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In this paper we consider the evaluation of a well known IC-network unreliability parameter by
means of a new RVR Monte-Carlo method. It is based on seres—parellel reductions and a condi-
tioning procedure using pathsets and cutsets for recursively changing the original problem into
the unreliability problem for a smaller network. We illustrate by experimental results that the
proposed method has good behavior in rare event cases and offers significant speed-ups over other

state-of-the art variance-reduction techniques.



1 Introduction

We consider an undirected K-connected communication network G = (V,&,K) where V is the
node-set, £ is the link-set and K C V is the terminal-set (also called the target-set). Nodes do
not fail, but each link can be either operational or failed. The probability of failure of link [ € £
is ¢ =1 —r; (r; is its reliability). With respect to failures, links behave independently from each
other.

At an instant of interest, the operational links define a partial graph of G and we are concerned by
the evaluation of the KC-network unreliability parameter Q(G) = 1 — R(G) which is the expectation
of the binary random network state Y (G) with value 1 if the random partial graph is not K-
connected and 0 otherwise. The number R(G) is the K-network reliability.

Satyanarayana and Wood [8] show that exact values of R(G) can be obtained by a linear-time
algorithm for sp-reducible topologies. Unfortunately, in the general case the problem is shown
to be NP-hard. Consequently, Monte-Carlo methods are used for evaluating networks with large
size.

For a fixed sample size N, the standard Monte Carlo (SMC) estimator Y(G) is a sample mean
based on N independent and identically distributed r.v. with the same distribution function as
Y(G). As it is pointed by Elperin, Gertsbakh and Lomonosov [5], the main drawback of the
SMC estimator is the unbounded growth of the relative length of the e-level confidence interval
when the network becomes more and more reliable (that is, when Q(G) approaches 0). Unbiased
variance-reduction estimators have been proposed to reduce this effect. Indeed, with equal sample
size N, their expectation is equal to Q(G) and their variances are smaller than the SMC estimator,
leading to smaller relative length of e-level confidence interval than the SMC one. The reader can
see, for instance, the works by Cancela and El Khadiri [1], by Elperin et al. [5], by Hui, Bean and

Kraetzl [6] and by Ross [7].



The aim of our work is to propose a new efficient estimator that belongs to the variance-reduction

family. Tt is a recursive method which uses at each call:

a series—parallel reduction procedure which reduces the network size and preserves the

(un)reliability;

a conditioning process which transforms the evaluation of the network into the evaluation

of smaller ones where series—parallel reductions may appear;

an appropriate random selection of one of the resulting networks for continuing the recursive

process.

This process terminates when it is called on trivial cases (sp-reducible networks or those with
reliability equal to 0 or to 1). This scheme has been exploited by Cancela and El Khadiri to
build recursive variance reduction (RVR) estimator [1] where the conditioning step is based on a
K-cutset of the network. As illustrated by Cancela and El Khadiri in [2], this estimator behaves
very well in the source-terminal case. Unfortunately, its performance decreases when the size of
K increases. In particular, it becomes non-competitive when it is involved for the evaluation of
the all-terminal network reliability parameter, as demonstrated by examples in Section 4.

In this paper, we show how to use both a K-pathset and a K-cutset in the conditioning step. We
illustrate on several configurations that this idea leads to a general behavior improving upon the
previous RVR estimator and other, state-of-the-art, methods.

The paper is organized as follows. Section 2 is devoted to notation and definitions. Section 3
discusses how to exploit series—parallel reductions and both a K-pathset and a K-cutset to define
a new recursive variance reduction estimator. Section 4 is devoted to some numerical illustrations
and comparisons to other published methods. Some conclusions and possible improvements appear

in the last section.



