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Abstract

Splitting is a variance reduction technique, widely used to improve the efficiency of marko-
vian systems simulations. In this report Splitting is successfully adapted to the reliability
network estimation problem by means of a well–known model based on the so called Creation
Process. A network model based on the Creation Process is revisited, a brief review of Split-
ting in a general setting is introduced and afterwards Splitting is applied to the estimation of
the source–terminal network unreliability by means of the Creation Process Model. Finally
a set of experiments to assess the performance of Splitting in this task, are shown.
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1 Introduction

Network models are an important tool to represent a large variety of real life problems, covering from
transportation infrastructure up to personal interaction in social organization. Among the huge variety
of network models that appear in the literature, source-terminal and multi-terminal network reliability
models have been widely studied and employed in computer, telecommunication and electrical networks,
as well as in transportation, space and military applications [4, 6, 11, 19].

As the exact computation of the source-terminal reliability measure is known to be NP-hard [16],
Monte Carlo techniques are a useful alternative to make estimations rather than exact calculation. If
γ is the metric being estimated (e.g. network unreliability), and γ̂ the associated estimator, a typical
measure of the relative error is σ/γ, where σ2 = V(γ̂). In general this error (accepted as a measure of
accuracy) grows when the component’s reliabilities grow and, hence, the overall network unreliability γ
goes to zero. In order to make Monte Carlo estimations more accurate, many different proposals, like
[2, 5, 12, 13, 15, 17], have attempted to reduce the variance of the estimators.

Splitting [7, 9, 10, 14, 18] is a variance reduction technique widely used to improve markovian systems
simulations. In this report Splitting is successfully adapted to the source–terminal reliability network
estimation problem. Once adapted, its performance is subject to empirical evaluation over many different
benchmark network topologies. Splitting shows a very stable precision within a relatively small number
of Monte Carlo iterations, particularly in the unreliability estimation of highly reliable networks.

The rest of the report is organized as follows. Section 2 gives a brief review of Splitting, Section
3 introduces network models and Section 4 presents a Splitting application to solve one of the network
models introduced in Section 3. Implementation details and experimental results are given in Sections
5 and 6 respectively, while conclusions and future work are assessed in Section 7. At the report’s end,
appendixes A, B, C and D contain a large set of graphics to complement Section 6, showing the main
experimental results.

2 Splitting – General Setting

Given a Markov process X(t), t ≥ 0, with state space X , and given two disjoint regions XA and XB

of X , it may be of interest to find the probability that, evolving from t = 0, X(t) enters XB without



having entered XA before. Being τA the time at which X(t) enters XA for the first time (or comes back
to XA if X(0) ∈ XA) and τB the time at which X(t) enters XB for the first time, the problem is to
find the probability of the event [τB < τA]. Splitting [7, 9, 10, 14, 18] makes efficient estimations of this
probability, particularly when [τB < τA] is a rare event.

XA and XB can be expressed in terms of two different regions, in a different space obtained via an
importance function h : X → R. A possible definition for XA and XB can be XA = {x ∈ X : h(x) ≤ 0}
and XB = {x ∈ X : h(x) ≥ ℓ} where both, 0 and ℓ, define bounds or thresholds in R.

Let’s now consider a set of thresholds ℓ0 = 0 < ℓ1 < ℓ2 < · · · < ℓm = ℓ to partition the state space of
h(X(t)) as shown in Figure 1(a).
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Figure 1: State Space of h(X(t))

Being τk the time at which process h(X(t)) up–crosses ℓk for the first time, it is possible to define
the events Dk = [τk < τA], k = 1, 2, · · · , m, as an indication that process h(X(t)) has crossed threshold
ℓk without having entered the region under threshold ℓ0 = 0. The following set of nested events can be
defined then: Dm ⊂ Dm−1 ⊂ · · · ⊂ D2 ⊂ D1, being Dm = [τB < τA] the event whose probability γm is
to be estimated:

γm = P[Dm]

= P[Dm|Dm−1]︸ ︷︷ ︸
pm

P[Dm−1|Dm−2]︸ ︷︷ ︸
pm−1

· · · P[D2|D1]︸ ︷︷ ︸
p2

P[D1]︸ ︷︷ ︸
p1

=

m∏

k=1

pk

This is the exact determination of γm. An estimation γ̂m can be done as γ̂m =
∏m

k=1 p̂k, where every p̂k

is an estimation of pk, k = 1, 2, · · · , m. The product holds, and the estimation is unbiased, even though
the values of p̂k are not necessarily independent [7]. Then, separate estimations of every p̂k must be done.

