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Abstract: We study the problem of the optimal design of routes and frequencies

in urban public transit systems, the Transit Network Design Problem (TNDP). We

model it as a multi-objective combinatorial optimization problem, which consists

in optimizing simultaneously the conflicting objectives of users and operators. A

new approximative algorithm based on the GRASP metaheuristic is proposed to

solve the TNDP. This algorithm can be classified as a multi-objective metaheuris-

tic since it produces a set of non-dominated solutions in a single run. It differs

from most previous approaches, which have used the Weighted Sum Method to gen-

erate a set of non-dominated solutions by running a single-objective optimization

algorithm for several weights representing different trade-off levels between the con-

flicting objectives. Numerical results are presented, showing that the multi-objective

metaheuristic is more efficient in terms of execution time than the Weighted Sum

Method.
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Una metaheuŕıstica multi-objetivo para
el problema de diseño de redes
de transporte público

Palabras clave: diseño de redes de transporte público, optimización combinato-

ria multi-objetivo, GRASP

Resumen: Se estudia el problema del diseño óptimo de recorridos y frecuencias en

sistemas de transporte público urbano, el Transit Network Design Problem (TNDP).

El mismo se modela como un problema de optimización combinatoria multi-objetivo,

consistente en optimizar simultaneamente los objetivos en conflicto de los usuarios

y los operadores. Se propone un nuevo algoritmo aproximado basado en la meta-

heuŕıstica GRASP para resolver el TNDP. Este algoritmo puede ser clasificado como

una metaheuŕıstica multi-objetivo, dado que produce un conjunto de soluciones no

dominadas en una sola ejecución. La propuesta difiere de la mayoŕıa de los enfo-

ques anteriores, que han usado el Método de Suma Ponderada para generar un con-

junto de soluciones dominadas, ejecutando un algoritmo de optimización de objetivo

único para varios pesos que representan diferentes grados de compromiso entre los

objetivos en conflicto. Se presentan resultados numéricos, mostrando que la meta-

heuŕıstica multi-objetivo es más eficiente en términos de tiempo de ejecución que el

Método de Suma Ponderada.
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1 Introduction

The planning of urban public transit systems involves making decisions about
many infrastructure and operational aspects. Ceder and Wilson [8] present
a decomposition of the entire planning process in a sequence of activities,
namely, network design, frequency setting, timetable development, bus and
driver scheduling. At the network design level a set of routes is defined, where
each route is a sequence of links of the road network. This activity is per-
formed in the context of strategic planning, taking decisions in a long time
horizon [12], usually regulated by the authorities. In the most general case,
route and frequency definition has to take into account the interests of users
(people who employ or need to employ public transport) and operators (pri-
vate companies who own the resources to give the service). The simultaneous
optimization of the system from the viewpoints of both users and operators
poses a design trade-off. Roughly speaking, a better service is offered to the
users in the presence of more routes and high frequencies. Because invariably
there exist upper bounds in the companies resources which make the opera-
tion profitable and in the monetary cost feasible for the users, a convenient
trade-off level has to be established, maybe entailing the evaluation of various
alternative system designs. Thus, the problem of the optimal design of routes
and frequencies has an intrinsic multi-objective nature.

The Transit Network Design Problem (TNDP) aims to find a set of routes
with their corresponding frequencies for an urban public transit system, op-
timizing the conflicting objectives of users and operators. Main problem data
are the road network and the demand between different points of the city.
Constraints are usually related to demand satisfaction, required level of ser-
vice and resource availability (but there can be other additional constraints).
Frequencies are included as decision variables in network optimization models,
because they also have a direct influence in the cost structure of both users
and operators. The exact resolution of the TNDP has the following difficulties,
enumerated among others in [4, 9]:

• High combinatorial complexity: Israeli and Ceder [18] classified the prob-
lem as a complex variant of the generalized network design problem [21],
which is NP-hard.

• TNDP requires an assignment submodel: the evaluation of a solution from
the users viewpoint needs a behavior model of the passengers concerning
the routes and frequencies of that solution. The assignment model of pas-
sengers to routes (or simply assignment model) specifies how the demand
is distributed among a given set of routes, and its solution constitutes
a hard problem by itself [12], in this case posed as a subproblem of the
TNDP.

• Multi-objective nature: the existence of conflicting objectives adds com-
plexity to the problem, either in the a priori estimation of the relative
importance of the objectives, or in the calculation of several solutions
with different trade-off levels between the conflicting objectives.
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The combinatorial complexity of the TNDP has been tackled in the existing
literature exclusively by means of approximative methods. Complete enumer-
ation of feasible solutions is prohibitively expensive; mathematical program-
ming formulations exists only for simplified versions of the problem [7, 30].
The first algorithms published for the TNDP were heuristics [2, 5, 22, 27].
Lately, several applications of metaheuristics have been proposed, most of
them using Genetic Algorithms with different coding schemes [24, 25, 29],
Tabu Search [15] and GRASP [23].