2 Notation and definitions

Let us begin this section by model definitions and some notation.
- G=(V,&,K) : an undirected network topology:
- V : the node-set of G;
- &£ : the link-set of G;
- IC CV : the set of terminal nodes;
- L : event “link [ is up”;
- E : complement of event F:
- 1= Pr{L} : reliability of link ;
-q=Pr {f} = 1 — r; : unreliability of link /;
- 1 : indicator function of the event E;
- X(G) = (11),c¢: random network-state vector;
- |A] : cardinality of the set A;
- Gx : subnetwork of G derived from G by removing all failed links in X € {0, 1}¢l;
- Y(9) : 1(gx(g) is not K-connected) : random state of the network G;
- Q(9) =E{Y(9)} =1— R(G): K-terminal unreliability parameter of G;
- R(G) =E{1 -Y(G)}: K-terminal reliability of G.

The RVR method presented in this paper use the following notation and definitions.



For a subset £ of £, the subnetwork G' = (V, &', K) of G is K-connected if there is at least

one path in G between every pair of nodes in K;
A subset C of £ is a K-cutset of G if G = (V,€ — C,K) is not K-connected;
A subset C of £ is a K-pathset of G if the subnetwork G = (V,C, K) is K-connected,;

Two links are in series if they are adjacent and they have only one common node with degree
two and not belonging to K. A series reduction consists of replacing two links [, I’ in series
by a single link between the non-shared extreme nodes. The operating probability of the

new link is r;7p;

Two links are in parallel if they have the same extremities. A parallel reduction consists
of replacing two parallel links [, I by a single link between the same nodes. The operating

probability of the new link is r; + ry — rry;

G denotes the network resulting from applying all possible series and parallel reductions to

the network G;
A K-tree of G is a tree of G whose leaves belong to K;

A network G is sp-reducible if it is either a IC-tree or it can be reduced to a K-tree by

successive series and parallel reductions (G is a K-tree);

For a given link [ in G = (V,&,K), G — | denotes the network with node-set V and link-set
derived from &£ by removing link [ from £. The terminal set of G — [ is the same as the

terminal set of G;

For a given link [ in G = (V,&,K), G x| denotes the network derived from G by contracting

link | = {u,v} € € (eliminating [ and merging its extremities u and v into a new node w).



The terminal set of G *1 is equal to K — {u, v} U{w} if u and v belong to K, to K —{u}U{w}

ifueandv € K, to K—{v}U{w}ifu € K and v € K, and to K otherwise.
3 A new recursive variance reduction method

The series—parallel reduction procedure, performed in time linear on the network size, allows to
evaluate exactly sp-reducible networks or to reduce the size of networks containing parallel or
series links, without changing the network unreliability, that is Q(G) = Q(G). The reader can find
more details about these reductions in the work by Satyanarayana and Wood [8]. Assume that
0 < Q(G) < 1. If G is sp-reducible then Q(G) = Q(G) = 1 — [I,c57- Otherwise, the following
proposition allows to write the network unreliability of G as a function of the unreliabilities of

smaller networks where series and parallel links may appear. These networks are obtained by

contracting and deleting links of a fixed K-cutset and a fixed K-pathset in G.

Proposition 3.1 For any network G such that 0 < Q(G) < 1 and for any pair (Cg, Pg) of

K-cutset and K-pathset in G, we have:

Cgl | Pl .
Q(G) = ¢(Cg) + ;Q(gi)%(%) + ;Q(gi)pi(Pg) (1)

where

ly is a a link belonging to both Cg and Pg sets (by definition of K-pathset and K-cutset, such

a link necessarily exists);
- {li, b, Loy} s the set of links of Cg;
- Ey=1L,.L,... TCGI“ the event “all links of Cs = {l1,1la,. .., l‘%‘} are failed”;
- q(Cs) = Hlecg q s the probability of Eq;

- Ey = Ly 1s the event “link 1y is operational”;
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- 1(Cg) = 1y, is the probability of E\;
- for each i, 2 <i < |Csl;

- E; = Ly.Ly....Li_1L; is the event “all links in {ly,ls,...,l;_1} are failed and I; is

operational”;
- ¢i(Cg) = Q@ - - - qu;_, 71, 18 the probability of E;;