To determine p̂1, N0 independent realizations of X(t) are started from X(0). If R1 of these realizations
cross threshold ℓ1 without falling under ℓ0 before, the estimation results p̂1 = R1/N0. At the cross
of ℓ1, the states of the R1 realizations are saved (saved states). The remaining m − 1 estimations
p̂k, k = 2, 3, · · · , m are done similarly: Nk−1 realizations of X(t) are started from the Rk−1 saved states,
the number Rk is determined and p̂k is obtained as p̂k = Rk/Nk−1. Every stage of the experiment is
equivalent to observing Nk Bernoulli variables with parameter pk, k = 1, 2, · · · , m.

It is desirable that Nk−1 > Rk−1, however the relation between Nk−1 and Rk−1 is not yet analyzed
but delayed for the next sections instead. But the consequence of Nk−1 > Rk−1 is that from every
saved state more than one realization may need to be started, being necessary to split or clone some
of them, at every threshold cross, like shown in Figure 1(b). Finally, the estimation of interest results:
γ̂m = R1/N0 R2/N1 R3/N2 · · · Rm/Nm−1.

An analysis done in [8] reports a value of γ2
mm2(1 − γ

1/m
m )/γ

1/m
m N for the variance V{γ̂m}, being m

the number of thresholds and N the effort (for the concept of effort see Fixed Splitting in Section 5). In

[14] V{γ̂m} = mγ
2−(1/m)
m /N . Both calculations have been done for a very simple setting in which the

values of pk, k = 1, 2, · · · , n are all independent and equal.



3 Network Modeling

An undirected graph G = (V , E), where V is a set of n absolutely reliable nodes and E a set of m indepen-
dent unreliable links, is a frequently used model for studying communication network reliability. Being
Xi = 1 when the ith link is operative and Xi = 0 when the ith link is failed, vector X = (X1, X2, · · · , Xm)
depicts the state of the links and, somehow, the state of the whole network. ri = P[Xi = 1] is the ith

single link reliability, whereas qi = 1 − ri = P[Xi = 0] the single link unreliability.
The structure function Φ(X) equals 1 when the network is operative and 0 when the network is failed.

Using this function, we define the network reliability R and unreliability Q respectively as P[Φ(X) = 1]
and P[Φ(X) = 0]. From now on Φ(X) will be associated to the source–terminal network reliability model
in which the network is considered operative if there is a path of operative links between two nodes s and
t, and failed otherwise.

Straightforward (also called standard, direct or crude) Monte Carlo estimations of network reliability

and unreliability can be computed, respectively, as R̂ = 1/N
∑N

i=1 Φ(X(i)) and Q̂ = 1/N
∑N

i=1(1−Φ(X(i))
where X(i), i = 1, · · · , N are i.i.d. samples taken from fX(x) (the probability mass function of vector
X). For highly reliable networks most of the X(i) samples will equal 1 and, as a consequence, most of the
replications Φ(X(i)) will equal 1 also. For extremely reliable networks, with unreliabilities in the order of
10−10 or even less, it will take an average of 1010 replications to get Φ(X(i)) = 0 at least once. For these
networks Φ(X) = 0 is a rare event.

Another crude Monte Carlo approach consists of watching the links evolve in time, supposing that
at time t = 0 all of them are failed, and that they become operative at times τi, i = 1, 2, · · · , m,
exponentially distributed with parameter λi. Variable X = (X1, X2, · · · , Xm) should then be replaced
by X(t) = (X1(t), X2(t), · · · , Xm(t)), a Markov Process called Creation Process [5]. Then Xi(t) = 1 (ith

link operative) if t ≥ τi and Xi(t) = 0 (ith link failed) if t < τi.
Since P[τi ≤ t] = 1 − e−λit is the probability that the ith link becomes operative at time t or earlier,

the choice of λi = − log(qi) makes the probability that the ith link is operative at t = 1 be exactly the
single link reliability ri. As a consequence the probability that the whole network is operative at t = 1
is R, and the probability that the network is failed at t = 1 is Q. Thereafter, R = E{Φ(X(1))} and
Q = E{1 − Φ(X(1))}.

