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Preface

This is the 2007 Edition of the C5 programming language manual.
C5 is a superset of the C programming language developed at the Instituto

de Computación (InCo). The main difference between C and C5 is that the
type system of C5 supports the definition of types of dependent pairs, i.e.,
the type of the second member of the pair depends on the value of the first
member (which is a type).

Another C5 extension is the type initialization expression which is a list
of dependent pairs that can be attached to type expressions in a type decla-
ration.

These extensions provide C5 with dynamic type inspection at run time
and attribute type definition. The result is a powerful framework for generic
programming.

The present edition of the C5 manual describes the version 0.98 of the
C5 compiler and a set of generic libraries created by the following projects:

• Functions in C5.

• Parsing in C5.

• The OPM machine.

• Generic fonts in C5.

• Typed Windows.

Like the previous editions, the 2007 Edition is a recompilation of the
technical reports of the C5 projects published by the InCo-PEDECIBA.

The main differences between the 2007 Edition and the previous edition
are:

1. Rewriting of the introduction chapter including Inodoro’s dream.

2. A new chapter joining the equality, selection and copy functions.

3. A new chapter about the function type in C5.
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4. A new version of C5 scanf.

5. Several errors of the previous edition detected by the students were
corrected.

This manual is mainly used by the teams of the C5 projects and the stu-
dents of the courses Introducción a la Programación para Diseño Gráfico and
Diseño de Compiladores of the study programs Ingenieŕıa en Computación
and Maestŕıa en Informática of PEDECIBA.

The support and suggestions of many colleagues and students have added
greatly to the developing of C5 and the pleasant writing of this manual. In
particular: Gustavo Betarte, Hector Cancela, Zelmar Echegoyen, Alberto
Pardo, Pablo Queirolo, Bengt Nordstriöm and Alfredo Viola.

Special thanks to the approximately 400 computer engineering students
at InCo who tested the successive versions of the C5 compiler.

Montevideo, April 20th, 2007.
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Chapter 1

Introduction

27 years ago, Inodoro Pereira 1 –our C programming teacher– had a dream.

He was presenting the C functions printf and scanf in the undergrad-
uate course of programming at the Instituto de Computación at Montevideo
when his famous dream came up.

1.1 Inodoro’s dream

” I think that printf and scanf are poor implementations of
a good idea. Their arguments are limited to atomic types without
type check. In other words, the functions are unsafe and limited
to a few types.

I would like to see new versions of these functions with type
checking and defined for the entire C type system.

Let us see an example of my dream functions:

typedef struct NODE{

int element;

struct NODE *next;

} *MyType;

main(){

MyType ils;

scanf(" %MyType ", ils);

printf(" %MyType ", ils);

}

1Our fictitious teacher is inspired on the great comics created by the Argentinian
Roberto Fontanarrosa.
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12 CHAPTER 1. INTRODUCTION

The type MyType is a recursive structure used to implement a
linked list in the C language. My dream scanf reads the standard
input and constructs a linked list assigned to ils, provided –of
course– that the input matches with the values required by the
type MyType.

My dream printf prints the integers of the linked list in the
standard output. As you can see the program does not do too
much; it just prints the input.

Let us suppose that there exist more dream functions:

• element occurrences

The function returns the number of occurrences of an ele-
ment identified by its type name.

• search element

The function returns the value of the ith occurrence of an
element identified by its type name.

• search type

The function returns the format string of the ith occurrence
of an element identified by its type name.

So, we can now write a more interesting dream program:

typedef struct NODE{

int element;

struct NODE *next;

} *MyType;

main(){

MyType ils;

int i;

scanf(" %MyType ", ils);

for(i=occurrences(" %MyType",ils,"element")-1;i>=0;i--)

printf(search_type(i," %MyType",ils,"element"),

search_element(i," %MyType ", ils,"element"));

}

This program prints the input in reverse order.
The point here is that the program above is not dependent of

the type definition of MyType.
For instance, we can define MyType as a four element array of

integer:

typedef int element;

typedef element MyType[4];
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main(){

MyType ils;

int i;

scanf(" %MyType ", ils);

for(i=occurrences(" %MyType",ils,"element")-1;i>=0;i--)

printf(search_type(i," %MyType",ils,"element"),

search_element(i," %MyType ", ils,"element"));

}

In this case, the (same) main program reads 4 integers and prints
them in reverse order.

Further more, we can change the type of the elements and the
program still works:

typedef char * element; /* string */

typedef element MyType[4];

main(){

MyType ils;

int i;

scanf(" %MyType ", ils);

for(i=occurrences(" %MyType",ils,"element")-1;i>=0;i--)

printf(search_type(i," %MyType",ils,"element"),

search_element(i," %MyType ", ils,"element"));

}

This program reads the input one two three four and prints
–as we expect– four three two one .

I don’t know if my dream functions are implementable in C.
However, this is my dream. ”

Inodoro Pereira left his academic career in 1980.
There is a non-confirmed version indicating that Inodoro lives in Ar-

gentina, in the country (the pampa), working with wild horses.
20 years later, a group of Inodoro’s followers started the construction of

C5, a real version of Inodoro’s dream.
The name C5 comes from the Spanish CCinco that means The C Compiler

of InCo ( InCo is a trademark of the Instituto de Computación at Montevideo,
Uruguay).

Today, C5 is used by the students at InCo and the old examples of In-
odoro’s dream are now real programs:

/* The list of integer example */
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DT_typedef struct IntL{

int element;

struct IntL * {0} next;

} *MyType;

main(){

DPT dp;

MyType obj;

int i;

dp= DT_pair(MyType, obj);

C5_scanf(dp);

for(i=C5_lenSearch(dp,"element")-1;i>=0;i--)

C5_printf(C5_idxSearch(i,dp,"element"));

}

/* The array of string example */

DT_typedef char * element;

DT_typedef element MyType[4];

main(){

DPT dp;

MyType obj;

int i;

dp= DT_pair(MyType, obj);

C5_scanf(dp);

for(i=C5_lenSearch(dp,"element")-1;i>=0;i--)

C5_printf(C5_idxSearch(i,dp,"element"));

}

C5 is a superset of the C programming language. The main difference
between C and C5 is that the type system of C5 supports the definition of
types of dependent pairs, i.e., the type of the second member of the pair
depends on the value of the first member (which is a type).

The other C5 extension is the type initialization expression which is a
list of dependent pairs that can be attached to type expressions in a type
declaration.

These extensions provide C5 with dynamic type inspection at run time
and attribute type definition. The result is a powerful framework for generic
programming.