- Q = (G -l —lg—...— li,l) x [; 1s the network obtained from & by deleting all links

in {li,lo, ..., li_1} and contracting l; ;
- Al 1y, . .., Z]Pg~|} is the set of links of Pj;
- E(l) = Ll.L/2 . .L]Pé‘ 15 the event “all links of Py are operational”;
- po(Ps) = I ¢ P; 7y is the probability of Ey;
- E’1 = L, is the event “link l; is failed”;

- p1(Pg) =1, = 1 — qu, is the probability of Ey;

for each i, 2 <i <|Pgl;

/

- F, =1L.L,... .L;_lf; is the event “all links in {l;,1y,...,l,_,} are operational and I,
18 failed”;

- pi(Cg) = LTy Ty is the probability of E;;

- C;; = (C; sl kly % ... % 1;71> — I; is the network obtained from G by contracting all links

in {ly,ly,...,l;_,} and deleting I;.

Proof.  Since both (E;)o<i<|c, and (E;)Ogig‘pg‘ constitute partitions of the state space, the

events (L_l.Ei)USZ-ng and (Ll.E;)Ogig‘pg‘ are exhaustive and mutually exclusive. As L;.E; = 0,



L\.E; = E;, for i # 1, L1.E, = () and L,.E; = E,, for i # 1, we deduce that (Ei)2§i§|Cg~| and

(E;)a<i<| pg| form a set of exhaustive and mutually exclusive events. The total expectation theorem

leads to
|Cgl B
QQ) =E{V ()} = E{V(G)/E(Ce)}Pr{Es(Cq)}+ ZE {Y(G)/Ei(Cg)} Pr{Ei(C;)}
| Pgl ~ , /
+ E{Y(9)/Ey(Py)} Pr{Eo(P)} + 3 E{Y(G)/Ei(Fg)} Pr{Ei(Fy)}

When all links of a K-cutset are failed, the network is always not K-connected and when all links of
a KC-pathset are operational, the network is always /C-connected. It results that E {Y(C;) / EO(C’Q)} =
land E {Y(G)/E('](Pg)} = (0. Based on these results and above notation and definitions, the above

equality becomes

1Cgl |Ps| .,
QG) = w(Cq)+ > Q9:)ai(Cq) + X_Q(G:)pi(Fy)
1=2 1=2
which corresponds to Expression (1). O

Transformation (1) can be used to compute exactly Q(G) as follows :

( 1 if G is not K—connected;
0 if I is a singleton set;
1—1|n if G is sp-reducible;
Q) = 11 ©)
|Cg] ~ [P .,
90(Cs) + D 6:(Cs)Q(G:) + > _pi(P3)Q(G;)  otherwise
i=2 i=2

The computations involved by the recursive function (2) can be represented by a tree structure
with leaves correspond to calls with sp-reducible networks, or networks having unreliability equal
to 0 or equal to 1. Because the exact evaluation problem is in the NP-hard class, we exploit

Expression (2) for deriving the recursive random variable

( 1 if G is not K—connected;
0 if IC is a singleton set;
1-— H 7 if G is sp-reducible;
Z(G) 5 1€G
ICgl ~ |Ps| .,
20 (Cg) + a(Py, Cg) (Z Ywer(ps.o5)Z(Gi) + EI(UE#(PG’Cg))Z(gi)) otherwise
\ =2 i=2

(3)



where

ICs| 1P|
|Pg|

a(Pg,Cs) Zq, ) + Y _pi(Pz) is the probability of the event (U‘Zi%‘ E)NUU,S E,);
- (Jl(Pg“, C(j))QSZS\Cg\ and (le (Pg, CC;))QSZ§|PQ| form a partition of [0, ]_] (the length of JZ(PQ, C(j)

is ¢;(Cg)/a(Ps, Cg) and the length of J;(PQ, Cg) is pi(Pg)/a(Ps,Cg));

- U is a random variable with uniform distribution on [0, 1], s-independent of all random

variables used in the recursive process.

and we propose to use the sample mean 2(9),

based on N s-independent samples of Z(G) for estimating Q(G).

