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Abstract. Numerical Linear Algebra (NLA) is a research �eld that in
the last decades has been characterized by the use of kernel libraries
that are de facto standards. One of the most remarkable examples, in
particular in the HPC �eld, is the Basic Linear Algebra Subroutines
(BLAS). Most BLAS operations are fundamental in multiple scienti�c
algorithms because they generally constitute the most computationally
expensive stage. For this reason, numerous e�orts have been made to op-
timize such operations on various hardware platforms. There is a grow-
ing concern in the high-performance computing world about power con-
sumption, making energy e�ciency an extremely important quality when
evaluating hardware platforms. Due to their greater energy e�ciency,
Field-Programmable Gate Arrays (FPGAs) are available today as an in-
teresting alternative to other hardware platforms for the acceleration of
this type of operation. Our study focuses on the evaluation of FPGAs
to address dense NLA operations. Speci�cally, in this work we explore
and evaluate the available options for two of the most representative ker-
nels of BLAS, i.e. GEMV and GEMM. The experimental evaluation
is carried out in an Alveo U50 accelerator card from Xilinx and an In-
tel Xeon Silver multicore CPU. Our �ndings show that even in kernels
where the CPU reaches better runtimes, the FPGA counterpart is more
energy e�cient.

Keywords: dense numerical linear algebra · energy-e�ciency · HPC ·

matrix-matrix multiplication.

1 Introduction

The Numerical Linear Algebra (NLA) is one of the most important �elds in
scienti�c computing. A support for this claim is the existence of several compu-
tational kernels involved in the most widespread benchmarks. One of the most
notorious is the Linpack benchmark [13] that is employed to de�ne the Top500
list [2]. This benchmark is based on the LU-factorization operation to compute
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the peak performance reached by a speci�c combination of a hardware platform
and software implementations.

The LU-factorization is part of the LAPACK speci�cation [3] and typically
these kinds of methods are built over BLAS kernels. This philosophy of develop-
ing several layers of kernels speci�cations, has guided the dense NLA landscape
since the 70s. Firstly, with the BLAS-1 speci�cation [18], later with BLAS-2 [12]
and BLAS-3 [11], and subsequently LAPACK and ScaLAPACK [7], this �eld
o�ers a the facto standard for the de�nition and interoperativity of its basic
kernels.

In recent years, another constraint that emerged in the HPC �eld, and in
partcular in NLA, is the energy consumption required to compute the di�erent
kernels [14, 5, 15]. This situation motivated, among other things, the develop-
ment of the Green 500 list [1]. This e�ort reorders the Top500 hardware plat-
form considering, instead of the attainable peak performance, the ratio between
performance and energy consumption (e.g. GFLOPs per watts). Thus, in the
last decade the energy consumption of both, algorithm and hardware platforms,
has been a matter of utmost importance.

Field-Programable Gate Arrays (FPGAs) technology is gaining attention in
the HPC community. As a recon�gurable device, FPGAs are very e�cient for
implementing parallel algorithms. Even though they o�er lower memory band-
width and clock frequencies, FPGAs are becoming more powerful, narrowing
the gap with other heterogeneous platforms like GPUs. They are still behind in
raw computing power with GPUs, but given their considerably lower power con-
sumption, there is an active topic of research for energy e�ciency on FPGAs. In
addition to the hardware upgrades, High-Level Synthesis (HLS) tools are becom-
ing more and more re�ned which enables higher productivity and (may provide)
more access to non-hardware experts.

In the previously described context we advance in the study of the potential
of FPGAs to address NLA operations. More in detail, in this work we explore
and evaluate the available options for two of the most representative kernels of
BLAS, i.e. GEMV and GEMM. The experimental evaluation was carried out
in an Alveo U50 acelerator card from Xilinx and an Intel Xeon Silver multi-core
CPU. It shows that even in kernels where the CPU reaches better runtimes, the
FPGA counterpart requires less energy consumption.

