), (1.20)

C(−1)
ab =

1
2

qabC
(0)
ab Ccd + C

(−1)
ab (u, xa), (1.21)

... ,
2The definition of ALF involves more generally the topology of S∞ and is used in other contexts, e.g. [59]. Here

we use it as a minimal extension of the AF case.
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where C(n)
ab can be thought of as functions on I +, with qabC

(0)
ab = qabC

(−1)
ab = 0. We will denote

as Da the Levi-Civita connection associated to qab, and indices a, b, c, ... will be assumed to be
lowered and raised with qab.

Next, we have to solve the Einstein vacuum equations, (1.11). Here we present the results,
the reader can find a more detail exposition in [55], [58]. Each component of the Ricci tensor
gives certain relations between the functions,

• Rrr = 0: the radial equation establishes a relation between β and the coefficientsCab,C(0)
ab ,C(−1)

ab , ...,
with an integration constant fixed to zero so that the leading order of e2β is 1,

β = − 1
32r2 CabCab + O(1/r3) (1.22)

• Rra = 0: determines (completely) the r−expansion of Ua in terms of Cab,C(0)
ab ,C(−1)

ab , ...
and an integration constant Na(u, xa), known as the Bondi angular momentum aspect. The
first terms of the expansion are,

Ua = − 1
2r2 DbCab − 2

3r3

(
Na − 1

2
CabDcCbc −

1
3

DbC
(0)ab

)
− 2 ln r

3r3 DbC
(0)ab + O(1/r4)

(1.23)
To avoid logarithmic terms, it must be imposed DbC

(0)ab = 0, [29]. The definition of Na

as integration constant varies in the literature, [55, 60, 61],

NFN
a = Na +

1
4

CabDcCbc +
3

32
Da(CbcCbc) (1.24)

NHPS
a = NFN

a − uDa M, (1.25)

where FN stands for Flanagan-Nichols and HPS for Hawking-Perry-Strominger, and M
is the Bondi mass aspect, defined next.

• Rab = 0: the trace, gabRab is equivalent (due to the gauge condition guu = gua = 0 and
the previous two equations) to Rur = 0, which gives V in terms of gab and an integration
constant, M, called Bondi mass aspect,

V
r
= −r∂u ln

√
q− 1

2
R[q] +

2M
r

+ O(1/r2) (1.26)

The other couple of equations coming form Rab = 0 imply a dynamical condition on the
metric gab in terms of the conformal factor,

∂uqab = (∂u ln
√

q)qab (1.27)

By the ALF condition, √q =

√
◦
q, and therefore ∂uqab = 0, which implies that the metric

on the celestial sphere is u−independent.

• Ruu, Rua = 0: They imply evolution equations for the Bondimass and angularmomentum
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aspects,

∂u M = −1
8

NabNab +
1
4

DaDbNab +
1
8

DaDaR[q] (1.28)

∂uNa = Da M +
1

16
Da(NbcCbc)− 1

4
NbcDaCbc −

1
4

Db(CbcNac − NbcCac)

−1
4

DbDbDcCac +
1
4

DbDaDcCbc +
1
4

CabDbR[q] (1.29)

Similar evolution equations can be computed for NFN
a and NHPS

a using (1.24) and (1.25).

Observe that Cab is a completely arbitrary input for the equations. We can give Cab a geo-
metrical interpretation by considering the congruence of null geodesics with constant u, which
asymptotically (as r → 0) reaches I +, [62]. Consider the derivative of the generator of the null
congruence, ∂r, in the compactified spacetime,

∇̃µ(∂r)ν = ∂µ(δ
u
ν gur)− Γ̃u

µνgur, (1.30)

and take the transversal part with respect to the null congruence,

∇̃a(∂r)b = −Γ̃u
abgur =

1
2

∂rgab −
1
r

gab = −
1
2

Cab + o(1), (1.31)

thus, Cab is proportional to the shear of the congruence of geodesics, and thus indicates the
focusing due to curvature in the path of the geodesics. As such, it encodes the two polarizations
present in gravitational waves. Its time derivative,

Nab = ∂uCab, (1.32)

is known as the Bondi news tensor, which measure the energy flux. It is worth to mention that
Raychadhuri’s equation for the null congruence is equivalent to the radial equation Rrr = 0 for
β, (1.22)

We are in conditions to define the solution spaces. In the case of AF conditions, we consider
the following set of initial conditions, viewed as fields on I ,

SBMS = {gµν[
◦
qab, Cab, M, Na, ...,C(n)

ab , ...]
∣∣Rµν[g] = 0}. (1.33)

In the case of ALF, we consider,

SGBMS = {gµν[qab, Cab, M, Na, ...,C(n)
ab , ...]

∣∣Rµν[g] = 0,
√

q =

√
◦
q}. (1.34)

Observe that SBMS is a proper subset of SGBMS. The names BMS and GBMS will be explained
in the next section.
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1.4 Asymptotic symmetries

The residual gauge symmetries act on the solution space we defined in the last subsection, by
taking one solution to another one. This group is what is called the asymptotic symmetries group,
initially discovered by Bondi , Metzner [7] and Sachs [8], and called the BMS group. This
action changes the functions M and Na, which are themass and the angularmomentum aspects
respectively. This implies that this group of diffeomorphisms generates non-trivial charges on
the phase space of solutions, [4].

A renew interested on BMS appear when Barnich and Troessaert [55], inspired by 2-d CFT,
defined an extended version of the BMS, which includes an infinite dimensional “superrota-
tion” group, generated by infinitesimal local conformal transformations. On the ground of the
equivalence between asymptotic symmetries and subleading soft graviton theorems [16], a dif-
ferent extension of the BMS group was proposed by Campiglia and Laddha [21] such that the
solution space where the group acts is SGBMS.

In subsection 1.4.1we review the construction of the standardBMSgroup,which correspond
to the AF boundary conditions. In section 3.5 we present the construction of the generalized
BMS group (GBMS).

1.4.1 BMS action review

Due to the preservation of the asymptotic decays for β, V and Ua, we can deduce some condi-
tions on the functions F and Va from section 1.2, by imposing

Lξ gur = Lξ gua = O(1/r2). (1.35)

These equations give,
∂uF =

1
2

DaVa − c, ∂uVa = 0. (1.36)

The last equation establishes that Va is indeed a vector on the sphere, while the first equations
is a linear ODE,

F = 4
√

q
(

f (xa) +
1
2

∫ u

−∞

1
4
√

q
(DaVa − 2c)du

)
. (1.37)

These are the most general diffeomorphisms compatible with teh decays (1.12), parametrized
by two sphere fields, f and Va, and one I function, c. Next, we impose the AF condition. By
computing the equation Lξ gab = r2δξ gab + O(r),

δξqab = LVqab − (DcVc − 2c)qab, δξ
√

q = 4c
√

q. (1.38)

Since qab =
◦
qab is fixed, the Weyl rescalings qab 7→ e2cqab are excluded from the group. Also,

LVqab−DcVcqab = 0 imply that Va are the conformal Killing vectors (CKV) of the sphere. This
group is isomorphic to the (proper orthochronous) Lorentz group, SO(3,1), which generates the
Lorentz algebra so(3, 1).
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Thus, F simplifies, and we can integrate the first equations in (1.36),

F = f + u
1
2

DaVa =: f + uα, (1.39)

absorbing 4
√

q in f , with the explicit u-linear behaviour and the definition α := 1
2 DaVa. The

asymptotic vectors generating the diffeomorphims are given by a pair ( f , Va) of celestial sphere
fields. We will denote ξ f and ξV the diffeomorphisms generated by f and V respectively, and
schematically write

ξ f = f ∂u + ..., (1.40)
ξV = Va∂a + uα∂u − rα∂r + ..., (1.41)

where ... indicates O(r−1)∂a +O(r−1)∂u +O(1)∂r. We can compute the algebra straightforward
from the Lie bracket between two diffeomorphism generators, giving,

[ξ f , ξ f ′ ] = 0, [ξV , ξ f ] = ξV( f ), [ξV , ξV′ ] = ξ[V,V′], (1.42)

where [·, ·] denotes the Lie bracket and V( f ) = Va∂a f − α f .
The diffeomorphisms generated by f are known as supertranslations, since they correspond

to the angle dependent shift u 7→ u + f (xa) in the time direction on I +. As it was showed
in [8], the group of asymptotic symmetries BMS contains the Poincaré group of Minkowski,

ISO(3, 1) = SO(3, 1)n t < SO(3, 1)n s = BMS4, (1.43)

where t is the four-dimensional abelian group of translations, and s is the infinite dimensional
abelian group of supertranslations 3.

1.4.2 Generalizations of BMS

The first attempts in extending the BMS group to a larger groupwas done by Barnich and Troes-
saert ( [29,55,63]), where it was proposed to maintain the CKV equation, δVqab = 0, except at a
finite number of points on the celestial sphere. This led to the extension of BMS4 by meromor-
phic superrotations,

EBMS4 = (Diff(S1)×Diff(S1))n s∗, (1.44)

where s∗ is the abelian ideal generated by the new supertranslations, which by consistencymust
also admit poles.

Based on the equivalence between the subleading soft graviton theorem [16, 64, 65] and
Ward identities for the S−matrix, a second proposal for the extension was given by Campiglia
and Laddha, [21], where they consider the group of diffeomorphisms on the sphere, Diff(S2),
instead of the finite dimensional Lorentz group SO(3, 1). This lead to the generalized BMS

3To prove that ISO(3,1) is indeed a subgroup, and not only a subset, one has to show that t maps to a finite
dimensional ideal in s, [8]
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group (GBMS),
GBMS4 = Diff(S2)n s, (1.45)

where now we have an arbitrary diffeomorphism on the superrotation sector. In other words,
Diff(S2) are the new symmetries that the subleading soft graviton theorem provides to the
S−matrix via theWard identity. This implies that the action on the leading part of the boundary
metric is not trivial,

δVqab = LVqab − 2αqab 6= 0, (1.46)

and therefore the celestial sphere metric is no longer fixed. However, it can be showed that

δV
√

q = 0, (1.47)

which together with δ f qab = 0 shows that this group is exactly the asymptotic symmetries group
of SGBMS! Observe that theWeyl rescalings are still excluded. The algebra of vector remains the
same as in (1.42)

This enlargement of the symmetries imply a non-trivial structure for the symplectic form.
In particular, since we are varying the metric up to leading order, one expects (as it is the case)
that the symplectic potential contains radial divergences, and therefore the computation of the
charges will be ill-define due to divergences in the integrals [23].

The representation of the algebra on the solution space is the following,

δ f qab = 0, δVqab = LVqab − 2αqab, (1.48)
δ f Cab = f Nab − 2DaDb f TF, δVCab = LVCab − αCab + uαNab − 2uDaDbαTF, (1.49)

δ f Nab = f ∂uNab, δV Nab = LV Nab + uα∂uNab − 2DaDbαTF (1.50)

where XTF
ab for a symmetric tensor Xab denotes the trace free tensor component,

XTF
ab := Xab −

1
2

qabX c
c . (1.51)

The actions on the Bondi mass aspect M and momentum aspect Na are the following,

δ( f ,V)M = [F∂u + LY + 3α]M +
1
4

DaDbαCab (1.52)

+
1
4

DaFDaR[q] +
1
4

NabDaDbF +
1
2

DaFDbNab,

δ( f ,V)Na = [F∂u + LY + 2α]Na + 3MDaF− 3
16

DaFNbcCbc +
1
2

DbFNbcCac (1.53)

− 1
32

DaαCcdCcd +
1
4
(DbFR[q] + DbDcDcF)Cab −

3
4

DbF(DbDcCac − DaDcCbc)

+
3
8

Da(DcDbFCbc) +
1
2

DaDbFTFDcCbc,

with F = f + uα.
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1.5 Phase space structure on SGBMS

In this sectionwe review the definition of the radiative phase space, and laterwe provide several
results concerning the action ofDiff(S2) on the solution space, andwill define the corresponding
phase space for GBMS.

1.5.1 Radiative phase space

Radiative phase space [4,5] consists in taking the action of the BMS group in Bondi frame, and
relax a little bit the decay for Cab,

Γrad := {Ĉ(u, x)
∣∣◦qab

Ĉab = 0, ∂uĈab
u→±∞
= O(1/|u|1+ε), D[aDbĈb]c

u→±∞
= 0} ⊃ Γ◦

qab
. (1.54)

On this space, one can actually compute a (finite) symplectic form from the Einstein-Hilbert
lagrangian,

Ω(δ, δ′) =
∫

I
δNab ∧ δ′Cab

√
qdud2x (1.55)

One can compute the charges associated to δ f and δV straightforwardly, by using the definition,

Ω(δ, δV) = δQξ (1.56)

By imposing the decays in (1.54), the non-integrable terms vanish (see chapter 3), and the ex-
pressions for the charges are

P0
f =

∫
I

∂uCabδ f Cab
√

qdud2x, (1.57)

for the supermomentum, and

J0
V =

∫
I

∂uCabδVCab
√

qdud2x (1.58)

for the super angularmomentum. These charges can be shown to form a closed Poisson algebra,
resembling (1.42),

{P0
f1

, P0
f2
} = 0, {J0

V , P0
f } = P0

V( f ), {J0
V1

, J0
V2
} = J0

[V1,V2]
. (1.59)

1.5.2 Decays in u→ ±∞ for SGBMS

The first step in understanding the solution space (1.34), is to see the effect of the extension
from SO(3, 1) to Diff(S2). We define a Bondi frame as the solutions in which the celestial metric
is that of the round metric, qab =

◦
qab, [66].

In [31] it is shown that one needs an u−independent tensor, the Geroch tensor, to appro-
priately parametrize the gravitational field at I +. The proof consists in taking a finite diffeo-
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morphism and studying its action on the complex plane coordinates. Here, we follow the proof
given in [32].

First, we show the presence of a u−linear part in Cab, by the successive action of variations
due to a vector field V on the shear Cab. Let us start with Minkowski spacetime. We have the
following metric coefficients,

β = 0, Ua = 0,
V
r
= −1, gab =

◦
qab, (1.60)

and consider the infinitesimal action of an arbitrary diffeomorphism generated by the functions
( f , V),

δ f qab = 0, δVqab = LV
◦
qab − 2α

◦
qab, (1.61)

δ f Cab = −2
◦
Da
◦
Db f TF, δVCab = −2u

◦
Da
◦
DbαTF (1.62)

where
◦
D is the Levi-Civita connection of ◦q. Now, we have a shear Cab + δVCab linear in u. If we

act again with another δW , we will also have a linear term in u. Then, the general form of the
shear will be

Cab = Ĉab(u, xa) + uTab(xa), (1.63)

where Ĉab(u, xa) is at most O(1) and T is independent of u. The fall off in u that we take for Ĉab

are the following,
∂uĈab = O(1/|u|2+ε). (1.64)

This fall offs for the shear Ĉab is such that the expressions (1.57) and (1.58) remain to be finite,
since they are the ones coming from the leading soft graviton theorem, and are also compati-
ble with a O(1) subleading soft theorem, [21]. However, they are too restrictive for a generic
gravitational scattering process, where the fall offs are given taking ε = 0 (quadratic decay),
which corresponds to the logarithmic subleading soft theorem [67, 68]. As we will see below,
the tensor Tab can be constructed entirely form qab and vanishes in Bondi frame.

By inspecting the variations δ f , δV on Cab, we arrive at the transformations for Ĉab and Tab,

δVĈab = LVĈab − αĈab + uαN̂, (1.65)

δV Tab = LV Tab − 2DaDbαTF +���
��:0

u2α∂uTab, (1.66)
δ f Ĉab = f ∂uĈab − 2DaDb f TF + f Tab (1.67)
δ f Tab = 0, (1.68)

which agrees with the fact that Tab depends only on qab, since for the variations to stabilize
(preserve the fall off (1.64)) it is necessary to impose ∂uTab (we will show this explicitly in the
next section).

We will also require that Ĉab is asymptotically flat as u → ±∞, [13], in the sense that the
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Weyl tensor vanishes approaching I +
± . In a Bondi frame, this condition implies

lim
u→±∞

D[aDbĈb]c = 0, (1.69)

which we will call vanishing of the magnetic part of Ĉab. Observe that since the magnetic part
vanishes, the functions Ĉ±ab are Hessians of a certain scalar function Ĉ± in each end I +

± , i.e.,

Ĉ±ab = −2(DaDbĈ±)TF =
0

SĈ±
ab (1.70)

This condition have to be extended to non-Bondi frames, which is our task for the next sub-
sections. Given a metric qab on the sphere, we can now define the radiative phase space that is
compatible with the GBMS group,

Γq := {Ĉ(u, xa)
∣∣qabĈab = 0, ∂uĈab

u→±∞
= O(1/|u|2+ε), mag(Ĉbc)

u→±∞
= 0}, (1.71)

where mag() denotes the magnetic part of the tensor, which remains to be defined. The full
GBMS pahse space,

ΓGBMS := {Ĉ(u, xa), qab(xa)
∣∣qabĈab = 0, ∂uĈab

u→±∞
= O(1/|u|2+ε), mag(Ĉbc)

u→±∞
= 0,

√
q =

√
◦
q}.

(1.72)

1.5.3 Finite action of Diff(S2)

In this section we will show that Tab only depends on qab, by explicitly constructing the orbit of
Bondi frames under the action of Diff(S2). We also provide some results that will be useful for
the next sections and chapter 3.

Consider a diffeomorphism φ : (M, g)→ (M, gb f ) such that preserves the Bondi gauge, not
infinitesimally, but finitely,

φ(r, u, xa) = (R, U, XA), (1.73)

where R, U, XA are the initial coordinates, in a Bondi frame with metric gb f , and the metric g in
coordinates (r, u, xa) being the pullback of gb f ,

〈ξ, χ〉g :=
〈
∇ξφ,∇χφ

〉
gb f

. (1.74)

By the decays we are assuming on the metric, gab = qabr2 + ..., and equation (1.74), we can
assume the following 1/r-expansions,

R = R(1)(x)r + R(0)(u, x) + O(1/r), (1.75)
U = U(1)(x)u + O(1/r), (1.76)

XA = φA(x) +
1
r

X(−1)A(u, x), (1.77)

where the leading orders do not depend on u due to ∂uqab = 0, and grr = gra = 0. Also, it can
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be seen that U(1) = 1
R(1) .

The angular part of gab is given by

gab(r, u, x) = r2(R(1))2 ∂φC

∂xa
∂φD

∂xb qCD +

r
(

R(1)∂aφA∂bφB(Cab(R(1)−1u, φ) + 2R(1)qAB(φ) + R(1)X(−1)C∂CqAB(φ))

+2R(1)2∂aφA∂bX(−1)BqAB(φ) + 2R(1)−2∂aR(1)∂bR(1)
)
+ ..., (1.78)

where we will denote as qφ
ab and Cφ

ab as the leading and subleading term, respectively. We will
obtain expressions for both quantities in terms of φ.

The determinant condition (1.15) implies det(qφ |x) = det(q |x) (but, of course, not equal
to det(q |φ(x))!), and therefore

R(1) =
det1/4(qφ)

det1/2(Jφ)det1/4(q ◦ φ)
, (1.79)

where Jφ is the Jacobian matrix of φ. This fixes R(1). The subleading determinant condition,
qab

φ Cφ
ab = 0, fixes R(0) in terms of the previous functions. Next, the pullback of gra gives

gra(r, u, x) = −u∂a ln R(1) + X(−1) ∂φB

∂xa (R(1))2qAB + O(1/r), (1.80)

which should vanish. If we write
X(−1)A = ∂aφAYa, (1.81)

i.e., the pushforward of the sphere vector Ya, then gra = 0 implies

Ya = uqab
φ ∂a ln R(1). (1.82)

This implies, in particular, that we can construct the vector field generating the diffeomorphism
on the sphere, Ya, entirely in terms of qφ

ab.
We can now compute Cφ

ab in terms of φ. By taking the covariant derivative of qφ
ab, Dφ

ab, the
expression simplifies,

Cφ
ab = R(1) ∂φA

∂xa
∂φB

∂xb CAB(φ) + 2u
(

Dφ
a ln R(1)Dφ

b ln R(1) + Dφ
a Dφ

b ln R(1)
)TF

. (1.83)

First, observe the extra term that is linear in u, as we saw it has to be the case in the last section.
Let us define

Tab := 2
(

Dφ
a ln R(1)Dφ

b ln R(1) + Dφ
a Dφ

b ln R(1)
)TF

, ψ := ln R(1), (1.84)

and observe that ψ is the conformal factor that restore the area identity, for any diffeomorphism,
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rescaling the metric,
qφ

ab(x) = e2ψ∂aφA∂bφBqAB(φ(x)). (1.85)

In fact, this appearance of a Weyl transformation is not just a coincidence: first, we are in
two dimensions, so every riemannian metric is in the Yamabe class of the round metric, or, in
other terms, every riemannian metric is conformal to ◦q. Second, right from the beginning, we
are taking a slice in Diff(S2)nW, with W the Weyl subgroup, such that the Weyl parameter is
completely determined by the diffeomorphism (given by α), and therefore not entering in the
dynamics of the phase space.

The curvature for the metric (1.85),

R(qφ) = 2(e−2ψ − ∆φψ), (1.86)

where ∆φ := e−2φ∆.
The tensor Tab defined above is the Geroch tensor and satisfies the following property, the

proof of which the reader can see [69],

Theorem 1.1. Geroch, ’76
Let S be a two-dimensional surface. Then there is a unique symmetric tensor Tab that satisfies

If ρab =
R
2

qab − Tab, then D[aρb]c = 0 (1.87)

Proof.

In a two dimensional metric, (1.87) is equivalent to

DaR = −2DbTab, (1.88)

which can be verified taking Tab = 2 (DaψDbψ + DaDbψ)TF and R as in (1.86).
Finally, we present the following result concerning the tangent space in SGBMS, regarding

the variations of the metric.

Proposition 1.1. Any variation δqab can be written as δWqab, with Wa a vector field.

Proof. From the formula for qφ
ab, we have that the infinitesimal transformation (for any diffeo-

morphism) is

qεφ
ab = 2δR(1)

(εφ)
δ C

a δ D
b qCD + ε

∂φC

∂xa δ D
b qCD + ε

∂φD

∂xb δ C
a qCD, (1.89)

where R(1)
(εφ)

is the R(1) coefficient for the diffeomorphism εφ. Taking ε → 0, the raising and
lowering of index can be done in the metric qCD,

δφqAB =

(
2δR(1)

(εφ)
+

∂φC

∂xA +
∂φD

∂xB

)
qCD. (1.90)

Next,

25



Chapter 1

R(1)
(εφ)

= 1 + ε

(
1
2

∂AφA +
1
2

φA∂AqCD

)
(1.91)

Finally, given a general metric qab and a general variation, generated by diffeomorphism φ,
we define Wa := φa and

δφqab = LWqab + 2αWqab = δWqab (1.92)

The above proposition tells us that there is a map

X : F→ Diff(S2), (1.93)

from the jet bundle formed by the manifold and SGBMS to the diffeomorphisms on the sphere
(which is embedded in I ), and that the differential of the map takes a variation δqab and gives
the vector field Wa. For each tangent in the solution space, there is an associated diffeomor-
phism, and therefore we will have in general a field-dependent expressions for the variations.
Observe also that the directions contain in the tangent subspaces to SBMS are in the kernel of
the differential of the map X. This map will play a central role in chapter 3.

1.5.4 Diff(S2)-covariant derivative

Schematically, from (1.71) and (1.71) we have the following structure on our phase space,

ΓGBMS :=
⋃

qab :=
√

q=
√
◦
q

Γqab , (1.94)

where each Γqab is the orbit of the solution with fixed qab under the Lorentz symmetries gener-
ated by the CKV fields. A general diffeomorphismwill change the metric, and therefore change
the “fibre” in the above definition. The idea of this section is to construct a covariant derivative
that allows to write equations covariantly on the fibres.

First, we have to define what does it means to be covariant under the Diff(S2) group. We
say that a u−independent tensor Ta1...

b1... on the celestial sphere is Diff(S2) k-covariant if it satisfies
the transformation rule,

δV Ta1...
b1... = LV Ta1...

b1... + kαTa1...
b1... , (1.95)

where V is the generator of the diffeomorphism, and α = 1
2 DaVa. As one can see for a Diff(S2)

k-covariant scalar field, the standard covariant derivative associated to the metric qab does not
preserves the covariance of a field: if δVφ = (LV + kα)φ, then

δV Daφ = (LV + kα)Daφ + kφDaα (1.96)
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As the first step towards the definition of the new covariant derivative, for ψ in (1.84) we have,

δVψ = LVψ− α, (1.97)

which can be seen by identifying δV(e2ψ◦qab)with δVqab. Then,wedefine for scalars theDiff(S2)−covariant
derivative D̄ as follows

D̄aφ := Daφ + kφDaψ. (1.98)

From this definition, we can construct iteratively the action onhigher order tensors. TheChristof-
fel symbols for the conformal change qψ

ab = e2ψqab are in the general formula for a tensor Ta1...
b1... ,

D̄cTa1...
b1... = ∂cTa1...

b1... − Γ̃d
cb1

Ta1...
d... + ... + Γ̃a1

cdTd...
b1... + ... + kDcψTa1...

b1... , (1.99)

where Γ̃c
ab = Γc

ab − 2D(aψδc
b) + qabDcψ. Given a Diff(S2) k−covariant tensor, a straightforward

computation now gives
δV D̄cTa1...

b1... = (LV + kα)Ta1...
b1... . (1.100)

Several properties for D̄ are enumerated below.

1. The weight of the product of tensors is the sum of the weights: D̄ satisfies Leibniz rule
with weight k.

2. D̄aqbc = 0.

3. [D̄a, D̄b]ωc = R̄ d
abc ωd, with

R̄abcd = R̄qa[bqc]d, R̄ = R + 2∆ψ. (1.101)

4. D̄aR̄ = 0. This is a restatement of the Uniformization Theorem for 2 dimensions: any
Riemannian metric is conformally equivalent to ◦q, and therefore the curvature is Diff(S2)-
covariantly constant.

5. The covariantized vector field divergence, ᾱ = 1
2 D̄aVa, satisfies

ᾱ = −δVψ (1.102)
(D̄aD̄bᾱ)TF = −1

2
(δV Tab)

TF (1.103)

1.5.5 Phase space

In this section we give a precise definition for (1.94) by extending (1.69) to non-Bondi frames.
The basic idea is to perform a “change of variables” such that we can split the full phase space in
a Diff(S2) covariant way. First, we need to understand the magnetic condition for Ĉab in terms
of D̄. From the equation for δVĈab, we have that Ĉ± are Diff(S2) (−1)-covariant tensors, then

D̄[aD̄cĈ±b]c = D[aDcĈ±b]c −
1
2

Tc
[aĈ±b]c. (1.104)
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Then, the vanishing of the left hand side is the covariantize version of the magnetic condition
in Bondi frame.

Let us redefine each fiber Γqab as follows,

Γqab = {Ĉab
∣∣ qabĈab = 0, ∂uĈab

u→+∞
= O(1/|u|2+ε), D̄[aD̄cĈ±b]c

u→+∞
= 0}, (1.105)

as the “vertical” phase space corresponding to each metric qab such that√q =

√
◦
q. Then, (1.94)

is well-defined as a set, ready to admit a symplectic structure.

1.6 Charge Algebra

In this section we give expressions for the supertranslation and superrotation that are compati-
ble with a symplectic structure on (1.94). We have two charges to compute: the ones associated
to the supertranslation, and the ones associated to superrotations.

1.6.1 GBMS charges

To make easy the reading, let us define the following tensors,

0

Nab :=
∫

R
∂uĈabdu (1.106)

1

Nab :=
∫

R
u∂uĈabdu (1.107)

0

S f
ab := −2D̄aD̄b f TF (1.108)

1

SV
ab := [−4D̄aD̄bα + D̄(aD̄cδVqb)c −

R̄
2

δVqab]
TF (1.109)

Supermomentum

In the original introduction of the general frames, (e.g. [69], [5]), special care is taken to ensure
frame-independence. In particular,the Ashtekar-Streubel expression for the supermomentum
is valid in any frame, given the correct decay in the u0 part of the shear Cab. Therefore, the
supermomentum in a general non-Bondi frame takes the form,

Pf =
∫

I
∂uĈabδ f Ĉab

√
qdud2x, (1.110)

where it should be noted that the difference with (1.57) is that we are not taking the linear in u
part in the shear. Observe that this integral converges. We can split the contributions in (1.57)
given by the hard and soft parts,

Phard
f :=

∫
I

∂uĈab f ∂uĈab
√

qdud2x, (1.111)

Pso f t
f :=

∫
S2

0

Nab
0

S f
ab
√

qd2x, (1.112)
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where the terms hard and soft come from the soft theorems: quadratic and linear terms in Cab

respectively.