Remark 3.2 The above ideas have been used by Cancela and El Khadiri in [1] to build a similar
recursive r.v. F(G) which transforms the problem into identical problems related to networks
obtained by contracting and deleting links of a fized KC-cutset of the network, instead of using both

K-cutset and K-pathset as above. They proved that

E{F(9)} = Q(9) (5)

and

/

Var {F(G)} < (Q(9) — 4(C)) R(9) < Q(G)R(G) = Var {Y (9)} (6)

where C is the KC-cutset used at the first call to the recursive process and qo(C ) Hlec q 18 the
probability of the event “all links of Cé are failed”. The proof procedure employed for that case in

[1] can also be used to show that the r.v. Z(G) defined in (3) verifies

E{Z(9)} = Q(9) (7)



and

Var{Z(9)} < (Q(9) — w(Cy)) (R(G) — po(P5)) < Q(G)R(G) = Var {Y(9)} - (8)

Results (7) and (8) imply that the sample mean Z(G), is an unbiased estimator of G with variance
smaller than the variance of the SMC estimator, thus leading to a variance-reduction method.

Let us now describe how the trial Z(G)"*) is generated when G is not trivial (that is, when
Q(G) # 1 and Q(G) # 0). First, a series-parallel reductions procedure is called to reduce the
network’s size. If the network is sp-reducible, the unreliability of the sampled network is 1 —
IT,.s7i- FElse, after determining a K-cutset and a K-pathtset of G, intervals (Ji(Pg, Cg))a<icicy)
and (J; (P, C;))2<i<|p, are deduced and a trial of U is generated. As it belongs to only one of
the (|Cs| + |P;| — 2) intervals, only the associated term survives in the two sums of (3). Let G,
be the surviving network among the (|Cg| + |Pz| — 2) networks involved in (3). Then Z(6)™ is

obtained from the formula
Z(G)"W = qo(Cg) + a(Pg,C5) Z(Gs)™ (9)

where Z(gs)(k) is a trial of Z(G;). If G¢ has deterministic behavior (its unreliability is equal to 1
or 0), or is sp-reducible, the process terminates by returning Z(G)® = ¢o(C3) + a(Ps, C5)Q(Gs).
Otherwise, we apply to G, the same procedure that we applied to G. The related recursion process
can be represented by a linear computational structure. Its root corresponds to the network
G under study, each internal node corresponds to a recursive call and the last node presents a
network having a deterministic behavior. Because at each recursive step the number of links of

the resulting network is diminished by at least 1, the size of the related structure is bounded by

€.

Remark 3.3 From inequality (8), we can deduce that the ratio



represents a lower bound on the variance-reduction ratio of the proposed estimator with respect
to the SMC one. This bound, always greater than 1, depends on the K-pathset Pz and K-cutset
Cg chosen at the first call and it is mazimal when Pz and Cg have largest po(Pz) and qo(Cg)
respectively. On the other hand, as at each new recursive call this choice is operated on a new
network, the variance-reduction ratio achieved by the method will depend on the strategqy adopted
for selecting K-pathset and KC-cutset. Numerical illustrations presented in Section J correspond to
a version using the Breadth First Search procedure for obtaining a K-pathset and using the set of
adjacent links to one of the nodes in K as a K-cutset. A Breadth First Search algorithm can be

found in the book of Cormen, Leiserson and Rivest [4].