The rest of the paper is structured as follows. In Section 2 we summarize
the main concepts of BLAS and the use of FPGAs platforms for HPC. Later,
in Section 3, we present the di�erent versions of both studied kernels. This is
followed by the experimental evaluation in Section 4. Finally, in Section 5 we
close with the main concluding remarks and some lines of future work.

2 FPGAs and NLA

In this section we brie�y introduce the BLAS speci�cations and the main con-
cepts related with the use of FPGAs for HPC.
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2.1 BLAS

Numerical Linear Algebra (NLA) is a research �eld that in the last decades has
been characterized by the use of kernel-libraries that are de facto standards.
One of the most remarkable examples, in particular in the HPC �eld, is the
Basic Linear Algebra Subroutines (BLAS) [8]. This library has become essential
for HPC due to its e�ciency, portability and availability. BLAS is composed of
routines for computing common linear algebra operations. It is organized into
levels according to the degree of complexity. The level 1 involves scalar, vector
and vector-vector operations, the level 2 includes matrix-vector operations, and
the level 3 performs matrix-matrix operations. BLAS libraries have become one
of the main building blocks in linear algebra applications, such as solving linear
system of equations, linear least square problems or eigenvalue problems. Two
of the most important operations are GEMM and GEMV from levels 3 and 2
respectively. We describe these operations next.

GEMM This operation belongs to Level 3 of the BLAS speci�cation [10] and is
de�ned as follows:

C = αA ∗B + βC (1)

where A, B and C are matrices and α and β are scalars. This kernel is considered
the main building block in dense linear algebra because many other operations
can be expressed in terms of several GEMM invocations [6].

GEMV This operation is de�ned as follows:

y = αA ∗ x+ βy (2)

where A is a matrix, x and y are vectors and α and β are scalars.GEMV belongs
to Level 2 of the BLAS speci�cation.

2.2 FPGAs

FPGAs are composed of a matrix of con�gurable logic blocks (or logic elements)
and hardcoded blocks such as memories, hardware adder/multipliers (DSPs) and
clock managers. On top of that, a programmable routing structure enables the
interconnection of the di�erent blocks. They also feature several programmable
input/output pins that allow interfacing with the outside world.

To program an FPGA means that an actual electrical circuit is synthesized
inside the device through the programmable logic's interconnection-elements and
hard-coded blocks. This allows very low latency (as there is little to none control
overhead), great �exibility (as they can be reprogrammed in the �eld), and �ne-
grained parallelism. From a technological perspective, FPGAs stand somewhere
in between Application-Speci�c Integrated Circuits (ASICs) and general-purpose
processors. One of the main advantages of FPGAs with respect to ASICs is that
the �rst can be reprogrammed after the manufacturing process.
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The clock's operating frequency of a given design depends on the synthesized
circuit, but it is usually lower than other heterogeneous devices. FPGAs also o�er
lower peak �oating-point performance than GPUs and even multi-core CPUs,
and less memory bandwidth, but this may change at some point, as FPGA
manufacturers are making big e�orts to compete with GPU performance in these
contexts.

Traditionally, FPGAs have been a good alternative in �xed-point, data�ow
streaming applications, where they reach high speeds at excellent energy e�-
ciency. Also, as opposed to CPUs and GPUs they natively support arbitrary
precision bitwidths. However, their poor performance in �oating-point arith-
metic, in addition to the complex design �ow kept them apart from the main-
stream HPC world. This started to change recently, as modern high-end FPGA
devices o�er up to millions of logic elements, thousands of DSP blocks (that
allow TFLOP performance) and high-bandwidth memory (HBM). These char-
acteristics, in combination with the HLS tools available, are making these devices
increasingly attractive in the HPC domain.

A brief review of the state of the art about the use of FPGAs to compute
dense numerical algebra kernels can be found in F. Favaro et al. [17, 16].