Super angular momentum

The proposal in [21], [22] for an asymptotic GBMS symmetry provided a candidate for the
super angular momentum in the Bondi frame can be covariantized to be defined in all of the set
Γ,

JV =
∫

I
∂uĈabδVĈab

√
qdud2x +

∫
S2

1

Nab
1

SV
ab
√

qd2x. (1.113)

Thus, we have a candidate for the super angularmomentum in Γ. Aswith the supermomentum,
we can split the hard and soft contributions,

Jhard
V :=

∫
I

∂uĈabδVĈab
√

qdud2x, (1.114)

Jso f t
V :=

∫
S2

1

Nab
1

SV
ab
√

qd2x, (1.115)

Poisson structure

Wehave defined the charges Pf and JV on ΓGBMS. Now, we should verify that they satisfy indeed
the structure of a Poisson algebra. Consider a large gauge transformation parametrized by λ,
and let us denote by Qλ its associated charge. If there exists a symplectic form Ω on Γ such that

δQλ = Ω(δ, δλ) (1.116)

then the charges must obey the following identity,

δλ2 Qλ1 = Ω(δλ2 , δλ1) = −δλ1 Qλ2 . (1.117)

Therefore, for the charge candidates to be consistent with a symplectic structure on Γ (and
therefore for the Poisson structure to close), several consistency checks are in order:

1. δ f ′Pf = 0, ∀ f , f ′ ∈ C∞(S2).

2. δV Pf = −PV( f ), ∀V ∈X(S2), f ∈ C∞(S2).

3. δ f JV = PV( f ), ∀V ∈X(S2), f ∈ C∞(S2).

4. δV′ JV = J[V,V′], , ∀V, V ′ ∈X(S2).

After a little work, it can be shown 1, 2 and 4 are satisfied for the expressions we have for Pf

and JV (see Appendix D in [32]).
Condition 3, however, is not true. A direct computation gives

δ f JV = PV( f ) +
∫

S2

0

Nab
(
(LV − α)

0

S f
ab − f

1

SV
ab −

0

SV( f )
ab

)
√

qd2x. (1.118)
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In [32] we propose a way to fix this non-closure of the algebra, by adding certain boundary field
term. The boundary term will be generated by a boundary field that ultimately depend on qab,
since is the new “dynamical” degree of freedomwhich depart from the standard BMS analysis.
First, let us define

K( f , V) :=
∫

S2

0

Nab
(
(LV − α)

0

S f
ab − f

1

SV
ab −

0

SV( f )
ab

)
√

qd2x (1.119)

This term is the non-CKV generalization of the Barnich-Troessaert (BT) extension term [29].
We will discuss the comparison with BT charges in the next chapter. Since it is a non zero term,
we see that condition 3 does not apply for the expressions we have for Pf and JV . As it will turn
out, an extra term for the super angular momentum will be obtained from K( f , V), in order for
the equation to hold.

After a lengthy computation, (Appendix C in [32]), one can show ,

K( f , V) = −δ f J∂I
V +mag( f , V), (1.120)

where

J∂I
V =

∫
∂I

(VaĈbcDcĈab +
3
2

ᾱĈabĈab)
√

qd2x, (1.121)

mag( f , V) = −4
∫

S2

0

Nab
(

D̄(aD̄c(D̄[b) f Vc] −
1
2

f D̄[b)Vc])

)TF√
qd2x. (1.122)

where ∂I := I +
− ∪I +

+ . Since the magnetic condition for Ĉab (1.69) implies

D[cDa
0

Nb]a = 0, (1.123)

the term mag( f , V) vanishes. The term δ f J∂I
V is a total variation of a boundary term, which

can be absorbed in the left hand side, as a redefinition JV 7→ JV + J∂I
V , and condition 3 now is

satisfied. Condition 4 is true, as can be easily verified that

δV′ J∂I
V = J∂I

[V,V′]. (1.124)

In the proof of the next proposition we show another way of writing J∂I
V .

Proposition 1.2. J∂I
V vanishes for global CKV.

Proof. Observe that
0

Nab = Ĉ+
ab − Ĉ−ab, (1.125)

then we have K( f , V) = K+( f , V)− K−( f , V)

K±( f , V) :=
∫

S2
Ĉ±ab

(
(LV − α)

0

S f
ab − f

1

SV
ab −

0

SV( f )
ab

)
√

qd2x. (1.126)
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We also have J∂I
V = J∂I+

V − J∂I−
V ,

J∂I±
V =

∫
S2
(VaĈ±bcDcĈ±ab +

3
2

ᾱĈ±abĈ±ab)
√

qd2x, (1.127)

and identity (1.120) transfers to K±( f , V) = −δ f J∂I±
V . Since J∂I±

V is quadratic in C±, we have

J∂I±
V =

1
2

δ f J∂I±
V

∣∣
f=C± = −1

2
K±(C±, V). (1.128)

Finally,
J∂I
V = −1

2
(
K+(Ĉ+, V)− K−(Ĉ−, V)

) (1.129)

Finally, we have a new expression for the super angular momentum, given by

JV = Jhard
V + Jso f t

V + J∂I
V , (1.130)

while the supermomentum remains the same,

Pf = Phard
f + Pso f t

f . (1.131)

The charge algebra formed by this charges is a closed Poisson algebra, with no central extension.

1.7 Symplectic form

Wewant to construct a symplectic form on ΓGBMS such that (i) it is consistent with the definition
of the charges, (1.116),

δPf = Ω(δ, δ f ), ∀δ ∈ TΓ, (1.132)
δJV = Ω(δ, δV), ∀δ ∈ TΓ, (1.133)

and (ii) when evaluated on the subspaces TΓqab ⊂ TΓ it reduces to the symplectic form in each
Ashtekar-Streubel (AS) phase space Γqab (1.71), given by

Ω(δ, δ′)

∣∣∣∣
TΓqab×TΓqab

=
∫

I
(δ∂uĈab ∧ δ′Ĉab)

√
qdud2x (1.134)

Our starting point is to write

Ω = Ωhard + Ωso f t + Ω∂I , (1.135)
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where we take as the hard part the AS expression,

Ωhard :=
∫

I
(δ∂uĈab ∧ δ′Ĉab)

√
qdud2x, (1.136)

and Ωso f t, Ω∂I are yet to be determined. By using condition (1.132), we obtain

Ωhard(δ, δ f ) = δPhard
f +

∫
S2

δ
0

Nab
0

S f
ab
√

qd2x, (1.137)

while from (1.133),
Ωhard(δ, δV) = δJhard

V . (1.138)

Then, it suffices to find Ω∂I , Ωso f t such that

(Ω∂I + Ωso f t)(δ, δ f ) =
∫

S2

0

Nabδ
0

S f
ab
√

qd2x, (1.139)

(Ω∂I + Ωso f t)(δ, δV) = δJso f t
V + δJ∂I

V (1.140)

Assume that equation (1.140) splits accordingly,

Ω...(δ, δV) = δJ...
V , (1.141)

where ... denotes soft or ∂I . We will also assume that each Ω... is the exterior derivative in
solution space of a symplectic potential θ... 4, that satisfy

1. Compatibility with δV , e.g. [37], θ...(δV) = J...
V , and

2. δVθ...(δ) + θ...([δ, δV ]) = 0.

By inspecting the formula for Jso f t
V and

1

SV
ab, we have a candidate for θso f t as follows: if we

define
1

Sab(δ) := [2δTab + D̄(aD̄cδqb)c −
R̄
2

δqab]
TF, (1.142)

we see that
1

Sab(δV) =
1

SV
ab. Then,

θso f t(δ) :=
∫

∂I

1

Nab
1

Sab(δ)
√

qd2x (1.143)

For the remaining component, θI (δ), we have to rewrite the new term on the angular momen-
tum, using (1.70),

J∂I
V =

∫
∂I

(Va
0

SC bcDcĈab +
3
2

ᾱĈab
0

SC
ab)
√

qd2x, (1.144)

which after some algebra can be written as

J∂I
V =

∫
∂I

Ĉab(δV
0

SC
ab −

0

SδV C
ab − C

1

S(δV))
√

qd2x. (1.145)

4Ω(δ1, δ2) = δ1θ(δ2)− δ2θ(δ1)− θ([δ1, δ2])
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Then, we define
θ∂I (δ) :=

∫
∂I

Ĉab(δ
0

SC
ab −

0

SδC
ab − C

1

S(δ))
√

qd2x. (1.146)

We have completed condition 1. For condition 2, we refer the reader to Proposition 1.1. By
setting δqab = δWqab for some vector field W on the celestial sphere and using (1.124) one can
show condition 2 to hold.

Finally, we have to check that 1.132 did not get spoiled after the new definition for Ω.... This
follows again from Proposition 1.1, the variation formula δ f JV = PV( f ) and the fact that θ...

vanishes if evaluated on variations with δqab = 0.
We can write the symplectic potential and form as the sum of two contributions, one from

the bulk I and one from the boundary ∂I ,

θ = θI + θS2
, Ω = ΩI + ΩS2

, (1.147)

where

θS2
(δ) := θso f t(δ) + θ∂I (δ) =

∫
S2
(pabδqab + ΠabδTab)

√
qd2x, (1.148)

ΩS2
(δ, δ′) := Ωso f t(δ, δ′) + Ω∂I (δ, δ′) =

∫
S2
(δpab ∧ δ′qab + δΠab ∧ δ′Tab)

√
qd2x,(1.149)

with

pab = D(aDc
1

Nb)c − R
2

1

Nab + (quadratic in Ĉab)

∣∣∣∣
∂I

, Πab = 2
1

Nab +
1
2

CCab
∣∣∣∣
∂I

, (1.150)

where the quadratic terms in Ĉab can be obtained from (1.146). When evaluating on a variation
such that δqab = 0, we have that the S2 contributions vanish. This is a remarkable aspect of this
expressions, but it is not a surprise: if we take a CKV field, the orbits are Γqab , and therefore we
see only the AS structure on each fibre. In chapter 3 we will understand this boundary fields in
a more general context, the covariant phase space formalism.
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Asymptotic symmetries in Einstein-Yang-
Mills theory

In the previous chapter the GBMS extension to BMS was considered, and the charge algebra
was computed, imposing a well-defined Poisson structure. The new charges contain an extra
boundary term, coming from the arbitrary diffeomorphism freedom on the sphere.

In this chapter, we study the following natural question: can GBMS be realized by cou-
pling gravity with a gauge theory, such in Einstein-Yang-Mills theory (EYM)? In particular,
adding an extra field (the gauge potential Aµ in EYM) implies extra symmetries coming from
the symmetries in the extra piece of the Lagrangian, [70]. InMinkowski flat spacetime, the large
gauge transformations that act on Aµ satisfy a closed infinite dimensional algebra [19,26], and
they have leading charges associated to themwhich make up for a infinite dimensional Poisson
charge algebra.

2.1 Asymptotic structure

In this section we review the main properties of EYM. Amore detailed exposition can be found
in [70] and references therein. The strategy is the same as in the previous chapter, so the details
are skipped.

2.1.1 Symmetries of EYM

Given a Lorentzian manifold (M, g), a Lie group G, the Lie algebra g := Lie(G) and a g-valued
1-form Aµ, the EYM Lagrangian is the following

L [g,A] = R[g]
√

g− Tr(F [A] ∧ ∗F [A]), (2.1)

where Tr is an invariant non-degenerate metric in g, ∗ is the Hodge-dual of the metric g, and

F [A] := dA(A), dA := d + [A, ·] (2.2)
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are the curvature of the connectionA and the covariant derivative associated toA, respectively.
We will use Dµ = ∇µ + [Aµ, ·] as the covariant derivative using index notation. By the proper-
ties of the Hodge-dual, we can rewrite (2.1) as follows,

L [g,A] =
(

R[g]− 1
4
Tr(FµνFµν)

)
√

g, (2.3)

A symmetry φ acting on L is defined such that it satisfies,

L [φ ∗ g, φ ∗ A] = L [g,A] (2.4)

We have two different symmetries acting on this lagrangian:

• Diffeomorphism invariance: given a diffeomorphism generator ξ, its infinitesimal action
is given by

δξ g = Lξ g, δξA = LξA, (2.5)

• G-invariance: given a finite gauge transformation generated by the infinitesimal parame-
ter Λ,

δΛg = 0, δΛA = dAΛ, (2.6)

The symmetries acting on the unconstrained (before fixing any particular gauge) fields form
a symmetry algebra, which can be computed through its representation on the fields g and A.
The variation algebra is given by,

[δξ1,Λ1 , δξ2,Λ2 ] = δξ̂,Λ̂, (2.7)

with

ξ̂ = [ξ1, ξ2]Lie, (2.8)
Λ̂ = Lξ1 Λ2 −Lξ2 Λ1 + [Λ1, Λ2]g, (2.9)

where [, ]g denotes the Lie bracket on g. This equations have an algebra realization that corre-
sponds to the group

GEYM := Di f f (M)n G, (2.10)

where the bracket between two elements is given by

[(ξ1, Λ1), (ξ2, Λ2)]EYM = (ξ̂, Λ̂) (2.11)

2.1.2 Gauge fixing and residual gauge transformations

For the metric field, we consider the Bondi gauge, as in (1.2). The choice that we will take for
the vector potential is the following,

Ar = 0 (2.12)
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since it will prove to be more easy treat when computing the residual gauge symmetries [70].
We will discussed the harmonic gauge below.

Once the gauge is fixed, we are left with the residual gauge transformations. As in the
previous chapter, the residual gauge due to diffeomorphisms are the ones generated by the
following vectors,

Lξ grr = Lξ gra = 0, gabLξ gab = 0. (2.13)

As we saw in section 1.2, the vector fields satisfying the above equations are given by

ξu = F(u, xa), (2.14)
ξa = Va(u, xa)− ∂bF

∫ ∞

r
e2βgabdr, (2.15)

ξr = − r
2

(
∇g

a ξa − ∂bFUb +
1
2

Fg−1∂ug
)

, (2.16)

The residual gauge symmetries for the vector potential satisfy the equation

∂rΛ = ∇bξugabe2β Aa (2.17)

which has immediate solution,

Λ = λ(u, xa)− ∂bF
∫ ∞

r
e2βgabAbdr, (2.18)

Observe that the diffeomorphism generators are present in (2.18): this generally implies a
non-trivial field dependence in the residual gauge symmetries.

When the gauge parameters are field-dependent, equation (2.7) is no longer valid, and we
have the modified bracket [70],

[δξ1,Λ1 , δξ2,Λ2 ] = δ[(ξ1,Λ1),(ξ2,Λ2)]∗EYM
, (2.19)

where
[(ξ1, Λ1), (ξ2, Λ2)]

∗
EYM = (ξ̂, Λ̂)− δξ1,Λ1(ξ2, Λ2) + δξ2,Λ2(ξ1, Λ1). (2.20)

Harmonic gauge

For completeness, let us discuss the residual gauge symmetries in the harmonic gauge,

∇µ Aµ = 0. (2.21)

This gauge is the one we are taking in chapter 4 and chapter 5, suitable for perturbative calcu-
lations. By imposing the harmonic gauge on a variation, we obtain

∇µ
(
LξAµ +DµΛ

)
= 0, (2.22)
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which after some computational massaging results,

Aν(−R ν
µ ξµ +∇µ∇µξν) + 2∇(µξν)(∇νAµ) +∇µ∇µΛ + [Aµ,∇µΛ] = 0. (2.23)

Observe that equation (2.23) gives us a nice characterization of the BMS algebra in the har-
monic gauge: for asymptotically Killing fields, where ∇(µξν) → 0 as r → +∞, the terms in the
first brackets and the second term vanish as r → +∞, since the equation in brackets is the trace
of the Killing equation. Thus, asymptotically both terms vanish and the remaining terms are
the same as the harmonic gauge compatibility in Minkowski, (4.19), which we will see in more
detail later in chapter 4.

The leading order behaviour that we are studying for the YM sector is equivalent in both
gauges, as equation (2.23) can be solved afterwe impose the fall offs and prove to have the same
leading form.

2.1.3 Solution Space and Phase space

The equations of motion are

Rµν −
1
2

Rgµν = Tµν, Tµν := 2Tr(FµσF σ
ν )− 1

2
gµνTr(FµνFµν) (2.24)

∇µFµν + [Aµ,Fµν] = 0 (2.25)

On the gravity side, since the stress-energy tensor Tµν is traceless, equation (2.24) implies R = 0,
and then is equivalent to

Rµν = Tµν (2.26)

The boundary conditions that we are taking in the gravity sector are the ones defined by
ΓGBMS, (1.72), giving the same parametrization of the solution space. The decays for the vector
potential are taken to be compatible with the radiative space for Yang-Mills in Minkowski,

Au = o(1), Ar = 0, Aa = O(1). (2.27)

On the Yang-Mills side,through the equations of motion, it can be proven (in Einstein-Maxwell
case see e.g. [71, 72]) that the components of A in an r-expansion can be calculated from the
leading term of the angular part, denoted by Aa,

Aa(u, x) = Aa(u, x) + o(1) (2.28)

Next, regarding the u−decays for and Aa, we take “tree level fall offs” [73],

∂u Aa(u, x) = O(1/|u|∞). (2.29)
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This decay allows a finite limit when reaching u→ ±∞,

A±a (x) := lim
u→±∞

Aa(u, x) (2.30)

This provides a natural radiative structure on I for YM, with phase space

Γrad
YM := {Aa(u, x)

∣∣∂u Aa(u, x) = O(1/|u|∞)} (2.31)

In this chapter we aim to obtain a symplectic structure on the product space,

ΓEYM = ΓGBMS × Γrad
YM, (2.32)

which conforms the EYM phase space.
Finally, by imposing the fall off (2.27) on the variations acting on A, we obtain

∂uλ = 0, (2.33)

so we can take λ as a free g−valued function on the celestial sphere.
Finally, the symmetry group depends on four free functions on the sphere, given by f , Va, λ,

where f and Va parametrizes the diffeomorphisms and λ the large gauge transformations on
the Yang-Mills sector. In the next section we will study the algebra on this group.

2.1.4 Asymptotic symmetries algebra

The first step towards the symplectic structure is to analyse the action of variations on ΓEYM. Let
us call δ f , δV and δλ the variations generated by the functions f , V and λ. By taking the leading
order on (2.5) and (2.6), we obtain the following expressions.

1. Supertranslations: the action on ΓGBMS is given by,

δ f qab = δ f Tab = 0, δ f Ĉab = f ∂uĈab − 2DaDb f TF + f Tab, (2.34)

while its action on Aa is
δ f Aa = f ∂u Aa (2.35)

2. Superrotations: the action on ΓGBMS is given by,

δVqab = LVqab − 2αqab, δVĈab = LVĈab + αĈab + uαN̂ab, (2.36)

δV Tab = LV Tab − 2DaDbαTF, (2.37)

and on Aa,
δV Aa = uα∂u Aa + LV Aa. (2.38)
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3. Large gauge transformations (LGT): the action on the gravity side vanishes,

δλqab = δλĈab = δλTab = 0 (2.39)

but on Γrad
YM is the usual,

δλ Aa = Daλ, (2.40)

Just for reference, we will need the contravariant version of some of the above identities. In
the case of the upper index tensors, the variations are,

δVĈab = LVĈab + αu∂uĈab + 3αĈab (2.41)
δV Aa = LV Aa + uα∂u Aa + 2αAa (2.42)

From the action of the symmetries we see that the symmetry group acting on (2.32), let us
call EYM4, is a semi-direct product of GBMS4 and G∞, where G∞ is the group of symmetries
generated by the large gauge transformations (theΛ’s) in theYang-Mills sector. This semi-direct
property translates to the Lie algebra, eym4,

eym4 = gbms4 n g∞, (2.43)

where g is the Lie algebra of G. The mixed variations are:

[δ f , δλ] = 0, [δV , δλ] = δ−LV λ (2.44)

We can write the algebra in a more compact form, as in (2.7),

[δ( f1,V1,λ1), δ( f2,V2,λ2)] = δ( f̂ ,V̂,λ̂), (2.45)

with

f̂ = LV1 f2 − α1 f2 − (1↔ 2) (2.46)
V̂ = [V1, V2]Lie (2.47)
λ̂ = [λ1, λ2]g −LV1 λ2 + LV2 λ1 (2.48)

Observe that since we reduce the parametrization of the asymptotic group to independent func-
tions, the modified bracket coincides with the usual bracket (e.g., δ f λ = 0).

2.2 Charges

The symplectic form in the YM radiative space Γrad
YM is given by

Ωrad
YM(δ, δ′) =

∫
I
Tr(δ∂u Aa ∧ δAa)

√
qdud2x, (2.49)
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which is the YM version of the radiative spaces introduced in [4]. The standard charge for the
radiative phase space Γrad

YM is given by

Qλ =
∫

I
Tr[∂u AaDaλ]

√
qdud2x. (2.50)

By integrating by parts and along I , this expression is also equal to a boundary term,

Qλ =
∫

∂I
Tr[λDa Aa]

√
qdud2x. (2.51)

In the previous chapter we found the complete expressions for the GBMS charges, Pf and JV ,
imposing the compatibility with the Poisson algebra structure on the phase space. We will
proceed with the same strategy in here, allowing extra terms in the charges,

Pf = PGBMS
f + PYM

f , (2.52)
JV = JGBMS

V + JYM
V , (2.53)

QΛ = QYM
λ + Qgr

λ , (2.54)

where PYM
f and JYM

V are the contributions of the YMfield to the supermomentumand superrota-
tion, and Qgr

λ is the (a priori possible) pure gravitational contribution to the Yang-Mills charge.
By imposing that the brackets between the charges resemble the variation algebra (2.45), con-
ditions on the extra terms will be obtained. The steps are as follows.

1. δVQλ = {Qλ, JV}: candidate for JYM
V

2. δ f Qλ = {Pf , JV}: candidate for PYM
f .

3. GBMS Poisson-algebra for PYM
f and JYM

V .

Of course, we can naturally set Qgr
λ = 0, since otherwise we would have a non-trivial Yang-

Mills charge from Minkowski in a pure GBMS context.

2.2.1 {Qλ, JV}

The algebra has to satisfy,
{Qλ, JV} = δVQλ = −QLV λ, (2.55)

and also
{Qλ, JV} = −δλ JV = −δλ JYM

V , (2.56)

since δλ JGBMS
V = 0. By a straightforward computation, the first equations hold,

δVQλ = −
∫

I
Tr[∂u AaDa(LVλ)]

√
qdud2x = −QLV λ, (2.57)

where we use LV
√

q = 2α
√

q and LV(dλ) = dLVλ (a consequence of Cartan formula).
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The expression for the symplectic form (2.49) provides us with a clear ansatz for JYM
V ,

JYM
V :=

∫
I
Tr[∂u AaδV Aa]

√
qdud2x, (2.58)

which is quadratic in Aa. Apply δλ,

δλ JYM
V =

∫
I
Tr[∂u Aa(DaLVλ)]

√
qdud2x = QLV λ, (2.59)

and therefore the first equations are satisfied.

2.2.2 {Qλ, Pf }

Next, we look for a candidate for PYM
f , by imposing

{Qλ, Pf } = δ f Qλ = 0. (2.60)

and
{Qλ, Pf } = −δλPf = −δλPYM

f , (2.61)

A straightforward computation gives

δ f Qλ =
∫

I
fTr[∂2

u AaDaλ + ∂u Aa[∂u Aa, λ]]
√

qdud2x = 0. (2.62)

Thus, PYM
f ∈ Ker(δλ), when δλ viewed as an operator. As in the previous case, an ansatz can be

used from (2.49),

PYM
f :=

∫
I
Tr[∂u Aaδ f Aa]

√
qdud2x =

∫
I

fTr[∂u Aa∂u Aa]
√

qdud2x. (2.63)

With this definition in mind, we take the variation δλ,

δλPYM
f =

∫
I

2 fTr[∂u Aa∂uDaλ]
√

qdud2x = 0. (2.64)

2.2.3 Closure of JYM
V and PYM

f

Now that we have the candidates for the new JV and Pf , we must verify that the subalgebra
generated by them closes on eym4. In particular, wewill see that the set of phase space functions
generated by JYM

V and PYM
f satisfies the equations

{JYM
V , PYM

f } ≡ δV PYM
f = −PYM

V( f ), (2.65)

{JYM
V , PYM

f } ≡ −δ f JYM
V = −PYM

V( f ), (2.66)

{PYM
f1

, PYM
f2
} = 0, {JYM

V1
, JYM

V2
} = JYM

[V1,V2]
(2.67)

so that the full algebra spanned by {JV , Pf } closes. The easiest one is the abelian part,
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δ f1 PYM
f2

= 2
∫

I
fTr[∂u Aa∂2

u Aa]
√

qdud2x =
∫

∂I
fTr[∂u Aa∂u Aa]

√
qdud2x

∣∣∣∣
u=±∞

= 0, (2.68)

by the decays on Aa(u, x). For the mixed variation, we have,

δ f JYM
V =

∫
I

δ fTr[∂u Aa(uα∂u Aa + LV Aa)]
√

qdud2x

=
∫

I
Tr[(LV f − f α)∂u Aa∂u Aa]

√
qdud2x +

∫
∂I

Tr[ f uα (∂u Aa∂u Aa) + f ∂u AaLV Aa]
√

qd2x,

= PYM
V( f ), (2.69)

where the last integral vanishes again due to the decays in Aa. Next we verify the other mixed
variation,

δV PYM
f =

∫
I

f δVTr[∂u Aa∂u Aa]
√

qdud2x

= −
∫

I
(LV f − α f )Tr[∂u Aa∂u Aa]

√
qdud2x +

∫
∂I

uα fTr[∂u Aa∂u Aa]
√

qdud2x

= −PYM
V (2.70)

Finally, after some computations (using the same techniques as above), the bracket {JYM
V1

, JYM
V2
}

can be checked,
{JYM

V1
, JYM

V2
} = δV1 JYM

V2
= JYM

[V1,V2]
. (2.71)

2.3 Symplectic form

In this section we derive a symplectic structure on ΓEYM such that the charges act canonically
on the phase space. The symplectic form in the YM radiative space Γrad

YM is given by (2.49). Such
expression is valid for any metric, as long as the space is asymptotically locally Minkowski [4].
Thus, is valid for anymetric on each Γq from the split (1.94). The natural candidate for the ΓEYM

symplectic form is
ΩEYM = ΩGBMS + Ωrad

YM (2.72)

Since the pure gravitational parts of Pf and JV are compatible with ΩGBMS, and ΩGBMS(·, δλ) =

0, we only need have to verify the following identities

Ωrad
YM(δ, δ f ) = δPYM

f , Ωrad
YM(δ, δV) = δJYM

V , (2.73)

which we already take as an ansatz for each extra term, (2.58) and (2.63).
Finally, observe that this identities are compatible with condition 1 in section 1.7,

θYM(δV) = JYM
V (2.74)

We have arrived at the main result of this chapter: to show that GBMS can be coupled to
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other asymptotic symmetries groups, as it is the case of large gauge transformations for Yang-
Mills (associated to the leading charges). A natural questions is whether GBMS can be coupled
consistently with extensions of asymptotic symmetries groups. This discussion will be delayed
until the end of chapter 4, wherewewill understand the extension of the asymptotic symmetries
in YM.
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Relations with the Covariant Phase Space
Extensions

This chapter will provide the connection between our results in chapter 1 and the ones from
covariant phase space formalism, [31,40,41,43,46,54], trying to understand the extra boundary
terms arising when extending from BMS to GBMS.

The natural framework for the covariant phase space formalism is the jet bundle, where fields
and their derivatives are sections of a fiber bundle over the spacetime M, [74]. We provide a
review of Cartan calculus on this spaces in chapter A. We encourage the reader who is not
familiar with these topics to look at the appendix.

The focus of this chapter in on the concept of charge in general relativity, and the differ-
ent prescriptions one can take. First, we present the Noether charges and Iyer-Wald charges,
which are going to be used throughout this chapter. After a discussion of the charges given by
Ashtekar-Streubel ( [4], [5]), we review the charges given by Compere, Fiorucci and Ruzziconi
( [31]). Then, we proceed to use the extensions in the covariant phase spaces to explain the
“extra” boundary terms that arise when the boundary metric is also a dynamical field.

3.1 Motivation

As we presented in chapter 1, when extending BMS to GBMS we are introducing an extra field
in the phase space, which in the symplectic form (1.147) appear explicitly in the ΩS2 term as
qab, the metric on the celestial sphere.

Covariant phase space methods are useful in the construction of charges (e.g. [12, 37, 38]),
and provide a formal framework easy to generalize in various context, such as gauge theories
and gravity. In [39], Freidel and Donnelly proposed a general procedure to associate a gauge-
invariant classical phase space to a spatial slice with boundary by introducing new degrees of
freedom on the boundary. This is precisely the situation in GBMS: the boundary, ∂I , which
can be thought as the celestial sphere, contains the new dynamical field qab. In other words, the
presence of the boundary promoted some pure gauge transformations to physical degrees of
freedom. Their proposal was to consider a counter-term, involving fields on the boundary, that
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cancels the non-covariance of the symplectic potential. In the case of gravity, these fields on the
boundary are embedding of a neighbourhood of the Cauchy slice toM. In [54], Speranza con-
structed a prescription to couple the embedding map to the theory, by writing the Lagrangian
in terms of the pull back fields.