4 Numerical comparisons to efficient Monte-Carlo meth-
ods

To illustrate the interest of the RVR-PC method, based on the estimator Z(G) (4), we present some
numerical comparisons to the following three methods, which, up to our knowledge, are among the
most efficient ones in the published literature: the RVR-C method based on the estimator F(G)
proposed by Cancela and El Khadiri [1, 2], the Merge Process method (MP) proposed by Elperin
et al. [5] and the method which uses the Cross-Entropy technique to further improve the Merge
Process performances (CE-MP) proposed by Hui et al. [6]. For the examples, we consider the
following networks, which have been chosen because previous publications have included numerical

results that we will use in the comparisons:

- grid networks G3 and Gg (see Figure 1), where links are assigned equal unreliability ¢ = 1073

or ¢ = 107% and K is the set of the four corner nodes as in the work of Hui et al. [6];

- complete networks Cyg, Ci5, Cq, Co5 and C3 where links are assigned equal unreliability

g =0.55 and K =V as in in the work of Elperin et al. [5] (C,, has n nodes and n(n — 1)/2
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links).

For those networks exact values of Q(G) are tabulated at column 3 of Table 1. Exact unreliabilities
of grid networks are given by Hui et al. in [6] and for complete topolgies, we used a Maple program
to compute them based on the following recursive formula given by Colbourn [3]: if Q(C),) = uy,

and if the common unreliability of the lines is ¢, then u; = 0, us = ¢ and for n > 3,

Each exact unreliability Q(G) serves

- in the computation of the relative error parameter
REg (%) =100 x [V = Q(9)|/Q(9) (10)

which helps to analyze the quality of the estimates produced by a sample mean estimator

—~

W
- for checking if the TLC-based 95%level confidence interval

Cls :]W—l.% Var{W},WH.%,/Var{W}l (11)

associated with the estimate of Q(G) by the sample mean estimator W contains or not the
exact reliability Q(G) (let us recall that if the sample size N is large enough, the central

limit theorem implies that the probability that Q(G) belongs to CI, is greater than 95%);

- in the computation of the exact variances of the SMC estimator; these variances are needed

to compute the variance-reduction ratios
VRRg = Var {V(G)} /Var {W} = Q(G)(1 - Q@) /(N x Var {W}).  (12)

For a fixed sample size N, if VRRz = v, then the length of the confidence interval related
to the estimate obtained by the estimator W is /v times smaller than the length of SMC’s
confidence interval.

12



For a fixed sample size N, the best method in terms of accuracy is the one leading to a 95%level
confidence interval covering the exact value and such that its variance-reduction ratio with respect
to the SMC method is the largest one (the length of its confidence interval is the smallest one).
As Var {2(9)} and Var {F(Q’)} are unknown, their unbiased estimators

N

T2 = 3 (29(G) - 2@V /(N - )N (13
and
T = 3 (FOG) = F(@)V/(N — )N (1)

are used in combination with the exact variances of the SMC estimator given in column 4 of
Table 1, in order to calculate the corresponding variance-reduction ratios. For MP and CE-MP
methods, results given by their authors are used.

To consider both accuracy and execution time, we consider the relative efficiency parameter
Whssme (sometimes called speed-up). The relative efficiency is the product of the variance ratio
defined in (12) and the time ratio Tsy;c/Thr where Ty denote the mean execution time of method
M. This parameter is a natural efficiency indicator, as it has two very intuitive interpretations: if
we consider that we run SMC' for the same total average execution time as M, then the variance
of the estimator by SMC will be Wy, sarc larger than the one of the estimator computed by M.
Alternatively, if we run SMC for a number of iterations enough to obtain the same variance as
M, then SMC' computing effort will be, on the average, Wy syc times higher than the M’s one.
Execution times of the SMC, RVR-PC and RVR-C methods correspond to our implementations
using the Microsoft Visual C++ 6.0 language and a computer based on the Intel Celeron processor
with 2.66 GHZ frequency and 256 Mo of RAM memory. We tabulate in column 5 of Table 1 the
mean time par trial for the SMC method. Then, we only give time ratios of the RVR-PC and

RVR-C methods with respect to the SMC one, in the corresponding tables. For the MP method,
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we report speed-ups given by Elperin et al. [5]. For the CE-MP method, we report only variance-

reduction ratios (execution times are not considered by Hui et al. in [6]).