3 Evaluated kernels

3.1 Vitis libraries

Xilinx o�ers an extensive set of performance-optimized, open source libraries for
use with Vitis software. Their repository includes common topics such as math,
linear algebra, statistics, data management, and also domain speci�c libraries
for image processing, computer vision, data compression, etc. For linear algebra,
Xilinx developed Vitis BLAS Library, which is an FPGA implementation of the
Basic Linear Algebra Subroutines (BLAS).

The library provides three levels of implementations (not to be confused
with the BLAS levels organization): primitives (L1), kernels (L2), and software
APIs (L3). L1 provides parametrized C++ implementations (to be compiled
with HLS) of the basic operations found in BLAS. These primitives include
modules for computations and for data movement. The �rst ones have streaming
interfaces and carry out the operations, while the second ones move data between
on-chip memory and the computation modules. This allows the programmer
to construct high-performance logic by interconnecting computation and data
mover modules. L2 o�ers kernel implementation examples aimed at host code
developers. L3 provides C/C++ and Python APIs to allow software developers
to accelerate BLAS operations using pre-built FPGA images.

For this work we evaluated the BLAS function kernels from L2. These kernels
share the same top function, which has only two ports to communicate with ex-
ternal memory (DRAM, HBM or PLRAM). The kernels consist of an instruction
processing block, a computation unit (e.g. GEMM), and a timer unit.



Time-Power-Energy Balance of BLAS kernels in modern FPGAs 5

GEMM basic: The architecture of this kernel is composed of the following
blocks:

� Systolic array: Implemented using L1 primitives. Its size depends on the
datatype and the memory interface. For single precision �oating point and
512 bits interface it corresponds to 16× 16.

� Data movers: These blocks get data from global memory and send it to the
computation blocks, and vice versa.

� Transpose modules: One of the matrices must be transposed before entering
the systolic array. This block also acts as a bu�er to reuse data.

GEMM multiple compute units (MCU): This kernel is implemented as two
parallel instances (compute units) of the previous kernel. Each compute unit has
its own dedicated HBM channel. The provided version of this kernel uses four
compute units and its intended for the Alveo U250 board. In order to �t the
design in the ALveo U50 board only 2 instances could be used. Also the DDR
memory had to be changed for HBM.

GEMV basic: This kernel follows the same structure as GEMM basic, but
with a custom processing block to perform GEMV operation.

GEMV streaming: This kernel does not follow the aforementioned BLAS ker-
nels unique function architecture. Instead, it makes e�cient use of the high-
bandwidth memory. To maximize throughput, it instantiates 16 parallel GEMV
compute blocks and connects each one to an individual HBM channel.

3.2 Matrix-matrix multiplication (MMM)

In order to obtain a point of comparison for the results of Vitis BLAS, we
included in the evaluation a state of the art implementation for GEMM devel-
oped by J. de Fine Licht et al. [9]. They propose a matrix-matrix multiplication
(MMM) implementation on FPGA aimed at minimizing o�-chip data movement
(by reusing data stored in fast on-chip memory) and maximizing performance
(computations per I/O operation). They start with a general model for com-
putation, I/O and resource utilization to create a hardware architecture that is
highly optimized for the resource available on a target device.

Their I/O model assumes a parallel machine consisting on p processors, each
one with S words of fast private memory. To perform an arithmetic operation,
each processor must have all operands in its fast memory. They model the MMM
algorithm as a computation directed acyclic graph (CDAG), where each vertex
corresponds to a unique value during the execution and the edges represent data
dependencies between them.

They constrain their model based on FPGA available resources and char-
acteristics (number of ports and limited fan-out) to maximize the computation
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throughput and favour routability. They reach a logic hierarchy which encapsu-
lates various FPGA resources and guides the implementation to minimize I/O
and maximize performance. The implementation follows a systolic array archi-
tecture, were Np processing elements (PE) consume pre-fetched elements of the
matrices A and B in a stream-like fashion. Each PE holds Nc compute units
(CU) and each one of them is capable of producing one output product (partial
result of matrix C) every clock cycle. The PEs are encapsulated in compute tiles,
which are in turn grouped in block tiles. On top, a memory tile encapsulates the
block tiles, using all available memory blocks of the FPGA. The parallelism is
determined by the number of compute units.