Recent works ( [40–46]) have emphasized the existence of an universal symmetry group,
called the extended corner symmetry group, withmanyproperties such asmaximality [44]. Roughly
speaking, the gravitational symmetries on a corner have the following structure, [44],

(Diff((S2)n GL(2, R))n (R2)S2 (3.1)

Each term corresponds to a different symmetry acting on the corner surface: Diff(S2) are the
diffeomorphisms on the sphere, GL(2, R) are the surface boosts and (R2)S2 are the translations
on along both outgoing normals. In the case of null infinity, its boundary ∂I = I +

+ −I +
− ,

located at u = ±∞, is invariant under such (super) translations, so the whole group is surface
preserving, [39], and reduces to

(Diff((S2)nW)n s, (3.2)

where we can identify the superrotations,W is the Weyl group (rescalings) and s is the infinite
dimensional abelian group of supertranslations.

In [46] Freidel showed that by dressing the Lagrangian by an embedding field, the sym-
plectic form is modified in such a way that allows for a canonical representation of supertrans-
lations. In [53], Ciambelli, Leigh and Pai showed that working with an embedding mapping
parametrizing the extension of the phase space, nonzero charges can be integrated for all dif-
feomorphisms, giving a representation of the extended corner symmetry, without any central
extension.

The charges (1.130) and (1.131) are integrable (from the symplectic form (1.147)), have no
central extension and are compatible with the leading and sub-leading charges given by the
soft theorems ( [22]). Therefore, the natural question is whether they are a representation of
the extended corner algebra. As we will see, J∂I

V can be understood as a necessary term coming
from the surface preserving subalgebra of the extended corner algebra [39,43].

3.2 Charges in General Relativity

In this section we present the notion of Noether charges and Iyer-Wald charges.
In this chapter, we will use the following notation:

• d, ι and L are the exterior derivative, interior product and Lie derivative onM.

• δ, I andL are the exterior derivative, interior product and Lie derivative on solution space.

• We denote the tangent vector fields to solution spaces as characteristics, and use the letter
q (instead of the usual “δφ” for some field φ).
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• Given a diffeomorphism ξ, it generates a flow on solution space and therefore it has asso-
ciated a characteristic tangent to solutions. We denote such the characteristic as ξ̂.

For more details, we refer the reader to chapter A and the references provided there.

3.2.1 Noether Charges

The Einstein-Hilbert Lagrangian,
L [g] = R[g]dµg, (3.3)

gives the following symplectic potential,

Θ[q] =
∫

Σ
θµ[q]dSµ = −

∫
Σ

√
−ggµλ

(
∇ν(Lqg)λν − gνρ∇λ(Lqg)νρ

)
dSµ, (3.4)

where we use Lqg as the usual “δg”. By evaluating the symplectic potential on a ξ̂ ( [12]) we
can compute the Noether-Wald charge,

Qξ = θ[ξ̂] = 2
√
−g(∇[µξν])(dn−2x)µν, (3.5)

which are the Komar integrands ( [75]). For instance, one of the applications of these charges
is the well known Smarr formula for an isolated horizon, [76],

M =
1

4π
κA + 2ΩJ, (3.6)

where κ and Ω are the surface gravity and the angular velocity of the black hole horizon.

3.2.2 Iyer-Wald Charges

In terms of the Noether charge and the symplectic potential, the Iyer-Wald charges [12] are
given by the integration of the following codimension 2 form,

kξ = δQξ −Qδξ − ιξθ. (3.7)

We call the form k the Iyer-Wald form associated to ξ. For the Noether charges as in (3.5), the
expression for the Iyer-Wald form is the following, [12, 58],

kξ = 2
√
−g
(

ξµ∇ρhνρ − ξµ∇νh + ξρ∇νhµρ +
1
2

h∇νξµ − hρν∇ρξν

)
(dn−2x)µν, (3.8)

where hµν := δgµν. The charge is denoted as

/δ Hξ =
∫

∂Σ
kξ (3.9)

which defines the Iyer-Wald surface charge. The symbol /δ makes explicitly the generally non-
integrable character of the charge. We can split the Iyer-Wald charges in terms of the integrable
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and non-integrable terms,

/δ Hξ =
∫

∂Σ
δQξ −Qδξ − ιξθ = δ

(∫
∂Σ

Qξ

)
+ Ξξ , (3.10)

where Ξξ is a 1−form in solution space,

Ξξ = −
∫

∂I
Qδξ + ιξθ. (3.11)

We have two alternatives regarding this non-integrable term:

1. Define a new field, on the boundary, that restores the integrability (cf. subsection A.2.4).

2. Define stronger boundary condition so that the non-integrable part vanishes.

We will see below examples of both solutions. First, let us define the embedding mappings.

3.2.3 Embedding Maps

To express the field-dependence of the embeddings, take a map G : S → C∞(I ↪→M), from
the solution space to the set of smooth embeddings φ : I ↪→M.

In a field-independent case, the map is constant, the exterior Lie derivative L commutes
with embedding pullbacks and therefore integrations are independent of the field (which is
the formal statement that “the variation goes inside the integral”). But in the case of a field-
dependent embeddings, the pullback and L do not commute (see [43], [53], [45]). Consider
q a characteristic, tangent to solution space S , and denote by G∗ the pullback of the elements
in Im(G) (we abuse a little bit notation here to ease the formulas). Since q is tangent to S , it
defines a flow Φq

t such that

d
dt

Φq
t (φ

i)

∣∣∣∣
t=0

= q(φi), φi ∈ S . (3.12)

This flow defines a flow on Im(G) ⊂ C∞(I ↪→M), throughG. Then, the exterior derivative of
G in field space, when contracted with a characteristic, gives a tangent vector on C∞(I ↪→M),
which is a vector field on I , generating a diffeomorphism of I :

S G→ C∞(I ↪→M)
X→ Diff(I ), (3.13)

where X(φ) := ψ ◦ e−1
I , where eI is some reference embedding 1. We can compute the differ-

ential of the map X ◦G evaluated on q. First, the differential of G on q is

δG[q] =
d
dt
G(Φq

t ) |t=0 . (3.14)

1We are taking eI

∣∣
M as equal to eI to avoid extra symbols in the formulas.
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δ(X ◦G)[q] =
d
dt
G(Φq

t ) ◦ e−1
I

∣∣∣∣
t=0

. (3.15)

This is the differential evaluated at q, based on a general point φ in S .
A couple of formulas from the appendix are going to be used in the following. The first one

is the commutation of G∗ with the exterior derivative in solution space,

δG∗α = G∗(δα + LχG
α), (3.16)

where χ(q;G) is a vector field generating an infinitesimal diffeomorphism on Diff(I ),

χ(q;G) :=
d
dt
G(Φq

t )G(Φq
0)
−1
∣∣∣∣
t=0

, (3.17)

By formula (3.15), the above equation can be written as theMaurer-Cartan form for the embed-
ding with respect to a fixed field configuration, eI , and therefore we have

χ(q;G) =: χG[q] = δ(X ◦G) ◦ (X ◦G)−1[q], (3.18)

which defines a 1−form χG in solution space.
The second formula is the extended symplectic potential, computed from the definition of

the action as
S[L ,G] =

∫
R

L [G∗bulkφ], (3.19)

where Gbulk is the extension of G to the bulk. The explicit dependence on the map G is what
makes the corresponding phase space enlarge: we are including the embedding as the extra
dynamical variable. The symplectic potential can be computed, resulting

θcov = θ + ιχG
L + dQχG

. (3.20)

In the case of gravity, on-shell we have L ≡ 0, so

θcov = θgrav + dQχG
, (3.21)

where θgrav is the usual symplectic potential (which, in the case of GBMS, comes from a renor-
malization, [31]). The extended symplectic form for gravity is then,

Ωgrav
cov :=

∫
I
G∗I (δθgrav) +

∫
∂I

G∗(ιχG
θgrav + δQχG

+ LχG
QχG

). (3.22)

The first term is the usual symplectic form, while the extra boundary terms are the new extra
terms due to the inclusion of G as dynamical variable. The last two terms in the boundary
term are part of the corner ambiguity, [46,54], depending on which prescription one uses. Our
prescription, the same as [54], reflects the covariance of the actionwith respect to the embedding
map. We will discuss this later in section 3.5.

48



Chapter 3

3.3 Ashtekar-Streubel/Barnich-Troessaert charge computation

In [4], the symplectics potential and form for the radiative phase space in general relativitywere
defined on I ,

Θrad =
∫

I
NabδCab√qdud2x, Ωrad =

∫
I

δNab ∧ δ′Cab√qdud2x, (3.23)

We can compute the integrated charge flux along I , which is the integral of the Noether current.
As we will see, it can be regarded as a boundary term after discarding boundary terms by im-
posing stronger fall offs on the fields. This is one of the main differences between the integrated
version of the charges and the corner/surface: for certain restrictive fall offs, the expressions
coincide.

For instance, the fall offs for Cab in [4] in the radiative space are

Cab := C±ab(xa) + O(1/|u|ε), ε > 0, (3.24)

and imply that the charge flux is integrable, in the following sense: the equations

/δPf = Iξ̂ f
Ω, /δ JV = Iξ̂V

Ω, (3.25)

defines Noether currents that are integrable, and their expressions are

Prad
f =

∫
I

NabLξ̂ f
Cab
√

qdud2x, (3.26)

Jrad
V =

∫
I

NabLξ̂V
Cab
√

qdud2x, (3.27)

which are integrated along I .
As a pedagogical example, let us take the computation for Pf in the radiative phase space

with the fall offs (3.24) in two different ways: form the Iyer-Wald perspective, and from the flux
perspective. At the end, both results coincide.

• From a corner charge perspective,

Iξ̂ f
Ω = −

∫
I

(
Lξ̂ f

NabδCab − δNabLξ̂ f
Cab
)√

qdud2x (3.28)

= −δ

(∫
I

8 f ∂u M
√

qdud2x
)
−
∫

∂I
f NabδCab√qd2x,

where
∂u M = −1

8
NabNab +

1
4

DaDbNab, (3.29)

the Bondi mass aspect. The charge is automatically splitted into integrable and non-
integrable parts on the boundary ∂I .
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• On the other hand, using the flux perspective,

Iξ̂ f
Ω =

∫
I

(
δ(NabLξ̂ f

Cab)− NabδLξ̂ f
Cab − Lξ̂ f

NabδCab
)√

qdud2x (3.30)

=
∫

I
δ(NabLξ̂ f

Cab)
√

qdud2x−
∫

∂I
f NabδCab√qd2x,

which gives exactly the same result, but the starting point of the procedure is to directly
go to the integrable part of the expression (3.26).

The same computation can be carried out for super angular momentum, although it is more
involved due to the handling of the terms of ∂uNa, (1.29). As we mention, there are several
prescriptions for the definition of the Bondi angular momentum aspect, (1.24), (1.25), which in
principle could lead to different expressions for the charges. In the case of GBMS, we will see
that the covariant prescription (the one in [60]) is more convenient.

The non-integrable part in BMS is given by ( [29]),

ΞBMS =
∫

∂I

(
( f + uα)NabδCab

)√
qd2x, (3.31)

which can be seen immediately as the integral of −ιξθ in (3.10) (cf. and (A.110)),

ΞBMS = −
∫

∂I
ιξθrad (3.32)

Let us explore both options regarding the non-integrable term, cf. subsection 3.2.2. In view
of [39, 43] , if we have a non trivial embedding (a non constant map G), then we can construct
the extra boundary term that restores integrability. In our case, since δqab = 0 both for ξ f and
ξV , we see that the embeddings are trivial. This is in contrast to the case where the gravitational
subsystem is in the bulk ofM, [39], where supertranslation actmoving the boundaries in a non-
canonically way, and therefore a precise study has to be done [46]. In our case, supertranslation
only act on the constant mode of the shear, cf. (1.49).

That leaves us with the second option: stronger boundary conditions. Imposing the AF
conditions of chapter 1, and the condition

lim
u→±∞

Nab = 0, (3.33)

we are setting the term ΞBMS to zero, while allowing non-trivial dynamics. Consistency condi-
tionswith the convergence of the integrals, togetherwith the previous limit implies the radiative
fall offs,

Cab(u, x) = C±ab(x) + O(1/u1+ε). (3.34)

By imposing this decay for Cab, we re obtain BMS action.

50



Chapter 3

3.4 Compère-Fiorucci-Ruzziconi charge computation

First in [29] for the EBMS and then in [31] for the GBMS, the charges corresponding to the
symplectic form integrated along the hypersurface g+r ∪U+ ∪U−, with g+r = {r = r},U− =

{u = u−} and U+ = {u = u+}, for certain values r, u±. Taking the limit r → +∞, g+r becomes
a subset of I +.

Figure 3.1: Hypersurface g+r ∪U+ ∪U− for the calculation for the BT symplectic form.

As we saw in section 1.5, the symplectic structure diverges in the limit r → +∞, since we
have contribution due to δqab 6= 0. After a suitable renormalization, the variational principle
implies that a balance between the symplectic potential fluxes on U± and g+r must be exact.
A symplectic form is given in g+r . First, the variation of the action is computed, having three
contributions,

δS =
∫
U−

θu
indrd2x +

∫
I +

r

θ̄ f luxdud2x +
∫
U+

θu
outdrd2x, (3.35)

with

θ̄ f lux =
√

q
(

1
2

NabδCab − 1
4

R(q)Cabδqab + UbDaδqab
)

, (3.36)

θu
in = θu

out = O(r−2). (3.37)

Assuming no incoming gravitational radiation from I −, and ignoring the corner symme-
tries for the moment (which will be the main subject of the next chapters for gravitation, Yang-
Mills and Maxwell), we have that (on-shell) only remains the central term in the above expan-
sion,

Θ f lux =
∫

I +

√
q
(

1
2

NabδCab − 1
4

R(q)Cabδqab + UbDaδqab
)

dud2x. (3.38)

The symplectic form is then
Ω = δΘ f lux, (3.39)

from which the charges are computed as the Iyer-Wald charges, using the formula (3.7). The
final result is the following,

/δ Hξ = δ(Qξ) + Ξξ , (3.40)
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where the integrable term is given by,

Qξ = 2
∫

∂I

(
4FM + 2VaNa +

1
16

YaDa(CbcCbc)

)
√

qd2x, (3.41)

while the non-integrable term is

Ξξ = 2
∫

∂I

(
1
2

F(Nab +
1
2

qabR(q))δCab − 2∂(aFUb)δqab − FD(aUb)δqab − 1
4

DcDcFCabδqab
)
√

qd2x,

(3.42)
where F = f + uα. The first contribution is the integrable Noether charge, while the non-
integrable part is equivalent to the following term [31],

Ξξ = 2
∫

∂I
ιξ∗θ f lux. (3.43)

Together, they can be written compactly as

Iδξ
ΩI =

∫
I

(
dιξ∗θ f lux + δdQξ

)
, (3.44)

where the Qδξ term in (3.7) gives a vanishing contribution at leading order. Observe that this
is the same structure as we have in (A.110).

The fluxes associated to the infinitesimal charges /δ Hξ on I + are given by

Fξ :=
∫

I +
∂u/δ Hξdu (3.45)

Of course, this integral has to be defined with care, since it is not guaranteed to be finite. In fact,
as it is explained in [31], some prescription have to be taken for the boundary conditions for
Cab. For example, if we consider the flux balance in I + [7] we have the Bondi mass formula at
fixed u,

d
du
M = −1

4

∫
S2

NabNabd2x. (3.46)

This is the well-known leakage of energy through I + is the responsible for the non-integrability
[58], a thermodynamical-like identity used also in other contexts, such as in emergent gravity
(see e.g. [77]).

Finally, regarding the Poisson charge algebra, the presence of central extensions in other
formulations of the charges, such as in [31] and [29], is a generic result given by the Charge
Representation Theorem, both in the integrable case ( [78, 79]) as well as in the non-integrable
case ( [58]).

In [31], the authors defined a new bracket,

{Hξ1 , Hξ2}∗ = δξ2 Hξ1 + Ξξ2 [δξ1 ], (3.47)

which is isomorphic to the Lie algebra of diffeomorphism up to a field-dependent 2 cocycle:
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{Hξ1 , Hξ2}∗ = H[ξ1,ξ2]∗ + Kξ1,ξ2 , (3.48)

with
Kξ1,ξ2 =

∫
S∞

(
1
2

F2DaF1DaR[q] +
1
2

CbcT2DbDcDdVd
1

)
dud2x− (1↔ 2). (3.49)

3.5 GBMS computation - Review

In chapter 1 we constructed a symplectic form on ΓGBMS such that the charges (fluxes in the BT
nomenclature) Pf and JV act canonically.

We obtained a symplectic structure θGBMS that can be split into three contributions,

θGBMS = θhard + θso f t + θ∂I , (3.50)

where

θhard =
∫

I
NabδĈab

√
qdud2x (3.51)

θso f t =
∫

∂I

1

Nab
1

Sab(δ)
√

qd2x, (3.52)

θ∂I = −1
2

∫
∂I

Ĉab(δ
0

SC
ab −

0

SδC
ab − C

1

S(δ))
√

qd2x. (3.53)

The soft term is linear in
1

Nab, and corresponds to those found in [22] and [31], while the bound-
ary term contain quadratic in C terms. It is important to remark that these terms are non-local,
since it has been shown [80] that there cannot be a symplectic structure at I that supports the
action of GBMS, if it is constructed from a local and covariant symplectic current. This non-
locality comes in Tab, which depends non-locally on qab, and on C±, which depends non-locally
on Cab.

As we mentioned in subsection 3.2.3, the extended symplectic potential is given by (3.20),
[43],

Θcov :=
∫

R×S2
G∗I (θrad + dQχG

), (3.54)

which leads to the symplectic form, (3.22)

Ωcov :=
∫

R×S2
ωrad +

∫
S2
G∗∂I (ιχG

θrad + δQχG
+ LχG

QχG
). (3.55)

The first term is the usual radiative term, which we already analysed in section 3.3. The corner
term involves only evaluations on χG, which given a characteristic q it gives the vector field on
I generating the corresponding embedding. Therefore, the variations that will be relevant in
the calculation are those for which δqab 6= 0, so we can assume f = 0. By Proposition (1.1), any
variation δqab can be written as δWqab, so this implies that any characteristic q such that χG is
non-zero is associated to a diffeomorphism generator. Then, without loss of generality, we can
evaluate the symplectic form on two characteristics ξ̂V , ξ̂W .
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• Take (A.112), and contract with two generators, ξV and ξW :

Iξ̂V
Iξ̂W

(∫
∂I

G∗(ιχG
θ f lux)

)
=
∫

∂I
G∗(ιχG[ξ̂W ]θ

f lux[ξ̂V ]− ιχG[ξ̂V ]
θ f lux[ξ̂W ]). (3.56)

The embedding vector χG[ξ̂W ] = −ξW , as a tangent vector on I , has two directions with
respect to the celestial sphere: two tangential ∂a and one transversal ∂u. When computing
ιχG[ξ̂W ]θ

f lux[ξ̂V ], we are contracting with the component along ∂u, giving
∫

∂I
ιχG[ξ̂W ]θ

f lux[ξ̂V ]
√

qd2x− (V ↔W) =
∫

∂I
αWuNabδVĈab

√
qd2x− (V ↔W). (3.57)

By the fall-offs on Ĉab, this term vanishes. This implies that the first term gives no contri-
bution.

• For the last two terms, we use identities χG[ξ̂V ] = −ξV ,

Iξ̂V
Iξ̂W

(
δQχG

+ LχG
QχG

)
= Lξ̂V

QχG[ξ̂W ] + LχG[ξ̂V ]
QχG[ξ̂W ] − (V ↔W) (3.58)

= (Lξ̂V
−LξV )QχG[ξ̂W ] − (V ↔W), (3.59)

which is the anomaly operator, see e.g. [45,81–83]. Observe that in our case, when evaluated
on phase space coordinates,

(Lξ̂V
−LξV )Ĉ

±
ab = −αC±ab, (Lξ̂V

−LξV )qab = −2αqab, (3.60)

the anomaly operator is the Diff(S2)-weight times the identity!
In BMS, the Noether charge is given by (3.41), which after taking f = 0 (since δ f qab = 0)
and integrating by parts, results

QξW =
∫

∂I
(4uαW M± + 2WaN±a −

1
8

αW(Ĉ±bcĈ±cb))
√

qd2x. (3.61)

By integrating by parts on the sphere, the first two terms in the integrand can be written
as

2Wa (N±a − uDa M±
) (3.62)

This resembles the prescription due to Hawking, Perry and Strominger for the Bondi an-
gular momentum aspect, (1.25), although it involves extra terms. Nevertheless, when
computing (3.59), we see that NHPS

a is indeed the “covariant quantity”.
The only non trivial term in the last contribution in (3.61) is

1
8
LVαW(Ĉ±bcĈ±cb)− (V ↔W) =

1
8

α[V,W](Ĉ
±
bcĈ±cb). (3.63)

For the computation regarding the first two terms, we have to use equations (1.29) and
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(1.28). The result is

(Lξ̂V
−LξV )(4uαW M± + 2WaN±a )− (V ↔W) = LVWaĈ± bcDcĈ±ab +

23
8

α[V,W](Ĉ
±
bcĈ±cb)

(3.64)
Observe then that the sum of this boundary contribution is exactly J∂I

[V,W], cf. (1.127).

Putting it all together, after using N+
a − N−a =

∫
∂uNa, (1.29), (1.25) and some rearrange-

ments of terms, we arrive at

Iξ̂V
Iξ̂W

(Ωcov) = Jso f t
[V,W]

− 4
∫

I
LVWa∂uNhard,HPS

a
√

qdud2x, (3.65)

which, in turn, satisfy
− 4

∫
I

Va∂uNHPS
a
√

qdud2x = Jhard
V + J∂I

V (3.66)

The extra term, J∂I
V , can now be understood as a necessary term coming from the surface

preserving subalgebra of the extended corner algebra. The notion of covariance with respect
to the extended corner symmetry for NHPS

a is directly related to its definition in terms of the
Riemann tensor, [60],

lim
r→∞

r3Rarru = NHPS
a + u∂a M. (3.67)
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Part II

Phase space extensions in Gauge
Theories
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Subleading charges and O(r) extensions
in Yang Mills

Inspired by the BMS generalization due to a relaxation on the metric fall-offs, it was proposed
in [24] that largeO(r) gauge symmetries can explain similar tree-level gauge theory sub-leading
formula [20]. Whereas the proposal was initially established in the context of massless scalar
electrodynamics, its validity was later extended to more general charged matter [84], higher
dimensions, and non-abelian gauge fields [67]. In these investigations, however, there was no
explicit description of the underlying phase space where the symmetries act. In particular, it
was not possible to calculate the algebra of charges.

Since the seminal work of Strominger [19] it has been understood that the leading soft gluon
factorization can be understood as a conservation law associated to large O(r0) gauge symme-
tries (see also [85–89]). On the other hand, the symmetry interpretation of the subleading
factorization is more subtle: The asymptotic charges are known thanks to the work of Lysov,
Pasterski and Strominger (LPS) [20],1 but it is unclear what the underlying symmetry algebra
is.

In the present chapter we review the improvements on this situation as it is shown in [73].
As in the gravitational example, we proceed by first identifying the appropriate “kinematical”
fields that allow for O(r) gauge symmetries. There is however a major difference between the
gravitational and gauge theory cases: Whereas superrotations form a closed algebra,O(r) gauge
symmetries do not, since their commutator is generically O(r2). In fact, once O(r) gauge trans-
formations are allowed, one is forced to includeO(rn) ones for all positive integers n. In order to
avoid this proliferation, wewill work in an approximationwhere theO(r) gauge symmetries are
linearized, thus effectively setting to zero the higher order terms. This restricted setting still al-
lows for interesting structure, in particular regarding the algebra betweenO(r0) andO(r) gauge
symmetries. We hope our approximation describes a truncation of an underlying (tree-level)
non-linear structure. The hope is based on (i) the results of [50] (and also the next chapter)
imply, in the abelian case, a one-to-one correspondence between O(rn) large gauge charges and

1The work [20] is in the abelian context but it admits a direct generalization to the non-abelian case; see e.g. [84].
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tree-level subn−1−leading formulas [48, 49], and (ii) the recently discovered [90, 91] infinite
dimensional chiral algebra obeyed by tree-level (conformally) soft gluons of a given helicity.

4.1 Radiative phase spaces

We consider pure classical Yang-Mills theory with a matrix group G in 4d flat spacetime. We
denote by g the Lie algebra, [, ] its Lie bracket, Aµ the g-valued gauge connection and

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν], (4.1)

the field strength. The field equations are

DµFµν = ∇µFµν + [Aµ,Fµν] = 0, (4.2)

with∇µ and Dµ denoting the metric and gauge covariant derivatives respectively. Local gauge
transformations are parametrized by g-valued functions Λ as

δΛAµ = DµΛ = ∂µΛ + [Aµ, Λ]. (4.3)

The “bulk” symplectic form is

Ωbulk = −
∫

Σ
dSµTr(δFµν ∧ δAν), (4.4)

where Tr is the matrix trace and the integral is taken over any Cauchy slice Σ. The symplectic
form can be used to obtain canonical charges associated with symmetries. In particular, for the
gauge symmetry (4.3) one has

Qbulk
Λ = −

∫
Σ

dSµ∂νTr(ΛFµν), (4.5)

where the charge satisfies δQbulk
Λ = Ωbulk(δ, δΛ).

To describe the gaugefield near future null infinity, we employ retarded coordinates (r, u, xa),
where r is the radial coordinate, u = t− r the retarded time, and xa coordinates on the celestial
sphere. The flat spacetime metric takes the form (1.4). Since the round metric on the celestial
sphere is fixed, we will denote it simply as qab. The “bulk” gauge fieldAµ induces a gauge field
Aa at null infinity,

Aa(u, x) = lim
r→∞
Aa(r, u, x), (4.6)

that is unconstrained by the field equations and thus plays the role of free data. We will work
under the assumption of “tree-level” u→ ±∞ fall-offs, in which the u-derivative of the asymp-
totic gauge field decays faster than any power of 1/|u|. Schematically,

∂u Aa(u, x) = O(1/|u|∞), (4.7)
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consistent with a O(ω0) subleading behavior in the ω → 0 frequency expansion.2 This still
allows for non-trivial asymptotic values of Aa at u = ±∞,

A±a (x) := lim
u→±∞

Aa(u, x). (4.8)

The gauge field near null infinity can be determined in terms of Aa(u, x) by solving the field
equations (see e.g. [19, 92] and section 4.2). We denote by Γrad the resulting space of gauge
fields and write schematically

Γrad ≈ {Aa(u, x)}. (4.9)

Under standard fall-offs, the bulk symplectic form (4.4) can be evaluated on the surface Σ →
I +, leading to the symplectic form

Ωrad =
∫

I +
Tr(δ∂u Aa ∧ δAa)dud2x, (4.10)

where Aa ≡ qab Ab and the determinant √q is implicit in the d2x measure. We refer to the pair
(Γrad, Ωrad) as the radiative phase space. It is the YM version of the Maxwell and gravity radiative
phase spaces introduced in [4].

We denote by Da the gauge-covariant derivative at null infinity,

Da := ∂a + [Aa, ], (4.11)

and use ∂a to denote the sphere-covariant derivative compatible with qab, i.e. ∂cqab = 0.

4.2 YM field near null infinity

We will work in harmonic gauge
∇µAµ = 0, (4.12)

although we expect our results to be valid for more general gauge choices. Starting from the
standard O(r−1) free field fall-offs, one is lead to the following asymptotic expansion:

Ar = 1
r2 (ln r

0,ln

Ar +
0

Ar) +
1
r3 (ln r

1,ln

Ar +
1

Ar) + o(r−3),

Au = ln r
r

0,ln

Au +
1
r2 (ln

2 r
1,ln2

A u + ln r
1,ln

Au +
1

Au) + o(r−2),

Aa = Aa +
1
r (ln r

1,ln

Aa +
1

Aa) + o(r−1),

(4.13)

where all coefficients are functions of u and xa, and o(1/rn) denotes quantities decaying faster
than 1/rn as r → ∞. We show in appendix A of [73] that (4.13) is consistent with the field
equations and the harmonic gauge condition. It is also showed that the r → ∞ expansion of
both equations leads to a hierarchy of equations that can be recursively solved to determine

2Condition (4.7) is in fact stronger than what we strictly need in this paper. In order to get a O(ω0) sublead-
ing behavior it suffices to require ∂u Aa(u, x) = O(1/|u|2+ε). We however keep (4.7) as it represents the fall-offs
compatible with an all-order power expansion in ω, as available for tree-level amplitudes.
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the coefficients in (4.13) in terms of the free data Aa (modulo integration constants that can be
specified by boundary conditions in u).