The natural way to simulate this model (from now on referred to as Creation Process Model) is (i) to
sample a set of exponentially distributed times τi, i = 1, 2, · · · , m, (ii) to check the value of Φ(X(1)(i))
every sampled set, (iii) to repeat items (i) and (ii) N times, and finally to average the N values of either
Φ(X(1)(i)) to estimate R or 1 − Φ(X(1)(i)) to estimate Q. From now on the replications index will be
omitted and X(1)(i) will be referred to as X(1).

The main weakness of these crude estimations comes up when the networks are highly reliable.
Particularly the relative precision of the unreliability estimations drops dramatically as Q tends to 0.
For this estimations the exact variance is V{Q̂} = Q(1 − Q)/N and the relative error V{Q̂}1/2/E{Q̂} =
((1−Q)/NQ)1/2. Hence, for highly reliable networks (Q extremely small), an accurate estimation requires
a very large sample size N .

4 Splitting Network Model

The core of this work is a Splitting adaptation to estimate the source–terminal network reliability measure.
This estimation is performed on the network Creation Process Model model discussed in Section 3. The
following paragraphs describe the fundamentals of this proposal.

Let’s arrange the set T = {τ1, τ2, · · · , τm} of exponentially distributed (commutation) times1, so
that τ1 ≤ τ2 ≤ · · · ≤ τm, and consider it as a random process trajectory. In correspondence with this
trajectory, and under the same index considerations, let’s define Λ = {λ1, λ2, · · · , λm}, the arranged set
of the corresponding rates.

As shown in Figure 2(a), for any given trajectory T , event E = [Φ(X(1)) = 0] occurs if the network
becomes operative after t = 1, therefore Q = P[E]. In a Crude Monte Carlo setting, where a considerable

number of trajectories are sampled, the estimation Q̂ is the ratio between the number of successful events
E and the total number of trajectories.

1A more explicit notation for every τ i would be τ i
j , meaning that link j goes from failed to operative in time

τ i. However, depending on the context, it might be enough with only one index.



Referring to the Splitting–General Setting of Section 2, the occurrence of event E, i.e. a trajectory
T entering region t > 1 with the network still failed, is equivalent to process X(t) entering region XB

without having entered region XA. On the other side, as shown in Figure 2(b), a trajectory T for which
the network is operative in t ≤ 1 is equivalent to process X(t) entering region XA without having reached
region XB .

(a) (b)
t = 0t = 0 t = 1t = 1

τ1τ1 τ2τ2 τiτi τcτc

Φ(X(t)) = 0Φ(X(t)) = 0 Φ(X(t)) = 1Φ(X(t)) = 1

Figure 2: Two Different Trajectories in the Network Dynamic Model

In order to apply Splitting to this network Creation Process Model, the interval [0, 1] needs to be
partitioned by a set of thresholds u0 = 0 < u1 < u2 < · · · < un = 1. Given this threshold definition it is
possible to define Ek = [Φ(X(uk)) = 0], k = 1, 2, · · · , n as the indicator event that the network becomes
operative after t = uk. Then, E = En and:

Q = P[En]

= P[En|En−1]︸ ︷︷ ︸
pn

P[En−1|En−2]︸ ︷︷ ︸
pn−1

· · · P[E2|E1]︸ ︷︷ ︸
p2

P[E1]︸ ︷︷ ︸
p1

=

n∏

k=1

pk

Hence, Q̂ =
∏n

k=1 p̂k. It is necessary then to make separate estimations of the single values p̂k. These
estimations are done as part of the whole Splitting mechanism that for the current problem can be
summarized as follows: start one or more trajectories T1, T2, · · · from t = 0 and then (i) cancel the ones
for which event E1 does not occur and (ii) split the ones for which event E1 occurs; proceed the same
way with all the new trajectories started from u1, i.e. cancel or split at the cross of threshold u2 and keep
repeating the mechanism until threshold un = 1 is reached. In other words, cancel trajectories as soon
as the network becomes operative and split them at every threshold cross. The target is to finally have
some trajectories for which the network becomes operative beyond t = 1. If this happens, the following
estimations are possible: p̂k = Rk/Rk−1, k = 1, 2, · · · , n, where Rk is the total number of trajectories
that have crossed threshold uk and R0 the number of trajectories T1, T2, · · · started from t = 0.

Two issues mentioned in the prior paragraphs deserve further explanation: how to generate trajecto-
ries and how to split them. Both are described in the rest of this section.