4.1 Comparison of RVR-C, RVR-PC and CE-MP methods on grid
topologies
As in the work of Hui et al. [6], where the estimator based on Merge Process and Cross-Entropy
techniques is proposed, we use the sample size N = 10°, networks G5 and Gy, the terminals are
the corner nodes and the common link unreliability is ¢ = 10~® and ¢ = 10~6.
Table 2 shows the results obtained by RVR-C. From column 5 we can see that for both grids, G5
and Gg, RVR-C is able to give confidence intervals covering the exact Q(G) value when the link
unreliabilities are 107%; but when the link unreliabilities are fixed to 107%, dramatically increasing
the rareness of the network failures, RVR-C confidence intervals do not include Q(G). The variance
reduction rates with respect to SMC are modest for ¢ = 103; the large values shown for 10 are
not significant, as the estimation is not correct in that case. Additional experiments with larger
sample sizes (up to 10? iterations) show that, while the estimated relative errors are always in the
50% range, the confidence interval still do not cover the exact value.
The RVR-PC method gives much better results, as shown in Table 3. The exact values are always
within the confidence intervals, the relative errors are good for the four cases and there are large
variance-reduction ratios and speed-ups obtained over SMC.
The CE-MP method’s results are presented in Table 4; here also the estimations are consistent, the
confidence intervals cover the exact values, and good variance-reduction ratios are achieved. The
comparison between RVR-PC and CE-MP show that the former still enjoys an small advantage,
in terms of variance-reduction ratios. As execution times are not given by Hui et al. in [6], we

can’t compare CE-MP and RVR-PC methods with respect to speed-ups values.
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4.2 Comparison of RVR-C, RVR-PC and MP methods on complete
topologies

As in the work of Elperin et al. [5] where the estimator based on Merge Process is proposed, we
consider complete topologies C,, for n = 10, 15, 20, 25, 30, with common link unreliability ¢ = 0.55.
All nodes are considered as terminals (the measure evaluated is the all-terminal reliability) and
the sample size is N = 10*.

We show in Table 5 the results obtained by employing RVR-C. We observe that relative errors
grow when the networks get increasingly more reliable (then, when failures are increasingly rare
events). Moreover, for the Cy; and C3 topologies, relative errors exceed 90% and the confidence
intervals do not contain the exact unreliabilities. For these topologies, we can conclude that a
sample size 10* is not enough to obtain estimates with reasonable relative errors when Q(G) is of
order 1076 or smaller. The fourth column of the table shows the variance reduction ratios; it is
clear that for the three first topologies, the method only improves marginally upon SMC; the large
values for the last two topologies are meaningless, as the method did not give a good estimation
of Q(G).

Table 6 shows the results obtained by the proposed new method, RVR-PC. We can see now that
RVR-PC gets increasingly better results when the networks are more reliable; the relative error
obtained using the same sample size N = 10 not only are always smaller than the corresponding
ones by the RVR-C method, but they also are reasonably good for the Cy5 and (3 topologies.
This is confirmed by looking at column 5, where we can see that all confidence intervals cover
the exact value of Q(G). This table analyzes two additional topologies, Cyg and Cjyq, which were
included to confirm that the behavior of RVR-PC was robust when considering still more reliable
topologies. Columns 4 and 6 show the variance-reduction ratio and the relative efficiency with

respect to the SMC method. These indicators increase when Q(G) decreases and illustrate that
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RVR-PC offers substantial gains.

The performances of the MP method are shown in Table 7. The estimations for the first four
topologies are good, but in the case of the most reliable topology considered, C3q, the confidence
interval does not contain the exact value and the estimation itself is an order of magnitude away
from Q(G) (this might also be due to a mistype in the source of these values. The MP code was not
available to repeat these experiments and confirm). For the cases where the estimation is good,
the relative errors, variance-reduction ratios and speed-ups with respect to the SMC method are
slightly worse than the ones abtained by RVR-PC.