The field strength is found to have the following leading r → ∞ behavior,3

Fru = r−2Fru + o(r−2), Fra = r−2Fra + o(r−2), Fua = Fua + o(1), Fab = Fab + o(1). (4.14)

From (4.1) and (4.13) one has

Fua = ∂u Aa, Fab = ∂a Ab − ∂b Aa + [Aa, Ab]. (4.15)

Fua plays the role of asymptotic transverse chromo-electric field and Fab is the curvature of Aa

when viewed as a 2d gauge connection on the celestial sphere. The remaining leading compo-
nents in (4.14) are determined by the asymptotic field equations,

∂uFru + DaFua = 0, (4.16)
−2∂uFra + DaFru + DbFba = 0, (4.17)

We shall later integrate these equation using the boundary conditions

lim
u→+∞

Fru(u, x) = 0, lim
u→+∞

Fra(u, x) = 0. (4.18)

In analogy to the abelian case [11, 18, 50], we interpret (4.18) as due to the absence of massive
colored fields. Similar u→ +∞ boundary conditions may also hold for other coefficients of the
field strength, but (4.18) will suffice for our purposes.

4.2.1 Residual large gauge symmetries

In order for gauge symmetries (4.3) to be compatiblewith the harmonic gauge, theymust satisfy

∇µδΛAµ = ∇µDµΛ = �Λ + [Aµ,∇µΛ] = 0. (4.19)

This introduces a field-dependence on residual gauge parameters. For the moment, we notice
that the commutator of field-dependent gauge transformations can be written as (see e.g. [92]),

[δΛ, δΛ′ ]Aµ = δ[Λ,Λ′]∗Aµ, (4.20)

where the modified bracket is defined as

[Λ, Λ′]∗ := [Λ, Λ′] + δΛΛ′ − δΛ′Λ, (4.21)

where δΛΛ′ is the change in Λ′ under a gauge transformation δΛ due to its non-trivial depen-
dence on the gauge field. One can verify that [Λ, Λ′]∗ satisfies (4.19) provided Λ and Λ′ do

3The gauge field (4.13) appears to introduce logarithmic terms that are overleading to those displayed in (4.14).
These however vanish due to the field equations.
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so.
We will be interested in large gauge parameters with leading behavior O(r0) and O(r1). We

denote these two types of parameters by

Λ0
λ(r, u, x) r→∞

= λ(x) + · · · (4.22)
Λ1

ε (r, u, x) r→∞
= rε(x) + · · · . (4.23)

As it is showed in Appendix B in [73], the coefficients λ(x) and ε(x) are the “free data” for the
gauge parameters and the dots represent subleading terms that can be determined by solving
(4.19). Notice that only the O(r0) gauge parameters are compatible with the radiative fall-offs
(4.13). For those one can show that4

[Λ0
λ, Λ0

λ′ ]
∗ = Λ0

[λ,λ′]. (4.24)

In section 4.3 we will present a relaxation of the radiative fall-offs that admit O(r) gauge sym-
metries to first order in the parameter ε(x). This will allow us to compute the bracket (4.21)
between Λ0

λ and Λ1
ε .

4.2.2 Review of known asymptotic charges

O(r0) gauge transformations δΛ0
λ
Aµ induce an action on the free data Aa that we denote by δ0

λ

and is given by
δ0

λ Aa = Daλ = ∂aλ + [Aa, λ]. (4.25)

One can verify this action is symplectic wrt Ωrad (4.10) and satisfies

Ωrad(δ, δ0
λ) = δQ0,rad

λ (4.26)

with
Q0,rad

λ =
∫

I +
Tr(∂u AaDaλ

)
dud2x. (4.27)

An alternative way to obtain this charge is to evaluate the bulk expression (4.5) for Λ = Λ0
λ and

Σ→ I +. Since (4.5) is a total derivative, this results in a pure boundary term (see e.g. [26])

Q0,rad
λ =

∫
I +
−

Tr(λ(x)Fru(u = −∞, x)
)
d2x, (4.28)

where I +
− ≈ S2 is the u = −∞ boundary of I +. The equality between (4.28) and (4.27)

follows from the field equation (4.16) and the boundary condition (4.18).
4It is easy to verify that in this case the leading term of the bracket (4.21) is given by the ordinary bracket. Since

the leading term determines all subleading terms via the gauge parameter equation (4.19), one concludes both sides
of (4.24) are equal.
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LPS charges

The sub-leading soft gluon factorization formula takes the same form as its abelian counterpart,
with color factors replacing abelian charges [93]. Since we are dealingwith pure YM theory, the
external colored states are just gluons. The corresponding creation/annihilation operators are
proportional to the negative/positive energy components of the Fourier transformed asymptotic
gauge field,

Âa(ω, x) =
∫ ∞

−∞
dueiωu Aa(u, x). (4.29)

The non-abelian version of the LPS charges are parametrized by Lie-algebra valued sphere vec-
tor fields Ya according to

QY = Qsoft
Y + Qhard

Y (4.30)

where
Qsoft

Y = 2 lim
ω→0

∂ω

(
ω
∫

d2xTr(Yz∂2
z Âz̄(ω, x) + Yz̄∂2

z̄ Âz(ω, x)
)) (4.31)

(z and z̄ are stereographic coordinates on the celestial sphere) and Qhard
Y is defined by5

[Qhard
Y , Âa(ω, x)]op = δY Âa(ω, x), (4.32)

δY Âa := [∂aYa∂ω −ω−1LY, Âa] = [∂aYa, ∂ω Âa]−ω−1([Yb, ∂b Âa] + [∂aYb, Âb]
)
. (4.33)

Following [20], one can use these definitions to obtain expressions of the charges in terms
of the radiative data Aa(u, x). One finds

Qsoft
Y = −2

∫
dud2x uTrYz∂2

z∂u Az̄ + c.c, (4.34)

Qhard
Y =

∫
dud2x uTr(∂aYa Ju −Ya∂u Ja

)
, (4.35)

where
Ju := [Aa, ∂u Aa], Jz := 2qzz̄[Az, ∂z Az̄]. (4.36)

The first and second term in (4.35) correspond to the first and second term in (4.33).6 As in [20],
the factors Ju and Jz are related to the O(r−2) components of the spacetime current, which in
our case is just the pure YM “current” Jν = −∇µ[Aµ,Aν]− [Aµ,Fµν].

4.3 Extended phase space and O(r) charge algebra

In this section we present an extension of the radiative phase space that supports linearized
O(r) large gauge symmetries.

Whereas the standard radiative space Γrad is parametrized by gauge fields Aa(u, x) at null in-
5We use [, ]op to denote operator commutators in order to distinguish them from the Lie algebra brackets [, ]. We

have absorbed a factor of i in the definition of δY ; the action of the hard charge is given by i times (4.33).
6The Ja term in (4.35) differs by a total u-derivative from the expression in [20]. Our prescription ensures con-

vergence of the u integral under the assumed fall-offs (4.7).
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finity, the extended space Γext will include an extra scalar field φ(x) that can be interpreted as the
Goldstone mode associated to O(r) large gauge symmetries, similar to other known instances
of asymptotic symmetries [26]. This is also reminiscent of the Stückelberg procedure [94, 95],
which reinstates a broken local symmetry in the action of some field theory via the introduc-
tion of additional fields transforming non-linearly (similar to our φ). The Stückelberg procedure
consists of performing a transformation of the non-invariant action (for example a gauge theory
with a mass term), and then promoting the parameters to new fields.

First, we present the extended space and the corresponding action of O(r0) and O(r) large
gauge symmetries, denoted respectively by δ0

λ and δ1
ε . Next, we aim to identify the correspond-

ing charges Q0
λ and Q1

ε . Rather than attempting a first-principles derivation of such structure
(which would require a subtle renormalization procedure as in [31,96]), we seek to obtain the
charges from a set of consistency conditions. The conditions are presented in subsection 4.3.2,
and the corresponding charges are derived in subsection 4.3.3 and subsection 4.3.4. Finally, by
demanding the charges to arise froma symplectic structure, we obtain in section subsection 4.3.5
a candidate symplectic form on Γext. This allows us to realize the O(r) symmetry algebra ob-
tained in subsection 4.3.1 as a Poisson bracket charge algebra. This “reverse-logic” approach of
“charges before symplectic structure” is inspired by our previous analysis in the gravitational
case reviewed in chapter 1.

4.3.1 Extended space and O(r) variation algebra

Wewould like to minimally relax the radiative fall-offs described in section 4.2 so as to allow for
O(r) gauge transformations. A natural way to proceed is to apply all possible O(r) gauge trans-
formations to these radiative fields. As we previously discussed, in the YM case this procedure
cannot be done consistently without allowing for higher order O(rn) gauge transformations. As
a first step, let us consider a linearized enlargement along the O(r) gauge direction:

Γext := {Ãµ = Aµ +DµΛ1
φ, Aµ ∈ Γrad, φ ∈ C∞(S2)}. (4.37)

Since Γrad is parametrized by fields Aa(u, x), the extended space is parametrized by pairs7

Γext ≈ {(Aa(u, x), φ(x))}. (4.38)

By construction, the space (4.37) supports the action of O(r) gauge transformations (4.23). In
the parametrization (4.38), the action is simply given by

δ1
ε Aa = 0, δ1

ε φ = ε. (4.39)

We emphasize that we are working to first order in φ and ε. All our expressions should be
understood to hold modulo O(φ2), O(ε2) and O(φε) terms.

7In the analogywith the gravitational case, φ would correspond to a sphere diffeomorphism labeling the different
superrotation sectors, see e.g. [31]. Unlike the gravitational case, we linearize the finite gauge transformationAµ →
eΛ1

φAµe−Λ1
φ + eΛ1

φ ∂µe−Λ1
φ ≈ Aµ +DµΛ1

φ + O(φ2).
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We next need to specify howO(r0) gauge transformations act on Γext. In the parametrization
(4.38) we define

δ0
λ Aa = Daλ, δ0

λφ = [φ, λ], (4.40)

leading to an algebra of variations

[δ0
λ, δ0

λ′ ] = δ0
[λ,λ′], [δ1

ε , δ0
λ] = δ1

[ε,λ], [δ1
ε , δ1

ε′ ] = 0. (4.41)

We take (4.41) as the defining relations for the (linearized) O(r) large gauge symmetry algebra.
It can be shown ( [73]) that this algebra follows from the bracket (4.21) between O(r0) and O(r)
gauge parameters.

4.3.2 Conditions on O(r) asymptotic charges

Since we do not yet know the symplectic structure on Γext, we will find the charges by imposing
certain conditions we expect them to satisfy. Our requirements for the charges are:

1. Q0
λ|Γrad = Q0,rad

λ

2. Q1
ε is compatible with the tree-level subleading soft gluon factorization

3. δ0
λQ1

ε + δ1
ε Q0

λ = 0

4. δ0
λQ1

ε = −Q1
[ε,λ]

The first condition requires that when Q0
λ is restricted to Γrad ⊂ Γext, one recovers the standard

expression (4.27) for the radiative phase space O(r0) charge (which is known to encode the
leading soft gluon factorization). As we shall discuss, the second condition fixes the depen-
dence of Q1

ε on Aa(u, x) up to (hard) quadratic order. The third is a necessary condition for the
existence of a Poisson bracket realization of the symmetries. The last condition, probably the
least well-motivated one, requires the charges to reproduce the variation algebra (4.41) without
extension terms.

Our strategy to obtain the charges is as follows. It turns out that conditions 1 and 3 uniquely
fix Q0

λ in terms of Q0,rad
λ and Q1

ε , once the latter is known. The most difficult part is then to find
Q1

ε satisfying conditions 2 and 4.

4.3.3 Q1
ε

Condition 2 can be restated as the condition that theWard identity generated by Q1
ε is compatible

with the one generated by the LPS charge QY. In the abelian case, it was shown in [24] that QY

can be understood in terms of an O(r) large gauge charge and its magnetic dual, by splitting
the vector field Ya into “electric” and “magnetic” components

Ya =
1
2
(∂aε + ε b

a ∂bµ), (4.42)
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where ε(x) and µ(x) are interpreted as the O(r) coefficients of large gauge (and dual gauge)
parameters. A first guess could then be to set Q1

ε = QYa=∂aε/2. This however does not satisfy the
gauge covariance property required by condition 4. We shall correct this initial guess so that
the resulting charge satisfies 4 without affecting its compatibility with the tree-level soft gluon
theorem. We will proceed in two stages: First “covariantize” QY and then consider a gauge
covariant version of the splitting (4.42).

It is easy to verify that the expression of QY given in Eqs. (4.34), (4.35) is not gauge covariant
at null infinity, i.e.

δ0
λQY 6= −Q[Y,λ]. (4.43)

Notice however that since QY was read off from a tree-level soft theorem, it only captures terms
at most quadratic in Aa(u, x) ( [73]). That is, QY should be understood as giving the O(A) and
O(A2) parts of an asymptotic charge that may contain higher order terms. In addition, there
can also be O(A2) “soft” contributions that do not affect the single soft theorem (but which
could leave an imprint in the double-soft behavior). Given this freedom, we now explore the
possibility of completing QY into a gauge-covariant charge.

A natural way to proceed is to look for an expression of the charge in terms of the field
strength, as in the rewriting of Q0

λ given in Eq. (4.28). The starting point are the asymptotic field
equations (4.17), (4.16) that relates the O(r−2) components of Fra and Fru, given the boundary
condition (4.18). Explicitly,

Fru = ∂a A+
a − ∂a Aa +

∫ ∞

u
Ju′du′, (4.44)

where A+
a (x) = Aa(u = +∞, x) and Ju is given in (4.36).

From (4.15) one finds that Fra = O(u) as u → −∞. The coefficient of the O(u) factor is
determined by the O(1) coefficient of the asymptotic value of the last two terms in (4.15). One
can then write an expression for the finite part of the u → −∞ asymptotic value of Fra, out of
which the charge candidate is defined:

Qcov
Y := lim

u→−∞

∫
d2xTrYa(2Fra − u(DaFru + DbFba)

)
, (4.45)

=
∫

dud2xuTrYa∂u(DaFru + DbFba), (4.46)

where to get the second equality we relied on the u→ ∞ boundary conditions (4.18) to express
the charge as a total u-derivative, and used the field equation (4.15) to simplify the resulting
expression.8 By construction, the charge expression (4.46) is gauge covariant, i.e. it satisfies
δ0

λQcov
Y = −Qcov

[Y,λ].
We now discuss its relation with the LPS charge QY. By direct computation ( [73]), it can

be establish the following identity,

Qcov
Y = QY +

1
2

∫
dud2xuTr(∂aYb − ∂bYa)∂u[Aa, Ab] + · · · , (4.47)

8Consistency of (4.18) with (4.17) requires that limu→∞ Fab = 0.
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where the dots indicate terms that do not affect the tree-level, single-soft gluon behavior. The
second term in (4.47) is however incompatible with the subleading soft gluon theorem (since
the Ward identity would include also (4.33), which already captures the tree level subleading
factors) and thus presents an obstruction for the covariantization of QY. Fortunately, such term
is absent for purely “electric” vector fields Ya = ∂aε, which, as described earlier, are the ones
relevant for O(r) large gauge charges.9

We finally address the non-covariance in the decomposition (4.42). A first guess is to write
Ya = Daε = ∂aε + [Aa, ε]. This however introduces unwanted quadratic terms in (4.47) that
would spoil the compatibility of the charge with the soft theorem. To avoid this problem, we
consider a gauge covariant derivative associated to the u→ −∞ asymptotic value of Aa,

Ya = D−a ε := ∂aε + [A−a , ε]. (4.48)

With this definition, the quadratic terms introduced in (4.47) are “soft” and hence do not affect
the single soft theorem. We thus define the O(r) large gauge charge as

Q1
ε := Qcov

Ya=D−a ε/2 =
∫

d2xTr(επ), (4.49)

where
π(x) := −1

2

∫ ∞

−∞
duu∂uD−a (DaFru + DbFba), (4.50)

is a function of Aa(u, x), due to Eqs. (4.15), (4.44), (4.48). Notice that the charge is independent
of the φ direction in Γext (4.38). This is because we are working to order O(ε) = O(φ) and Q1

ε is
already first order in ε.

By construction π is gauge covariant, in the sense that

δ0
λπ = [π, λ]. (4.51)

This immediately implies that Q1
ε satisfies the desired covariance property

δ0
λQ1

ε = −Q1
[ε,λ]. (4.52)

We conclude by emphasizing that our definition of Q1
ε does not follow uniquely from re-

quirements 2 and 4 above. For instance, one could consider a different prescription for the
covariant gradient in (4.48), or use a different field-strength component as a starting point (e.g.
Fru instead of Fra, which lead to identical expressions only in the abelian case). All choices
would lead to an expression of the form (4.49) with slightly different versions of π(x). It may
be that higher order relations omitted in this work (like those that would follow from the com-
mutation between two O(r) charges) could further constrain, and perhaps single out, the form
of π(x). The discussion in the following sections however is insensitive to the specific form of

9Eq. (4.47) appears to be in conflict with the interpretation of QY as a sum of electric and magnetic O(r) large
gauge charges [24]. This may be related with known obstructions for a non-abelian extension of electric-magnetic
abelian duality [97]. See [98] for a recent discussion of non-abelian magnetic charges at null infinity.
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π(x) and only uses the covariance property (4.51).

4.3.4 Q0
λ

We now discuss the extension of Q0,rad
λ to Γext. Given condition 4 is satisfied, condition 3 can be

written as
δ1

ε Q0
λ = Q1

[ε,λ]. (4.53)

Since δ1
ε Aa = 0 and δ1

ε φ = ε, the simplest extension of Q0,rad
λ that is compatible with (4.53) is

Q0
λ = Q0,rad

λ + Q1
[φ,λ]. (4.54)

In fact, this is the unique solution to conditions 1 and 3 (for a given Q1
ε). To see why, consider

a different extension Q̃0
λ and write it as

Q̃0
λ = Q0

λ + Kλ, (4.55)

for some function Kλ on Γext. Condition 3 then implies

δ1
ε Kλ = 0. (4.56)

Given the action of δ1
ε (4.39), it follows that Kλ must be independent of φ. Thus, Kλ must vanish

in order to ensure that Q̃0
λ|φ=0 = Q0,rad

λ .
It is interesting to note that due to the gauge covariance of both terms in (4.54) it follows

that
δ0

λQ0
λ′ = −Q0

[λ′,λ]. (4.57)

Together with (4.52), this implies the proposed charges Q0
λ and Q1

ε reproduce the total variation
algebra (4.41).

4.3.5 Extended symplectic form and charge algebra

We finally present a symplectic form Ωext on Γext that is compatible with the charges, in the
sense that

δQ0
λ = Ωext(δ, δ0

λ), δQ1
ε = Ωext(δ, δ1

ε ). (4.58)

Given the second condition in (4.58) and the form (4.49) of Q1
ε we are lead to define

Ωext := Ωrad +
∫

d2xTr(δπ ∧ δφ) (4.59)

where we recall that
Ωrad =

∫
dud2xTr(δ∂u Aa ∧ δAa). (4.60)
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Indeed, since δ1
ε Aa = 0 (and consequently δ1

ε π = 0) the only non-trivial contribution toΩext(δ, δ1
ε )

is
Ωext(δ, δ1

ε ) =
∫

d2xTr(δπδ1
ε φ) =

∫
d2xTr(δπε) = δ

∫
d2xTr(πε) = δQ1

ε . (4.61)

We can now verify that (4.59) satisfies the first condition in (4.58):

Ωext(δ, δ0
λ) = Ωrad(δ, δ0

λ) +
∫

d2xTr(δπδ0
λφ− δ0

λπδφ) (4.62)

= δQ0,rad
λ +

∫
d2xTr(δπ[φ, λ]− [π, λ]δφ) (4.63)

= δQ0,rad
λ + δQ1

[φ,λ] = δQ0
λ. (4.64)

With this symplectic form we can finally realize the relations (4.52), (4.53) and (4.53) as a Pois-
son bracket algebra,10

{Q0
λ, Q0

λ′} = Q0
[λ,λ′], {Q0

λ, Q1
ε} = Q1

[λ,ε]. (4.65)

Remark 4.1. Following the discussion at the end of chapter 2, constructing an extension of EYM
such that GBMS is coupled with the leading and subleading extension in YM poses some non-
trivial issues to be resolved. In particular, the commutation between δ1

ε and δ f : by the action of
δ f on Aa, see (2.35), we have, schematically,

δ f Q1
ε = Q0

µ̂ (4.66)

for some µ̂. This implies a non-trivial commutation,

[δ1
ε , δ f ] = δ0

µ̂. (4.67)

We left for future works the understanding of this structure.

10ThePoisson bracket between two functions F and G is given by {F, G} = Ωext(XG, XF)where XF is the symmetry
transformation generated by F, i.e. Ωext(δ, XF) = δF.
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Infinite hierarchy of asymptotic charges in
Electrodynamics

In this chapter we focus on large gauge transformations beyond O(1) for Electrodynamics.
In the case of Quantum Electrodynamics (QED), it was shown in [48] and [49] that for

tree level amplitudes there exist an infinite number of soft theorems, each of them implying a
conservation law for the tree level scattering process. Weinberg’s soft photon theorem corre-
sponds to the first level in the hierarchy, while Low’s sub-leading soft photon theorem [15, 99]
corresponds to the second level.

The conserved quantities found in [19] for the S-matrix constitute the first level in an infi-
nite hierarchy of soft theorems leading to conserved charges. A first approach was done in [51],
where Seraj showed that at spatial infinity there are an infinite number of conserved quantities,
proportional to the multipole moments, and generated by specific large gauge transformations
of orderO(rn). In [50], Campiglia and Laddha showed that for tree level scattering, and restrict-
ing the radiative data space to a suitable subset, there exists an infinite tower of conservation
laws such that at each level there is an infinite dimensional family of conserved charges Qn

ε , la-
belled by functions on the sphere. The authors also presented evidence that theWard identities
associated to the level n of the charges are equivalent to sub-n soft photon theorems, along with
the conservation laws within the classical theory. The non-abelian case is substantially harder,
since the charges up to level n of the hierarchy do not form a close algebra, as in the abelian case.
In [73] it is suggested a first step towards a classical derivation of the charge hierarchy in the
non-abelian case. Some recent developments in celestial holography using Operator Product
Expansion (OPE) tools [90, 100, 101] seem to be promising avenues in the study of asymptotic
symmetries and the role of CCFT in flat holography for Yang-Mills and gravity. Also, in [102],
the incorporation of logarithmic charges at spatial infinity has been done.

The r-expansion in retarded coordinates of the LGT’s at the bulk establishes a hierarchy of
charges at the asymptotic region. O(1) LGT’s correspond to leading charges (for instance, by
imposing a constant LGTwe obtain the total electric charge of the system, [26]), whileO(r) LGT
corresponds to sub-leading charges, see [20,24]. In

The results of the previous chapter impose the following question: can the infinite tower of
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charges associated to subn-leading soft photon/gluons theorems be canonically derived within
the classical theory? Two main issues arise when studying O(rn) LGT’s in Maxwell and Yang-
Mills. First, the divergent formulas for the charges when calculated from the usual phase space
structure, as was shown in [24]. In particular, the expressions for the symplectic form evaluated
on a LGT at level n (and therefore the charges) diverge both in the t→ +∞ and u→ −∞ limits.
Second, for Yang-Mills, the representation of the variation algebra on the phase space has to be
well defined. Otherwise, the non-linear terms automatically enter in every variation.

In this chapter we provide a renormalization procedure that allows to compute the charges
given in [50] from first principles. First, in section section 5.2, we review the computation
for leading and subleading charges, which was done in the previous chapter for Yang-Mills.
The difference this time is that we explicitly compute the symplectic form. Following ideas
from [96], in section 5.3 we show that there exist suitable boundary and corner terms for the
symplectic form that renormalise the divergences, while not changing the dynamics of the
fields. we define a subset of the radiative space and an extended phase space that contains
all LGT’s up to arbitrary order. This extended space is provided with a sympletic structure,
that allows us to calculate the electric-type charges. In section 5.4, by incorporating the duality
symmetry, the magnetic analogue of the electric hierarchy is also presented, as well as the full
electromagnetic charge algebra.

5.1 Preliminaries

5.1.1 Radiative phase space

For definitenesswe consider amassless charged scalar field φ coupled to theMaxwell fieldAµ in
Minkowski spacetime, but our analysis can be generalized to the situationwithmassive charged
fields or Fermions. The standard lagrangian is given by,

L [Aµ] = −
1
4
FµνFµν +DµφDµφ, (5.1)

and satisfying the field equations,

∇νFµν = jµ, (5.2)
DµDνφ = 0, (5.3)

where jµ = ieφDµφ + c.c., with Dµφ := ∂µφ− ieAµφ, the gauge covariant derivative and ∇ the
metric covariant derivative. In retarded coordinates, Maxwell equations are

r2 jr = −∂r(r2Fru) + ∂aFra, (5.4)
r2 ju = −∂r(r2Fru) + ∂u(r2Fru) + ∂aFua, (5.5)

ja = ∂r(Fua −Fra) + ∂uFra +
1
r2 ∂bFab, (5.6)
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where ∂a denotes the covariant derivative on the sphere compatible with qab, as in the previous
chapter. Bianchi identities , 0 = ∂[aFbc], are the integrability conditions for the electromagnetic
strength tensor: there exists a one-formAµ such that Fµν = ∂[µAν]. Wewillwork in the harmonic
gauge, ∇µAµ = 0, which in this particular coordinates implies

r2∂uAu + ∂r(r2Ar) + r2∂aAa = 0. (5.7)

The usual fall off for the electromagnetic tensor are (see [26] and [73]):

Fru =
1
r2 F(−2)

ru + o(r−2), Far = o(r−1), Fau = O(1), Fab = F(0)
ab + o(1). (5.8)

The fal-off for the scalar field is,

φ =
ϕ

r
+ o(r−1). (5.9)

These expressions imply the following fall offs on the charge current:

ju =
j(−2)
u

r2 + o(r−2), ja =
j(−2)
A
r2 + o(r−2), jr =

j(−2)
r

r4 + o(r−4). (5.10)

Fall offs forAµ compatible with the expansion above and the harmonic gauge condition are:

Aa = A(0)
a + o(1), Au = A(−1,ln)

u
ln r

r
+ o(r−1), Ar = o(r−1). (5.11)

The previous asymptotic behaviours are consistent with the field equations and the harmonic
gauge condition, as can be computed also form the previous chapter, by taking an abelian group
G. Moreover, using Maxwell equations, the scalar field equation, Bianchi identities and the
harmonic gauge condition, we can solve all the components of the electromagnetic tensor and
the scalar field in terms of A(0)

a and φ(−1) (see appendix A of [73] for Yang-Mills case). These
functions are the free data for the Maxwell field and the scalar field, respectively.

The hypothesis of “tree-level” decays for Aa in the limits u→ ±∞,

∂u Aa(u, x1, x2) = O(1/|u|∞), (5.12)

that is, its decay is faster than that of any power 1/|u|n, implies the following fall offs for the
radiative data of a generic solution of Maxwell’s equations, ( [4])

F(−2)
ru (u, x1, x2) = F−2,0

ru (x1, x2) + O(1/|u|∞). (5.13)

For the massless field we assume no “soft” charged particles,

ϕ(u, x1, x2) = O(1/|u|∞). (5.14)
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Our radiative phase space is thus defined in terms of the functions Aa and ϕ,

Γrad = {(AA(u, xa), ϕ(u, xa)) : ∂u Aa(u, x1, x2), ϕ(u, x1, x2) = O(1/|u|∞)}. (5.15)

5.1.2 u-expansions for fields

From Maxwell equations and Bianchi identities, we can obtain recursive formulas for the coef-
ficients in the Fru expansion in r and u. By Bianchi identity ∂[aFru] = 0, contracting with ∂a and
the first two Maxwell equations, we have

∆Fru + ∂r(∂r(r2Fru)− 2r2∂uFru) = r2∂u jr − ∂r(r2 ju) (5.16)

where ∆ denotes the Laplacian operator on the sphere. We assume that Fru can be expanded
in an r-series 1, Fru = 1

r2 ∑∞
k=0

F(−2−k)
ru

rk , and substituting in (5.16),

2(k + 1)∂uF(−2−k−1)
ru + (∆ + k(k + 1)) F(−2−k)

ru = ∂u j(−2−k)
r + kj(−2−k)

r . (5.17)

From the assumed fall off (5.13), and equation (5.17), it is clear that the behaviour of F(−2−n)
ru

in the limit u→ −∞ is

F(−2−n)
ru =

n

∑
j=0

ujF(−2−n,j)
ru (xa) + rn(u, xa), (5.18)

where each of the F (−2−n,0)
ru (xa) is a function on the sphere, and rn some function with an

O(1/u∞) decay (analogous expansion can be done in the limit u → +∞). We can solve or-
der by order recursively in terms of the current and this free functions. As a reference, the full
expression for Fru is

r2Fru = ∑
k≥0

1
rk

k

∑
j=0

ujF(−2−k,j)
ru (xa) + O(1/u∞). (5.19)

5.1.3 Variation space

We now turn to the large gauge transformations (LGT) on the variation space. The usual for-
mulas for the gauge symmetries,

Aµ 7→ Aµ + ∂µε, φ 7→ e−ieεφ (5.20)

establish the following action for variations of the fields,

δεAµ = ∂µε, δεφ = −ieεφ. (5.21)

The variations allowed in our radiative phase space are those that are tangent toF0, i.e., that
1We discrad olyhomogeneous terms, i.e. logm(r)/rn, although a generic analysis would contain such terms. We

left for future works the inclusion of such terms.
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maintain the fall offs of the fields. By the definition of finite symmetry, given a gauge symmetry
generator ε we see that ∂µε must have the same fall offs as Aµ:

∂aε = O(1), ∂uε = o(1), ∂rε = o(r−1) (5.22)

We study the global symmetries as arising from the residual LGT, and by the choice of har-
monic gauge, are solutions to the wave equation,

�ε = 0. (5.23)

This equation can be solved up to order O(r−1) (see Appendix A in [24]),

ε(u, r, xa) = ε0(xa) + O(ln(r)/r). (5.24)

5.1.4 Higher order LGT

Weare interested in relating higher orders in r LGTswith the charges that arise from subn−leading
soft photons theorems. The usual mode expansion reasoning in the soft theorem derivation
suggests that for a subn−leading soft photon we need to look for a LGT Λ whose O(1) in the
r−expansion behaves as un. This asymptotic behaviour of the gauge generator must be compat-
ible with the harmonic gauge, and therefore, implies an O(rn) leading behaviour, as we show
below by solving �Λ = 0.