The 2007 edition of the C5 programming language manual presents the
version 0.98 of the C5 compiler.
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1.2 Dynamics in C

Polymorphic functions are a well known tool for developing generic programs.
For example, the function pop of the Stack ADT

pop : ∀ T. Stack of T → Stack of T

has a single algorithm that will perform the same task for any stack regardless
of the type of its elements. In this case, we say that the pop algorithm is
similar for different instantiations of T .

A more complex and powerful way to express generic programs are the
functions with dependent type arguments (i.e., the type of an argument may
depend on the value of another) that perform different tasks depending on
the argument type. These functions may inspect the type of the arguments
at run time to select the specific task to be performed.

The C printf and scanf functions are two widely used examples of this
kind of generic programs that are defined for a finite number of argument
types. As we will see later, the type of these useful functions cannot be
determined at compile time by a standard C compiler.

Even more powerful generic programs are achieved when we extend the
finite number of argument types to the entire type system. This class of
generic functions can perform different tasks depending on the argument
type extending its expression power to include generic programs like parser
generators (a top paradigm in generic programming).

C5 is a minimal C extension that express a wide class of generic programs
where the functions C5 printf and C5 scanf presented in this paper are
representative examples.

1.2.1 The type of printf

The C creators [22] warn about the consequences of the absence of type
checking in the printf arguments:

” ... printf, the most common C function with a variable
number of arguments, uses information from the first argument
to determine how many other arguments are present and what
their types are. It fails badly if the caller does not supply enough
arguments or if the types are not what the first argument says.”

Let us see through the simple example in Figure 1.1 how printf works.
The first argument of printf, called the format string, determines the type
of the other two: the expressions 4s and 6.2f indicate that the type of
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main(){

double n=42.56;

char st[10]="coef";

printf("%4s %6.2f",st,n);

}

Figure 1.1: A simple C printf example.

the second argument is an array of characters while the third argument is a
floating point notation number.

In the case of printf and scanf, the types declared in the format string
are restricted to atomic, array of character and character pointer types.
There is also some numeric information together with the type declaration
(4 and 6.2 in our example) that defines the printing format of the second
and third arguments. These numeric expressions (attributes) will be called
Type Initialization Expressions (TIEs) in C5.

A standard C compiler cannot type check statically the second and third
arguments of the example presented in figure 1.1 because their types depend
on the value of the first one (the format string).

In functions like printf and scanf, expressiveness is achieved at a high
cost: type errors are not detected and, as a consequence unsafe code is
produced.

However, some C compilers (e.g. the -Wformat option in gcc [13]) can
check the consistence of the format string with the type of the arguments of
printf and scanf. In this case, the format argument is a constant string
(readable at compile time) and the C syntax is extended with the format
string syntax.

This is not an acceptable solution of the problem because the syntax of
the format string is specific for the functions printf and scanf.

A better solution can be found in Cyclone [32], a safe dialect of C. In
this case, the type of the arguments of printf and scanf is a tagged union
containing all of the possible types of arguments for printf or scanf. These
tagged unions are constructed by the compiler (automatic tag injection) and
the functions printf and scanf include the code to check at run time the
type of the arguments against the format string.

Similar results can be obtained with other polymorphic disciplines in
statically typed programming languages such as finite disjoint unions (e,g,
Algol 68) or function overloading (e.g. C++).

This kind of solution of the printf typing problem has the following
restrictions:
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• The consistency of the format string and the type of the arguments is
checked at run time and

• the set of possible types of the arguments of printf and scanf is finite
and included in the declaration (program) of the functions.

1.2.2 Dynamic types

However, the concept of object with dynamic types or dynamics for short,
introduced by Cardelli [7] [2] provides an elegant and general solution for the
printf typing problem.

A dynamics is a pair of an object and its type. Cardelli also proposed
the introduction in a statically typed language of a new datatype (Dynamic)
whose values are such pairs and language constructs for creating a dynamic
pair (dynamic) and inspecting at run time its type tag (typecase).

Figure 1.2 shows a functional program using the typecase statement
where dv is a variable of type Dynamics constructed with dynamic, Nat
(natural numbers) and X * Y (the set of pairs of type X and Y) are types to
be matched against the type tag of dv, ++ is a concatenation operator, and
fst amd snd return the first and second member of a pair.

typetostring(dv:Dynamics): Dynamics -> String

typecase dv of

(v: Nat) " Nat "

(v: X * Y) typetostring(dynamic fst(v):X)

++ " * "

++ typetostring(dynamic snd(v):Y)

else "??"

end

Figure 1.2: The statement typecase

Tagged unions or finite disjoint unions can be thought of as finite versions
of Dynamics: they allow values of different types to be manipulated uniformly
as elements of a tagged variant type, with the restriction that the set of
variants must be fixed in advance.

C5 offers a way to embed dynamics within the C language that follows
the concepts proposed by Cardelli.

The goal of the C5 language is to experiment with generic programs based
on functions with dependent arguments under the following conditions:

• the type dependency of the arguments is checked at compile time and
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• the functions accept (and are defined for) arguments of any type.

1.3 The C5 extensions

Dynamics has been implemented in C5 as an abstract data type called DPT
(Dependent Pair Type). Instead of the statement typecase there are a set of
functions that construct DPT pairs, inspect the type tag and read or assign
values.

Since the use of DPTs is limited to a special class of generic functions,
there is a C5 statement called DT typedef to declare valid type definitions
for the DPT library.

The major difference of the DPT library with Cardelli’s Dynamics is
concerned with the communication between the static and the dynamic uni-
verses:

• In the case of dynamics, there is a pair constructor (dynamic) for pass-
ing a static object to the dynamic universe. The inverse operation –the
typecase statement– is a selector that retrieves the dynamic object to
the static universe provided it matches with a given static type.

• In the case of the DPT library, the constructor DT pair is the dynamic
counterpart, but nothing equivalent to typecase can be found in C5.
The only way to inspect a DPT object is by using a generic object
selector (C5 gos) that encodes the static C selectors into the dynamic
universe. In other words, it is easy to transfer a static object to the
dynamic universe but the inverse is limited to atomic types. In compen-
sation, it is possible to do some object processing within the dynamic
universe.

This difference allows C5 to construct new dynamic objects at run-time with-
out the Dynamics type checking requirements.

1.3.1 Dependent pairs in C5

For the sake of readability, we will simplify the C type system to int, double,
char , struct , union, array, pointer, defined and function types.