Comparing the results shown by the three tables, we can see that RVR-PC is the most robust
technique, giving estimations close to the true Q(G) values for all the considered topologies, and
obtaining the best precisions for a given sample size, as well as the best relative efficiency values.
The MP method, albeit also giving good results, has consistently lower variance reduction ratios
and relative efficiency figures. The RVR-C method does not obtain significant improvements over
SMC, and for the most reliable networks is not able to give dependable estimates when run with

a 10* sample size.

5 Conclusions

The exact evaluation of the KC-network unreliability parameter belongs to the family of NP-hard
problems. An alternative is to perform estimations by Monte Carlo simulation methods. In the
rare event case (highly reliable networks), the standard Monte Carlo method is also expensive
when accurate estimates are required. For such cases, variance-reduction methods must be used.
We proposed here a new recursive variance-reduction method based on series-parallel reductions
and a decomposition procedure which simultaneously exploits both a IC-pathset and a KC-cutset

in order to transform the original problem into similar ones on smaller networks. This method is
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a modification of a previous RVR method where only IC-cutsets were involved at each recursive
call.

As illustrated on many configurations used in the published literature, the new RVR method not
only improves significantly upon the old one but it is also competitive when compared to the
Merge process Monte Carlo method and to a method which uses the Cross-Entropy technique to
improve the Merge Process performances.

Numerical illustrations presented here correspond to a version using the Breadth First Search
procedure for obtaining a K-pathset and using the set of adjacent links to one of the nodes in
K as a K-cutset. As the lower bound on the variance-reduction ratio with respect to the SMC
one depends on the (un)reliabilities of the links in the K-pathset and the K-cutset selected from
the original network and at each new recursive call this choice is operated on a new network, the
variance-reduction ratio achieved by the method will depend on the strategy adopted for selecting

them. A future extension of this work is the search of an optimal strategy.
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Network | ¢ Q(G)[6] N x Var {Y(9)} = Var {Y ()} = Q(9)R(9)
Gs 1073 [ 4.01199 x 1079 4.01197 x 1076
G, 106 [ 4.00001 x 10~ 4.00001 x 10~
Gg 102 | 4.00800 x 106 4.00798 x 106
G 107 | 4.00001 x 1012 4.00001 x 1012
Cho 0.55 | 4.58481 x 1092 4.37460 x 1072
Cis 0.55 | 3.47489 x 103 3.46281 x 1093
Cayo 0.55 | 2.33295 x 10% 2.33240 x 107
Cys 0.55 | 1.46772 x 10~ 1.46770 x 1079
Cso 0.55 | 8.86419 x 1077 8.86418 x 10797
Cio 0.55 | 2.99368 x 10~99 2.99368 x 1098
Cso 0.55 | 9.47855 x 102 9.47855 x 10~ "2

Table 1: Exact unreliabilities of networks used for numerical illustrations, exact variances of
network random state Y (G) and mean execution time of one trial of Y(G).

Network | ¢ Estimate of Q(G) RE(%) VRR Q(G) € 95%-CL ? | Wryr_c/smc
G5 1073 | 3.01102 x 1079 | 2.50 x 1011 | 3.01 x 10790 Yes 5.18 x 10101
G5 1076 | 1.99996 x 102 | 5.00 x 10191 | 2.00 x 108 No
Gs 1073 | 3.00402 x 1079 | 2.50 x 101 | 3.00 x 10790 Yes 1.22 x 10102
Gs 107 | 1.99996 x 10~ | 5.00 x 10191 | 2.00 x 10+'8 No

Table 2: Performances of the RVR-C method for the evaluation of G35 and G¢. Terminals are the
four corner nodes and N = 106.