Consider the following r−expansion for a O(rn) large gauge parameter,

Λ(u, xa) = rnε(n) +
n−1

∑
k=0

rkε(k) +
ln r

r
εln + O(r−1), (5.25)

where ε(i) = ε(i)(u, x1, x2). We have �Λ = 0, which in retarded coordinates reads,

0 = −6rn−1∂uε(n) +
n−2

∑
k=−1

rk
(

∆ε(k+2) − 2(k + 2)∂uε(k+1) + (k + 2)(k + 3)ε(k+2)
)

+
ln r
r3 ∆ε(ln) +

2
r2 (∆ε(0) − ∂uε(ln)) +

1
r3 ε(ln) + .... (5.26)

The first term in (5.26) imply that ε(n) is a free function on the sphere. Next, we have a recursive
equation between the successive coefficients:

2(k + 1)∂uε(k) = ∆ε(k+1) + (k + 1)(k + 2)ε(k+1) (5.27)

Integrating (5.27) and fixing each integration constant to zero in each step gives a LGT of or-
derO(rn) generated by ε ≡ ε(n), whichwewill call Λn

ε . If the integration constants are non-zero,
each one of themwill be a free S2 function that contribute linearly with a LGT of corresponding
order:
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Λα = Λn
εn
+ Λn−1

ε(n−1)
+ ..., (5.28)

where α = {εj}j is the sequence of integration constants εj in the equation (5.27), that are free
S2−functions, each one generating an O(rj) LGT. We will call a LGT “pure” if there is only one
free function generating it. Whenusing the notationΛm

f , subscripts indicate the generating func-
tion or sequence of functions, and superscripts indicate the leading term in the r−expansion, if
the generating function is not a sequence.

Some remarks are in order. First, one implication of equation (5.27) for a pure O(rn) LGT is
the following property:

ε(n−1) = O(u), ..., ε(k) = O(un−k) (5.29)

This shows that the order O(rn) is necessary for a un asymptotic behaviour at order O(r0)

for the LGT, as was stated at the beginning of the section. Second, the term ln(r)/r is needed for
the O(r0) to be consistent, otherwise we would get ∆ε(0) = 0, and since we are in a sphere, that
would give a trivial function. Third, the non-trivial fact that equation (5.27) resembles the form
of equation (5.17), but it presents crucial differences in the constants multiplying the functions.
This similarity between the recursive expressions is useful when showing the Ward identity
equivalence with the subn− soft theorems [50].

5.2 Leading and Subleading charges

In this section we review the phase space construction and the symplectic charges in the case
where the large gauge transformation are O(r). We leave the renormalization procedure for
the next section, focusing exclusively in the first step of the phase space extension and in the
recovery of the charges via the symplectic form.

5.2.1 Linearly extended phase space

The usual phase space, (5.15), contains the physical information regarding the leading order
charges, restricted to O(r0) LGT. Their usual expressions are ( [19], [26]):

Qε0 =
∫

S2
ε0

∫
R

∂uF(−2)
ru dud2x, (5.30)

where ε0 is a function on the sphere, and d2x contains
√
◦
q implicitly. As soon as we lift the

condition on the LGT order, the fall offs (5.11) are not preserved by an O(r1) LGT (through its
action (5.20)) and therefore the variations are no longer tangent to the radiative phase spaceF0,
but rather have another direction. We expand the phase space in this direction by first defining
an extended version of the potential sector in (5.15). Consider the following space:

Γlin = Γrad × {ψ(x1, x2) : ψ ∈ C∞(S2)} (5.31)
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We define the electromagnetic potential as Âµ = Aµ + ∂µΛ1
ψ, where Aµ is the vector poten-

tial that has Aa as initial data (from section section 5.1) and Λ1
ψ is the pure O(r) LGT generated

by ψ. Observe that this definition is indeed consistent, since ∂[µ∂ν]Λ1
ψ = 0 and thus a makes

no contribution to the electromagnetic tensor, i.e. F̂ = F . This is in sharp contrast with the
previous chapter, where δFµν = [Fµν, Λ]. Observe also that the harmonic gauge condition is
trivially satisfied for the extended electromagnetic potential 2.

Given a general O(r) LGT, Λ{ε1,ε0}, the variations generated by it on Γlin are splitted in terms
of the S2 free functions ε1 and ε0 corresponding to orderO(r) and orderO(1) in the r−expansion
respectively (see (5.28)):

Λ{ε1,ε0} = rε1 + (ε0 + u
1
2
(∆ + 2)ε1) + o(r0) (5.32)

The action on the phase space Γlin comes from the identity δΛ{ε1,ε0}
Âµ = ∂µΛ{ε1,ε0}, which

after the splitting reads:

δΛ{ε1,ε0}
Aa = ∂aε0, (5.33)

δΛ{ε1,ε0}
ψ = ε1. (5.34)

In the massless field sector, allowing a O(r) LGT implies also a change in the massless field
φ. The equations of motion are invariant under the simultaneous change

Aµ 7→ Â = Aµ + ∂µΛ1
ψ, φ 7→ φ̂ = eieΛ1

ψ φ (5.35)

Since the finite gauge symmetry involves a product e−ieΛ1
ψ φ, we can define an extended field

φ̂ = e−ieΛ1
ψ φ, where ψ is the free S2 function now generating a phase for the scalar field, while

φ is the massless field with the usual fall off, with ϕ ∈ Γrad as free data. The covariant gauge
derivative is given by

D̂µ := ∂µ − ieÂµ, (5.36)

from where we have that the new current ĵµ maintain its original form,

ĵµ = ieφ̂(D̂µφ̂)∗ + c.c. = ieφ(Dµφ)∗ + c.c., (5.37)

The consistency of the action of the O(r) LGT action on φ̂ with the splitting of the extended
phase space implies

δΛ{ε1,ε0}
ϕ = ieε0ϕ. (5.38)

5.2.2 Calculation of leading and subleading charges

Consider the Lagrangian (5.1), in our extended phase space we have the usual symplectic po-
tential current,

2It is left for future works to study the phase space extension in more general gauges, and whether it changes the
structure.
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θµ(δ) =
√

g
(
F̂µνδÂν + D̂µφ̂δ ¯̂φ + c.c.

)
, (5.39)

and the symplectic current by taking the exterior derivative in the phase space,

ωµ(δ, δ′) = δθµ(δ′)− δ′θµ(δ)− θ([δ, δ′]) (5.40)

Given a Cauchy slice Σt = {t = cnt}, the symplectic form is obtained by integrating the sym-
plectic current over Σt, Ω(δ, δ′) =

∫
Σt

ωµ(δ, δ′)dSµ. We evaluate it on a variation generated by
a general LGT (Λε1,ε0) and an admissible variation (denoted by δ), obtaining an expression for
the charge,

δQΛε1,ε0
= Ω(δ, δΛε1,ε0

) =
∫

Σt

ωµ(δ, δΛε1,ε0
)dSµ. (5.41)

As it was shown in [24], one could find the leading and subleading charges (consistent with
the Ward identities) by taking the limit t = r + u→ +∞ at constant u,

QΛε1,ε0
= lim

t→∞

∫
Σt

(∂r − ∂u)(r2Λε1,ε0F̂ru)dx2du, (5.42)

and considering the finite part in the limit. By counting orders in t, it is straightforward to see
that the expression (5.42) contains divergent terms and therefore in general the definition of
the charge at the limit is ill-defined. In what follows we drop the hat ˆ in Fru, since is the same
field as in the radiative space.

As we previously mentioned, we can define a procedure to renormalize the symplectic po-
tential and get rid of the divergent terms in (5.42), for any arbitrary higher order O(rn). This
will be the content of the next section, while in the remainder of this section we motivate the
renormalization in the particular case of the extension for n = 1.

Since we can trace back the divergences to the symplectic potential, due to varying with
δΛε1,ε0

, our starting point is to compute the symplectic potential on the hypersurfaces Σt,

θt(δ) =
√

q
(

r2Fru(δAr − δAu) + qbcFubδAc

)
+
√

q(∂r − ∂u)(r2FruδΛ1
ψ), (5.43)

where we did not write the total derivative r2Dc(
√

qqbcFubδΛ1
ψ), since it vanishes after integra-

tion on Σt. The first term can be regarded as the radiative phase space symplectic potential,
θt

0, while the second term is the new extended term, which we will call θt
1. The term θt

0(δ) will
contribute to the symplectic form (by integrating by parts and using the equations of motion)
as usual,

ωt
0(δ, δ′) =

√
qqbcδFub ∧ δ′Ac +

√
qr2δFru ∧ δ′(Ar −Au), (5.44)

The term θt
1(δ) presents the divergence: the action of ∂u on δΛ1

ψ leaves an O(r) term, which
in turns imply a t factor when changing variables from (u, r, x1, x2) to (t, r, x1, x2). In the next
section we give a systematic approach for the renormalization of such terms. For now, we as-
sume that we can discard the divergent term and that the expression we obtain has also a finite
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limit u→ −∞. We find the following expression for the renormalization of θt
1(δ),

θren,t
1 (δ) =

√
q
(

Da j(0)a −
u
2

∆∂uF(−2)
ru

)
δψ, (5.45)

where ren stands for “renormalized”. The symplectic current is splitted then,

ωren,t(δ, δ′) = ωt
0(δ, δ′) + ωren,t

1 (δ, δ′), (5.46)

with ωren,t
1 the exterior derivative of θren,t

1 in the solution space. Thus, the total symplectic form
on I + is well defined (by taking t→ +∞) ,

Ωren(δ, δ′) =
∫

I
ωren(δ, δ′) =

∫
I

ω0(δ, δ′) +
∫

S2

√
q(δF(−3,0)

ru ∧ δ′ψ). (5.47)

The last term comes form the value of F(−3,0)
ru in (5.18), which can be seen as the value of the

following limit (see [50] for details):

F(−3,0)
ru = lim

u→−∞
F(−3)

ru − uF(−3,1)
ru =

∫
R

(
Da j(0)a −

u
2

∆∂uF(−2)
ru

)
du, (5.48)

where the contribution from u = +∞ in integral zero due to the absence of massive charges
(F(2)

ru (u = +∞, x1, x2) = 0). Since ∂uF(−2)
ru decays faster than any polynomial in u, the above

integral is convergent. Observe that F(−3,0)
ru is the canonical conjugate to ψ.

Next, we compute the leading and subleading charges. Taking δ′ to be a large gauge transfor-
mation, and δ any arbitrary admissible variation (compatible with F1), we calculate the charge
associated to any LGT Λ{ε1,ε0} by the equation (5.41). Since Fµν is invariant under δΛ{ε1,ε0}

and
Λ{ε1,ε0} is not affected by δ 3, the calculation is straightforward,

QΛ{ε1,ε0}
=
∫

S2

√
q
(

ε0F(−2,0)
ru + ε1F(−3,0)

ru

)
dx2 =: Q0

ε0
+ Q1

ε1
, (5.49)

where we also used (5.18) in the radiative space sector, and Qi
εi
, with i = 0, 1, denotes the

leading and subleading charges, respectively.
The charge Q0

ε0
is the usual for a O(1) gauge, while the second term is the one obtained

in [20], [24], [50]. In both cases, we obtained “corner” charges, in the sense that they depend
on the values of the fields at the boundary of I .

5.3 Tower of asymptotic charges

In this section, we derive an infinite hierarchy of charges from a symplectic form in an extended
phase space that contains sufficient degrees of freedom to allow for O(rn) LGT’s, for arbitrary
n. Certain difficulties in the definition of the symplectic potential arise, in particular the appear-
ance of several divergent integrals, as was shown in the previous section. The renormalization

3This again is in contrast with the non-Abelian case, where the harmonic gauge condition implies a field depen-
dent LGT’s.
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procedure we apply is based on [96].
First, we define the extended phase space and show the type of divergences we have, both

in the t → +∞ and u → +∞ limits inside the expresion (5.42). Then, we proceed to prescribe
a renormalization on the symplectic potential that will lead to the correct expression for the
charges, while the symplectic form remains finite.

5.3.1 Extended phase space and charges

Let S be the space of sequences {ψi}i>0 of functions ψi : S2 → R such that only finitely many
are non-zero 4. Given a sequence Ψ ∈ S, we define the LGT associated to the sequence as

ΛΨ := ∑
i>0

Λi
ψi

(5.50)

where each Λi
ψi
is a pure O(ri) LGT associated to ai, in the sense of section (5.1). Observe that

the sum is finite for every Ψ ∈ S. We define the extended phase space as the following set,

Γ∞ = Γrad × S, (5.51)

with the extended electromagnetic potential and scalar field are defined as

Âµ = Aµ + ∂µΛΨ, φ̂ = eieΛΨ φ, (5.52)

where Aµ and φ are the vector potential and the scalar field generated by the free data
(Aa, ϕ) ∈ Γrad.

The admissible variations δ of this phase space are such that when acting on the degrees of
freedom parametrized by Ψ, it satisfies δΨ ∈ S. This property is not restrictive regarding the
variations, as we will see below.

Given a sequence ε = {ε0, ε1, ..., εi, ...} of free S2 functions, such that {εi}i>0 ∈ S, consider
the LGT associated to it, Λε = Λ0

ε0
+ ∑i>0 Λi

εi
. The variation generated by this LGT acts on Γ∞

by acting in Aµ with its O(r0) free function and by acting on α on each sequence term,

δΛε
AA = ∂Aε0, δΛε

ϕ = ieε0ϕ, δΛε
Ψ = {εi}i>0 (5.53)

This structure is the same as in the previous section, extended to contain any order in the
r−expansion.

We can write the full symplectic potential, equation (5.39), and proceed in the same way as
in the previous section, obtaining the expression (5.43), but with ΛΨ in place of Λ1

ψ, and split
the symplectic potential in the radiative phase space contribution and the extended part, given
by

θt
∞(δ) =

√
q(∂r − ∂u)(r2FruδΛΨ), (5.54)

4In what follows we assume that the sequences of functions have this property, unless stated otherwise
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where the ∞ stands for the extension to all orders in r.
Given δ and ΛΨ, let us calculate the symplectic potential evaluated at δ. Consider the inte-

gral,
ΘΣt,∞(δ) =

∫
Σt

√
q(∂r − ∂u)(r2FruδΛΨ)dx2du, (5.55)

and observe that the term inside the integral is divergent in the limit t → +∞ with the same
order as the highest power of r in δΛα. Our aim in this section is to understand better this
integral. For brevity let us call

ρk(δ) =
+∞

∑
i=k

F(−2+k−i)
ru δΛ(i)

Ψ , (5.56)

where δΛ(i)
Ψ is the coefficient corresponding to ri in the r−expansion of δΛΨ. ρk(δ) is thus the

O(rk) coefficient in the expansion of the term inside the brackets. Upon direct computation and
substituting r = t− u

ΘΣt,∞(δ) =
∫

Σt

√
q

∞

∑
k=1

(
krk−1ρk(δ)− rk∂uρk(δ)

)
dx2du =

∞

∑
j=0

tj
∫

Σt

θj(δ)dx2du, (5.57)

for some t−independent functions θj(δ). This gives us a t−expansion of the symplectic poten-
tial. Assuming we can throw the divergences away (details in the next subsection), we are left
with the O(t0) term, which satisfies the identity

ΘI
∞ (δ) := lim

t→+∞
Θt,∞(δ) =

∫
I

√
q

∞

∑
k=1

(
k(−u)k−1ρk(δ)− (−u)k∂uρk(δ)

)
dx2du

= −
∫

I
∂u

(
√

q
∞

∑
k=1

(−u)kρk(δ)

)
dx2du, (5.58)

which gives us a boundary term. The charges associated to higher order LGT can be directly
computed using the identity δQΛε

= ΩI
∞ (δ, δΛε

),

Qε =
∫

I
∂u

(
∞

∑
k=1

(−u)kρk(δΛε
)

)
dud2x. (5.59)

When evaluating the term in the brackets in the last line of (5.58) at u = +∞, we use the
hypothesis that Fru = 0 at I +

+ . When evaluating at I +
− , we run into divergences. Since the

general behaviour of ρk(δ) admitted by (5.13) and (5.16) near spatial infinity is polynomial in
u plus a O(1/|u|∞) remainder, we have that the above expression for Θt(δ) is not well defined.
By keeping only the O(u0) in ρ0(δ),

ΘI
∞ (δ) =

∫
S2

√
q

∞

∑
i=1

F(−2−i,0)
ru δψidx2du, (5.60)
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where F(−2−i,0)
ru are the O(u0) of F(−2−i)

ru . The renormalization procedure of the next subsection
will address the previous two divergences: the t divergence from the limit to I , and the u
divergences in the integrals over I .

Regarding the concrete expressions of the charges, the order O(u0) of QΛε
in equation (5.59)

is the same as the subleading charges presented in [50]. This is equivalent to prove that the
O(u0) coefficient of QΛε

is ∑+∞
k=0

∫
S2 εkF−2−k,0

ru d2x. Remember that we take the u−decay in the
remainder functions ri in equation (5.18) as faster than any polynomic decay. Therefore, in-
specting the expressions for Λ(k)

ε and F−2+k−i
ru , we see that each ρk(δΛε

) has at least order u0,
therefore the term in the sum contributes with at least uk. The only term with a possible u0

order is thus ρ0(δΛε
),

ρ0(δΛε
) =

∞

∑
i=1

Λ(k)
ε F(−2+k)

ru . (5.61)

Again, a close inspection in the u− expansion of the functions shows that the order u0 is given
by the sum of the products εkF(−2−k,0)

ru .

5.3.2 Regularization procedure

In this subsection, following [96], we will renormalise the symplectic potential for QED in the
extended phase space in order to eliminate the divergences. The idea is towrite the higher order
terms in the t component of the symplectic potential as a boundary plus corner terms, substract
them and obtain a finite expression in the t→ ∞ limit as well as in u→ ±∞.

From the first variation of the Lagrangian (5.1), we have

δL = EµδÂµ + Eδφ̂ + ∂µθµ(δ) (5.62)

where Eµ and E are the field equations for Âµ and the massless scalar, respectively. By taking
the retarded coordinates u, t, x1, x2 on Minkowski space time, we write the previous equation
on-shell and obtain an equation for ∂tθ

t(δ)

∂tθ
t(δ) = δL− ∂uθu(δ)− Daθa(δ) (5.63)

We will assume that all the functions have t and u expansions around t = +∞ and u = ±∞,
as is the case for F(2)

ru , Aa and ϕ (equations (5.13), (5.11), and (5.9)).
Consider the derivation of the divergent part of the symplectic potential done in the previous

section, but now applied to our extended phase space:

θµ(δ) =
√

qr2
(
FµνδÂν) + D̂µφ̂δφ̂ + c.c.

)
. (5.64)

Remember that we use (u, r, x1, x2) coordinates to integrate, and then take the limit t→ +∞ at
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fixed u. The general form for the symplectic potential is,5

θt(δ) = Y0(δ)(u, t, xa) +
∞

∑
i=1

tiYi(δ)(u, xa). (5.65)

whereY0(δ)(u, t, , xa) is such that limt→+∞ Y0(δ)(u, t, , xa) is awell defined function,Y0(δ)(u, xa).
We introduce the renormalized symplectic potential as θt

ren := θt−Hren, where Hren is such that

∂tθ
t(δ)− ∂tHren(δ) = K(δ)(u, t, xa), (5.66)

where K is such that its limit when t→ +∞ vanishes. In general K and Hren are not uniquely de-
termined by the previous equation. The natural prescription for Hren to resolve the divergences
is the following,

Hren(δ) =
+∞

∑
i=1

tiYi(δ)(u, xa) + C(δ)(u, xa), (5.67)

where C(u, xa) is a function to be determined. Observe that Hren has the same order than θt

in the t expansion, and that the divergences in the t parameter are cancelled, so θt
ren converges

in the limit t → +∞. The coefficients Yi are obtained from the integration of the terms in the
variation of the lagrangian and the total derivative of the symplectic potential in equation (5.63),
on {t = cnt} surfaces, directly by the t expansion.

Therefore, we can prescribe

Yi(δ) = Finite part
(

lim
t→+∞

1
ti (δL− ∂uθu(δ)− Daθa(δ))

)
, (5.68)

for each i. Observe in (5.68) that eachYi can bewritten as a total derivative plus a total variation.
By taking the free function C to be a total derivative, C = ∂uXu + DaXa, we can add the

last term in (5.68) to obtain a new total derivative term. Then, the renormalized symplectic
potential has the form

θt
ren(δ) := θt(δ) + ∂νΥtν(δ) + δΞt = P(δ)(u, t, xa) (5.69)

whereΥ andΞ are calculated fromYi, Xu
i and Xa

i directly, and P is atmostO(t0) in the t−expansion.
This symplectic potential does not contain divergences in the limit t → ∞. The general form
of the symplectic potential will be changing the upper index t by a 4d index µ. We have that
Υµν = −Υνµ, by definition of “corner terms” (see [96]). Without any loss of generality, we can
define Υjl = 0, for j, l running in the set {u, xa}, since these terms are not uniquely defined and
do not affect the renormalization of θt. Therefore, we have a well defined limit

θI
ren(δ)(u, xa) := lim

t→+∞
θt

ren(δ)(t, u, xa) = Y0(δ)(u, xa)− C(δ)(u, xa) (5.70)

We have still at our disposal the function C(u, x1, x2) (the only condition we imposed so
far is that it is a total derivatives), which can be determined by imposing a finite limit when

5In the following equations we write the explicit dependence of the functions on variations and coordinates.
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u→ −∞ for the symplectic potential.
As it was shown in the previous subsection, under general LGT’s the O(t0) of the symplectic

potential has O(uN) terms, and therefore θt
ren will in general have an expansion in powers of

u, starting in some uN (corresponding to the highest power in δ or α), the coefficients of the
expansion depending in general on which limit we are computing, u → ±∞. We consider the
following u expansion for Y0(δ) near u = ±∞,

Y0(δ)(u, xa)
u→±∞
= RY0(δ)(u, xa) +

∞

∑
k=1

ukY±0,k(δ)(xa), (5.71)

where ∂uRY0(u, xa) = O(1/|u|∞). This condition comes from the tree level assumption on the
soft theorems, and implies in particular that the limits when u→ ±∞ are in principle different,

R±Y0
(δ)(xa) := lim

u→±∞
RY0(δ)(u, xa). (5.72)

By inserting (5.71) in (5.70), we have

θI
ren(δ) = RY0(δ)(u, xa) +

∞

∑
k=1

ukY±0,k(δ)(xa)− ∂uXu(δ)(u, xa)− DaXa(δ)(u, xa), (5.73)

and immediately we can find functions Xu, Xa such that their expansions around u = ±∞
renormalise the limits of the symplectic potential. For Xu we find,

Xu
±(δ)(u, xa) =

∞

∑
k=1

1
k + 1

uk+1Y±0,k(δ)(xa), (5.74)

while for Xa we have,

DaXa(δ)(u, xa) =

{
R−Y0

(δ)(xa) + O(1/|u|∞) when u→ −∞
R+

Y0
(δ)(xa) + O(1/|u|∞) when u→ +∞

(5.75)

Finally, the symplectic potential density gives a finite result upon integration on I , due to
the fall offs of RY0 .

5.3.3 Electric-like charge algebra

The previous renormalization procedure adjust exactly all the divergences, while maintaining
the same convergent terms discussed in subsection 5.3.1. The expression for the renormalized
symplectic potential is therefore:

Θren(δ) =
∫

I +
θ0(δ)dudx2 +

∫
S2

∞

∑
i=1

F(−2−i,0)
ru δaidx2 (5.76)

where θ0 is the usual symplectic potential in Γrad. The symplectic form is the exterior derivative
(in the extended phase space) of the symplectic potential:
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Ωren(δ, δ′) =
∫

I
ω0(δ, δ′)dudx2 +

∫
S2

∞

∑
i=1

δF(−2−i,0)
ru ∧ δ′aidx2 (5.77)

Now, all three ingredients in the charge calculation are well defined and finite: the limit t →
+∞, the integration on I and the series.

We are now in position to show the full hierarchy of charges for arbitrary O(rn) LGT in
QED. The electric charges associated to a LGT Λε can be calculated form (5.77), substituting the
sequence {εi} in the identity δQε = Ωren(δ, δΛε

),

Qε =
∞

∑
j=0

∫
S2

√
qεjF

−2−j,0
ru dx2 (5.78)

where we are using that Fνµ is invariant under δΛε
. This expression is the same as the one

obtained in [50]. Observe that the full algebra of charges is abelian:

{Qε1 , Qε2} = 0, ∀ε1, ε2 (5.79)

5.4 Duality extension of tower of asymptotic charges

In the previous sections we treated only the electric part of Maxwell theory, renormalizing the
symplectic potential in the extendedphase space to contain the subn-leading charges in a natural
framework. In this section, we extend the phase space (again) in order to include the magnetic
freedom, á la Freidel-Pranzetti, as in [103]. This type of extensions are analogous to those we
previously study in chapter 3, has been thoroughly studied in recent years in several contexts:
electromagnetic duality (e.g. [102,104,105]), BF theories ( [106]) and undermore general struc-
tures ( [53]). Throughout this section we are using form notation, without writing the indexes
explicitly, in order to ease the notation. Also, we are considering no extra fields.

Electromagnetism posses a duality symmetry, which can be characterized as follows: the La-
grangian for the theory is

L [F ] = 1
2
∗ F ∧ F , (5.80)

where ∧ is the wedge product in the space of p-forms on Minkowski spaceM and ∗ is the
Hodge dual operator, ∗ : Ωp(M)→ Ω4−p(M), inM. This operator satisfies

∗ ∗α = (−1)p(4−p)+1α, (5.81)

where the extra+1 in the exponent comes from the signature of the metric inMinkowski space.
Therefore, taking p = 2 and applying ∗ to F in (5.80), we have

L [∗F ] = −1
2
∗ F ∧ F , (5.82)

and critical points in both actions would be the same.
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The first step towards this extension is to consider the standard radiative phase space duality
extension. On each Σt, we have the Freidel-Pranzetti extension for the symplectic form, [103],

Ω(δ, δ′) =
∫

Σt

δA∧ δ′ ?F +
∫

S2
δa0 ∧ δ′B0 (5.83)

where ? is the Hodge dual in the hypersurface, a0
S2

= A + dφ0 is the electric boundary gauge
field, and B0 is the magnetic boundary gauge field. φ0 is the edge mode, which extends the phase
space, (A, a0), which now contains this boundary field. We see that the symplectic form now
contains a corner term, motivated by the gauge invariance of the theory.

To make the connection with our past sections definition for A, we have

Anew + dφ = Aold, (5.84)

where old refers to theA used in the previous sections, and new is the one in the present section.
In particular, the expressions for curvature tensor and the charges are still valid. Observe that φ

can be though as a zero-order extension, using the same idea as the previous sections: extending
the vector potential with a large gauge symmetry.

We distinguish between symmetries that leave fixed the bulk variable A, and symmetries
that act only on the boundary. In the previous sections, weuse this differentiationwhendefining
the extension to higher order LGT, where δΛε

only acts on Aa(u, x) through the first component.
In the present section, as it was done in [103], we are isolating the bulk from the boundary
action on the ε0 variation, in order to have awell define canonical action that includes the duality
symmetry, and such that the symplectic potential is invariant under the gauge transformation
of the fields.

We are working in I +, so in (5.83) we take t → +∞. The “bulk” part now is A along I ,
while the boundaries are I +

± , with topology S2. The values at the boundary are not indepen-
dent, since the boundary symmetries act simultaneously on bothI +

± (i.e., they are independent
of u). Under a gauge transformation generated by G, both the bulk and the corner fields trans-
form,

δG(A, a0, B0) = (dG,−dG, 0), (5.85)

so the variation δG is indeed gauge, in the sense that has a vanishing charge Ω(δ, δG) = 0 on
shell. The electric (magnetic) symmetry δε0(δλ0) acts only on the electric (magnetic) boundary
field,

δε0(A, a0, B0) = (0, dε0, 0), δλ0(A, a0, B0) = (0, 0, dλ0), (5.86)

where dλ0 is locally but not globally exact (such as in the standard examples of a charge in
the z−axis, see section V in [103]). Observe that on-shell, upon acting with G, we obtain the
identity

dB0 = ?F , (5.87)
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which, on I +, is dB0 = F(−2,0)
ru dx2.