The following is a brief introduction to the most important functions of
the DPT library:

• DPT DT pair( C Type t, t object)

The function returns a dependent pair where the type tag is the dy-
namic representation of the first argument t and the object member is
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a reference to the second argument object. The C5 compiler assures
that DPTs are well formed by checking that the second argument is a
variable whose type is the value of the first which is a DT typedef type
definition.

• DPT C5 gos(DPT dp, int i)

The function is a universal selector for DPT pairs. If the type tag of
dp is a struct or a union, then C5 gos yields a DPT pair with the type
and value of the ith field. If dp is an array, then C5 gos returns a
DPT pair with the type of the array elements and the ith element of
the array. If dp is a pointer or DT typedef DPT, then C5 gos(dp,1)

yields a DPT pair constructed from the type of the referenced object
and the object itself respectively. If i is out of range, an dynamic pair
with error information is returned.

C5 gos is not defined for atomic or function types.

• DPT C5 fapply(DPT functionp, DPT List args)

If functionp is a function pointer, C5 fapply type checks the function
against the argument list contained in args.

If type checking is successful, C5 fapply applies the function of functionp
to the n arguments of args and returns a DPT with the result value.
Otherwise, the returned DPT includes error information.

• int C5 gtype(DPT)

The DPT library is defined for the following type classes:

1. INT - The int type in C.

2. CHAR - The char type in C.

3. DOUBLE - The double type in C.

4. STRUCT - The set of C struct types.

5. UNION - The set of C union types.

6. ARRAY - The set of Ctype[C expr] types.

7. POINTER - The set of ∗ Ctype types.

8. TYPEDEF - The set of DT typedef type definitions.

9. FUNCTION - The set of function types.

Note that the C types unsigned, short long, float, void, and enum

are not included.

The function C5 gtype yields the type class of the dynamic pair argu-
ment.
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• int C5 isDUnion( DPT )

C Unions are not interesting for the DPT Library because there is no
way to know the current field of an union at run time. For instance,
C5 gos cannot be defined for C unions.

Instead of C unions, DPT functions recognize discriminated unions as
a special case of the struct type.

A C5 Discriminated Union is defined as a struct with two fields where
the first is an union and the second a integer. In this case, the integer
field is supposed to keep the information about the current field of the
union.

The function C5 isDUnion returns 1 when the type of a dynamic pair
is a Discriminated Union. Otherwise returns 0.

• int C5 isFunction(DPT)

In the C language, the declaration of function types cannot be directly
expressed. Instead, we declare the type of function pointer.

The function C5 isFunction returns 1 if the type of the argument is a
function pointer. Otherwise returns 0.

• int C5 gsize(DPT)

If the type tag of the argument is a struct, union or function the func-
tion returns respectively the field quantity, the size or the arguments
number. If the tagged type is an atomic type C5 size returns 0, and
in case of pointers or defined types the function returns 1.

• char * C5 gname(DPT)

The function yields a string equal to the current type or field name of
the type tag of the dynamic pair.

• int C5 gpin(DPT)

The function returns the C5 pin number of the type member of the
pair. Each C5 type has a unique pin number.

• int C5 gint(DPT, int)

double C5 gdouble(DPT, double)

char C5 gchar(DPT, char)

char *C5 gstr(DPT, char *)

These functions return the value of the pair if the type tag is respec-
tively int, double, char and char pointer or array of char, In case of
type mismatch the second argument is returned.
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• int C5 int ass(DPT dp, int v)

int C5 double ass(DPT dp, double v)

int C5 char ass(DPT dp, char v)

int C5 str ass(DPT dp, char *v)

If the type tag of dp matches, these functions assign the value of the
second argument to the second member of the first argument pair and
the returned value is 1.

In case of type mismatch no assigning is performed and the functions
return 0.

The equivalence of the DPT library with Dynamics is showed in the fol-
lowing program which is a C5 version of the example presented in Figure 1.2:

void typetostring(DPT dv){

switch(C5_gtype(dv)){

case INT: printf(" Int ");

break;"

case STRUCT: if(C5_gsize(dv)==2){

typetostring(C5_gos(dv,1));

printf(" * ");

typetostring(C5_gos(dv,2));

}

else printf(" ?? ");

break;

default: printf(" ?? ");

}

}

We will use DPTs to express the C5 version of printf with the form:

void C5 printf(DPT )

where the format string of the C printf function is expressed by the dynamic
type of the pair argument. Notice that in this version the type dependency
of the argument is checked at compile time while the possible types of the
argument are not fixed.

The program below is a first C5 approach to the C printf example
presented in figure 1.1:

DT_typedef char String[5];

DT_typedef float Fnr;

main(){

String st="coef";
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Fnr n=42.56;

c5_printf(DT_pair(String,st));

c5_printf(DT_pair(Fnr,n));

}

Note that the declared types String and Fnr are the arguments of the func-
tion DT pair.

This is not a complete version of printf because the numeric information
of the format argument is absent.

1.3.2 DPT list and atomic DPT constructors.

The DPT library includes an ADT of DPT list and a set of atomic DPT
constructors to simplify the use of DPTs:

• DPT list dpnil()

The null list constructor.

• DPT list dpcons(DPT, DPT list)

The inductive list constructor.

• int dpempty(DPT list)

Returns 1 if the argument is a null list.

• DPT dphd(DPT list)

It returns the head of the list. If the argument is the null list, the
function returns the null DPT.

• DPT list dptl(DPT list)

It returns the tail of the list. If the list is empty returns the null list.

• int dplen(DPT list)

It returns the length of the list.

• DPT list dpappend(DPT ,DPT list)

It appends the DPT argument to the end of the list.

• DPT dp In(int)

DPT dp Ch(char)

DPT dp Do(double)

DPT dp St(char * )

The functions construct dynamic pairs using predefined types and the
value of the argument. For example, dpIn(124) is equivalent to the
following C5 code:
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DT_typedef int IntType;

...

IntType vn=124;

DT_pair(IntType,vn);

The next example presents a DPT list constructed with elements of dif-
ferent types:

dpcons(DT_pair(DPT,dp_Ch(’A’)), dpcons( dp_Do(0.57),

dpcons( dp_St("Hello"), dpnil())));

Note that the first element of the list is a dynamic containing a dynamic.
DPT and DPTi list are predefined types of the DPT library.