The assignment models generally used in the context of the TNDP aim to
give a realistic representation of the interaction between passengers and buses;
but their complexity must be kept bounded given the impact they have in the
overall efficiency of the optimization algorithms. Most common approaches are
all-or-nothing assignment [24], common lines and transfers [3], and detailed
network treatment [15].

Most of previous works have considered the multi-objective nature of the
TNDP by using an a priori estimation of a vector of weights to express a
particular trade-off level between the conflicting objectives [4, 15, 24, 25, 29].
Only the work of Israeli and Ceder [18] implements a heuristic to explicitly
obtain a set of solutions with different trade-off levels. All the existing meta-
heuristic based algorithms for the TNDP (with the sole exception of [23]),
solve a single-objective optimization problem by summarizing the different
objectives in one by using a vector of weights.

In the last years, a growing amount of work has been published about meta-
heuristics specially designed for multi-objective combinatorial optimization
problems. This type of algorithms has been denominated as multi-objective

metaheuristics and they are defined by different authors as: methods that
aim at generating a good set of non-dominated solutions in a single run [19],
and algorithms that deal with the multiple objectives directly [14]. The basic
idea of multi-objective metaheuristics is to adapt the mechanisms of their orig-
inal single-objective counterparts to handle effectively and efficiently multi-
objective optimization problems [10, 13, 14].

In this work we present an approximative algorithm based in the GRASP
metaheuristic [26] to solve the TNDP with a multi-objective approach. It
allows to obtain in a single run, a set of non-dominated solutions represent-
ing different trade-off levels between the conflicting objectives. According to
this, it can be classified as a multi-objective metaheuristic based algorithm,
since it is specially developed to take into account the multi-objective nature
of the problem. It includes a new route set construction procedure, and a
neighborhood definition that is used to search for a near optimal set of fre-
quencies for a particular trade-off level. The assignment model of Baaj and
Mahmassani [3] is used to calculate some variables needed by the optimization
procedure. The proposed methodology is tested with the case of Mandl [4].
Existing and proposed measures are calculated for different non-dominated
solutions; these measures can be useful for the decision maker. Moreover, we
show evidence that the multi-objective metaheuristic algorithm is more effi-
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cient than a single-objective version of it, which is used as a subroutine in the
Weighted Sum Method [11].

The paper is organized as follows. We formally state the problem and
used notation in Sect. 2 and present the adopted multi-objective approach in
Sect. 3. Details of the GRASP implementation are given in Sect. 4. Numerical
results are presented in Sect. 5, and finally some conclusions and future work
are formulated in Sect. 6.

2 Problem definition and notation employed

We model the network that enables the definition of routes as an undirected
graph G = (N,E), where N is the set of vertices (|N | = n) and E is the
set of edges representing connections between vertices. The cost ce of an edge
e = (i, j) ∈ E models the in-vehicle travel time, i.e. the time spent by vehicles
to travel between vertices i and j; this cost is the same for every route that
uses edge e, and it is independent of the occupation level of the vehicles. An
origin-destination matrix D = {dij , i, j ∈ [1..n]} is given, which characterizes
the demand; dij denotes the demand from vertex i to vertex j, expressed
in trips per time unit in a given time horizon (to be accomplished by one
passenger that will occupy one place in a vehicle). A route is a sequence of
adjacent vertices in G. Since it is composed by undirected edges, it has for-
ward and backward directions. A solution S for the TNDP is a pair (R,F )
where R = {r1, . . . , rr} is the set of routes and F = {f1, . . . , fr} is the set
of frequencies; each fk is a real value that represents the inverse of the time
between subsequent vehicles on route rk. We denominate line k to the pair
(rk, fk). Given a solution S, the assignment model produces a set of corre-
sponding flows Φ(S) = {Φ1(S), . . . , Φr(S)}, which express the distribution of

the demand D among the lines of S. We define Φk(S) = {
−→
φ e,k,

←−
φ e,k, e ∈ rk}

as the set of flows in route rk, where
−→
φ e,k and

←−
φ e,k are forward and backward

flow respectively, in edge e in route rk. Flows are expressed in the same units
as the origin-destination matrix D.