Our extended phase space of section 5.3.1 adapts well to the construction given above to the
duality extension. The gauge transformationΛα is the “bulk” potential, generated by the bound-
ary fields in the sequence α, in a hierarchy graded by the correspondent power of r. Therefore,
we can extend directly as

Ωren(δ, δ′) =
∫

I

[
δA∧ δ′ ?F

]
ren +

∫
S2

δa0 ∧ δ′B0 +
∫

S2

∞

∑
k=1

δdBkδ′ak, (5.88)

where here ak are functions on the sphere, a0 is a 1−form 6, and ren indicates that is the renor-
malized term, given by (5.77). We define the action of a gauge transformations G (of order rn

arbitrary) as

δGA = dG, δGa0 = dG0, δGaj = Gj, δGBj = 0, j ≥ 1. (5.89)

Evaluating the sympletic form in δG,

Ωren(δ, δG) = −δ

(∫
I
[dG ∧ ?F ]ren +

∫
S2

δdG0 ∧ δ′B0 +
∫

S2

∞

∑
k=0

GkδdBk

)
, (5.90)

which on-shell and after integrating by parts, we obtain (after the renormalization, allowing
variations δ such that δA has order higher than r0 before taking the limit t→ +∞)

dBk = F(−2−k,0)
ru . (5.91)

This equality establishes the value of the magnetic boundary gauge field as the field strength
functions.

Finally, we will denote the magnetic variations acting on Bk’s as λ = {λi}i≥0, in the same
fashion as we define the LGT generators. Electric (magnetic) variations act as follows on the
extended phase space variables,

δεkA = 0, δεk a0 = δ0kdεk, δεk aj = δkjεk, δεk Bj = 0, k ≥ 0, j ≥ 1 (5.92)

δλkA = 0, δλk aj = 0, δλk Bj = δkjdλk, k, j ≥ 0, (5.93)

where dλk is locally but not globally defined, and δij is Kroenecker delta.

5.4.1 Charges and dual charges and their algebra

By computing Ωren(δ, δΛε
) and Ωren(δ, δΛλ

), we obtain the electric (denoted as Q) and magnetic
(denoted as Q̃) charges,

6a0 is not generally a gradient.
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Qε =
∞

∑
k=0

∫
S2

εkdBk (5.94)

Q̃λ =
∞

∑
k=0

∫
S2

akd2λk, (5.95)

where the first integral gives directly 5.78, thanks to 5.91, and the last integral does no vanish
due to the failure of dλ to be globally exact.

Finally, we have can compute the charge algebra. As the electric charges, the magnetic
charges Q̃λ are abelian,

{Q̃λ, Q̃λ′} = δλ

∞

∑
k=0

∫
S2

akd2λ′k = 0. (5.96)

A non-trivial component of algebra is given by the mixed Poisson bracket (as shown by
Hosseinzadeh, Seraj and Sheikh-Jabbari in [104], and by Freidel and Pranzetti in [103]),

{Q̃ε, Q̃λ} = δε

∞

∑
k=0

∫
S2

akd2λk =
∞

∑
k=0

∫
S2

εkd2λk =: ck (5.97)

This term shows that the boundary duality symmetry algebra posses a hierarchy of central
charges, {ck}k≥0. Recent developments ( [102]) showed that these central charges also appear
when considering charges associated to O(ln r) large gauge transformations. We leave to fu-
ture works to analyse in detail the central extensions in the context of soft theorems and Ward
identities.
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Extension to all orders in r for SD Yang-
Mills

In this chapter, we show the proposal in [107] for an extension to all orders in Yang-Mills theory.
This extension allows, a perturbative-like approach to the computation of the variation algebra.

The natural question, after chapter 4 and chapter 5, is whether it is possible to extend the
phase space inYang-Mills to account for all the symmetries coming form the subn−leading/Ward
identity equivalences. These symmetrieswill correspond to symmetry parameterswith increas-
ingly divergent behaviour at null infinity coming form the radial expansion. The present chapter
aims to answer this question, by giving a definition of the extension and showing that a well-
defined algebra of variations can be constructed, restricting to the self-dual sector (SD) of the
theory.

The self dual sector is a consistent truncation of the theory, which it is in its own right a
wide research area for several reasons: it is an integrable theory [108], making it approachable
with the standard tools from Integrable Systems, it presents a rich structure of symmetries (e.g.
[109, 110]) and it is deeply connected with complex and conformal geometries (e.g. [111]). In
particular, we are interested in the field-independence of the large gauge transformations using
light-cone gauge, [109], where the phase space extension can be defined straightforwardly.

6.1 Light-cone gauge in the self-dual sectors of YM and gravity

We will follow the conventions of [109] and use light-cone coordinates (U, V, Z, Z̄), related to
Cartesian coordinates Xµ via:

U =
X0 − X3
√

2
, V =

X0 + X3
√

2
, Z =

X1 + iX2
√

2
, Z̄ =

X1 − iX2
√

2
. (6.1)

It is useful to introduce the notation:

xi := (U, Z̄), yα := (V, Z). (6.2)
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which splits space-time into two 2d subspaces. The Minkowski metric is then

ds2 = 2ηiαdxidyα = −2dUdV + 2dZdZ̄. (6.3)

and we introduce the anti-symmetric "area elements" of the 2d subspaces:

Ωijdxi ∧ dxj = dU ∧ dZ̄− dZ̄ ∧ dU (6.4)
Παβdyα ∧ dyβ = dV ∧ dZ− dZ ∧ dV (6.5)

which act as inverses of each other:

Ω α
i Π j

α = δ
j
i (6.6)

Π i
α Ω β

i = δ
β
α . (6.7)

6.1.1 Self-Dual Yang-Mills

Consider a YM field Aµ with field strength

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν], (6.8)

The dual is defined as
∗ Fµν :=

1
2

ε
ρσ

µν Fρσ. (6.9)

The field strength is self-dual provided

∗ Fµν = Fµν. (6.10)

Then, working in the light-cone gauge AU = 0, the self-dual sector can be described via (see
[109,110,112–114])

Ai = 0, Aα = Π i
α ∂iΦ (6.11)

with Παβ as in (6.5) and where the Lie algebra valued scalar satisfies

�Φ = Πij[∂iΦ, ∂jΦ] (6.12)

It is easy to see that the Harmonic gauge is satisfied automatically

∂µAµ = ηiα∂iAα = Πij∂i∂jΦ = 0 (6.13)

making use of the anti-symmetry of Π. It also follows that

DµAµ = 0, with DµAν = ∂µAν + [Aµ,Aν]. (6.14)
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In this paper, we will be be considering the family of gauge transformations

δΛAµ = DµΛ = ∂µΛ + [Aµ, Λ, ], (6.15)

which preserve the light-cone gauge condition (6.11). It is easy to see [109] that these are
parametrised by

∂iΛ = 0 =⇒ Λ = Λ(y) (6.16)

We note that this subset of the gauge transformations also automatically preserves the gauge
condition (6.14). This is one of the crucial simplifications that follow from starting with the
more restrictive light-cone gauge, instead of (6.14). Had we taken (6.14) as our starting point
and attempted to solve for Λ (for example as a perturbation series in the coordinate V), we
would obtain a field-dependent expression for Λ (see chapter 4 and [73] for details), which
would have significantly increased the difficulty of calculations in the next section.

6.1.2 Phase space for SDYM and fields near infinity

In this section we make the connection with the asymptotic symmetries of chapter 4. We will
study fields near future null infinity, I +, so we are switching to coordinates adapted to it. The
natural choice are Bondi-type coordinates (r, u, z, z̄) given by [109]

r = V, , z =
Z
V

, z̄ =
Z̄
V

, u = U − ZZ̄
V

. (6.17)

In these coordinates, the Minkowski metric reads

ds2 = −2dudr + 2r2dzdz̄, (6.18)

where we see that by taking the conformally rescaled metric 1
r2 ds2, we have a well defined (de-

generate) metric on I + given by 2dzdz̄.1
The radiative data of any massless scalar field (in particular of Φ) is given by

Φ(r, u, z, z̄) =
ΦI (u, z, z̄)

r
+O(r−2), (6.19)

where ϕI can be regarded as defined at I .
Let us use the notation

Az(r, u, z, z̄) r→∞
= Az(u, z, z̄) +O(r−1) (6.20)

Then, considering equations (6.11) in Bondi coordinates (6.17), we have

Az = r∂uΦ, Az̄ = 0, (6.21)
1See e.g. Section 4 of [55]. for a derivation of this metric from general assumptions about asymptotic flatness.
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which implies (by (6.19) and (6.20))

Az = ∂uΦI , Az̄ = 0 (6.22)

The radiative phase space will then be given by φI as free data,

Γrad = {ΦI (u, z, z̄)}. (6.23)

Recall that the gauge parameters depend only on y coordinates, Λ(y), which in this case are
(r, z). Therefore, we can assume

Λ =
+∞

∑
n=−∞

Λ(n)(z)rn, (6.24)

as an r−expansion for the gauge parameter. Unlike in the general case, [73], the coefficients
Λ(n) are field-independent since no further restriction has been imposed.

Variations on Γrad

Next, we study the space of variations and its action, by taking the ones that preserve the fall
offs of the fields in Γrad. Take Λ to be the generator of the gauge transformations. Its expansion
in r generally is given by,

Λ =
+∞

∑
n=−∞

Λ(n)(z)rn, (6.25)

where Λ(n) = Λ(n)(z), since the variations must be gauge preserving (see (6.16)). To ensure
convergence, for the rest of the paper we will assume that only finitely many of the terms with
power n > 0 are non-zero (in reminiscence of section 5.3). Then the variations of Az is

∞

∑
n=−∞

δΛA(n)
z rn =

+∞

∑
n=−∞

(
∂zΛ(n) +

∞

∑
k=0

[
A(n−k)

z , Λ(k)
])

rn (6.26)

The fall-off for Az given in (6.22) is preserved by any Λ of the form,

Λ =
0

∑
n=−∞

Λ(n)(z)rn, (6.27)

which for Λ(0) 6= 0 are the large gauge transformations, [19].

6.2 Yang-Mills extension to all orders

Consider the following extension, which is the finite analogue of (4.37),

Γext
∞,YM := {Âα = e−ΨAαeΨ + e−Ψ∂αeΨ, Aα ∈ Γrad, Ψ =

+∞

∑
n=1

rnΨ(n)(z)}. (6.28)
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where the coefficients {Ψ(n)(z)}n≥1 are taken such that only finitely many of them are non-zero,
and α ∈ {r, z}. Now, wewill consider themost general large gauge transformations, as in (6.29),
so let us consider

Λ = Λ(0)(z) +
+∞

∑
n=1

Λ(n)(z)rn (6.29)

We will derive an expression for δΛΨ using the consistency of the gauge condition, i.e., the
extended gauge field Âα transforms as a gauge field in the extended space,

δΛÂα = D̂αΛ. (6.30)

Note that it is still sufficient to work to linear order in the transformation parameter Λ2. Then,
making use of the expression for a general derivation acting on the exponential map,

δeX = eXOX(δX), δe−X = −OX(δX)e−X (6.31)

with
OX :=

1− e−adX

adX
=

∞

∑
k=0

(−1)k

(k+1)! (adX)
k , (6.32)

where adX(Y) = [X, Y], the left hand side of (6.30) results,

lhs (6.30) = e−ΨδAαeΨ + e−ΨAαeΨOΨ(δΨ)−OΨ(δΨ)e−ΨAαeΨ

+δ (OΨ(∂αΨ)) . (6.33)

The first line is
e−Ψ

(
δAα +

[
Aα, eΨOΨ(δΨ)e−Ψ

])
eΨ, (6.34)

while the second line can be written as

e−Ψ
(

∂α

(
eΨOΨ(δΨ)e−Ψ

))
eΨ, (6.35)

using the identity [OΨ(∂αΨ),OΨ(δΨ)] = δ(OΨ(∂αΨ))− ∂α(OΨ(δΨ)). Similarly, the right hand
side of (6.30) is

rhs (6.30) = e−Ψ
(

Dα

(
eΨΛe−Ψ

))
eΨ (6.36)

Finally,

e−Ψ
(

δAα + Dα

(
eΨOΨ(δΛΨ)e−Ψ

))
eΨ = e−Ψ

(
Dα(eΨΛe−Ψ)

)
eΨ. (6.37)

This equation, as it stands, is valid everywhere. Following chapter 4, we need to write (6.37) in
the phase space variables, and prescribe the action of the variation on A(0)

z . We define the same
2In principle, we could consider these transformations to all orders in Λ, however this is not necessary for appli-

cations to soft theorems.
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transformation rule for A(0)
z as in the first term in equation (4.40), as expected:

δΛ A(0)
z = D(0)

z Λ(0) (6.38)

where the expansion of Λ is given in (6.29). The interesting part follows when considering the
variation of Ψ, which turns out to satisfy a remarkably simple constraint, at all orders in r, as
can be read off directly from (6.37), upon subtracting (6.38) in both sides:

OΨ(δΛΨ) = Λ− e−ΨΛ(0)eΨ. (6.39)

Formally, we can write
[δΛΨ](n) =

(
O−1

Ψ (Λ− e−ΨΛ(0)eΨ)
)(n)

. (6.40)

where (n) denotes the coefficient of rn in the r−expansion. We show below that the operator O
is indeed invertible, working order by order in Ψ and the transformations Λ. Let δ[m]X denote
the variation of X at order m in Ψ, and T[m] the component of order Ψm in the expression T.3
Then, in equation (6.40) we have two expansions, one in r and on in Ψ, where each equation
reads,

[
δ
[m]
Λ Ψ

](n)
=
(
O−1

Ψ (Λ− e−ΨΛ(0)eΨ)
)[m],(n)

. (6.41)

First, observe that since Ψ is of orders r1 and higher, then the equations in (6.41) are mean-
ingful only when n ≥ m, since otherwise a Ψm term would start at least at order rm.

Then, we have a natural “induction step” to solve the inverse operator both in r and in Ψ.
By the definition of OΨ we have

OΨ(δΛΨ) =
∞

∑
k=0

(−1)k

(k+1)! (adΨ)
k (δΛΨ)

=δΛΨ− 1
2
[Ψ, δΛΨ] +

1
6
[Ψ, [Ψ, δΛΨ]]− 1

24
[Ψ, [Ψ, [Ψ, δΛΨ]]] + ...,

(6.42)

Then we can invert recursively (6.39) in powers of Ψ, finding the expressions for the successive
order n inverses,

0
δ = δ[0] (6.43)
1
δ = δ[0] + δ[1] (6.44)

... =
n
δ = δ[0] + ... + δ[n] (6.45)

For [n] = 0,
δ
[0]
Λ Ψ = Λ−Λ(0) (6.46)

3This is to distinguish it from the expansion in r, which we have denoted by X(n).
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This variation is analogous to the second term in (4.39). For [n] = 1, we get

δ
[1]
Λ Ψ− 1

2
[Ψ, δ

[0]
Λ Ψ] = [Ψ, Λ(0)] (6.47)

Making use of (6.46), this becomes

δ
[1]
Λ Ψ =

1
2
[Ψ, Λ + Λ(0)] (6.48)

The equation (6.48) is the analogous to the second term in (4.40), as expected. The order 1 inverse
of (6.39) is then

1
δΨ = Λ−Λ(0) +

1
2
[Ψ, Λ + Λ(0)], (6.49)

which is analogous to the variation defined in chapter 4. Nowwe can press on to higher orders.
For example, at [n] = 2 we have

δ
[2]
Λ Ψ− 1

2
[Ψ, δ

[1]
Λ Ψ] +

1
6
[Ψ, [Ψ, δ

[0]
Λ Ψ]] = − 1

2 [Ψ, [Ψ, Λ(0)]] (6.50)

Then, plugging in (6.46) and (6.48), we get

δ
[2]
Λ Ψ =

1
12

[Ψ, [Ψ, Λ−Λ(0)]] (6.51)

This will allow us to extract the transformation of Ψ at O(r2). The rule generalises, in the sense
that if we want the transformation to order n in r, we must first construct it to at least order n
in Ψ (this follows from the fact that the expansion of Ψ starts at O(r), see (6.28)). One can then
proceed recursively and construct the transformation to all orders in Ψ and r.

The important property of this expansion in Ψ is that each term preserves the g-structure on
the variation algebra. As an example, take two O(r) LGT, let say Λ1 and Λ2. Then,

[Λ1, Λ2] = r2[Λ(1)
1 , Λ(1)

2 ] + r([Λ(1)
1 , Λ(0)

2 ] + [Λ(0)
1 , Λ(1)

2 ]) + ..., (6.52)

and we want that the variations have the correct representation on the phase space functions,

[δΛ1 , δΛ2 ]Ψ = δ[Λ1,Λ2]Ψ. (6.53)

Let us compute the variation on Ψ(2) for
1
δ:

1
δΛ1 Ψ(1) = Λ(1) + [Ψ(1), Λ(0)

1 ]

1
δΛ1 Ψ(2) = [Ψ(2), Λ(0)

1 ] +
1
2
[Ψ(1), Λ(1)

1 ]

1
δΛ2

1
δΛ1 Ψ(2) = [[Ψ(2), Λ(0)

2 ] +
1
2
[Ψ(1), Λ(1)

2 ], Λ(0)
1 ] +

1
2
[Λ(1)

2 + [Ψ(1), Λ(0)
2 ], Λ(1)

1 ]

[
1
δΛ1 ,

1
δΛ2 ]Ψ

(2) = [Λ(1)
1 , Λ(1)

2 ] +
1
2
[Ψ(1), [Λ(0)

1 , Λ(1)
2 ] + [Λ(1)

1 , Λ(0)
2 ]] + [Ψ(2), [Λ(0)

1 , Λ(0)
2 ]]
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and
1
δ[Λ1,Λ2]Ψ

(2) = [Λ(1)
1 , Λ(1)

2 ] +
1
2
[Ψ(1), [Λ1, Λ2]

(1)] + [Ψ(2), [Λ1, Λ2]
(0)], (6.54)

where [Λ1, Λ2](1) = [Λ(0)
1 , Λ(1)

2 ] + [Λ(1)
1 , Λ(0)

2 ]. Now, the term Ψ(2) and [Ψ(1), δΨ(1)] are of the
same order in r, but the latter is not seen by the order 1 inverse. Therefore, we need second order
corrections in the variation for the algebra to have the correct representation up to quadratic
order. A straightforward computation shows that the order 2 inverse of (6.39),

2
δ, satisfies indeed

the above equation for Ψ(2). The higher the order of Ψ we want to compute, the higher order
inverses we should consider to satisfy (6.53).

If we take two large gauge transformations with parameters,

Λ1 =
N1

∑
n=−∞

Λ(n)
1 rn, Λ2 =

N2

∑
n=−∞

Λ(n)
2 rn, (6.55)

then
[Λ1, Λ2] = rN1+N2 [Λ(N1)

1 , Λ(N2)
2 ] + O(rN1+N2−1). (6.56)

We solve (6.39) up to order N1 + N2, and then we have the correct algebra of variations (mod-
ulus higher orders).

This extension, then, allows us to compute the variation algebra consistently with the large
gauge transformations algebra. We hope this could provide the first step to the computation of
the subn-leading charges.

94



Outlook

In this thesis we presented the study of phase space extensions for gravity and gauge theories.
The precise contributions are the following:

• Construction of a phase space of gravity at null infinity where superrotations act canoni-
cally, chapter 1.

• The study of the GBMS group coupled to Yang-Mills large gauge symmetries, chapter 2.

• Linearized extension in Yang-Mills that contains large gauge transformations associated
to the leading and the subleading charges, chapter 4.

• Extension of the phase space in Maxwell at all order, revealing the infinite hierarchy of
subn-leading charges, chapter 5.

• Proposal for an extension to all orders in the self-dual sector of Yang-Mills, providing a
perturbative-like approach to the computation of the variation algebra, chapter 6.

In recent years, this area has been studied under the perspective of multiple fronts coming
together: asymptotic symmetries for radiative data (e.g. [5,7,9]), infrared triangle (e.g. [22,26,
27]), covariant phase space formalism (e.g. [12,39,43]) and double copymappings (e.g. [109]).
The interplay between the different approaches have come to be harmonious, complementing
each other in different parts of the problems. From a large scale perspective, understanding
the extension of (classical) phase spaces in gravity is crucial for the quantization of the theory.
Within this broad confluence of techniques and ideas, the structure of symmetries is the main
guiding star in the pursuing of a quantumgravity theory. This indicates, once again, that gravity
is a geometric theory above all else, even the adjective quantum.

The study of asymptotic symmetries has many branches currently under intense research or
still emerging in their own right. Below we put our findings in a broader context, summarizing
some of the research lines.

• The weak-strong duality between gauge theories and gravitational theories, started by the
AdS/CFT conjecture, remains to be understood for most spacetimes. Asymptotic symme-
tries are intrinsic to holography, e.g. [27, 115], and the covariant phase space formalism
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is the natural ground on which to study them. The algebraic properties in different back-
grounds and extensions, and their connection to soft theorems and the S-matrix, could in
principle led to new insights of a more general holographic correspondence with the dual
field theory.

• The problem of the phase space of compact regions in General Relativity is as old as the
theory itself. It is related to the non-locality of the energy of the gravitational field. In this
context, several attempts to obtain a symmetry group canonically realisable, e.g. [39–45,
53,54,116]. These works established the existence of the corner symmetry group, which can
be represented canonically on the gravitational phase space. The extension of the corner
symmetry group aims to includes supertranslations, which poses a series of difficulties
[46].
The asymptotic symmetries have showed to contain this extended corner symmetry, e.g.
[5, 31], and the properties of the structure of the charges has been thoroughly studied in
the past decades. The common tool between the asymptotic symmetry group and that of
finite boundaries is the covariant phase space formalism. In chapter 3 we use such tool to
understand the proposal made in [32] for the superrotation charge. A natural path that
stems from this study is regarding higher order large gauge transformations. Subsub-
leading theorems [16, 25, 33] seem to corresponde to O(r) large gauge diffeomorphisms.
It would be interesting to extend the present phase space supporting the GBMS action to
include such diffeomorphisms.

• Our work in the asymptotic structure of symmetries for YM is inspired in part from the
asymptotic symmetries in gravity. In particular, the above mentioned problem of the O(r)
large gauge diffeomorphisms.
The first order approximation presented in chapter 4 should be the realization of a higher
order symmetry algebra, at least within the tree-level theory. The first step towards this
general symmetry algebra is presented in chapter 6, wherewe provide a realization for the
algebra of variations in the Self Dual sector of the theory. In particular, it can be shown
from equation (6.51) that the second order includes linearized O(r2) gauge transforma-
tions and O(r) ones at second order. The former would be related to the (partial) sub-
subleading soft gluon factorization [48].
In this context, itwould be important tomake contactwith the “celestial” 2dCFT approach
to symmetries [100,115,117–122], which naturally incorporates higher order factorization
formulas satisfying a rich algebraic structure [90,123,124].

• The contact between gravity and gauge theories takes a particular clear form in the self-
dual sector, where the so called double copy has been proposed, see e.g. [109,110,125–128].
The basic idea is to construct a map from gravity to two copies of YM. Among the features
included in this map, symmetries would be a central part. Infinitesimal symmetries has
been included non-perturbatively in [109], while in [107] is proposed the extension to
finite transformations, defining the map also at null infinity, see chapter 6. It would be
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interesting to consider the double copy map between charges. This could in principle
bring more information regarding the higher orders symmetries in gravity.

• And since it could not be missing in a thesis on gravity, black holes are among the most
intriguing objects where applying the study of asymptotic symmetries could bring new
physics (e.g. [60, 129–135]). In particular, symmetries in the near horizon geometry for
gravity and/or fields coupled could provide insights regarding the universal properties
of the black hole entropy [135].
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Covariant Phase Space Formalism

A.1 Covariant Phase Space

In this section we will fix nomenclature. Most of the differentiable structure on the spacetime
was used in the previous chapters, but we present it here in the more general context of the jet
bundle.

A.1.1 Differentiable structure onM

M will be the spacetime n−manifold, with differentiable structure 1. The tangent bundle TM
is the set of pairs (x, v), where the tangent vectors v ∈ TxM can be decomposed in a local basis
{∂µ}, while the cotangent bundle T∗M is the set of pairs (x, ω), where ω is a 1−form, which
can be decomposed in a local co-basis {dxµ}. Vector fields are differentiable sections of TM,
denoted as Γ(TM), and one-forms are differentiable sections T∗M, denoted Γ(T∗M).

The tensorial algebra is given by the collection TM of differentiable sections in each of the
bundles TkT∗ lM for k, l ≥ 0,

TM :=
⊕

k,l≥0

Γ(TkT∗ lM). (A.1)

This algebra is graded by the tensor type (k, l), and posses a product, ⊗, such that the grades
are additive with respect to it.

We can also define a derivation on TM, by considering each tensor of type (k, l) as a differ-
entiable multilinear map from Γk(TM)× Γl(T∗M) to R. Fixed ξ ∈ Γ(TM) we can define the
interior product ιξ as the operator

ιξ : TkT∗ lM→ TkT∗ l−1M, (A.2)

(ιv(T)) (ξ1, ..., ξl−1, ω1, ..., ωk) = T(ξ, ξ1, ..., ξl−1, ω1, ..., ωk), ∀ξi ∈ Γ(TM), ωj ∈ Γ(T∗M)

(A.3)
So far, the differentiable structure ofM has only played a role in defining the sections, but

1In these first sections, for the sake of generality, we take the dimension of the base spacetime manifold to be
generic, n ≥ 2
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not the algebraic properties of TM. First, we can compare the neighbouring values of the ten-
sors by using the diffeomorphisms inM: given φ :M→M a diffeomorphism, y = φ(x) and
x two points inM, and T ∈ Γ(TkT∗ lM), the pullback φ∗ and pushforward φ∗ of a vector field
are defined as

φ∗ξ(y) = dφx(ξ(x)), φ∗ξ(x) = dφ
(−1)
y (ξ(y)) ≡ (φ−1)∗ξ(x), (A.4)

respectively (for diffeomorphisms the identity φ∗ = (φ∗)−1 holds). For one-forms, we have to
define in terms of evaluations with vector fields, so the natural definition is

φ∗ω(y) = ω ◦ φ∗(x), φ∗ω(x) = ω ◦ φ∗(y) (A.5)

This definitions extend to a general tensor,

(φ∗(T))y(ξ1(y), ..., ξl(y), ω1(y), ..., ωk(y)) = Tx(φ∗(ξ1)(x), ..., φ∗(ξl)(x), φ∗(ω1)(x), ..., φ∗(ωk)(x))
(A.6)

and analogous formula for the pushforward φ∗T.
Once that we can “transport” tensors alongM, a notion of differentiation can be defined on

the tensorial algebra: the Lie derivative. Given ξ a vector field onM, it generates a one param-
eter family of diffeomorphisms φt : M → M by writting the differential equations (in local
coordinates)

˙φt(x) |t=0= ξ(x), φ0 = idM (A.7)

Then, we define
Lξ T(x) = lim

ε→0

φ∗−εT(φε(x))− T(x)
ε

. (A.8)

Observe that both tensors in the numerator above are evaluated at the same point. Also, the Lie
derivative preserve the tensor valence.

Finally, the last ingredient in the exterior calculus is the exterior algebra. A k−form is a
totally antisymmetric k−covariant tensor. We denote by Ωk(M) the set of all the k−forms. The
exterior algebra is given by

Ω(M) :=
n

∑
k=0

Ωk(M), (A.9)

since a totally antisymmetric tensor has at most order n. The algebra structure is given by the
wedge product ∧, such that each ω ∈ Ω1(M) is Grassmann odd with respect to it,

α ∧ β = (−1)l β ∧ α, α ∈ Ωk(M), β ∈ Ωl(M) (A.10)

The exterior derivative d is a derivation in the exterior algebra defined as the unique R−linear
map d : Ωk(M)→ Ωk+1(M) that satisfies
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d f (ξ) = ξ( f ), f ∈ Ω0(M) (A.11)
d2 f = 0, f ∈ Ω0(M) (A.12)

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ, α ∈ Ωk(M), β ∈ Ωl(M) (A.13)

This map induces the De Rham exact sequence,

C∞(M) ∼= Ω0(M)→ Ω1(M)→ ...→ Ωn(M)→ 0, (A.14)

where the operator d, the exterior derivative, increases the grade of the form.
This ends the presentation of the main operators: the interior product, ι, the exterior deriva-

tive, d, and the Lie derivative. Observe that we do not use the metric at all: this structure comes
only with the manifold differentiable structure.