1.3.3 The Type Initialization Expression (TIE)

A TIE is a DPT list attached to a C5 type.
The syntax of a TIE is a comma-separated sequence of DPTs enclosed

by brackets.
Constant expressions of atomic types do not need DPT constructors in a

TIE declaration.
For example, the TIE { ’A’, 0.57, "Hello" } is correct and is trans-

lated by the C5 compiler to

dpcons(dp_Ch(’A’),dpcons(dp_Do(0.57),dpcons(dp_St("Hello"),dpnil())));

This TIE declaration is equivalent to the TIE { dp Ch(’A’), dp Do(0.57),

dp St("Hello") }.
There is a simple syntactical rule for inserting TIEs into a type declara-

tion:
a TIE is placed on the right of the related type.
The next example shows two type definitions with TIEs:

DT_typedef int{1} Numbers[10]{2} [20]{3};

DT_typedef struct{

Numbers{4} nrs;

char{5} *{6} String_ptr;

}{7} Rcrd;

In the first type definition, the TIE {1} is attached to an int type and the
TIEs {2} and {3} are attached to a double array. In the second definition,
the TIEs {4}, {5}, {6} and {7} are attached to the types Numbers, char,
pointer of char and struct respectively.

TIEs can be inspected at run time using the following functions of the
DPT library:
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• DPT list C5 gtie(DTP)

It returns the DPT list in order to be directly manipulated. If the
dynamic pair has no TIE, the null DPT list is returned.

• int C5 gTIE length(DPT)

the function returns the size of the TIE of the type tag of the dependent
pair argument. If the TIE does not exist, the function returns 0.

• int C5 gTIE type(DPT, int idx)

the function applies C5 gtype to the TIE element indexed by idx. If
the TIE does not exist, the function returns 0.

• int C5 gTIE int(DPT, int, int)

double C5 gTIE double(DPT, int, double)

char C5 gTIE char(DPT, int, char)

The functions yield the value of the TIE element indexed by the second
argument. If the TIE element to be read does not exist, the function re-
turns the third argument. In case of type mismatch a warning message
is printed.

• int C5 TIE ass(DPT dp, int, DPT tieval)

The function assigns the value of tieval to the TIE of dp indexed by
the second argument. If the assignment is successful the returned value
is 1. If the TIE does not exist or the index is out of range or in case of
type mismatch a warning message is printed.

After the introduction of TIEs, the C printf example presented in fig-
ure 1.1 can be completely expressed in C5 as follows:

DT_typedef char String[5] {4};

DT_typedef float {6,2} Fnr;

main(){

String st="coef";

Fnr n=42.56;

c5_printf(DT_pair(String,st));

c5_printf(DT_pair(Fnr,n));

}

The TIEs {4} and {6,2} are respectively attached to the array and float

types. Notice that TIE declarations are optional: in this program the char

type of the first type definition has no TIE.
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1.4 A generic version of printf

Since C5 printf accepts type expressions (DPTs) as arguments, it is straight-
forward to extend the restricted argument types of C printf (strings and
atomic types) to the entire C type system.

For example, the type definition with TIEs presented in Figure 1.3 is an
acceptable argument for the C5 printf function.

DT_typedef struct{

char ref[12];

double {2,3} *coef;

struct{

char name[40];

int {5} box_nrs[3];

} client;

} Client_Record;

Figure 1.3: A type definition with TIEs.

The next program shows a simplified and verbose version of the C5 printf
function defined for the int, double, char, struct, DT typedef, pointer and
array types.

void C5_printf(DPT dp){
int i;
char format[100];
switch(C5_gtype(dp)){

case INT:
sprintf(format,"%%%dd",C5_gTIE_int(dp,0,6));
printf(format,C5_gint(dp,0)); break;

case DOUBLE:
sprintf(format,"%%%d.%df",C5_gTIE_int(dp,0,6),

C5_gTIE_int(dp,1,6));
printf(format,C5_gdouble(dp,0.0)); break;

case CHAR: printf("%c",C5_gchar(dp,’!’)); break;
case STRUCT:

printf("\n struct %s={ ",C5_gname(dp));
for(i=1;i<=C5_gsize(dp);i++){

printf(" ");
C5_printf(C5_gos(dp,i));
}

printf("}\n"); break;
case ARRAY:
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printf("\n array %s=[ ",C5_gname(dp));
for(i=0;i<C5_gsize(dp);i++){

if(C5_gtype(C5_gos(dp,i,ErrorDp))==CHAR)
if(C5_gchar(C5_gos(dp,i),’!’)==’\0’)

break;
else if(i>0) printf(" ,");
C5_printf(C5_gos(dp,i));
}

printf(" ]\n"); break;
case POINTER: case TYPEDEF:

C5_printf(C5_gos(dp,1)); break;
}

}

The following C5 printf example prints an object of the type Client Record

presented in Figure 1.3:

main(){

Client_Record cr;

double r=2.8672;

strcpy(cr.ref,"0037731443");

cr.coef=&r;

cr.client.box_nrs[0]= 1204;

cr.client.box_nrs[1]= 82761;

cr.client.box_nrs[2]= 464;

strcpy(cr.client.name,"Carlos Gardel");

C5_printf(DT_pair(Client_Record,cr));

}

with the following result:

struct Client_Record={

array ref=[ 0037731443 ]

2.867

struct client={

array name=[ Carlos Gardel ]

array box_nrs=[ 1204 ,82761 , 464 ]

}

}

There is also a C5 version of fprintf

int C5 fprintf(FILE ∗ , DPT )
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Equality, selection and copy
functions.

Equality, selection or copy are type dependent in C. This means that specific
operators (or functions) must be defined for each type. For instance, the *

and . operators are selectors for the pointer and struct types respectively.
In this chapter, we introduce the generic functions C5 typeSeq, C5 seq,

C5 lenSearch, C5 idxSearch, C5 copy and C5 newdp. The functions are
members of the DPT library.

2.1 Type equality in DPT pairs.

In most cases, C5 functions (e.g. C5 fapply) require structural type equality.
The notion of structural equality states that two objects are of the same

type if the two objects are the same at a structural level regardless of what
their type names are.

For example, in the next type definitions, the types T1 and T2 are not
equally defined:

DT_typedef struct AT{

int nr1, nr2;

struct{ char *String; struct AT *link; } ST;

} * T1;

DT_typedef int Integer;

DT_typedef struct BT {

Integer cod;

int age;

struct{ char * name; struct BT * next; } ns;

27



28 CHAPTER 2. EQUALITY, SELECTION AND COPY FUNCTIONS.

} * T2;

However, they are structurally equal: struct{int,int, struct{char
ptr, rec ptr}}ptr. This is the kind of equality used by C5 functions.