Their implementation is done in HLS C++, is �exible (parametrized), portable,
scalable (adaptable to di�erent FPGAs with di�erent number of resources and
with di�erent characteristics) and open source (rare for highly tuned FPGA
implementations).

They tested the implementation for di�erent con�gurations of tiles size and
number of CUs and for various data types, measuring performance and energy
e�ciency. Their design achieved 409 GOp/s 32-bit �oating point performance,
and 1.5 TOp/s 8-bit integer performance, utilizing more than 80% of hardware
resources in a Xilinx VCU1525 accelerator board.

4 Experimental evaluation

4.1 Setup

We used the following hardware for the experiments:

� An Alveo U50 FPGA accelerator card from Xilinx. The FPGA is based
on the UltraScale+ architecture and includes 872K look-up tables, 1743K
registers, 28 MB of internal RAM, and 5952 DSP blocks. The chip also has
8 GB of HBM RAM. The designs for this platform were compiled using
Xilinx Vitis 2020.2.

� A system with an Intel Xeon Silver 4208 CPU with 8-cores running at
2.1 GHz, and 80 GB of RAM. The CPU implementations make use of Intel
MKL library, using all 8 cores (8 threads) with SMT disabled and AVX2
instructions. This device is capable of AVX512, but we experimentally de-
termined that using this feature in multicore execution severely limits the
operating frequency of the cores, which degrades the performance.

We performed the characterization of performance and energy consumption
as follows:

� In the Alveo U50 FPGA, the board has internal sensors that provide current,
voltage, and temperature readings while the kernel is running. The driver
Xilinx Runtime (XRT) sends these values to the host.

� In the Intel Xeon processor, we measured CPU and memory power consump-
tion using RAPL (which provides an estimate of the dissipated power based
on performance counters and a device power model).
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� All power measurements were automated using PMlib [4]. Results are an
average of readings collected during 2 minutes of execution, with an equal
warm-up time before measuring.

� The runtime measurements are the average of multiple iterations of the ker-
nels.

4.2 Experimental results and discussion

For the experimental evaluation, and as a baseline, we employ the BLAS imple-
mentations o�ered by MKL library on CPU.

All the results summarized in this section are the average of 10 independent
executions. Also, in all cases we used single precision �oating point.

The resource utilization of the implemented FPGA kernels is shown in Ta-
ble 1.

Table 1. Resource utilization in percentage of available resources for the implemented
FPGA kernels.

Utilization (%)

Type Available GEMV GEMV GEMM GEMM MMM
basic Streaming basic MCU

LUTs 870016 14.02 22.83 37.39 61.16 42.45

Registers 1740032 8.98 17.10 28.30 47.59 32.33

Block RAM 1344 16.22 16.07 18.34 22.84 53.27

DSPs 5940 0.29 9.87 20.94 41.82 46.13

In the �rst experiment we evaluate the computational performance reached
by the di�erent versions for the GEMV operation over square matrices of: 128,
256, 512, 1024, 2048, 4096 and 8192 columns. Speci�cally, Figure 1 presents the
GFLOPs achieved by all the evaluated variants.

Considering the obtained experimental results for the GEMV kernel, and
with focus on the FPGAs variants, �rstly we can say that the basic version is a
non-competitive option. This implementation has very low levels of parallelism,
because it performs the dot product on vectors of 16 elements. Also, due to
a carried-dependency issue in the computation loop, it ends operating 4 times
slower than intended. Next, for the small test cases the MMM reaches better
runtimes than the Streaming variant, which has a poor performance for small
matrices. However, for dimension bigger than 1024 the result is reversed. More
in detail, the performance of the MMM variant is stagnant since matrices of 1024
while the Streaming counterpart is growing even for the largest matrices. The
Streaming variant provides 16 times more parallelism than the basic version and
takes advantage of the HBM on the Alveo board. The CPU version o�ers the
best peak of performance for matrices of 1024 columns, but in the largest test
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Fig. 1. Achieved performance (GFLOPs) of the GEMV kernels for di�erent matrix
sizes.

cases the performance is degraded. This result is reasonable taking into account
the e�ects of the use of the cache memories.