The conflicting objectives of users and operators are modelled with func-
tions Z1 and Z2 respectively, which have to be minimized simultaneously. The
former is defined as

Z1(S) =

n∑

i=1

n∑

j=1

dij(tvij + twij + ttij) . (1)

Using this function, we minimize the overall time needed to transport the
users between their corresponding origin and destination vertices. It has three
components: in-vehicle travel time tv, waiting time tw and transfer time tt.
These values are determined by the assignment model; tvij is calculated using
the costs of the edges of G that are used by lines in S connecting vertices i
and j; twij depends of the frequencies of these same lines; ttij is a penalty
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(expressed in time units) which represents the discomfort of transfers from
the users viewpoint (we define σt as the penalty of each demand unit which
has to perform transfers).

Operator costs are more difficult to express in a general sense, as they
depend of each particular case. For this reason we use the number of simulta-
neously operating vehicles (fleet size) needed to operate the routes with given
frequencies in a solution S, as a proxy for operator costs. It is expressed as

Z2(S) =
∑

rk∈R

fktk , (2)

where tk = 2
∑

e∈rk
ce is the total duration (round-trip time) of route rk.

For a given solution S = (R,F ), we define D0(S) ∈ [0, 1] as the proportion
of the total demand Dtot =

∑n

i=1

∑n

j=1 dij satisfied for routes R directly
(without transfers), independently of frequencies F . Analogous, D01(S) is the
proportion of Dtot satisfied for routes R directly or indirectly (one transfer,
at most), independently of F . Dmin

0 and Dmin
01 are constant values, which

constrain D0(S) and D01(S) respectively as

D0(S) ≥ Dmin
0 , (3)

D01(S) ≥ Dmin
01 . (4)

We consider lower and upper values for frequencies, fmin and fmax respec-
tively. While the former takes care of the level of service offered to the users,
the latter represents a limit imposed by the operational possibilities of the
transit mode. These constraints are expressed as

fmin ≤ fk ≤ fmax ∀fk ∈ F . (5)

The maximum load factor constraint imposes an additional condition for the
frequencies. It is expressed as

fk ≥
φ∗

k

ωmaxQ
∀fk ∈ F , (6)

where φ∗

k = max Φk(S) is the critical flow in route rk and Q is the seating
capacity of vehicles. The given constant ωmax ≥ 1 is the maximum load
factor in vehicles, expressing a tolerance in the number of standing passengers;
according to this, ωmaxQ is the maximum allowed capacity of vehicles.

We denominate as P the problem defined by the simultaneous optimization
of objective functions (1) and (2), under constraints (3), (4), (5) and (6).

3 Multi-objective approach

Problem P can be classified according to [13] as a multi-objective combinato-
rial optimization (MOCO) problem. The discrete nature of the variables that
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represent the structure of routes gives the combinatorial characteristic. The
conflicting objectives represented by functions (1) and (2) result in the exis-
tence of a set of Pareto optimal solutions instead of a single optimal solution.

The multi-objective nature of the TNDP as it is posed by objective func-
tions (1) and (2) (or by similar formulations), has been tackled by the following
approaches in the existing literature:

• Making an a priori estimation of the relative importance of the conflicting
objectives in the form of a vector of weights, and then solving a single-
objective optimization problem [24, 25, 29]. Some authors suggest that by
varying the values of these weights, a set of non-dominated solutions can
be obtained [4]. We denominate such approach as weighted sum approach.

• Calculating a set of non-dominated solutions and then selecting a single
one [18], that we denominate as multi-objective approach.

In this work we adopt the latter approach, and we concentrate in finding a
good set of non-dominated solutions which can be used in subsequent steps
by the decision maker, either to select a single non-dominated solution, to
compare the solutions with an existing solution or to evaluate alternative
solutions.

3.1 Definitions and terminology

Given the multi-objective nature of problem P, it does not have a single op-
timal solution S∗; instead it has a set of Pareto optimal solutions P ∗, called
optimal Pareto front [11]. The optimal Pareto front of a multi-objective opti-
mization problem with feasible set of solutions C is the non-dominated set of
C, i.e. the subset of solutions of C that are not dominated by other solutions
of C. A solution S1 dominates another solution S2 if S1 is no worse than S2

in all objectives and S1 is strictly better than S2 in at least one objective.
Moreover, two solutions S3 and S4 in C are not dominated if both S3 does
not dominate S4 and S4 does not dominate S3.

When we refer to elements in the feasible set C, we are dealing with the
so called decision space, i.e. the space where variables take values. On the
other hand, domination is defined according to the values of the objective
functions evaluated over solutions of C in the so called objective space. Figure 1
exemplifies these concepts for a bi-objective minimization problem; that is the
case of the TNDP.