The structural equality of C5 types is checked by the C5 typeSeq function:

int C5 typeSeq(DPT dp1, DPT dp2)

It returns 1 if the types of two dynamic pairs are at least structurally equal.
Otherwise, the function returns 0.

The function follows the next rules:

1. a TYPEDEF DPT is evaluated to the definiens before equality check-
ing.

2. INT DPTs are equal.

3. CHAR DPTs are equal.

4. DOUBLE DPTs are equal.

5. STRUCT or UNION DPTs are equal if they have the same field number
and all the fields (with equal index) are equal.

6. ARRAY DPTs are equal if the arrays have the same size and the type
of the elements of the arrays are equal.

7. POINTER DPTs are equal if the referenced objects have equal types.
Note that in the case of pointers, the function C5 typeSeq avoids infi-
nite loops by using a table to assure that recursive pointers are checked
once.

8. FUNCTION DPTs are equal if they have the same argument number
and the arguments and the result type are equal.

Appendix D presents a formal specification of the C5 structural type
equality.

2.2 Object equality in C5

A standard C compiler have equality operators for constant expressions, vari-
ables of atomic types and pointers. In case of structured types like struct

or arrays, the programmer must define an equality function for each defined
type.

The function C5 seq is a generic function for object equality:
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int C5 seq(DPT dp1, DPT dp2)

It returns 1 if the objects are equal, otherwise the function returns 0.
The function follows the rules:

1. the types of the pairs are equal (see C5 typeSeq).

2. a TYPEDEF DPT is evaluated to the definiens before equality check.

3. INT DPTs are equal if their values are equal.

4. CHAR DPTs are equal if their values are equal.

5. DOUBLE DPTs are equal if their values are equal.

6. STRUCT DPTs are equal if the fields of the first pair and the respective
fields (same index) of the second argument are equal.

7. ARRAY DPTs are equal if the array elements of the first argument and
the respective array elements (same index) of the second argument are
equal.

8. POINTER DPTs are equal if the referenced objects are equal.

9. C5 discriminated unions DPTs are equal if the discriminator values are
equal and the active field of the first and second argument are equal.

10. FUNCTION and UNION DPTs are not defined for this kind of equality.

Appendix D presents a formal specification of the C5 object equality.

2.3 Searching objects in a DPT pair.

The DPT library includes functions to search values by their type identifiers:

• int C5 lenSearch( DPT , char * ident )

The function returns the number of ident occurrences in the first ar-
gument.

• DPT c5 idxSearch( int idx, DPT , char * ident )

The function returns the dynamics of the idxth occurrence of ident in
the first argument. Note that 0 is the first occurrence of ident. A null
dynamic pair is returned if idx is not valid.

The functions follow the next searching rules:
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1. the functions check the name of the current dynamic type. In case of
non-atomic types, the functions inspect the type expression.

2. int, double, char, char pointer, array of char and functions are atomic
objects.

3. array elements are inspected from 0 to the upper bound.

4. structure are inspected from the first to the last field.

5. C5 discriminated unions are inspected and evaluated according to the
discriminator value.

6. Type definitions and non-null pointers are evaluated to the definiens
and referenced object respectively.

2.3.1 Examples

Type name count.

The next program prints 3 for the input w1 w2 :

DT_typedef char * Words[2];

main(){

Words ws;

printf(" len=%d\n",C5_lenSearch(

C5_scanf(DT_pair(Words,ws)),"Words"));

}

This example shows that type names may be shared by different types.
C5 lenSearch founds first the array Words. Then, the function inspects

the array elements and founds two strings that are also identified with the
type name Words.

Reverse order.

The next program reads words from the input using C5 scanf and prints
them in reverse order:

DT_typedef char * {"[^ ]+"} element;

DT_typedef struct IntL{

element el;

struct IntL * {0} next;

} *MyType;
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main(){

DPT dp;

MyType obj;

int i;

dp= DT_pair(MyType, obj);

C5_scanf(dp);

for(i=C5_lenSearch(dp,"element")-1;i>=0;i--)

C5_fprintf(stdout,C5_idxSearch(i,dp,"element"));

}

The input 1 two --- |||| five5 6 produces the output 6 five5 ||||

--- two 1.
We can replace the linked list declaration by a matrix and the program

still works:

DT_typedef char * {"[^ ]+"} element;

DT_typedef element MyType[2][3];

main(){

DPT dp;

MyType obj;

int i;

dp= DT_pair(MyType, obj);

C5_scanf(dp);

for(i=C5_lenSearch(dp,"element")-1;i>=0;i--)

C5_fprintf(stdout,C5_idxSearch(i,dp,"element"));

}

Likewise the previous example the input 1 two --- |||| five5 6 pro-
duces the output 6 five5 |||| --- two 1.

2.4 The copy function in DPT pairs.

The generic function C5 copy copies the values of DPT pairs:

int C5 copy(DPT cpy,DPT src)

The function is defined according to the following rules:

1. the type of the pairs are equal (see C5 typeSeq).

2. a TYPEDEF DPT is evaluated to the definiens.

3. INT DPTs. It copies the value of the source DPT to the copy DPT.
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4. CHAR DPTs. It copies the value of the source DPT to the copy DPT.

5. DOUBLE DPTs. It copies the value of the source DPT to the copy
DPT.

6. STRUCT DPTs. The function copies the fields of the source DPT to
the respective fields of the copy DPT.

7. ARRAY DPTs. It copies the array elements of the source DPT to the
respective array elements of the copy DPT.

8. POINTER DPTs copies the reference value of the source DPT to the
copy DPT. Note that no memory allocation is performed when copying
pointers.

9. C5 disciminated unions DPTs copies the active field of the source DPT
to the respective field of the copy DPT. In this case, the discriminator
value is also copied to the copy DPT.

10. FUNCTION and UNION DPTs are not defined for this function.

The C5 copy function does not allocate memory. In the case of pointers
it copies reference values and in the case of static types the function supposes
that the object has been previously constructed.

The function C5 newdp is specially appropriated for creating new fresh
copies from a existing DPT:

DPT C5 newdp( DPT dp)

This function returns a new DPT that is a copy of the argument. Note
that the new DPT is not connected to a C variable. The only way to construct
a new DPT connected to a C variable is by using the function DT pair.