A straightforward way to sample T = {τ1, τ2, · · · , τm}, τ1 ≤ τ2 ≤ · · · ≤ τm, is to sample separate
and independently every element as τ i = − log U/λi where U ∼ unif(0, 1], and once they are all sampled,
to arrange them by increasing order of time. This procedure is however useless for the current Splitting
application, because trajectories can only be sampled as a whole, being impossible to make them grow,
adding new elements one by one.

Some properties of the Creation Process [5], due to the exponential distribution, make possible to
add new elements to a partially sampled trajectory. Prior to introducing this sampling mechanism let’s
define sub–trajectories:

T i
−

= {τ1, τ2, · · · , τ j} is the subset of elements of T formed by the times that are earlier
or equal to i: τ j ≤ i and τ j+1 > i. In correspondence with T i

−
it is possible to define

Λi
−

= {λ1, λ2, · · · , λj}.

T i
+ = {τ j , τ j+1, · · · , τm} is the subset of elements of T formed by the times grater

than i: τ j > i and τ j−1 ≤ i. In correspondence with T i
+ it is possible to define

Λi
+ = {λj , λj+1, · · · , λm}.

Based on these definitions, the procedure to sample trajectory elements, one by one, is as follows:

Sampling the next link Let the set of links whose commutation time belong to T i
+ in time i be SZ =

{er, es, · · · , et}, then λr, λs · · · and λt belong to Λi
+. The first element of T i

+ can be sampled from
the discrete random variable Z with sample space SZ and P[ew] = λw/

∑
λv∈Λi

+

λv, w = r, s, · · · , t.



Sampling the time for the next link The times between consecutive commutation times of a tra-
jectory: ∆t = τ t − τ t−1, t = 1, 2, · · · , m (accepting τ0 = 0), are exponentially distributed with
parameter

∑
λs∈Λ+

t

λs. Then for any time i, being T −

i already sampled, it is possible to sample

the time τ i+1 for the first position of T i
+, by adding ∆i+1 to τ i, i.e. τ i+1 = τ i + ∆i+1.

So, times τi, i = 1, 2, · · · , m can be sampled on demand, being the resulting trajectory under con-
struction all the time. Simulation conditions may be checked whenever necessary for all the existing
trajectories and then, at any simulation stage, any one of them may grow by the addition of one or more
elements.

The final issue to consider concerns the way to split trajectories every time a threshold is crossed.
Suppose that trajectory T = {τ1, · · · , τx, τx+1} is under construction, being τx < uk < τx+1. Suppose
also that the network is still failed at time τx+1, meaning that event Ek has actually occurred. Trajectory
T must therefore be split at t = uk. The value of τx+1 has once been obtained as τx+1 = τx + ∆x+1

where, as stated, it was τx+1 > uk. The memoryless property let re–sample new statistically equivalent
values for τx+1 (as many as necessary), as τx+1 = uk + ∆x+1, by just sampling new values of ∆x+1

every time. Then, if trajectory T has to be split nk times, nk new values can be obtained for τx+1 and,
consequently, nk new trajectories may start at the cross of threshold uk.

5 Implementation

There are two main options in a Splitting implementation: Fixed Splitting and Fixed Effort. If at every
threshold cross the trajectories are split into a fixed number of new trajectories, the total number of
trajectories started from every threshold is a random variable. This option is Fixed Splitting. Accepting
that the whole simulation effort is proportional to the number of started trajectories, some sort of control
on such a number would permit some control on the simulation times. To do this, the number of new
trajectories should be controlled at every splitting point. Fixed Effort proposes to split as much as
necessary to let the total number of trajectories that start from every threshold be a fixed number. There
is no general agreement about the variance reduction benefits of every option, however Fixed Effort
provides a closer control on the execution times.

A crucial issue in a Splitting implementation is how to select the number of thresholds. There is no
recipe for such determination, only some guidelines derived from the analysis of very particular problems.
These guidelines suggest to set this number to −(log Q̂)/2 where Q̂ is the probability being estimated. It

is necessary then to dedicate some previous runs to set the number of thresholds. The value of −(log Q̂)/2
has been obtained separately and after different analysis by [8, 7] and [14] for the particular case in which
the values of pk, k = 1, 2, · · · , n are independent and equal. For these cases both analysis prove that
−(log Q̂)/2 produces the maximum variance reduction. The use of this value is recommended anyway for
any kind of splitting setting, at least as starting value for further iterations.