3.2 Multi-objective metaheuristics

To solve exactly problem P according to a multi-objective approach requires
finding all of its Pareto optimal solutions. Most MOCO problems are proven
to be NP-hard as well as #P-hard, and this is true even for problems which
have efficient algorithms in the single-objective case [14]. This implies that
there is no chance to have a polynomial time algorithm to exactly solve them,
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Pareto optimal solutions

Dominated solutions

Decision space Objective space

P

C

*

Fig. 1. Decision and objective spaces for a bi-objective minimization problem

and even to count the elements of the optimal Pareto front. For these reasons
we consider the use of an approximative algorithm to obtain an approximated

Pareto front for P.
Methods for multi-objective optimization that use algorithms for single-

objective optimization as subroutines are considered in [11] as part of the
classical methods. Most popular classical methods used for MOCO problems
are the Weighted Sum Method and the ǫ-Constraint Method [14]. They can
find Pareto optimal solutions in some cases, but they have the following dis-
advantages [11]:

• Only one Pareto optimal solution can be expected to be found in a single
run of the single-objective optimization algorithm.

• Not all Pareto optimal solutions can be found by some algorithms in non-
convex multi-objective optimization problems. This is true for MOCO
problems given the discrete nature of its variables (see unsupported ef-
ficient solutions [14]).

• They requiere some problem knowledge, such as suitable weights or values
to constraint objective functions.

Multi-objective metaheuristics have been proposed as candidates to overcome
the difficulties of classical methods in solving MOCO problems. Main algorith-
mic difference with their single-objective counterparts, is the adopted search
mechanism to obtain a good approximated Pareto front. In multi-objective
optimization, the goals of an approximative algorithm are two, namely [11]:

• Closeness: one seeks to find solutions which are close to the optimal Pareto
front (Fig. 2(a)).

• Diversity: one also wants to obtain a set of non-dominated solutions which
covers different areas of the objective space, representing a diverse set of
trade-off levels between the conflicting objectives (Fig. 2(b)).
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(a) Closeness (b) Diversity

Fig. 2. Two goals of an approximative algorithm for a bi-objective minimization
problem

On seeking closeness and diversity, multi-objective metaheuristics have to im-
plement specially designed search mechanisms, which have to deal with both
decision and objective spaces.

The field of multi-objective metaheuristics has been growing in the last
years. Main metaheuristics adapted for multi-objective optimization are Evo-
lutionary Algorithms, Simulated Annealing, Tabu Search and Ant Colony
Optimization. Some work has also been published about adaptation of Artifi-
cial Neural Networks, GRASP and Scatter Search for MOCO problems [14].
Surveys about multi-objective metaheuristics can be found in [10] and [14].

3.3 Multi-objective GRASP for the TNDP

GRASP (Greedy Randomized Adaptive Search Procedures [26]) is a meta-
heuristic for combinatorial optimization problems. It consist in the repeated
execution of a solution construction procedure followed by a local search. The
construction is performed using a greedy criterion, by adding iteratively to a
solution, elements which are randomly selected from a candidate list. The local
search requires the definition of a neighborhood structure, through which to
successively advance in the direction of improvement of the objective function.
The sequence of construction and local search (GRASP iteration) is repeated
a given number of times, obtaining different trajectories in the feasible space.
Finally, the best found solution is returned.

In this work we adapt GRASP to solve the TNDP with a multi-objective
approach. Existing adaptations of GRASP for MOCO problems can be found
in [6, 23, 28]. The general structure of the proposed algorithm, that we call as
GRASP TNDP, is the following (implementation details are given in Sect. 4):

• The construction procedure generates a set of routes R, which fulfills con-
straints (3) and (4) of the optimization problem P. Routes are constructed
by using shortest paths between vertices in G and then inserting additional
pairs of vertices on them.

• The local search calculates a near optimal set of frequencies F , according to
constraints (5) and (6), for a given trade-off level between the conflicting



10 Antonio Mauttone and Maŕıa E. Urquhart

objectives represented by functions (1) and (2). This procedure takes a
random vector of weights and uses a neighborhood structure to advance
in the direction of improvement of a single composite objective function.
The neighborhood of a solution is defined by varying its frequencies in a
predetermined set.

In this way, at each GRASP iteration, different points in both decision and
objective spaces are sampled. Different trade-off levels are obtained by varying
from one GRASP iteration to other, parameters of maximum route duration
tmax at the construction procedure and random vector of weights λ at the
local search. All solutions of the trajectory of the local search are added to
the set of potentially non-dominated solutions under construction P . At the
end of each GRASP iteration, all dominated solutions in P are deleted. The
assignment model of Baaj and Mahmassani [3] is used to evaluate objective
function Z1(S) for each solution S and to verify frequency feasibility according
to constraint (6).