2.4.1 Example

The next example shows a C5 program using C5 copy and C5 newdp:

DT_typedef struct {

char ch;

int n;

} Struct;

main(){

Struct st;

DPT dp1, dpcopy, newdp;
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st.ch=’A’;

st.n=222;

dp1= DT_pair(Struct,st);

dpcopy= DT_pair(Struct,st);

printf("\n dp1="); C5_fprintf(stdout,dp1);

C5_copy(dpcopy, dp1);

newdp= C5_newdp(dp1);

st.ch=’Z’;

st.n=-1;

printf("\n dpcopy="); C5_fprintf(stdout, dpcopy);

printf("\n newdp="); C5_fprintf(stdout, newdp);

}

The struct variable st is assigned after the copy of dp1.
The output of the program

dp1=A 222

dpcopy=Z -1

newdp=A 222

shows that the copy created with C5 newdp does not share the memory with
dp1.
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Chapter 3

Functions in C5.

Functions are not first class members in the C language. It is not possible to
declare a variable of function type or assign a function to variables. Instead,
the C language accepts function pointers and this is the way functions are
handled as objects in a C program.

Function types are also declared through pointer type definitions.
The function type in C5 transforms C functions in real first class members

of the language.
In this chapter we present the function type in C5, the constructor dp Fn,

the selector C5 fapply and the generic function C5 compil.

3.1 The function type

Figure 3.1 presents a C program including the definition and construction
of a function variable.

The version 0.98 (September, 2006) of the C5 compiler includes function
pointers definitions for DPT construction so that the C program presented
in Figure 3.1 can be expressed in C5:

DT_typedef int (* FunctionType)( int , char );

int my_func(int n, char c){

if(c==’0’) return(0); else return(n);

}

main(){

DPT fdp;

FunctionType mf;

mf= & my_func;

35



36 CHAPTER 3. FUNCTIONS IN C5.

typedef int (* FunctionType)( int , char );

int my_func(int n, char c){

if(c==’0’) return(0); else return(n);

}

main(){

FunctionType mf;

mf= &my_func;

printf("%d", &mf(123, ’5’));

}

Figure 3.1: A function type in C.

fdp= DT_pair(FunctionType, mf);

C5_printf(C5_fapply(fdp,

dpcons(dp_In(123),dpcons(dp_Ch(’5’),

dpnil()))));

}

Note the use of the function C5 fapply). This is the only way to use (inspect,
select) a function DPT.

3.1.1 C5 fapply

The function C5 fapply performs functional application in C5:

C5 fapply : DPT × DPT List → DPT List

If the first argument is a function pointer, C5 fapply type checks (see
the function C5 type seq) the function against the argument list contained
in the second argument of C5 fapply.

If type checking is successful, C5 fapply applies the function of the first
argument to the n arguments and returns a DPT with the result value.
Otherwise, the return DPT includes error information.

3.1.2 dp Fn

However, when the name of a function starts with c5, it is possible to con-
struct function DPTs avoiding the DT typedef declaration. In this case the
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C5 constructor dp Fn obtains the type of the function from its signature to
construct a DPT.

The constructor dp Fn allows a compact C5 version of the C program
presented in Figure 3.1:

int c5_my_func(int n, char c){

if(c==’0’) return(0); else return(n);

}

main(){

C5_printf(C5_fapply(dp_Fn(c5_my_func),

dpcons(dp_In(123),dpcons(dp_Ch(’5’),

dpnil()))));

}

3.1.3 C5 compil

The function C5 compil is a good example to show the use of C5 fapply in
generic programs.

C5 compil : DPT → DPT

The function is a generic translation program. The translation rules re-
quired by C5 compil are provided by the TIEs of the argument of C5 compil.
In other words, the object to be translated carries its own translation rules.

If the type of a dynamic pair is atomic ( int, char,double, char * or
array of char) or its type name starts with ”Token”, C5 compil returns its
argument without evaluation. Otherwise, the dynamic pair is evaluated as
follows:

1. If the type member of the pair has a TIE, then C5 compil evaluates
the TIE as follows:

(a) the elements of the TIE are evaluated (in sequence, from the first
to the last) and C5 compil returns the result of the first one.

(b) if the first element of the TIE is a function, the remaining elements
are supposed to be the arguments of the function and the output
of C5 fapply is returned.

(c) if a member of a TIE attached to a struct is a string (char *)
then C5 compil compares the string with the field names of the
structure. If the string matches, a evaluation of the matched field
is performed. Otherwise, the result pair is the original string.
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(d) if a member of a TIE attached to an array is a integer with a value
within the bounds of the array, C5 compil evaluates the indexed
element. Otherwise, the result pair is the original integer.

2. In case of a pair of struct or array type without TIE, the result of the
evaluation is the pair itself.

3. In case of discriminated unions, pointers or definitions with no TIEs,
the result of the evaluation is the respective evaluation of the valid
field, the referenced value or the defined object.

4. pairs of function type are returned without changes.

The specification and a simplified version of the C5 source code of C5 compil

can be found in Appendix F.

3.2 Examples

The examples presented below show the use of C5 compil and C5 functions.

3.2.1 Field selector

The following example shows how C5 compil is used to select a certain value
of a data structure. The TIE id selects the second field of the structure and
the TIE {1} selects the second element of the array.

DT_typedef struct{

char {’<’} l;

char *id;

char {’>’} g;

} {"id"} IdExp[2] {1};

main(){

IdExp ie;

C5_printf(C5_compil(C5_scanf(DT_pair(IdExp,ie))));

}

The program returns "two" for the input < one > < two >.

3.2.2 The sum of a integer list.

The next example shows how C5 compil uses a c5 function:
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int c5_add(int number, int recProd){ return(number + recProd);}

DT_typedef struct IntL{

int number;

struct{

union{

emptyProd {0} nil;

struct IntL *next;

} UU;

int discriminator;

} recProd;

} {dp_Fn(c5_add),"number","recProd"} *Word_List;

main(){

Int_List nrls;

C5_printf(C5_compil(C5_scanf(DT_pair(Int_List,nrls))));

}

Note that the functional dynamic pair is constructed with dp Fn and the
arguments of the function are the fields number and recProd of the structure
Int List.

The TIE {0} in emptyProd {0} nil; forces C5 compil to return 0 when
detecting an empty list.

C5 printf is the C5 generic print function and C5 scanf is a scanner that
interprets the dynamic type of the argument as the grammar for parsing the
standard input and, if the parsing is successful, the object member of the
argument pair is constructed according to the input.

C5 scanf constructs a list of integers, C5 compil computes the sum of
the list which is printed by C5 printf. For example, the input 11 22 33

produces the output 66.