Derivations on the Exterior algebra

We can think about the operators L, ι and d with a more general approach: as derivations on
the graded commutative algebra Ω(M) =

⊕
k∈Z Ωk(M), (we refer the reader to [136]), where

Ωk(M) = 0 if k < 0 or k > n.
Let us denote by DerkΩ(M) the space of all graded derivations of degree k, i.e., all linear

mappings D : Ω(M) → Ω(M) with D(Ωl(M)) ⊂ Ωl+k(M) that also satisfy the graded
Leibnitz rule,

D(α ∧ β) = D(α) ∧ β + (−1)klα ∧ D(β). (A.15)

For example, given a vector field ξ, we have

Lξ ∈ Der0Ω(M), ιξ ∈ Der−1Ω(M), d ∈ Der1Ω(M), (A.16)

so the sets DerkΩ(M) are non-empty.
Then (Chapter 8, [136]), DerΩ(M) =

⊕
k∈Z DerkΩ(M) is a graded Lie algebrawith graded

commutator
[D1, D2]Der := D1 ◦ D2 − (−1)k1k2 D2 ◦ D1 (A.17)

As a remarkable consequence of the above result, we have Cartan’s magic formula, given by
the following identity (which the reader might as well memorize!),

L = [ι, d]Der, (A.18)

which, in view of the derivation graded algebra, it reads,

L = ιd + dι. (A.19)
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A.1.2 Integration and embeddings

As an application of the above formulas, consider an embedding φm : Sm →M, where Sm is an
m−manifold, m < n. Consider α ∈ Ωm(φ(Sm)). As a top form, we can integrate α on φ(Sm), or
by pulling it back to Sm, we have ∫

φ(Sm)
α =

∫
Sm

φ∗(α) (A.20)

Consider a vector field ξ on φ(Sm) such that it generates a diffeomorphismflowψt : φ(Sm)→
φ(Sm). Then, ψt ◦ φ : Sm → M is a family of embeddings. Then, we can define the function

fξ [α](t) :=
∫

ψt◦φ(Sm)
α =

∫
Sm

φ∗ψ∗t (α), (A.21)

whose derivative at t = 0 is
f ′ξ [α](0) =

∫
Sm

φ∗(Lξα). (A.22)

We can distinguish two sub cases of the formula above,

• If we integrate an exact form, dβ, then

f ′ξ(0) =
∫

Sm

φ∗(Lξdβ) =
∫

Sm

φ∗(dιξdβ) =
∫

∂Sm

φ∗∂(ιξdβ), (A.23)

where φ∂ : ∂Sm → ∂φ(Sm) is the boundary embedding.

• For a top form,

f ′ξ(0) =
∫

Sm

φ∗(Lξα) =
∫

Sm

φ∗(dιξα) =
∫

∂Sm

φ∗∂(ιξα), (A.24)

Observe that f ′ is linear in α and tensorial in ξ. This is, fixed α, the map

ξ → f ′ξ [α](0), (A.25)

can be thought as a 1−form. Let us call this 1-form χα. In particular, we can compute its exterior
derivative,

dχα(ξ1, ξ2) =
∫

Sm

φ∗(Lξ1Lξ2 α−Lξ2Lξ1 α−L[ξ1,ξ2]α) = 0 (A.26)

so is an exact form. This formula is the “horizontal” version (i.e. onM) of the second variation
formula that we will study in the next section.

A.1.3 Exterior bi-algebra in the Jet bundle

The next ingredient to construct the jet bundle is the jet space, J, which is the collection of all
the fields and their (symmetrized) derivatives 2, schematically denoted as (φ(µ)). These are the

2The derivatives are symmetrized by definition of a jet: it is the family of Taylor expansions for a set of functions
at a given point. Therefore, only take part the symmetric components ∂(µ1

...∂µk) f
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“coordinates” of the jet space.
We will denote as characteristics the sections of the tangent bundle TJ 3, to avoid confusion

with the vectors in the base manifold. We usually will use the letter q to indicate characteristics.
The dual basis for the sections of the cotangent bundle T∗J is the set {δφi

(µ)}(µ). The equation
that defines the dual vectors in finite dimensions has an analogous equation in J,

dvxµ = vµ 7→ δqφi = qi, (A.27)

which also satisfies δqφi
(µ) = ∂(µ)qi. With tangent and cotangent section we can construct

In complete analogy with the exterior algebra inM, we can define the interior product, the
exterior derivative and the Lie derivative for an exterior algebra in J.

• Interior product I: given a characteristic q, the contraction of any contravariant tensor
F ∈ TF with q is defined as the interior product,

IqF = ∑
(µ)

∂(µ)q
i ∂F
∂δφi

(µ)

, (A.28)

in analogy with ιv = vµ ∂
∂dxµ . This operator lowers the covariant valence of the tensors.

• Exterior derivative δ: Given a function F : J→ R,

δF = ∑
(µ)

δφi
(µ)

∂F
∂φi

(µ)

(A.29)

in the same fashion as d = dxµ∂µ.
In general, an abuse of notation is made when treating variations, as we did in the last two
chapters: is common to talk about {δφi

(µ)}(µ) as the variation, tangent in the field space,
and not as the basis on which we express the value of the variation. To see this, consider
the Taylor expansion of the fields at a given point x0, which is a scalar in the jet space,

φ(x0) + ξµφµ(x0) + ξµξνφ(µν)(x0) + ... (A.30)

By applying (A.29) on the real functions φµ(x0), φ(µν)(x0), ... : J → R, which is the eval-
uation of the field at the point x0, observe that,

δφ(x0) + ξµδφµ(x0) + ξµξνδφ(µν)(x0) + ..., (A.31)

where the notational abuse is already manifest: one consider the δφ as an infinitesimal
perturbation of φ,

φ→ φ + δφ. (A.32)
3We will assume that the sections are sufficiently smooth for all of our purposes. The study of differentiable struc-

tures in J is beyond the scope of this thesis.
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Finally, starting with the exterior derivative for scalar function we can construct the exte-
rior algebra in the jet space, by defining the Grassmann odd elements as {δφi

(µ)}(µ) with
the product ∧. This procedure gives us Ω1(J), Ω2(J), ....

• Lie derivative L: changes in coordinates for the jet space are transformations of the fields,
and are parametrized by the characteristics via (A.27). On the other hand, a characteristic
generates a diffeomorphism flow on the jet bundle, which can be used to define the Lie
derivative in the field space. For example, given a characteristic (remember they are the
tangent vectors)

Lqφi = qi, (A.33)

Instead of defining it through a diffeomorphism of the jet space onto itself, wewill provide
a more algebraic definition (equivalent to the one involving the flow). For any tensor
F : TF→ R the Lie derivative in field space is given by

LqF = ∑
(µ)

∂(µ)q
i ∂F
∂φi

(µ)

+ ∂(µ)δqi ∂F
∂δφi

(µ)

(A.34)

Observe that Cartan’s magic formula still holds for the field space exterior algebra, by defi-
nition of the Lie derivative

Lq = δIq + Iqδ. (A.35)

We can define DerΩ(J) in the same way we define DerΩ(M), and have the graded Lie algebra
structure on it. L, I, δ have degrees 0,−1, 1 respectively.

Finally, the jet bundle F is the set of pairs {x, φi
(µ)} where φi

(µ) ∈ J and x ∈ M. These local
coordinates give F the local trivializationM×J.

The key idea behind the jet bundle structure is to have the values of the fields along with
their derivatives, together with the basemanifold, in a unique covariant object. Operators along
M are called horizontal, such as ι,L, d, while operators alongJ are called vertical, such as I,L, δ.

This double structure that we arrive at is called bicovariant Cartan calculus. As we will see,
introducing “dynamical symmetries” allows for the horizontal and vertical operators to mix,
[39], [43], [53]. This will be more clear in the following sections.

A.1.4 Symmetries and Symplectic structure

In this section we review the definitions of symmetries in the covariant phase space formalism.
The fields that we are taking as the building blocks of J will be the solutions to the field

equations, provided some boundary conditions. Relaxing the boundary conditions imply an
enlargement of the field space, and in consequence of the jet bundle, while tighter boundary
conditions reduce the jet bundle. We denote by S the solution field space, and observe that it
is a submanifold of the field space corresponding to all the possible fields, so all the definitions
above are valid on solution space by taking the pullback via the embedding of S into J.
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The starting point in the discussion of a (classical) field theory is the Lagrangian density,
L [φ], a top form inM that depends on the field configurations, whose integral is the action,

S =
∫
M

L , L : J→ Ωn(M). (A.36)

For example, in the case of General Relativity or Yang-Mills,

L GR[g] = (R[g]− 2Λ)dµg, (A.37)

L YM[Aµ] = −1
2
Tr(F ∧ ?F), (A.38)

where R[g] is the scalar curvature of g, Λ is the cosmological constant, and F = dA A is the field
strength.

Definition A.1. We say that a characteristic tangent to J is a symmetry of a lagrangian theory,
with lagrangian L , if

LqL = dBq, (A.39)

where Bq is a (n− 1)-form. In other words, the action is invariant under the flow generated by
q in F.

The next is one of the possible definitions of gauge symmetries. Later we will see an equiv-
alent one.

Definition A.2. Given the group of symmetries for the lagrangian L , there will be a subset
that is parametrized by free spacetime functions {λi}

ng
i=1. These are the gauge symmetries of the

theory.

Symplectic potential and Symplectic form

As a scalar function S : J→ R, we can take its exterior derivative in field space,

δS = δ
∫

R
L , (A.40)

where the domain R is fixed (there is no field dependent construction on it, or, equivalently, the
embedding i : R→ M is constant with respect to the fields), so

δS =
∫

R
∑
(µ)

δφi
(µ)

∂L

∂φi
(µ)

. (A.41)

Since δφi
(µ) = ∂(µ)(δφi), for some δφi coordinate functions onF, we can integrate by parts using

Leibniz rule,
δS =

∫
R

∑
(µ)

(−1)|µ|δφi∂(µ)
∂L

∂φi
(µ)

+
∫

∂R
θ(φ), (A.42)

where θ is an (n− 1)−form inM, and a 1−form in J. We take ∂R as a spacelike or null hyper-
surface. This field space 1-form is known as presymplectic potential.
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The principle of least action, that is, that the physical solutions for the fields are given when
δS = 0, needs certain prescription for the second term integral, the boundary term. Here is
where the boundary conditions enter the field. By fixing sufficiently fast decay rates for the
fields as they approach ∂R, we can set to zero the second term and obtain the Euler-Lagrange
equations for the theory,

∑
(µ)

(−1)|µ|∂(µ)
∂L

∂φi
(µ)

= 0. (A.43)

Solving these equations provide us with the solution space, S . Observe that the least action
principle states that the field space gradient of the action vanishes, and thus the solutions are
“critical” points of the action. We often will say that a property is satisfied “on-shell” if it is
satisfied when pullbacked to the submanifold S ⊂ J.

Now we study the second term: it is a 1-form in F, which we will denote Θ[φ]. We can
compute its exterior derivative, known as the presymplectic form,

Ω := δΘ, ω := δθ (A.44)

the second equality being in the case where R is fixed. Now, since

δL = E + dθ, (A.45)

where E are the equations (A.43), we see that

0 = δ2L = δE + dδθ = δE + dω, (A.46)

and therefore on shell we have that dω = 0, which implies that the symplectic form is conserved.
We can give a more precise definition for the gauge symmetries using the presymplectic

form,

Definition A.3. Given a characteristic q, we say it generates a gauge symmetry if and only if

Ω[q1, q] = 0, ∀q ∈ Γ(TJ). (A.47)

When R is not fixed, equation A.41 is no longer true, since now we have a field-dependent
embedding ψn : R→ M, which have a non-vanishing variation, such as in the subsection A.1.2.
We will review the correct expressions for the case of Diffeomorphism covariance in general
relativity, and the gauge covariance in Yang-Mills theory.

A.1.5 Diffeomorphism covariance

Consider ξ vector field onM. As we see before, it defines a family of diffeomorphisms ψt :
M →M. This, in turn, via φi ◦ ψt, generates a curve in field space J. By taking the derivative
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with respect to t, we obtain a characteristic, denoted by ξ̂

ξ̂ :=
d
dt

φi ◦ ψt

∣∣∣∣
t=0

(A.48)

This characteristic is the associated one to the vector field ξ.

Definition A.4. Covariance and Semi-covariance under diffeomorphisms

• A general covariant theory is such that for an arbitrary field space form θ, it is satisfied,

Lξθ = Lξθ + Iδξθ (A.49)

• A semi-covariant theory is such that the variation of the lagrangian L under a diffeomor-
phism is a total derivative,

Lξ̂L = d`ξ , (A.50)

for some local function `ξ .

For a diffeomorphism covariant theory, the lagrangian L satisfies,

δξL = d(ιξL ), (A.51)

since it is a scalar in field space.
Covariance for a theory can be broken by gauge fixing or boundaries, as is the case in BMS:

by fixing Bondi gauge, we allow certain diffeomorphism to act non trivially in the solution space,
since they have non-zero charges associated. These are the so called large gauge transformations.
Nevertheless, the celestial sphere metric in I is still fixed, since δ f qab = δVqab = 0.

When taking the action of GBMS, aswe saw, the celestialmetric onI is not fixed. This imply
that the diffeomorphisms come with extra information: the embedding of some fixed metric,
say ◦qab, on the new I . In terms of the section A.1.2, when taking Lξ̂ of an integral, the domain
is moving also! The extra terms due to this behaviour prove to contain dynamical information
regarding the fields. We will explore this in the rest of this section.

A.1.6 Embedding maps

To express the field-dependence of the embeddings, take a map G : S → C∞(m ↪→ M), from
the solution space to the set of smooth embeddings φ : m ↪→ M, where m is some m−manifold,
m ≤ n.

In a field-independent case, the map is constant, and the Lie derivative L commutes with
embedding pullbacks and therefore integrations are independent of the field. But in the case
of a field-dependent embeddings, the pullback and L do not commute (see [43], [53], [45]).
Consider q a characteristic, tangent to solution space S , and denote by G∗ the pullback of the
elements in Im(G) (we abuse a little bit notation here to ease the formulas). Since q is tangent
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to S , it defines a flow Φq
t such that

d
dt

Φq
t (φ

i)

∣∣∣∣
t=0

= q(φi), φi ∈ S . (A.52)

This flow defines a flow on Im(G) ⊂ C∞(m ↪→ M), through G. Then, the exterior derivative of
G in field space, when contracted with a characteristic, gives a tangent vector on C∞(m ↪→ M),
which is a vector field on m, generating a diffeomorphism of m:

S G→ C∞(m ↪→ M)
X→ Diff(m), (A.53)

where X(φ) := ψ ◦ e−1
m , where em is some reference embedding 4. We can compute the differ-

ential of the map X ◦G evaluated on q. First, the differential of G on q is

δG[q] =
d
dt
G(Φq

t ) |t=0 . (A.54)

δ(X ◦G)[q] =
d
dt
G(Φq

t ) ◦ e−1
m

∣∣∣∣
t=0

. (A.55)

This is the differential evaluated at q, based on a general point φ in S .

Variations of integrals

Consider some α[φ] ∈ Ωm(M), a field-dependent form (such as a Lagrangian). Its integral on
the image of m by the embeddings is given by

S[α] =
∫

m
G∗α. (A.56)

We can compute the exterior Lie derivative of S : S → R, using the result in section A.1.2 and
that α depends on the fields, and arrive at the result,

LqG
∗α = G∗(Lqα + Lχ(q;G)α), (A.57)

where χ(q;G) is a vector field (analogous to ξ in (A.22)) generating an infinitesimal diffeomor-
phism on Diff(m),

χ(q;G) :=
d
dt
G(Φq

t )G(Φq
0)
−1
∣∣∣∣
t=0

, (A.58)

By formula (A.55), the above equation can be written as the Maurer-Cartan form for the em-
bedding with respect to a fixed field configuration, em, and therefore we have

χ(q;G) =: χG[q] = δ(X ◦G) ◦ (X ◦G)−1[q], (A.59)
4We are taking em

∣∣
M as equal to em to avoid extra symbols in the formulas.
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which defines a 1−form χG in F. Since (A.57) is valid for any characteristic q, we can stablish
the identity

δG∗α = G∗(δα + LχG
α), (A.60)

where the operator LχG
is a new derivation in F: it acts onM forms as a Lie derivative and

on F as an exterior derivative, and the vector on which the Lie derivative is computed is χG[q].
Thus, LχG

has degree (0, 1) in the bicovariant Cartan structure of F.
The same change in degree occur for the operator IχG

,LχG
in field space and ιχG

in base
space. The list below summarize the degrees of each operator,

Operator M J

d +1 0
δ 0 +1
ι -1 0
I 0 -1
L 0 0
L 0 0

ιχG
-1 +1

IχG
0 0

LχG
0 +1

LχG
0 +1

The graded Lie algebra structure of the derivations is still valid, and Cartan’s formula is
valid on the new operators,

LχG
= [IχG

, δ] (A.61)

Second variation formula for the embedding map

For the embeddings, we had in section A.1.2 formula (A.26), which states that χa is a closed
form. We will see that in the general case of χG, it is not closed in F.

Theorem A.1. The curvature operator associated to the Maurer-Cartan form vanishes

R[G] := δχG +
1
2
[χG, χG] = 0 (A.62)

Proof. Consider (A.60). This is a (p, 1)−form in F, in the sense that α is a p−form inM and δ

is the exterior derivation on the field space. On taking the exterior derivative of the right hand
side of (A.60), we need the formula for the exterior derivative of a general 1−form β in field
space,

(δβ)[q1, q2] = q1(β[q2])− q2(β[q1])− β[[q1, q2]], ∀q1, q2 tangents to field space. (A.63)
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Then,

0 = δ2G∗α[q1, q2] =
(
δG∗(δα + LχG

α)
)
[q1, q2], (A.64)

and therefore

0 =
(
δG∗(δα + LχG

α)
)
[q1, q2] (A.65)

= Lq1

(
G∗(Lq2 α + LχG[q2]α)

)
− Lq2

(
G∗(Lq1 α + LχG[q1]α)

)
−G∗(L[q1,q2]α + LχG[[q1,q2]]α).(A.66)

We use the identity (A.57) on each term, the first term being,

G∗
(
Lq1(Lq2 α + LχG[q2]α)−LχG[q1]((Lq2 α + LχG[q2]α))

)
(A.67)

Regrouping everything, and since G is tensorial, we can take its argument to be zero,

0 = Lq1(Lq2 α + LχG[q2]α) + LχG[q1]((Lq2 α + LχG[q2]α))− (1↔ 2) (A.68)
−L[q1,q2]α−LχG[[q1,q2]]α. (A.69)

SinceLq1Lq2 −Lq2Lq1 = L[q1,q2], the terms corresponding to δ2α vanish, as they should. Next,
we have the terms,

LχG[q1]LχG[q2]α− (1↔ 2) = L[χG[q1],χG[q2]]α, (A.70)

which in terms of forms in field space, we have

([χG, χG]Lie)[q1, q2] = [χG[q1], χG[q2]]Lie − [χG[q2], χG[q1]]Lie = 2[χG[q1], χG[q2]]Lie, (A.71)

where we explicitly write Lie under the bracket. The above equation is extremely important for
curvature formula to be valid.

Next, we have the terms

Lq1LχG[q2]α + LχG[q1]Lq2 α− (1↔ 2)−LχG[[q1,q2]]α, (A.72)

where we can use that Lq1 = L[q∨1 ] + IχG[q], where q∨1 is the vector field that generates locally a
diffeomorphism in Diff(M). Therefore, since all the function in which L is acting are field space
scalars, we have

L[q∨1 ]
LχG[q2]α + LχG[q1]L[q∨2 ]

α− (1↔ 2)−LχG[[q1,q2]]α = L[q∨1 ,χG[q2]]−[q∨2 ,χG[q1]]−χG[[q1,q2]]α. (A.73)

The vector in the last Lie derivative is exactly
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(δχG)[q1, q2] (A.74)

Finally, putting everything back together,

0 =
(
LδχG+

1
2 [χG,χG]

α
)
[q1, q2], ∀q1, q2, (A.75)

which proves (A.62).

A.2 Symplectic structure and Extensions

In this section we will construct the charges associated to the covariant phase space that we
review in the previous section, applied to the particular case of GBMS action. This section
follows the expositions in [43,45, 54, 58].

We have I + as the codimension 1 manifold where we integrate the forms. Its boundary is
the union I +

− ∪I +
+ =: ∂I . We take as the base manifold m the celestial sphere S∞ ∼= S2. A

map G : S → C∞(m×R ↪→ M) can be restricted to a map G∂I : S → C∞((m) ↪→ M) trivially.
Also, we can extend G to the bulk, Gbulk, since the subleading terms of the diffeomorphism
generators are field dependent.

A.2.1 Noether theorems and charges

Theorem A.2. Noether’s First Theorem Given a Lagrangian L defined on (M, g), there is a
bijection between (the equivalence classes of) global symmetries and (the equivalence classes
of) conserved codimension 1 forms J, known as Noether currents.

The content of this theorem states that after applying a Lie derivative of the Lagrangianwith
a characteristic ξ̂, associated to a diffeomorphism generator ξ, we have

Lξ̂L = Iξ̂δL = Iξ̂ E + Iξ̂dθ, (A.76)

with E the Euler-Lagrange set of equations in form notation. In the case of a covariant theory,

d(ιξL ) = Iξ̂ E + Iξ̂dθ, (A.77)

and therefore we have
0 = Iξ̂ E + d(Iξ̂θ − ιξL ) =: d(Sξ + jξ), (A.78)

where
jξ = Iξ̂θ − ιξL , dSξ = Iξ̂ E, (A.79)

are theNoether current and theNoether weakly vanishing current, respectively. The fact that Sξ can
be defined is the content of Noether’s Second theorem, which we will not prove here,
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Theorem A.3. Noether’s second theorem

δξφ
δL

δφ
= dSξ

[
δL
δφ

]
, (A.80)

where Sξ is the Noether weakly vanishing current.

Proof.

The idea behind this theorem is that, upon imposing the boundary condition and finding a
family of diffeomorphisms that preserve them, we can obtain identities within the equations of
motions. For example, in vacuum General Relativity, [12],

Sξ = −2(dn−1x)µ

√
−gGµνξν, (A.81)

while for Einstein-Maxwell theory ( [137]),

Sξ,λ = −2(dn−1x)µ

√
−g
(
∇νFνµ(ξρ Aρ + λ)Gµνξν

) (A.82)

For vacuum gravity, on shell we have L = 0, and E = 0, so covariance immediatly implies

jξ = Iξ̂θ. (A.83)

Observe that this is what we call charge density: is the integral of the Noether flux along I is the
charge

Hξ :=
∫

I
jξ (A.84)

The corner charges come from realizing that

djξ = 0, (A.85)

and therefore, since I is simply connected, there exists a 1-form in field space and a 2-form in
the base manifold Qξ such that

jξ = dQξ (A.86)

In relating to chapter 1, chapter 2, chapter 3, we have,

Pf := Hξ f , JV := HξV , Qλ := Hλ, (A.87)

where the last charge comes from the G−invariance in Yang-Mills. In the presence of boundary
conditions, the assumption δξ = Lξ + Iξ̂ is no longer true and appears the concept of anomaly
[45],

∆ξ := δξ −Lξ − Iδξ , (A.88)

where δξ denotes the variation of ξ due to the field dependence. This plays an important role
in chapter 3.
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A.2.2 Symplectic potential and symplectic form

We have two prescriptions regarding the extended phase space structure containing χG and
the fields φ. They are equivalent, the only difference being a boundary term in the extended
symplectic form. The first prescription, see e.g. [39], defines as the extended action the following
functional,

S[L ,G] =
∫

R
G∗bulkL [φ], (A.89)

where L [φ] is the lagranngian of the theory, depending on the fields φ. Let us start with the
first variation of the action,

δS =
∫

R
δ(G∗bulkL ), (A.90)

where R is the region enclosed by two t = cnt hypersurfaces, Σt1 , Σt2 . By (A.60), and keeping
in mind that δL = E + dθ,

δS =
∫

R
G∗bulk(E) +

∫
∂R

G∗∂R(θ + ιχG
L ). (A.91)

Then, the covariant symplectic potential is given by

θcov = θ + ιχG
L . (A.92)

The second prescription, see e.g. [43, 54, 138], defines as the extended action as follows,

S[L ,G] =
∫

R
L [G∗bulkφ], (A.93)

which, in other words, is the same as in (A.90) but L is evaluated at the dressed fields G∗bulkφ.
Now, when computing the first variation,

δS =
∫

R
E{G∗bulkφ}δG∗bulkφ +

∫
∂R

θ{δG∗∂Rφ}. (A.94)

where θ{δG∗∂Rφ} means that θ is the solution space 1−form evaluated at the variation of the
dressed field δG∗∂Rφ By (A.60), the last term is

θ{δG∗∂Rφ} = θ{G∗∂R(δφ + LχG
φ)} =

(
θ + IχG

θ
)
{G∗∂Rφ}, (A.95)

where now they are evaluated at the dressed variation of the solutions. By definitions (A.79)
and (A.86), we can have,

δS =
∫

R
G∗bulk(E) +

∫
∂R

G∗∂R(θ + ιχG
L + dQχG

), (A.96)

Then, the covariant symplectic potential is given by

θcov = θ + ιχG
L + dQχG

. (A.97)
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Observe that the difference between (A.92) and (A.97) is the boundary term

dQχG
. (A.98)

This ambiguity can be partially fixed by imposing that θcov do annihilate infinitesimal diffeo-
morphisms [138]. We will use the second prescription to relate our results in chapter 1 with
those in the literature regarding extended corner symmetries, e.g. [45, 46, 54].

Let us now proceed with the computation of the symplectic form on I +. By defining

Θt
cov :=

∫
Σt

G∗I (θ + ιχG
L + dQχG

), (A.99)

we have a symplectic potential on each Cauchy surface. In particular, the limit t→ +∞ at fixed
u allows us to take Σt → I +. As it was shown in [31] for the gravity case, the limit can be
taken upon certain renormalization procedure, adding counter terms to cancel the divergences.
Then, we can take the limit and integrate on I , by taking the pull back with GI ,

Θcov :=
∫

m×R
G∗I (θ + ιχG

L + dQχG
) =

∫
m×R

G∗I (θ + ιχG
L + QχG

), (A.100)

Assuming we have a well defined Θcov,

Ωcov :=
∫

I
δG∗I (θ + ιχG

L ), (A.101)

which by (A.60),

Ωcov :=
∫

I
G∗I

(
δ(θ + ιχG

L + dQχG
) + LχG

(θ + ιχG
L + dQχG

)
)

, (A.102)

which, through (A.62), can be show to be [53], [43],

Ωcov :=
∫

I
G∗I (δθ) +

∫
∂I

G∗
(

ιχG
θ +

1
2

ιχG
ιχG

L + δQχG
+ LχG

QχG

)
, (A.103)

In the gravity case, on solutions we have L = 0, so we have

Ωgrav
cov :=

∫
I
G∗I (δθgrav) +

∫
∂I

G∗(ιχG
θgrav + δQχG

+ LχG
QχG

), (A.104)

A.2.3 Iyer-Wald charges

In [137], after renormalizing the symplectic potential on a segment on I , they computed the
Iyer-Wald charge, given by the following covariant phase space theorem, [139],

Theorem A.4. Fundamental theorem of covariant phase space formalism
By contracting ω with δξ , there exists a unique (up to total derivatives) (n− 2, 1)−form kξ

that satisfies
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Iδξ
ω = dkξ . (A.105)

In terms of the Noether charge, we have

kξ = δQξ −Qδξ − ιξθ + d(·). (A.106)

We call the form k the Iyer-Wald codimension 2 form associated to ξ.

Proof.

We arrive at the identity

/δ Hξ =
∫

∂Σ
kξ (A.107)

which defines the Iyer-Wald surface charge.

A.2.4 Integrability and Poisson algebra

Starting from the expression (A.106), we see two possible sources of non-integrability,

• Field-dependence: the term Qδξ contains the charge associated to the infinitesimal diffeo-
morphism generator δξ, which in general will not be vanishing, do to the fact that we are
fixing boundary conditions. The introduction of correcting field-dependent diffeomor-
phism that cancel this term has been studied in the past years (e.g. [140], [132], [78]).

• Symplectic flux: the term ιξθ implies

δ
∫

∂Σ
kξ = −

∫
∂Σ

ιξω, (A.108)

and therefore we have the obstruction given by the symplectic flux at the boundary. This
is known as the leaky boundary conditions, where some amount of the charges pervades
through the boundary.

Leaky boundary conditions ( [58]) can be split into two categories: Kinematical and Dy-
namical. The kinematical part of the flux ιξω affects the changes the intrinsic boundary degrees
of freedom, such as the celestial 2-metric qab, while the radiative degrees of freedom remains
fixed. Such is the case of 3d-gravity, where the Weyl tensor vanishes (and therefore no gravi-
tons are present) but the asymptotic diffeomorphisms can change the leading order of the met-
ric [79, 141–145].