4 The algorithm

When we instantiate the GRASP metaheuristic for a particular application,
we have to tailor all its problem dependent aspects. The constructive algo-
rithm has to be specified, which entails to specify how to build the list of
candidate elements to be added to the solution under construction, how these
elements are ranked at each step of the construction according a required
adaptive greedy function, how to construct the restricted candidate list, and
how the elements are selected from that list. For the local search, a neighbor-
hood structure and its exploration strategy have to be defined. Also a stopping
rule is required.

4.1 Constructive algorithm

The constructive algorithm (Fig. 3) starts with an empty set of routes R, and
iteratively seeks to satisfy the demand specified by origin-destination matrix
D. At each iteration step, a restricted candidate list rcl is constructed by
selecting the α|l| pairs of vertices (i, j) with highest demand dij in l, where
α ∈ [0..1] is a parameter of GRASP and l is a list made of all pairs of vertices
whose demand is not yet satisfied (directly) by routes in R. The pair of vertices
(u, v) is randomly selected from rcl by using a distribution with probabilities
which are proportional to the demand. This approach is described in [26]
as a method for setting probabilities to the elements of rcl by introducing
bias functions. In this case we define bias(u, v) = duv, and the corresponding
probability is

Prob(u, v) =
bias(u, v)∑

(i,j)∈rcl bias(i, j)
. (7)
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The corresponding demand duv is satisfied according to one of the two follow-
ing possibilities:

1. Creating a new route, using the shortest path between u and v in G,
measured in in-vehicle travel time.

2. Inserting vertices u and v in convenient positions of a convenient route
of R. We evaluate the cost of insertion of both u and v between all pair
of consecutive vertices in routes of R. When we insert a vertex v′ in a
route between two (consecutive) vertices i and j, we connect it with them
using the shortest paths in G between v′ and i, and v′ and j respectively,
ignoring resulting routes with loops. In a route formed by p vertices, there
are (p + 1)(p + 2) insertion possibilities if neither u nor v belongs to the
route and (p + 1) possibilities if either u or v belongs to the route. The
most convenient route and the most convenient positions for insertion of
vertices u and v on it, are those which minimize the cost increase in the
solution under construction, measured in terms of in-vehicle travel time.

The lowest cost increase due to insertion of vertices u and v in a route of R
according to case 2 is compared with the cost of the shortest path between
u and v according to case 1; the best (less costly) case is selected and the
algorithm proceeds.

Two constraints are imposed in routes under construction: maximum du-
ration tmax and maximum circuity factor ρmax. The circuity factor of a route
r with extreme vertices u and v, is defined in [5] as the ratio between the
in-vehicle travel time between u and v using r, and the cost of the shortest
path between u and v in G (independently of any route).

The construction algorithm ends when constraints (3) and (4) are satisfied.
The general structure of the proposed constructive algorithm is inspired in the
Route Generation Algorithm (RGA) of Baaj and Mahmassani [5]. The main
difference is that where RGA inserts individual vertices on existing routes of
the solution under construction, our algorithm inserts pairs of vertices, trying
to satisfy directly the demand associated to them.

4.2 Local search

The local search operates with the set of frequencies F = {f1, . . . , fr} ∈ Θr of
a solution S = (R,F ); this means than only frequencies are decision variables
in this phase (Fig. 4). The neighborhood NS of S is defined as:

NS = {S′ = (R,F ′) with F ′ = {f ′

1, . . . , f
′

r} ∈ Θr /∃j ∈ [1..r] which fulfills
fj and f ′

j are consecutive in Θr and fi = f ′

i ∀i ∈ [1..r], i 6= j},

where Θ = {θ1, . . . , θf} ∈ R
f is a set of values of frequencies sorted in increas-

ing order, which fulfills θ1 ≥ fmin and θf ≤ fmax.
According to this definition of neighborhood, the local search algorithm eval-
uates the costs of increasing or decreasing the frequencies in all routes of
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procedure Construction(in Dmin
0 , Dmin

01 , in ρmax, tmax, in α, out R);
R← ∅;
D0(S)← 0;
D01(S)← 0;
l← List of pairs of vertices (i, j) of G with dij 6= 0;
while D0(S) < Dmin

0 or D01(S) < Dmin
01 do

rcl← Construct according α and l;
(u, v)← Select randomly from rcl according (7);
r ← Create a route with the shortest path between u and v in G;
r′ ← Create a route by inserting u and v in the most convenient

positions in the more convenient route r′′ in R;
if cost(r) < cost(r′)− cost(r′′) then

R← R ∪ {r};
Delete from l pairs of vertices whose demand is satisfied by r;

else

R← R ∪ {r′} − {r′′};
Delete from l pairs of vertices whose demand is satisfied by r′;

end if;
Update D0(S) and D01(S);

end while;
return R;

end Construction;

Fig. 3. Constructive algorithm

procedure LocalSearch(in λ, in S, in out P );
current← S;
P ← P ∪ {current};
stop← false;
repeat