3.2.3 Word count.

The following example changes the type of the linked list of the previous
example to word and the first argument of c5 add to the constant 1. .

int c5_add(int one, int recProd){ return(one + recProd); }

DT_typedef struct WordL{

char * word;

struct{

union{
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emptyProd {0} nil;

struct WordL *next;

} UU;

int discriminator;

} recProd;

} {dp_Fn(c5_add), 1 ,"recProd"} *Word_List;

main(){

Word_List wls;

C5_printf(C5_compil(C5_scanf(DT_pair(Word_List,wls))));

}

For example, if the input of this program is one two three, it returns 3.

3.2.4 The reverse function.

The next example applies the simple c5 reverse function to the input list
to print it in reverse order.

char * c5_reverse(char *word, char *recProd){

printf("%s ",word);

return(recProd);

}

DT_typedef struct WordL{

char *word;

struct{

union{

emptyProd {""} nil;

struct WordL *next;

} UU;

int discriminator;

} recProd;

} {dp_Fn(c5_reverse),"word","recProd"} *Word_List;

main(){

Word_List wls;

C5_compil(C5_scanf(DT_pair(Word_List,wls)));

}

For example, if the input of this program is one two three, it prints three
two one.
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Parsing in C5

Generic functions in C5 are powerful enough to express a parser generator in
the Yacc style [21].

Yacc and Lex are software tools used to generate a parser in C code that
can be compiled together with other C programs.

C5 has the required expressiveness to include a parser generator in the
DPT Library making the creation of a parser transparent for the C5 pro-
grammer.

In this chapter we introduce the parsing functions C5 scanf and C5 fscanf.

4.1 A generic version of scanf

The scanf function of the C language scans input according to the format
string argument which specifies the type and conversion rules of the other
arguments. The types specified in the format argument are restricted to
(references to) atomic and string types. The results from these conversions
are stored in the arguments of the function.

As we did with printf, we introduce a generic version of scanf in C5:

DPT C5 scanf(DPT )

where the format string of the C scanf function is expressed by the dynamic
type of the DPT argument.

C5 scanf interprets the dynamic type of the argument as the grammar
for parsing the input and, if the parsing is successful, the object member
of the argument pair is constructed accordingly to the input. If the input
cannot be parsed, C5 scanf returns a dependent pair with information about
the error.

41
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The resulting program includes a parser generator that can be compared
with Yacc [21] and a scanner like Lex [24].

There is also a counterpart of C fscanf in C5:

DPT C5 fscanf(FILE ∗ , DPT )

We introduce the C5 scanf function by first explaining the lexical mean-
ing of the C types that belong to the lexical analyzer and then the grammat-
ical meaning of the types related to the syntax analyzer.

4.1.1 The lexical analyzer

Atomic and string types are the lexical or token elements of C5 scanf. The
actual version of C5 scanf accepts the following lexical types: int, double,
char, character pointer and array of characters.

These types are interpreted in C5 scanf as follows:

• int is interpreted as the regular expression (RE) [0-9]+. If the type
is attached with { Signed} then the RE is [+-]?[0-9]+.

• double is interpreted as the RE [0-9]+.[0-9]+. If the type is attached
with { Signed} then the RE is [+-]?[0-9]+.[0-9]+.

• char {ch} will match a character equal to ch.

• char A[N] {Word} will match a string equal to Word if its length is less
than N and starts with a letter or punctuation char followed of printable
(excluded space) chars. An error is reported if no TIE is declared.

• char *{RE} will match the input according with the regular expression
RE. If the TIE is absent the default RE is [A-Za-z][A-Za-z0-9 ]*.

C5 scanf uses token type declarations to construct a regular expression
table (in the Lex style) with the following order:

1. arrays of chars

2. characters

3. character pointers, double and int numbers.

There are also special functions to extend the table with comments and
spacing characters. The default table has no comments and the spacing
characters are ′\r′,′\t′,′ ′ and ′\n′.



4.1. A GENERIC VERSION OF SCANF 43

In case of ambiguous specifications, C5 scanf chooses the longest match.
If there are more than one RE matching the same number of characters, the
RE found first in the table is selected.

The example below shows how a string can be scanned according to the
RE [AB]+:

DT_typedef char * {"[AB]+"} AB;

main(){

AB ab;

addComment("/*","*/");

C5_printf(C5_scanf(DT_pair(AB,ab)));

}

The function addComment enables comments with the declared start and
ending strings. The program accepts the following input

AABBBAAAA /* A C5_scanf example */

and the output will be

"AABBBAAAA"

The next input string

AA12xy /* this string is not acceptable by the scanner */

cannot be parsed and therefore the output is an error message:

struct ErrorMessage={ "Syntax error"

struct near_at_line={ "AA" 1 }

}

4.1.2 The syntax analyzer

The types with a syntactic meaning in C5 scanf are: structures, arrays (array
of char is excluded), type definitions , discriminated unions, pointers (char
pointer is excluded) and recursive declarations.

Structures and arrays

A struct or an array type is a sequence of syntactic or lexical types. The
set of strings accepted by this grammar (type) is the cartesian product

< S0, S1, ... , Sn >

where S0, S1, ..., Sn are the sets of strings of the fields or elements of a given
structure or array respectively.
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Pointers and definition types

The set of strings accepted by pointer and definition types are the same than
the referenced and the defined type respectively.

The next program shows a type (grammar) that includes the structured,
pointer and defined types:

DT_typedef double Real;

DT_typedef struct{ int n; Real r; } *IntReal[2];

main(){

IntReal ir;

C5_printf(C5_scanf(DT_pair(IntReal,ir)));

}

For example, the string "123 0.432 21 0.55" is an acceptable input for this
program.

Discriminated unions

C unions cannot be used to express alternative grammars because they are
not discriminated, that is, the compiler does not know which field of the
union is currently stored.

By convention, we will represent alternative grammars in C5 scanf by
the following type:

DT typedef struct{
union{ d0, .., di, .., dn } < id >;
int < id >;
} < id >;

where d0, .., di, .., dn are the fields of the union and the integer field is called
the union discriminator and is supposed to keep the information about the
current field of the union. Thus, the discriminator field has no grammatical
meaning.

The discriminated union type represents in C5 scanf the union of the
sets of strings accepted by the fields (grammars) d0, .., di, .., dn.

The empty rule

The concept of empty rule is implemented in two ways:

1. explicit way
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The empty rule is a special field in discriminated unions. the empty
fiels is a nullable token called emptyProd which is defined as follows:

DT_typedef char {’\0’} emptyProd;

2. implicit way

The empty rule is an alternative in fields of recursive pointer including
the TIE {0}:

struct NODE * {0} next;

If the empty rule is matched, the pointer is assigned with the standard
C NULL value.