Network q Estimate of Q(G) RE (%) VRR Q(G) € 95%-CI ? | Wryr_pc/smc
Gs 1079 | 4.01321 x 1079 | 3.04 x 10792 | 4.49 x 107% Yes 1.21 x 10107
G 107 | 4.00130 x 10712 | 3.22 x 10792 | 1.44 x 10*+!! Yes 3.72 x 10112
G 1079 | 4.01758 x 1079 [ 2.39 x 1071 | 1.12 x 1079 Yes 5.17 x 10704
G 1079 | 4.00894 x 10712 [ 2.23 x 1079 | 1.10 x 10T Yes 5.31 x 10110

Table 3: Performances of the RVR-PC method for the evaluation of G35 and Gg. Terminals are

the four corner nodes and N = 106.

Network | ¢ | Estimate of Q(G) [6] RE (%) VRR][6] Q(9) € 95%-CI 7
G5 1073 4.01172 x 1079 6.73 x 10793 | 2.17 x 1010 Yes
G5 1076 3.99876 x 10~ 12 3.12x 10792 | 2.16 x 10t Yes
Gs 1073 4.00239 x 1079 1.40 x 10791 | 1.07 x 107% Yes
Gs 1076 3.99869 x 1012 3.30 x 107°1 | 1.06 x 10+!! Yes

Table 4: Performances of the MP-CE method for the evaluation of GG3 and G4. Terminals are the
four corner nodes and N = 10°.
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Network | Estimate of Q(G) RE (%) VRR Q(G) € 95%-C1? | Wryr_c/smc
Cho 4.50953 x 10792 | 1.64 x 10790 | 2.43 x 10100 Yes 2.07 x 10101
Cis 3.70929 x 1079 | 6.74 x 10190 | 1.95 x 10790 Yes 3.04 x 10100
Cho 2.43334 x 10794 | 4.30 x 10199 | 1.93 x 10700 Yes 1.36 x 10199
Cos 1.17419 x 1079 | 9.20 x 10701 | 4.47 x 10114 No
Cso 5.90947 x 1079 [ 9.33 x 10101 | 4.21 x 108 No

Table 5: Performances of the RVR-C method for the evaluation of complete networks. I =V,

the common link unreliability ¢ is equal to 0.55 and the sample size N is equal to 10*.

Network | Estimate of Q(G) RE (%) VRR Q(G) € 95%-C1 ? | Wryr_pc/smc
Cho 4.58982 x 10792 [ 1.09 x 107" | 2.72 x 10702 Yes 8.16 x 10102
Cis 3.47094 x 1079 | 1.14 x 1079 | 5.54 x 10703 Yes 2.16 x 10103
Cao 2.33403 x 10°9% [ 4.64 x 10792 | 1.10 x 1079 Yes 1.03 x 10104
Cos 1.46809 x 1079 | 2.51 x 10792 | 2.11 x 10796 Yes 7.44 x 10104
Cso 8.85976 x 10797 [ 5.00 x 1092 | 4.27 x 10107 Yes 7.67 x 10105
Cho 2.99422 x 1079 | 1.82 x 10792 | 1.69 x 10799 Yes 1.54 x 10107
Cso 9.48517 x 1071 [ 6.98 x 10792 | 6.47 x 10712 Yes 3.43 x 10110

Table 6: Performances of the RVR-PC method for the evaluation of complete networks. IC =V,

the common link unreliability ¢ is equal to 0.55 and the sample size N is equal to 10*.

Network | Estimate of Q(G) [5] RE(%) VRR[5] Q(G) € 95%-C1 7 | Wyrp/smc|5]
Cho 4.56 x 10702 5.41 x 107°1 [ 7.00 x 10197 Yes 2.10 x 10701
Cis 3.46 x 10703 4.28 x 10701 | 8.87 x 10102 Yes 1.69 x 10702
Cao 2.32x 10704 5.55 x 10791 | 1.52 x 10104 Yes 3.28 x 10193
Cos 1.47 x 1079 1.55 x 10791 | 2.70 x 1019 Yes 4.72 x 10704
Cso 8.89 x 1076 9.03 x 10792 | 5.08 x 10797 No

Table 7: Performances of the MP method [5] for the evaluation of complete networks. I =V, the

common link unreliability ¢ is equal to 0.55 and the sample size N is equal to 10*.
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