S′ ← FirstImprovement(current, λ);
if S′ better than current then

current← S′;
P ← P ∪ {current};

else

stop← true;
end if;

until stop;
return P ;

end LocalSearch;

Fig. 4. Local search
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solution S. At each step of the local search, the cardinality of NS can be at
most 2|R|; however this number can be smaller when there is a constraint
of minimum feasible frequencies in S (determined by the assignment model)
or when there are routes with frequencies in an extreme of the set Θ. The
local search receives a random vector of weights λ = (λ1, λ2) and successively
moves forward to the neighbor which minimizes the composite objective func-
tion λ1Z1 +λ2Z2, using a first improving strategy [26]. The evaluation of each
neighbor solution implies an invocation to the algorithm that implements the
assignment model.

4.3 GRASP TNDP

Figure 5 presents a pseudo code of the GRASP TNDP algorithm. It begins
by calculating the shortest path between all pairs of vertices in G; this can
be made only once, independently of the GRASP iterations, because the cost
of the edges of G are considered as constant, not depending on the flows
produced by different solutions.

procedure GRASP TNDP(in Dmin
0 , Dmin

01 , in ρmax, tini
max, tend

max,
in NumIterations, α, out P );

Calculate shortest paths between all pairs of vertices in G;
P ← ∅;
for i = 1 to NumIterations do

tmax ← Random uniform value in [tini
max, tend

max];
Construction(Dmin

0 , Dmin
01 , ρmax, tmax, α, R);

F ← Initial frequencies;
S ← (R, F );
λ← Random vector of weights;
LocalSearch(λ, S, P );
Delete dominated solutions of P ;

end for;
return P ;

end GRASP TNDP;

Fig. 5. GRASP TNDP algorithm

The maximum duration of routes tmax is determined at each GRASP iteration
by sampling a random uniform value in the real interval [tini

max, tend
max] (whose

extremes are parameters to be given). This feature is included to obtain diverse
solutions, each having internally homogeneous characteristics (all routes with
approximately the same duration).

The initial frequencies for each route in R are determined as the maximum
of fmin and the minimum feasible value of Θ according to constraint (6),
calculated by the assignment model.
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The random vector of weights λ = (λ1, λ2) is determined by sampling
a random uniform value in the real interval [0, 1] for λ1 and then setting
λ2 = 1− λ1. The values of Z1 and Z2 are normalized.

5 Numerical results

We test the GRASP TNDP algorithm with numerical data. The performed
studies are designed to:

1. Investigate whether the proposed algorithm produces a set of diverse non-
dominated solutions for the TNDP. Some descriptive measures are calcu-
lated, which can be useful for the decision maker.

2. Compare the relative efficiency of the multi-objective algorithm with re-
spect to a single-objective version of it, used as subroutine in the Weighted
Sum Method.

Parameter Value Units

Dmin
0 0.9 -

Dmin
01 1.0 -

ρmax 1.5 -
tini
max 40 minutes

tend
max 120 minutes
σt 5 minutes
Q 40 seats

ωmax 1.25 -
fmin 1/60 vehicles/minute
fmax 1/2 vehicles/minute

Θ {1/60, 1/50, 1/40, 1/30, vehicles/minute
1/20, 1/10, 1/5, 1/2}

α 0.2 -

Table 1. Parameter configuration

We use the test case of Mandl, which is taken from [4]. The network has 15
vertices and 21 edges and the origin-destination matrix has 76% of elements
different from zero. The algorithm was coded in C++ and all tests were ran
in a PC Pentium 4, with a 2.6 GHz processor and 512 MB of RAM memory.
The used parameter configuration for both model and algorithm is shown in
Table 1.

5.1 Results of GRASP TNDP

The execution of the GRASP TNDP algorithm with parameter configuration
given in Table 1 and 1000 GRASP iterations took 392 seconds and produced
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an approximated Pareto front P composed by 106 non-dominated solutions.
Table 2 shows for 10 solutions (selected as representative points from different
regions of P ), the corresponding values of Z1 (along with its components tv,
tw and tt), Z2, number of routes |R| and averaged values over each route of
headway 1/f and duration t.

In Table 2 we can observe that the trade-off level between the conflicting
objectives can be characterized by the values of the number of routes and the
average of the route headway. In this way, although there is no monotonic
tendency, we can say that solutions with low cost for the users (and therefore
with high cost for the operators) are characterized by high values of |R| and
low values of 1/f , and vice versa. Moreover, we can observe that variation
along the Pareto front is higher in the waiting time component than in the
in-vehicle travel time component of Z1.
We also present several measures that could be useful for the decision maker.
Two of them are relative to distances to lower bounds from the users viewpoint
(equations (8) and (9)) and the other two are relative to the utilization of
buses. All these measures can be used as a guide in the selection of one non-
dominated solution or in the evaluation of an existing one.