In the case of general relativity, the dynamical part of the flux ιξω is the responsible for the
change in the Weyl tensor. We show now see how the embedding map formulation allow us to
restore the integrability of the charges, using the first prescription, (A.90) (since it differ by a
boundary term with respect to (A.93), the integrability result will be the same).
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In gravity, the lagrangian vanishes on-shell (since it is proportional to the scalar curvature)
and therefore Noether charge for a field-independent diffeomorphism generator ξ is

dQξ = Iξ̂θ, (A.109)

therefore,
Iξ̂Ωgrav = Iξ̂

(∫
I
G∗I (δθgrav)

)
=
∫

I
G∗I (dιξθgrav − δdQξ). (A.110)

We see that we have an integrable term and a non-integrable term, whichwe canwrite schemat-
ically as

/δ Hξ = ιξθ − δQξ . (A.111)

If we add the boundary term G∗(ιχG
θgrav) from (A.104), and compute its contraction with ξ̂,

Iξ̂

(∫
∂I

G∗(ιχG
θgrav)

)
=
∫

I
G∗(ιχG[ξ̂]

θgrav − ιχG
θgrav[ξ̂]) (A.112)

Observe that χG[ξ̂] = −ξ, since is (minus) the generator of the diffeomorphism on the surface
(∂I ), and

ιχG
θgrav[ξ̂] = ιχG

dQξ . (A.113)

Then,
Iξ̂Ωgrav

cov =
∫

I
G∗I (dιξθgrav − δdQξ) +

∫
∂I

G∗(−ιξθgrav − ιχG
dQξ) (A.114)

which, by virtue of (A.60) applied to Qξ ,

Iξ̂Ωgrav
cov = −δ

∫
I
G∗I (dQξ). (A.115)

Then, when considering the corner contribution, the charges are integrable.
Finally, [53], one can show that using Ωgrav

cov the charges are canonically represented,

{Hξ1 , Hξ2} = H[ξ1,ξ2] (A.116)

115



Bibliography

[1] Emmy Noether. Invariant variation problems. Transport Theory and Statistical Physics,
1(3):186–207, jan 1971.

[2] Roger Penrose. Asymptotic properties of fields and space-times. Phys. Rev. Lett., 10:66–68,
1963.

[3] A. Ashtekar. Quantization of the Radiative Modes of the Gravitational Field. In Oxford
Conference on Quantum Gravity, 1980.

[4] A. Ashtekar and M. Streubel. Symplectic Geometry of Radiative Modes and Conserved
Quantities at Null Infinity. Proc. Roy. Soc. Lond. A, 376:585–607, 1981.

[5] A. Ashtekar. Radiative Degrees of Freedom of the Gravitational Field in Exact General
Relativity. J. Math. Phys., 22:2885–2895, 1981.

[6] A. Ashtekar. Asymptotic Quantization of the Gravitational Field. Phys. Rev. Lett., 46:573–
576, 1981.

[7] H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner. Gravitational waves in general
relativity. 7.Waves from axisymmetric isolated systems. Proc. Roy. Soc. Lond. A, 269:21–52,
1962.

[8] R. K. Sachs. Gravitational waves in general relativity. 8. Waves in asymptotically flat
space-times. Proc. Roy. Soc. Lond. A, 270:103–126, 1962.

[9] R. Sachs. Asymptotic symmetries in gravitational theory. Physical Review, 128(6):2851–
2864, dec 1962.

[10] Glenn Barnich, Friedemann Brandt, andMarc Henneaux. Local BRST cohomology in the
antifield formalism. 1. General theorems. Commun. Math. Phys., 174:57–92, 1995.

[11] Miguel Campiglia and Rodrigo Eyheralde. Asymptotic U(1) charges at spatial infinity.
JHEP, 11:168, 2017.

[12] Vivek Iyer and Robert M. Wald. Some properties of Noether charge and a proposal for
dynamical black hole entropy. Phys. Rev. D, 50:846–864, 1994.

[13] Andrew Strominger. On BMS Invariance of Gravitational Scattering. JHEP, 07:152, 2014.

116



Chapter A

[14] Steven Weinberg. Infrared photons and gravitons. Phys. Rev., 140:B516–B524, 1965.

[15] F. E. Low. Bremsstrahlung of very low-energy quanta in elementary particle collisions.
Phys. Rev., 110:974–977, 1958.

[16] Freddy Cachazo and Andrew Strominger. Evidence for a New Soft Graviton Theorem. .,
4 2014.

[17] Temple He, Vyacheslav Lysov, Prahar Mitra, and Andrew Strominger. BMS supertrans-
lations and Weinberg’s soft graviton theorem. JHEP, 05:151, 2015.

[18] Temple He, Prahar Mitra, Achilleas P. Porfyriadis, and Andrew Strominger. New Sym-
metries of Massless QED. JHEP, 10:112, 2014.

[19] Andrew Strominger. Asymptotic Symmetries of Yang-Mills Theory. JHEP, 07:151, 2014.

[20] Vyacheslav Lysov, Sabrina Pasterski, and Andrew Strominger. Low’s Subleading Soft
Theorem as a Symmetry of QED. Phys. Rev. Lett., 113(11):111601, 2014.

[21] Miguel Campiglia and Alok Laddha. Asymptotic symmetries and subleading soft gravi-
ton theorem. Phys. Rev. D, 90(12):124028, 2014.

[22] Miguel Campiglia and Alok Laddha. New symmetries for the Gravitational S-matrix.
JHEP, 04:076, 2015.

[23] Miguel Campiglia and Alok Laddha. Asymptotic symmetries of QED and Weinberg’s
soft photon theorem. JHEP, 07:115, 2015.

[24] Miguel Campiglia and Alok Laddha. Subleading soft photons and large gauge transfor-
mations. JHEP, 11:012, 2016.

[25] Miguel Campiglia and Alok Laddha. Sub-subleading soft gravitons: New symmetries of
quantum gravity? Phys. Lett. B, 764:218–221, 2017.

[26] Andrew Strominger. Lectures on the Infrared Structure of Gravity and Gauge Theory. .,
3 2017.

[27] Sabrina Pasterski. Implications of Superrotations. Phys. Rept., 829:1–35, 2019.

[28] Laurent Freidel, Daniele Pranzetti, and Ana-Maria Raclariu. Sub-subleading soft gravi-
ton theorem from asymptotic Einstein’s equations. JHEP, 05:186, 2022.

[29] Glenn Barnich and Cedric Troessaert. BMS charge algebra. JHEP, 12:105, 2011.

[30] Daniel Kapec, Vyacheslav Lysov, Sabrina Pasterski, and Andrew Strominger. Semiclassi-
cal Virasoro symmetry of the quantum gravity S-matrix. JHEP, 08:058, 2014.

[31] Geoffrey Compère, Adrien Fiorucci, and Romain Ruzziconi. Superboost transitions, re-
fraction memory and super-Lorentz charge algebra. JHEP, 11:200, 2018. [Erratum: JHEP
04, 172 (2020)].

117



Chapter A

[32] Miguel Campiglia and Javier Peraza. Generalized BMS charge algebra. Phys. Rev. D,
101(10):104039, 2020.

[33] Miguel Campiglia and Alok Laddha. Sub-subleading soft gravitons and large diffeomor-
phisms. JHEP, 01:036, 2017.

[34] Tullio Regge and Claudio Teitelboim. Role of Surface Integrals in the Hamiltonian For-
mulation of General Relativity. Annals Phys., 88:286, 1974.

[35] J. David Brown and M. Henneaux. Central Charges in the Canonical Realization of
Asymptotic Symmetries: An Example from Three-Dimensional Gravity. Commun. Math.
Phys., 104:207–226, 1986.

[36] Oscar Fuentealba, Marc Henneaux, Javier Matulich, and Cédric Troessaert. Bondi-
Metzner-SachsGroup in Five SpacetimeDimensions. Phys. Rev. Lett., 128(5):051103, 2022.

[37] Abhay Ashtekar, Luca Bombelli, and Oscar Reula. The covariant phase space of asym-
potitcally flat gravitational fields. 5 1990.

[38] Robert M. Wald. Black hole entropy is the Noether charge. Phys. Rev. D, 48(8):R3427–
R3431, 1993.

[39] William Donnelly and Laurent Freidel. Local subsystems in gauge theory and gravity.
JHEP, 09:102, 2016.

[40] Laurent Freidel,MarcGeiller, andDaniele Pranzetti. Edgemodes of gravity. Part I. Corner
potentials and charges. JHEP, 11:026, 2020.

[41] Laurent Freidel, Marc Geiller, and Daniele Pranzetti. Edge modes of gravity. Part II. Cor-
ner metric and Lorentz charges. JHEP, 11:027, 2020.

[42] Laurent Freidel, Marc Geiller, and Daniele Pranzetti. Edge modes of gravity. Part III.
Corner simplicity constraints. JHEP, 01:100, 2021.

[43] Antony J. Speranza. Local phase space and edge modes for diffeomorphism-invariant
theories. JHEP, 02:021, 2018.

[44] Luca Ciambelli and Robert G. Leigh. Isolated surfaces and symmetries of gravity. Phys.
Rev. D, 104(4):046005, 2021.

[45] Laurent Freidel, Roberto Oliveri, Daniele Pranzetti, and Simone Speziale. Extended cor-
ner symmetry, charge bracket and Einstein’s equations. JHEP, 09:083, 2021.

[46] Laurent Freidel. A canonical bracket for open gravitational system. ., 11 2021.

[47] Marc Geiller and Céline Zwikel. The partial Bondi gauge: Further enlarging the asymp-
totic structure of gravity. 5 2022.

118



Chapter A

[48] Yuta Hamada and Gary Shiu. Infinite Set of Soft Theorems in Gauge-Gravity Theories as
Ward-Takahashi Identities. Phys. Rev. Lett., 120(20):201601, 2018.

[49] Zhi-ZhongLi, Hung-HwaLin, and Shun-QingZhang. Infinite Soft Theorems fromGauge
Symmetry. Phys. Rev. D, 98(4):045004, 2018.

[50] Miguel Campiglia and Alok Laddha. Asymptotic charges in massless QED revisited: A
view from Spatial Infinity. JHEP, 05:207, 2019.

[51] Ali Seraj. Multipole charge conservation and implications on electromagnetic radiation.
JHEP, 06:080, 2017.

[52] Geoffrey Compère, R. Oliveri, and A. Seraj. Gravitational multipole moments from
Noether charges. JHEP, 05:054, 2018.

[53] Luca Ciambelli, Robert G. Leigh, and Pin-Chun Pai. Embeddings and Integrable Charges
for Extended Corner Symmetry. Phys. Rev. Lett., 128, 2022.

[54] Antony J. Speranza. Ambiguity resolution for integrable gravitational charges. JHEP,
07:029, 2022.

[55] Glenn Barnich and Cedric Troessaert. Aspects of the BMS/CFT correspondence. JHEP,
05:062, 2010.

[56] B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger.
Phys. Rev. Lett., 116(6):061102, 2016.

[57] S J Fletcher and AW C Lun. The kerr spacetime in generalized bondi–sachs coordinates.
Classical and Quantum Gravity, 20(19):4153, sep 2003.

[58] Adrien Fiorucci. Leaky covariant phase spaces: Theory and application to Λ-BMS symmetry.
PhD thesis, Brussels U., Intl. Solvay Inst., Brussels, 2021.

[59] Glenn Barnich, Cédric Troessaert, David Tempo, and Ricardo Troncoso. Asymptotically
locally flat spacetimes and dynamical nonspherically-symmetric black holes in three di-
mensions. Phys. Rev. D, 93(8):084001, 2016.

[60] Stephen W. Hawking, Malcolm J. Perry, and Andrew Strominger. Superrotation Charge
and Supertranslation Hair on Black Holes. JHEP, 05:161, 2017.

[61] Éanna É. Flanagan and David A. Nichols. Conserved charges of the extended Bondi-
Metzner-Sachs algebra. Phys. Rev. D, 95(4):044002, 2017.

[62] Robert M. Wald. General Relativity. Chicago Univ. Pr., Chicago, USA, 1984.

[63] Glenn Barnich and Cedric Troessaert. Symmetries of asymptotically flat 4 dimensional
spacetimes at null infinity revisited. Phys. Rev. Lett., 105:111103, 2010.

119



Chapter A

[64] Johannes Broedel, Marius de Leeuw, Jan Plefka, and Matteo Rosso. Constraining sub-
leading soft gluon and graviton theorems. Phys. Rev. D, 90(6):065024, 2014.

[65] Zvi Bern, Scott Davies, PaoloDi Vecchia, and JoshNohle. Low-Energy Behavior of Gluons
and Gravitons from Gauge Invariance. Phys. Rev. D, 90(8):084035, 2014.

[66] Abhay Ashtekar. Geometry and Physics of Null Infinity. ., 9 2014.

[67] Alok Laddha and Prahar Mitra. Asymptotic Symmetries and Subleading Soft Photon
Theorem in Effective Field Theories. JHEP, 05:132, 2018.

[68] Biswajit Sahoo and Ashoke Sen. Classical and Quantum Results on Logarithmic Terms
in the Soft Theorem in Four Dimensions. JHEP, 02:086, 2019.

[69] Robert P. Geroch. Asymptotic structure of space-time. ., 1977.

[70] Pierre-Henry Lambert. Conformal symmetries of gravity from asymptotic methods, further
developments. PhD thesis, U. Brussels, Brussels U., 2014.

[71] A. I. Janis and E. T. Newman. Structure of Gravitational Sources. J. Math. Phys., 6:902–914,
1965.

[72] A. R. Exton, E. T. Newman, and R. Penrose. Conserved quantities in the Einstein-Maxwell
theory. J. Math. Phys., 10:1566–1570, 1969.

[73] Miguel Campiglia and Javier Peraza. Charge algebra for non-abelian large gauge sym-
metries at O(r). JHEP, 12:058, 2021.

[74] Ian M Anderson. Introduction to the variational bicomplex. ., 1992.

[75] Arthur Komar. Positive-definite energy density and global consequences for general rel-
ativity. Phys. Rev., 129:1873–1876, Feb 1963.

[76] James M. Bardeen, B. Carter, and S. W. Hawking. The Four laws of black hole mechanics.
Commun. Math. Phys., 31:161–170, 1973.

[77] Ted Jacobson. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev.
Lett., 75:1260–1263, 1995.

[78] Glenn Barnich and Geoffrey Compere. Surface charge algebra in gauge theories and ther-
modynamic integrability. J. Math. Phys., 49:042901, 2008.

[79] J. David Brown and M. Henneaux. On the Poisson Brackets of Differentiable Generators
in Classical Field Theory. J. Math. Phys., 27:489–491, 1986.

[80] Éanna É. Flanagan, Kartik Prabhu, and Ibrahim Shehzad. Extensions of the asymptotic
symmetry algebra of general relativity. JHEP, 01:002, 2020.

120



Chapter A

[81] Florian Hopfmüller and Laurent Freidel. Null Conservation Laws for Gravity. Phys. Rev.
D, 97(12):124029, 2018.

[82] Daniel Harlow and Jie-QiangWu. Covariant phase space with boundaries. JHEP, 10:146,
2020.

[83] Venkatesa Chandrasekaran and Antony J. Speranza. Anomalies in gravitational charge
algebras of null boundaries and black hole entropy. JHEP, 01:137, 2021.

[84] Temple He and Prahar Mitra. Asymptotic symmetries in (d + 2)-dimensional gauge
theories. JHEP, 10:277, 2019.

[85] A. P. Balachandran and S. Vaidya. Spontaneous Lorentz Violation in Gauge Theories. Eur.
Phys. J. Plus, 128:118, 2013.

[86] Riccardo Gonzo, Tristan Mc Loughlin, Diego Medrano, and Anne Spiering. Asymptotic
charges and coherent states in QCD. Phys. Rev. D, 104(2):025019, 2021.

[87] A. H. Anupam and Athira P. V. Generalized coherent states in QCD from asymptotic
symmetries. Phys. Rev. D, 101(6):066010, 2020.

[88] Temple He and Prahar Mitra. Covariant Phase Space and Soft Factorization in Non-
Abelian Gauge Theories. JHEP, 03:015, 2021.

[89] Roberto Tanzi and Domenico Giulini. Asymptotic symmetries of Yang-Mills fields in
Hamiltonian formulation. JHEP, 10:094, 2020.

[90] Alfredo Guevara, Elizabeth Himwich, Monica Pate, and Andrew Strominger. Holo-
graphic symmetry algebras for gauge theory and gravity. JHEP, 11:152, 2021.

[91] Andrew Strominger. w(1+infinity) and the Celestial Sphere. 5 2021.

[92] Glenn Barnich and Pierre-Henry Lambert. Einstein-Yang-Mills theory: Asymptotic sym-
metries. Phys. Rev. D, 88:103006, 2013.

[93] Eduardo Casali. Soft sub-leading divergences in Yang-Mills amplitudes. JHEP, 08:077,
2014.

[94] E. C. G. Stueckelberg. Interaction energy in electrodynamics and in the field theory of
nuclear forces. Helv. Phys. Acta, 11:225–244, 1938.

[95] Silvia Nagy, Antonio Padilla, and Ivonne Zavala. The Super-Stückelberg procedure and
dS in pure supergravity. Proc. Roy. Soc. Lond. A, 476(2237):20200035, 2020.

[96] Laurent Freidel, Florian Hopfmüller, and Aldo Riello. Asymptotic Renormalization in
Flat Space: Symplectic Potential and Charges of Electromagnetism. JHEP, 10:126, 2019.

[97] Stanley Deser and C. Teitelboim. Duality Transformations of Abelian and Nonabelian
Gauge Fields. Phys. Rev. D, 13:1592–1597, 1976.

121



Chapter A

[98] Daniel Kapec and Prahar Mitra. Shadows and soft exchange in celestial CFT. Phys. Rev.
D, 105(2):026009, 2022.

[99] F. E. Low. Scattering of light of very low frequency by systems of spin 1/2. Phys. Rev.,
96:1428–1432, 1954.

[100] Sabrina Pasterski. Lectures on celestial amplitudes. Eur. Phys. J. C, 81(12):1062, 2021.

[101] Alfredo Guevara. Celestial OPE blocks. 8 2021.

[102] Oscar Fuentealba, Marc Henneaux, and Cédric Troessaert. A note on the asymptotic
symmetries of electromagnetism. 1 2023.

[103] Laurent Freidel and Daniele Pranzetti. Electromagnetic duality and central charge. Phys.
Rev. D, 98(11):116008, 2018.

[104] V. Hosseinzadeh, A. Seraj, andM.M. Sheikh-Jabbari. Soft Charges and Electric-Magnetic
Duality. JHEP, 08:102, 2018.

[105] Laura Donnay, Sabrina Pasterski, and Andrea Puhm. Asymptotic Symmetries and Celes-
tial CFT. JHEP, 09:176, 2020.

[106] Marc Geiller, Puttarak Jai-akson, Abdulmajid Osumanu, and Daniele Pranzetti. Electro-
magnetic duality and central charge from first order formulation. ., 7 2021.

[107] Silvia Nagy and Javier Peraza. work in progress. 2022.

[108] L. J. Mason and N. M. J. Woodhouse. Integrability, selfduality, and twistor theory. 1991.

[109] Miguel Campiglia and Silvia Nagy. A double copy for asymptotic symmetries in the self-
dual sector. JHEP, 03:262, 2021.

[110] Ricardo Monteiro and Donal O’Connell. The Kinematic Algebra From the Self-Dual Sec-
tor. JHEP, 07:007, 2011.

[111] Bernardo Araneda. On self-dual Yang–Mills fields on special complex surfaces. J. Math.
Phys., 63(5):052501, 2022.

[112] Daniel Cangemi. Selfdual Yang-Mills theory and one loop like - helicity QCD multi -
gluon amplitudes. Nucl. Phys. B, 484:521–537, 1997.

[113] G. Chalmers andW. Siegel. The Selfdual sector of QCD amplitudes. Phys. Rev. D, 54:7628–
7633, 1996.

[114] J. F. Plebanski. Some solutions of complex Einstein equations. J. Math. Phys., 16:2395–
2402, 1975.

[115] Ana-Maria Raclariu. Lectures on Celestial Holography. 7 2021.

122



Chapter A

[116] Luca Ciambelli and Robert G. Leigh. Universal Corner Symmetry and the Orbit Method
for Gravity. ., 7 2022.

[117] Clifford Cheung, Anton de la Fuente, and Raman Sundrum. 4D scattering amplitudes
and asymptotic symmetries from 2D CFT. JHEP, 01:112, 2017.

[118] Anjalika Nande, Monica Pate, and Andrew Strominger. Soft Factorization in QED from
2D Kac-Moody Symmetry. JHEP, 02:079, 2018.

[119] Temple He, Prahar Mitra, and Andrew Strominger. 2D Kac-Moody Symmetry of 4D
Yang-Mills Theory. JHEP, 10:137, 2016.

[120] Elizabeth Himwich and Andrew Strominger. Celestial current algebra from Low’s sub-
leading soft theorem. Phys. Rev. D, 100(6):065001, 2019.

[121] Wei Fan, Angelos Fotopoulos, and Tomasz R. Taylor. Soft Limits of Yang-Mills Ampli-
tudes and Conformal Correlators. JHEP, 05:121, 2019.

[122] Nikhil Kalyanapuram. Infrared and Holographic Aspects of the S-Matrix in Gauge The-
ory and Gravity. 7 2021.

[123] Laurent Freidel, Daniele Pranzetti, and Ana-Maria Raclariu. Higher spin dynamics in
gravity and w1+∞ celestial symmetries. Phys. Rev. D, 106(8):086013, 2022.

[124] Hongliang Jiang. Holographic chiral algebra: supersymmetry, infinite Ward identities,
and EFTs. JHEP, 01:113, 2022.

[125] Erick Chacón, Hugo García-Compeán, Andrés Luna, Ricardo Monteiro, and Chris D.
White. New heavenly double copies. JHEP, 03:247, 2021.

[126] RutgerH. Boels, Reinke Sven Isermann, RicardoMonteiro, andDonal O’Connell. Colour-
Kinematics Duality for One-Loop Rational Amplitudes. JHEP, 04:107, 2013.

[127] Song He, Ricardo Monteiro, and Oliver Schlotterer. String-inspired BCJ numerators for
one-loop MHV amplitudes. JHEP, 01:171, 2016.

[128] Erick Chacón, SilviaNagy, andChris D.White. TheWeyl double copy from twistor space.
JHEP, 05:2239, 2021.

[129] Stephen W. Hawking, Malcolm J. Perry, and Andrew Strominger. Soft Hair on Black
Holes. Phys. Rev. Lett., 116(23):231301, 2016.

[130] SashaHaco, StephenW.Hawking, Malcolm J. Perry, andAndrew Strominger. BlackHole
Entropy and Soft Hair. JHEP, 12:098, 2018.

[131] Geoffrey Compère, Roberto Oliveri, and Ali Seraj. The Poincaré and BMS flux-balance
laws with application to binary systems. JHEP, 10:116, 2020.

123



Chapter A

[132] Daniel Grumiller, Alfredo Pérez, M. M. Sheikh-Jabbari, Ricardo Troncoso, and Céline
Zwikel. Spacetime structure near generic horizons and soft hair. Phys. Rev. Lett.,
124(4):041601, 2020.

[133] Laura Donnay and Charles Marteau. Carrollian Physics at the Black Hole Horizon. Class.
Quant. Grav., 36(16):165002, 2019.

[134] Laura Donnay, GastonGiribet, HernánA. González, andAndrea Puhm. Black holemem-
ory effect. Phys. Rev. D, 98(12):124016, 2018.

[135] S. Carlip. BlackHole Entropy fromBondi-Metzner-Sachs Symmetry at theHorizon. Phys.
Rev. Lett., 120(10):101301, 2018.

[136] Kolář, Ivan and Ivan, andMichor, Peter and Slovák, Jan and Jeník, Jan. Natural Operations
in Differential Geometry. ., 09 1996.

[137] Geoffrey Compère and Adrien Fiorucci. Advanced Lectures on General Relativity. ., 1
2018.

[138] Marc Geiller. Edge modes and corner ambiguities in 3d Chern–Simons theory and grav-
ity. Nucl. Phys. B, 924:312–365, 2017.

[139] J. Lee and Robert M. Wald. Local symmetries and constraints. J. Math. Phys., 31:725–743,
1990.

[140] Romain Ruzziconi and Céline Zwikel. Conservation and Integrability in Lower-
Dimensional Gravity. JHEP, 04:034, 2021.

[141] Marc Henneaux and Cédric Troessaert. BMS Group at Spatial Infinity: the Hamiltonian
(ADM) approach. JHEP, 03:147, 2018.

[142] Geoffrey Compère and Adrien Fiorucci. Asymptotically flat spacetimes with BMS3 sym-
metry. Class. Quant. Grav., 34(20):204002, 2017.

[143] Oscar Fuentealba, Hernán A. González, Alfredo Pérez, David Tempo, and Ricardo Tron-
coso. Superconformal Bondi-Metzner-Sachs Algebra in Three Dimensions. Phys. Rev.
Lett., 126(9):091602, 2021.

[144] Oscar Fuentealba, Javier Matulich, Alfredo Pérez, Miguel Pino, Pablo Rodríguez, David
Tempo, and Ricardo Troncoso. Integrable systems with BMS3 Poisson structure and the
dynamics of locally flat spacetimes. JHEP, 01:148, 2018.

[145] Oscar Fuentealba, Javier Matulich, and Ricardo Troncoso. Asymptotically flat structure
of hypergravity in three spacetime dimensions. JHEP, 10:009, 2015.

124


	Introduction
	0 Introduction
	0.1 Introduction
	0.2 Original contributions
	0.3 Conventions

	I General Relativity
	1 Asymptotic symmetries in gravity
	1.1 Bondi coordinates
	1.2 Residual Gauge Transformations
	1.3 Solution space
	1.3.1 Boundary conditions
	1.3.2 Solution space

	1.4 Asymptotic symmetries
	1.4.1 BMS action review
	1.4.2 Generalizations of BMS

	1.5 Phase space structure on SGBMS
	1.5.1 Radiative phase space
	1.5.2 Decays in u  for SGBMS
	1.5.3 Finite action of Diff(S2)
	1.5.4 Diff(S2)-covariant derivative
	1.5.5 Phase space

	1.6 Charge Algebra
	1.6.1 GBMS charges


	1.7 Symplectic form
	2 Asymptotic symmetries in Einstein-Yang-Mills theory
	2.1 Asymptotic structure
	2.1.1 Symmetries of EYM
	2.1.2 Gauge fixing and residual gauge transformations
	2.1.3 Solution Space and Phase space
	2.1.4 Asymptotic symmetries algebra

	2.2 Charges
	2.2.1 {Q, JV }
	2.2.2 {Q, Pf }
	2.2.3 Closure of JVYM and PfYM

	2.3 Symplectic form

	3 Relations with the Covariant Phase Space Extensions
	3.1 Motivation
	3.2 Charges in General Relativity
	3.2.1 Noether Charges
	3.2.2 Iyer-Wald Charges
	3.2.3 Embedding Maps

	3.3 Ashtekar-Streubel/Barnich-Troessaert charge computation
	3.4 Compère-Fiorucci-Ruzziconi charge computation
	3.5 GBMS computation - Review

	II Phase space extensions in Gauge Theories
	4 Subleading charges and O(r) extensions in Yang Mills
	4.1 Radiative phase spaces
	4.2 YM field near null infinity
	4.2.1 Residual large gauge symmetries
	4.2.2 Review of known asymptotic charges

	4.3 Extended phase space and O(r) charge algebra
	4.3.1 Extended space and O(r) variation algebra
	4.3.2 Conditions on O(r) asymptotic charges
	4.3.3 Q1
	4.3.4 Q0
	4.3.5 Extended symplectic form and charge algebra


	5 Infinite hierarchy of asymptotic charges in Electrodynamics
	5.1 Preliminaries
	5.1.1 Radiative phase space
	5.1.2 u-expansions for fields
	5.1.3 Variation space
	5.1.4 Higher order LGT

	5.2 Leading and Subleading charges
	5.2.1 Linearly extended phase space
	5.2.2 Calculation of leading and subleading charges

	5.3 Tower of asymptotic charges
	5.3.1 Extended phase space and charges
	5.3.2 Regularization procedure
	5.3.3 Electric-like charge algebra

	5.4 Duality extension of tower of asymptotic charges
	5.4.1 Charges and dual charges and their algebra


	6 Extension to all orders in r for SD Yang-Mills
	6.1 Light-cone gauge in the self-dual sectors of YM and gravity
	6.1.1 Self-Dual Yang-Mills
	6.1.2 Phase space for SDYM and fields near infinity

	6.2 Yang-Mills extension to all orders

	7 Outlook
	A Covariant Phase Space Formalism
	A.1 Covariant Phase Space
	A.1.1 Differentiable structure on M
	A.1.2 Integration and embeddings
	A.1.3 Exterior bi-algebra in the Jet bundle
	A.1.4 Symmetries and Symplectic structure
	A.1.5 Diffeomorphism covariance
	A.1.6 Embedding maps

	A.2 Symplectic structure and Extensions
	A.2.1 Noether theorems and charges
	A.2.2 Symplectic potential and symplectic form
	A.2.3 Iyer-Wald charges
	A.2.4 Integrability and Poisson algebra