An important problem arising in typical Splitting implementations is the considerable computational
effort that might be necessary to simulate the process since any threshold is crossed until the trajectory
eventually “dies”. In the most general case, after any threshold cross, the process may follow an up and
down evolution before the final condition is reached (i.e. before it enters XA, in terms of Section 2). In
the network Creation Process Model, this problem does not arise. The only wasted effort for any “dying”
trajectory is the one devoted to take it closer to the next threshold but, if the next threshold is not
reached, the trajectory “dies” suddenly with no additional effort, actually with the same effort that could
have necessary to take it to the next threshold in the successful case.

6 Numerical Results

The experiments reported in the following sections have been conducted on a set of benchmark network
topologies taken from [3]. These topologies are: Dodecahedron, Arpanet (1972 topology), K10, S2, S3,
S4, S5 and S6, all of them with equi-reliable links. Their size, indicated by the number of nodes |V| and
edges |E|, are shown in Table 1.

Unless for special experiments, their single link reliabilities were set, alternatively, to 0.9, 0.99,
0.9999 and 0.999999, resulting in a wide range of source-terminal unreliabilities (9.53e-02 < Q̂ <
2.01e-54). The Splitting implementation tested was Fixed Effort.



Table 1: Benchmark Network Topologies Size

Network |V| |E|

Dodecahedron 20 30

Arpanet 21 26

K10 10 45

S2 4 5

S3 8 13

S4 14 25

S5 22 41

S6 32 61

Table 2: Source–Terminal Unreliability Estimation, Simulation Time and Relative Error

Network Q̂max t[seg] RE[%] Q̂min t[seg] RE[%]

Dodecahedron 2.87e-03 173.47 0.31 2.03e-18 1,278.89 0.57

Arpanet 9.53e-02 110.39 0.14 6.00e-12 708.48 0.44

K10 2.00e-09 802.65 0.49 2.01e-54 6,174.49 1.19

S2 2.16e-02 13.86 0.20 2.01e-12 134.55 0.38

S3 3.78e-03 56.06 0.27 2.99e-18 524.17 0.50

S4 6.02e-04 163.70 0.34 4.03e-24 1,379.40 0.71

S5 9.15e-05 372.12 0.38 4.98e-30 2,941.92 0.88

S6 4.31e-05 834.86 0.44 5.38e-36 6,193.18 2.61

In most experiments the Effort (i.e. the fixed number of trajectories started from every threshold)
was set to 4,000 and N , the number of replications per experiment, was set to 200. Then the Total
Effort (Total Effort = N× Effort) which is, at last, the total number of trajectories actually started in
the experiment, was set to: 200 × 4,000 = 8e+05.

Out of every replication, a single estimation Q̂i, i = 1, 2, · · · , N was obtained. Then, after the
run of all replications, the unreliability, and its associated variance, were estimated respectively as Q̂ =
1/N

∑N
i=1 Q̂i and V̂{Q̂} =

∑N
i=1 Q̂2

i /(N(N − 1)) − Q̂2/(N − 1).

6.1 Relative Error and Execution Time

As remarked in Section 3, the relative error (RE) is expected to grow together with the network reliability.
Even though this point was observed (and proved) for the crude implementations, it is still valid for any
implementation. Hence, in an experiment where the reliability grows (unreliability drops) it is desirable
that the relative error grows as slow as possible (in the best case, not to grow at all).

The data shown in Table 2 is a summary for all the experiments. It shows the simulation time t

and the relative error RE for two sets of the source–terminal network unreliability estimation of every
network (Q̂max and Q̂min, obtained by setting the link reliabilities respectively to 0.9 and 0.999999).

The relative error, RE = V̂{Q̂}1/2/Q̂, shows a very high independence with respect to the estimated

value Q̂.
Time t grows together with the network size and, for the same network, grows as the network becomes

more reliable. The increase due to the network size is rather obvious and comes from the increasing
number of calculation. The increase due to the reliability comes from growth of the number of thresholds
and, therefore, the increasing number of steps necessary to make the splitting estimation.



6.2 Speedup vs. Number of Thresholds

Besides the relative error, some other parameters are useful to carry on performance analysis. The most
important of them are: the execution time t and the variance of the estimation V{Q̂} (or alternatively

V̂{Q̂}). Both quantities can be considered together as the product (t × V{Q̂}), being this product
particularly useful in comparative tests. Splitting was then compared to Crude Monte Carlo, for a
variety of number of thresholds, assessing the quotient (tc × V{Q̂c})/(ts × V{Q̂s}) (index c holds for
Crude Monte Carlo and s for Splitting), usually referred to as the Speedup or also Precision Gain, as it
shows the precision improvement of the incumbent method s over method c, given a fixed computational
time[1].