Solution Z1 tv tw tt Z2 |R| 1/f t

1 125.20 112.41 8.38 4.41 155.40 11 3 32
2 134.42 116.96 14.06 3.40 77.40 5 4 56
3 141.69 117.74 20.06 3.89 50.40 5 5 50
4 150.12 118.40 28.28 3.44 35.30 5 10 49
5 160.83 118.10 40.89 1.84 26.77 6 15 53
6 173.00 118.42 52.08 2.50 19.40 4 15 66
7 184.82 122.52 58.28 4.03 15.73 3 17 67
8 205.62 127.74 74.52 3.37 12.10 3 23 67
9 255.38 121.22 129.90 4.27 7.42 4 35 57
10 308.73 126.61 178.65 3.47 5.00 4 43 52

Table 2. Results of GRASP TNDP

From [4] we take the idea of an optimal route set from the users viewpoint,
which allows every pair of vertices (i, j) to transport its demand dij along
the shortest path in G, with cost t∗ij . According to this, a lower bound for
in-vehicle travel time is defined as

tv∗ =

n∑

i=1

n∑

j=1

dijt
∗

ij . (8)

We propose an analog definition of lower bound for the waiting time. An
optimal frequency set from the users viewpoint can be defined when every
pair of vertices is served by a route with frequency equals to fmax. This is in
reality a pseudo lower bound, since there can exist solutions where some pairs
of vertices are served by more that one route with the maximum frequency.
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tw∗ =

n∑

i=1

n∑

j=1

dij

2fmax

(9)

Table 3 shows for the same solutions of Table 2, values of distances from tv and
tw to tv∗ and tw∗ respectively, where the distance from a value v to its lower
bound v∗ is defined as dist(v, v∗) = (v− v∗)/v∗. Table 3 also shows measures
relative to the utilization of buses, averaged over each route, namely:

• Mean utilization ∆̄, defined for each route rk as φ̄k/(fkQ), where

φ̄k =

∑
e∈rk

(
−→
φ e,k +

←−
φ e,k)ce

2
∑

e∈rk
ce

.

• Critical utilization ∆∗, defined for each route rk as φ∗

k/(fkQ).

In Table 3 we can observe that the trade-off level between the conflicting
objectives also can be characterized by values of distances to lower bounds
and utilization of buses. In this way, solutions with low cost for the users are
characterized by low values of all these four measures, and vice versa.

Solution dist(tv, tv∗) dist(tw, tw∗) ∆̄ ∆∗

1 0.04 -0.69 0.02 0.02
2 0.08 -0.48 0.04 0.05
3 0.09 -0.26 0.05 0.07
4 0.09 0.05 0.07 0.09
5 0.09 0.51 0.10 0.14
6 0.09 0.93 0.14 0.20
7 0.13 1.16 0.20 0.29
8 0.18 1.76 0.28 0.39
9 0.12 3.81 0.41 0.53
10 0.17 5.61 0.59 0.78

Table 3. Results of GRASP TNDP, additional measures

Distance to lower bound in the in-vehicle travel time component is no greater
than 0.17. Nevertheless, distance to lower bound in the waiting time compo-
nent is up to 5.61. We can observe that solutions with low cost for the users
present negative values in dist(tw, tw∗), since tw∗ is in reality a pseudo lower
bound, and solutions 1, 2 and 3 have a high average of frequencies (see column
1/f in Table 2). It is worth to mention that this is rather a theoretical result,
since from a practical viewpoint it may not be possible to operate several lines
with high frequencies on a same edge of the network.

Moreover, we can observe that values of both mean and critical utilization
of buses are lower than 1.00 for all solutions. Maximum critical utilization is
shown by solution 10; this value can not be greater than the level specified by
the maximum load factor parameter ωmax (configured as 1.25 for this work).
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5.2 Comparison with the Weighted Sum Method

We compare the efficiency of GRASP TNDP with respect to the Weighted
Sum Method [11]. When it is applied to problem P (Sect. 2), the Weighted
Sum Method consist in minimizing the objective function (10) under con-
straints (3)-(6), for a given set of different vectors of weights λ = (λ1, λ2).

Z(S) = λ1Z1(S) + λ2Z2(S) (10)

Now we call as MO GRASP TNDP to the multi-objective algorithm presented
in Sect. 4, and SO GRASP TNDP to its single-objective variant, which is used
as subroutine in the classical Weighted Sum Method. SO GRASP TNDP
differs from MO GRASP TNDP in the following aspects:

• It produces a single solution at every run.
• It receives a vector of weights λ = (λ1, λ2), where λ1 + λ2 = 1, represent-

ing the relative importance between the conflicting objectives Z1 and Z2,
which is used for:
– Setting tmax = tini

max + λ2(t
end
max − tini

max) in the construction procedure,
for all GRASP iterations.