Later, we evaluate the energy consumption implied by the di�erent GEMV
implementations. In this line, Figure 2 presents the GFLOPs per watt achieved
by the evaluated variants over the same range of matrices. Similar to the per-
formance evaluation, the energy study allows us to conclude that the fastest
GEMV version is, in general, the most energy-e�cient option. However, in all
cases the FPGAimplementations require less power than the CPU counterpart.
Additionally, the MMM version uses, on average, less power than the Streaming
variant. Finally, and as a remarkable aspect, the FPGA version outperforms (in
the energy-consumption perspective) the CPU counterpart for the three largest
dimensions.

The experimental results for the performance reached by the GEMM kernels
is shown in Figure 3. For this operation, the CPU variant is faster than the
FPGA counterparts for all the evaluated matrix dimensions. With focus on the
FPGA, the basic variant is far below the other versions in performance. For
the basic and MCU GEMM kernels, performance climbs to a maximum around
dimensions 1024 and then starts to degrade. The cause for this performance loss
for the bigger sizes was not fully determined and needs to be further investigated.
The MMM variant also peaks around size 1024 but the for bigger sizes the
performance remains constant.



Time-Power-Energy Balance of BLAS kernels in modern FPGAs 9

Fig. 2. Energy e�ciency (GFLOPs/W) of theGEMV kernels for di�erent matrix sizes.

The energy consumption results for the GEMM kernels are summarized in
Figure 4. Contrary to the performance results achieved in the GEMV experi-
ment, in this case the FPGA outperforms the CPU counterpart for six of seven
matrix dimensions. This situation remarks the energy e�ciency o�ered by the
FPGA platforms, specially in this context where the CPU is faster than other
versions. Neither of the Vitis BLAS versions manages to outperform the CPU in
this case (except for the smallest matrix size). This is expected since the eval-
uated kernels for GEMM were designed for bigger FPGAs boards and are not
optimized for the Alveo U50 platform (contrary to the Streaming GEMVwhich
was designed for this board).

5 Conclusions

In this article we have revisited the use of non-traditional HPC hardware to
compute BLAS kernels. Speci�cally, we review the available kernels to compute
the GEMV and GEMM kernels in FPGAs and also we extend and tune some
other variants of these kernels. The experimental evaluation carried out over an
Alveo U50 FPGA board shows that, in general, the CPU version outperforms
in GFLOPs the FPGAs counterparts but the use of FPGAs o�er more e�cient
variants from the energy consumption perspective. These results are very rele-
vant. First, due to the importance of the energy consumption as a restriction in
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Fig. 3. Achieved performance (GFLOPs) of the GEMM kernels for di�erent matrix
sizes.

the HPC �eld and second, considering the years of development of CPU imple-
mentations compared to the recent focus on this kind of methods for FPGAs.

As a future line of work we identify several perspectives, following we describe
the most important ones.

� Firstly, is mandatory to extend our study to include other FPGAs with
di�erent characteristics, among other Intel FPGAs.

� Secondly, the comparison should be done with other heterogeneous hardware
platforms. In particular, comparing the FPGA kernels with implementations
on cutting-edge GPUs and particularly low-consuming devices (such as ARM
processors).

� Also, it would be interesting to complement the GFLOPs and GFLOPs per
watt metrics with other perspectives, maybe the most important being the
learning curve in FPGA design and the design and compilation times of the
FPGAs implementations.
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Fig. 4. Energy e�ciency (GFLOPs/W) of the GEMM kernels for di�erent matrix
sizes.
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