The Speedup values obtained are shown in Appendix A (Figures 3, 4, 5, 6, 7 and 8). The number

of −(log Q̂)/2 thresholds is always close to the best performance one. However, as the best performance

choice seems to be always slightly higher than −(log Q̂)/2, the recommendation derived from this exper-

iment is to set the number of thresholds in ⌈(−(log Q̂)/2)⌉. These recommended values are indicated by
a filled dot in the figure. It is to notice how Splitting outperforms Crude Monte Carlo as the network
reliability grows, being the improvements remarkable for highly reliable networks.

6.3 Relative Error vs. Effort

In the next set of experiments, the evolution of the relative error is observed for different values of Effort.
It is expected that the error falls according to the square root of the Effort. This tendency can be seen
in the graphics of Appendix B (Figures 9, 10, 11 and 12). This behaviour confirms that the Total Effort
is high enough to let the variance estimations be steady around the expected value.

6.4 Relative Error vs. Number of Replications

In every experiment, N replications are averaged, each one of them consisting in a number Effort of
trajectories started. A “small” value of N will cause the final average to lose accuracy and a “small”
value of Effort may cause some of the thresholds to never be crossed and to consequently obtain an
undefined result for the experiment. In order to find some bounds for these two values, an interesting
experiment is to let N and Effort vary so as to keep constant their product, i.e. to let the Total Effort
(Total Effort = N× Effort) be fixed at a certain value. In the proposed experiment Effort assumes values
in a range from 40,000 down to 2,000 while, in correspondence, the number of replications N goes from
10 to 200. Results are shown in Appendix C: Figure 13 for N < 200 and Figure 14 for the cases of N <
20, in more detail. In both figures N× Effort = 400,000.

The value of the relative error seems to be quite steady (and even more steady as higher are the
values of N). This suggests that the relative error only depends on the value of the Total Effort. As N
tends to the lowest values, the relative error is still around a certain fixed value, but the results are more
scattered. Hence, depending on the expected accuracy, the recommendation is as follows: given an Effort
that guarantees that threshold t = 1 is always reached, set the value of N so as to let the estimations
be “not so” scattered (trying that a change on the random numbers seeds does not affect considerably
the estimations). The values of N = 200 and Effort = 4,000 initially used in prior experiments are
acceptable for the ongoing problems.

6.5 Relative Error vs. Network Unreliability

As an extension of Table 2, Appendix D (Figure 15) shows many values of Relative Error, for unreliabilities

between Q̂max and Q̂min. It is also interesting to see that the errors grow as the networks become more
reliable and also as the size of the networks grow higher. This feature is analyzed in the next section.

6.6 Splitting vs. Permutation Monte Carlo

Splitting is finally compared to a well–known algorithm that makes efficient estimations of highly reliable
networks unreliability. The algorithm to compare to is Permutation Monte Carlo [12], a technique
that also applies to the network Creation Process Model model discussed in Section 3. The basis of



Permutation Monte Carlo consists in sampling one permutation2 per replication, assessing (by means of
an exact formula) the probability that the sampled permutation keeps the network still failed at t = 1,
and then averaging all the assessed probabilities.

The comparative test is done by means of the Speedup (tP × V{Q̂P })/(tS × V{Q̂S}) (index p holds
for Permutation Monte Carlo and s for Splitting) for a variety of networks and for different single link
reliabilities (S.L.R.). The Speedup values are recorded in Table 3. N was set to 200 and the number

of thresholds to ⌈(−(log Q̂)/2)⌉ in all the Splitting runs. The Effort and the number of Permutation

replications were selected to let the factors (t × V{Q̂}) be as steady as possible. For convenience the

unreliability estimation Q̂ is also reported in the table.