– Composing a single objective function Z = λ1Z1 + λ2Z2 in the local
search.

We perform the execution of SO GRASP TNDP with 11 different vectors of
weights of the form λi = (0.1i, 1 − 0.1i), with i ∈ [0..10]. We use the same
parameter configuration and number of GRASP iterations for each execution
of SO GRASP TNDP, as for the corresponding single execution of MO GRASP
TNDP.

We define the relative efficiency of MO GRASP TNDP with respect to the
Weighted Sum Method as

EF =
QMG/TMG

QWS/TWS

,

where QMG and QWS are quality measures of the Pareto fronts produced by
MO GRASP TNDP and the Weighted Sum Method respectively, and TMG,
TWS are their respective execution times. The used quality measure is the
hypervolume, defined in [11] as the volume in the objective space covered
(dominated) by solutions in a Pareto front. This measure is intended to reflect
the closeness and diversity of a Pareto front for a multi-objective optimization
problem. Figure 6 exemplifies the hypervolume for a bi-objective optimization
problem; it is represented by the hatched region, where S∗ is a fictitious
solution, being its corresponding values in the objective space the highest
obtained values in all objectives.
Table 4 shows measures relative to quality Q and cardinality of the ob-
tained Pareto fronts |P |, execution time T in seconds of both algorithms (MO
GRASP TNDP MG and Weighted Sum Method WS), and efficiency EF .
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Fig. 6. Hypervolume for a bi-objective minimization problem

The comparison is made for number of GRASP iterations NumIterations
equal to 10, 100, 500 and 1000. We can observe that the efficiency is always
approximately equal to the number of different vectors of weights used in the
Weighted Sum Method. Furthermore, the efficiency seems to grow according
to the number of GRASP iterations; Figures 7(a) and 7(b) shows graphically
the Pareto fronts produced by MO GRASP TNDP and the Weighted Sum
Method, for 10 and 1000 GRASP iterations respectively.

6 Conclusions and future work

We show that the proposed multi-objective algorithm is capable to produce a
diverse set of non-dominated solutions in a single run. Existing and proposed
measures are presented, which can be useful for the decision maker, to char-
acterize a given solution of the Pareto front, with respect to the interests of
both users and operators.

We also observe that the multi-objective approach is more efficient than
the Weighted Sum Method, since both algorithms produce results of similar
quality (or slightly better for the multi-objective approach, which also obtains
a larger number of points in the Pareto front), while the execution time is
lower for the former (actually inversely proportional to the number of different
vectors of weights used in the latter).
For future research, we identify several directions. One of them is the need of
designing mechanisms to improve the diversity of the produced Pareto front
for the MO GRASP TNDP algorithm, as it can be seen in Fig. 7(b); this
could be obtained for example by applying a reactive GRASP strategy [26].

Parallel implementations have been shown to improve the efficiency of
algorithms which are serial originally; this is the case of many GRASP based
algorithms [26] as well as of one based in Genetic Algorithms for the TNDP [1].

Most of metaheuristic algorithms for the TNDP are implementations of
Genetic Algorithms [24, 25, 29] for single-objective optimization. These ideas
can be used to design multi-objective versions, since there are several appli-
cations of Genetic Algorithms to multi-objective optimization [10, 11].
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Fig. 7. Obtained Pareto fronts according to the number of GRASP iterations
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NumIterations 10 100 500 1000

QMG 0.873 0.916 0.922 0.925
|PMG| 27 76 94 106
TMG 4 41 201 392

QWS 0.902 0.911 0.907 0.910
|PWS | 11 11 11 11
TWS 47 469 2310 4577

EF 11.37 11.50 11.69 11.87

Table 4. Relative efficiency of GRASP TNDP with respect to the Weighted Sum
Method

The presented numerical results lack of an evaluation of the closeness to the
optimal Pareto front (which was not available). A possible way to accomplish
that evaluation consist in implementing a modified version of the GRASP
based algorithm to solve a different optimization model (for example [7], for
which a mathematical programming formulation is available).

The hypothesis of inelastic demand is used to simplify the model at this
stage of the work. However, for certain cases, elastic demand must be consid-
ered in order to model the changes in the origin-destination matrix according
to the supply of public transport. Elastic demand has been incorporated to the
TNDP in [16, 17, 20] and a challenging work consist in trying to incorporate in
a consistent way, this characteristic to the presented multi-objective approach.
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