Table 3: Permutation Monte Carlo–Splitting Speedup

Network S.L.R. Q̂ Speedup

Dodecahedron 0.9 2.87E-03 1,31

Arpanet 0.9 9.54E-02 0.43

S2 0.9 2.16E-02 0.06

S3 0.9 3.78E-03 0.27

S4 0.9 6.02E-04 1.18

S5 0.9 9.15E-05 6.67

S6 0.9 4.31E-05 2.86

Dodecahedron 0.99 2.08E-06 4.69

Arpanet 0.99 6.50E-04 0.61

S2 0.99 2.03E-04 0.03

S3 0.99 3.07E-06 0.25

S4 0.99 4.22E-08 2.71

S5 0.99 5.35E-10 84.80

S6 0.99 3.87E-11 119.64

Dodecahedron 0.9999 2.00E-12 2.56

Arpanet 0.9999 5.98E-08 0.26

S2 0.9999 1.99E-08 0.01

S3 0.9999 3.00E-12 0.08

S4 0.9999 4.04E-16 1.45

S5 0.9999 5.00E-20 52.47

S6 0.9999 2.12E-23 195.43

Dodecahedron 0.999999 2.01E-18 1.89

Arpanet 0.999999 6.00E-12 0.15

S2 0.999999 2.01E-12 0.00

S3 0.999999 3.02E-18 0.04

S4 0.999999 4.03E-24 0.91

S5 0.999999 5.07E-30 28.19

S6 0.999999 5.06E-36 473.68

The efficiency of Splitting over Permutation Monte Carlo seems to increase as the network reliability
increases and also when the size of the network grows (accepting as a size measure, the number of links).

2A permutation is the order in which the links become operative in the network Creation Process Model, i.e.

the order of the elements in sets like T in Section 4.



7 Conclusions

A well known Monte Carlo technique called Splitting, that was successfully employed to solve a variety
of problems, most of them over Markovian models, was customized in this report to solve the source-
terminal network reliability estimation by means of the Creation Process Model. The performance over
a set of numerical experiments reveal a very high independence with respect to the estimated values. For
the tested networks the relative error is almost invariant. Compared to the pure Crude Monte Carlo the
speedup (precision gain) is huge, and compared to the Permutation Monte Carlo it is considerably larger
in many cases.

The ideal number of thresholds seems to be slightly higher than the value of −(log Q̂)/2 proposed
in the literature. However the method is robust in this feature and does not change the performance
considerably at a variation on the number of thresholds around the proposed value.

An open problem derived from this report proposal is to try to find a relation between the best
performance number of thresholds and the network parameters. It will be interesting also to implement
and evaluate a Fixed Splitting variant.

Finally, as the results obtained in this work are very promising, specially by the precision robustness in
the case of highly reliable networks, an in-depth comparative study against some other variance reduction
schemes should be made.
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A Speedup vs. Number of Thresholds
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Figure 3: Dodecahedron Splitting–Crude Monte Carlo Speedup
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Figure 4: Arpanet Splitting–Crude Monte Carlo Speedup



S
p
ee

d
u
p

S
p
ee

d
u
p

S
p
ee

d
u
p

S
p
ee

d
u
p

T hresholdsThresholds

ThresholdsThresholds

ri =0.9 ri =0.99

ri =0.9999 ri =0.999999

4 6 8 1010 12 14 16

20

20

3030

30

4040 5050 6060 7070 8080 90100110120

5 15 25

6.00e+04
8.00e+04
1.00e+05
1.20e+05
1.40e+05
1.60e+05
1.80e+05
2.00e+05

2.00e+04
4.00e+04

2.00e+11
4.00e+11
6.00e+11
8.00e+11
1.00e+12
1.20e+12
1.40e+12
1.60e+12
1.80e+12
2.00e+12
2.20e+12

1.00e+25

2.00e+25

3.00e+25

4.00e+25

5.00e+25

6.00e+25

7.00e+25

8.00e+25

1.00e+39

1.50e+39

2.00e+39

2.50e+39

3.00e+39

3.50e+39

Figure 5: K10 Splitting–Crude Monte Carlo Speedup
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Figure 6: S2 Splitting–Crude Monte Carlo Speedup
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Figure 7: S4 Splitting–Crude Monte Carlo Speedup
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Figure 8: S6 Splitting–Crude Monte Carlo Speedup



B Relative Error vs. Effort
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Figure 9: S2 Relative Error
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Figure 10: S6 Relative Error
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Figure 11: Dodecahedron Relative Error
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C Relative Error vs. Number of Replications
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Figure 13: N × Effort = 400,000 N < 200
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Figure 14: N × Effort = 400,000 N < 20



D Relative Error vs. Network Unreliability
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Figure 15: Relative Error vs. Q̂