This implementation is based on the proposal of Aycock and Horspool [5].

Recursive declarations

Recursive type declarations of discriminated unions allow us to express un-
bounded sets of strings.

For example, the program below accepts sequences of numbers and the
constructed object will be a linked list of integers:

DT_typedef struct IntL{

union{

int n;

struct{ struct IntL *next; int n; } RecProd;

} UU;

int discriminator;

} * Int_List;

main(){

Int_List il;

C5_printf(C5_scanf(DT_pair(Int_List,il)));

}

Another version of this program can be done with the standard C declarations
of linked lists:

DT_typedef struct IntL{

int n;

struct{ struct IntL * {0} next; int n; } RecProd;

} * Int_List;
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main(){

Int_List il;

C5_printf(C5_scanf(DT_pair(Int_List,il)));

}

Note the TIE {0} in the recursive pointer. In this case C5 scanf uses the
hidden discriminated union of the C NULL value for null pointers.

4.1.3 BNF notation

In most parser generators, grammars are expressed in BNF (Backus-Naur
notation) or EBNF (Extended BNF).

The following example is a BNF grammar in Yacc syntax:

exp : NUMBER

| exp ’+’ exp

;

where exp is a nonterminal symbol and NUMBER and ’+’ are terminals (to-
kens). In C5 scanf, this BNF grammar can be expressed by the next type
declaration:

DT_typedef struct EXP{

union{

int number;

struct{

struct EXP *e1; char{’+’} pl; struct EXP *e2;

} RecP;

} UU;

int discriminator;

} *exp;

4.1.4 The parsing algorithm

The algorithm of the C5 scanf parser generator is an implementation of the
Earley algorithm [8] with a lookahead of k = 1. This algorithm is a chart-
based top-down parser that accepts the complete set of context free grammar
(CFG) and avoids the left-recursion problem.

The algorithm runs in O(n3) time order where n is the number of symbols
to be parsed.

The algorithm has been modified to construct an object of the type that
represents the grammar. This is done by programming the recognizer so that
it builds an object after the recognition process.
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C5 scanf will produce parsers even in the presence of conflicts. There
are some disambiguating rules in the Yacc style. For instance, the if-else

and the arithmetic expression conflicts are solved in C5 scanf.

The if-else conflict

The program below is an example of the if-else conflict in C5 scanf:

DT_typedef char Else[5] {’e’,’l’,’s’,’e’};

DT_typedef char If[3] {’i’,’f’};

DT_typedef struct IFE{

union{

char {’e’} exp;

struct{ If i; struct IFE *e; } If_stmt;

struct{ If i; struct IFE *e1;

Else s; struct IFE *e2;} If_Else_stmt;

} UU;

int discriminator;

} * Stat;

main(){

Stat il;

C5_printf(C5_scanf(DT_pair(Stat,il)));

}

The input if if e else e produces two possible outputs for the same input
if (if e else e) and if (if e) else e.

The ambiguity is detected by C5 scanf returning a diagnostic message:

C5_scanf: Disc. union "Stat" ambiguous in

field 3 "If_Else_stmt" and

field 2 "If_stmt".

Suggestion: attach an int TIE to the "Stat" discriminator

specifying the preferred alternative ({3} or {2}).

If we attach the TIE {2} to the discriminator field of Stat then the ambiguity
is solved and the output will be

struct If_stmt={

array If=[ if ]

d_union Stat={

struct If_Else_stmt={

array If=[ if ]

d_union Stat={ e}
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array Else=[ else ]

d_union Stat={ e}

}

}

}

Arithmetic expressions

The next token declaration in Yacc:

%left ’+’ ’-’

%left ’*’ ’/’

describes the precedence and associativityi rules of the four arithmetic oper-
ators. The four tokens are left associative, and plus and minus have lower
precedence than star and slash.

The next type declaration is the C5 scanf version of the above Yacc token
declaration:

DT_typedef char {’+’} PLUS;

DT_typedef char {’-’} MINUS;

DT_typedef char {’*’} TIMES;

DT_typedef char {’/’} DIV;

DT_typedef PLUS {LeftAss, 1} Plus;

DT_typedef MINUS {LeftAss, 1} Minus;

DT_typedef DIV {LeftAss, 2} Div;

DT_typedef TIMES {LeftAss, 2} Times;

These disambiguating rules are declared in TIEs attached to type definitions
related to token (or lexical) types. The first and second members of the TIE
are respectively the associative and precedence rules.

4.1.5 Semantic actions

Semantic actions in the Yacc style are implemented with the function C5 compil.
The nexr program shows the use of two action TIEs in a simple grammar:

DT_typedef struct{

char {’<’} l;

char *id;

char {’>’} r;

} {"id"} IdExp[2] {1};
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main(){

IdExp ie;

C5_printf(C5_compil(C5_scanf(DT_pair(IdExp,ie))));

}

The TIE {1} selects the second element of the array and { "id" } selects
the second field of the structure.

For example, this program accepts the string " < one > < two > " and
the output is "two".

Programming with C5 scanf.

The following C5 programs are three motivating examples that illustrate the
use of the C5 scanf function.

Matrix

The example below prints an element of a 2 × 3 matrix constructed by
C5 scanf:

DT_typedef int Matrix[2][3];

main(){

Matrix mtx;

if(C5_scanfError(C5_scanf(DT_pair(Matrix, mtx)))

printf("Cannot read the matrix.\n");

else printf("mtx[1][2]=%d\n",mtx[1][2]);

}

Notice the way the variable mtx is used to communicate the dynamic and
the static universes. This is an useful programming methodology in C5: the
user constructs an object in the dynamic universe which is processed in the
static universe.

A desk calculator

The next program shows a desk calculator that includes associative and
precedence rules to avoid ambiguous grammars:

/* Tokens */
DT_typedef char {’+’} PLUS;
DT_typedef char {’-’} MINUS;
DT_typedef char {’*’} TIMES;
DT_typedef char {’/’} DIV;
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/* C5 functions */
DT_typedef int Number;
Number c5_Add( Number a, Number b){ return(a+b); }
Number c5_Mul( Number a, Number b){ return(a*b); }
Number c5_Dvd( Number a, Number b){ return(a/b); }
Number c5_Sub( Number a, Number b){ return(a-b); }
Number c5_Umi( Number a ){ return(-a); }

/* The grammar and semantic actions */
#define Ae_ struct Aexp *
DT_typedef struct Aexp{

union{
Number number;
struct{ char {’(’} lp; Ae_ e; char {’)’} rp;}

{"e"} parProd;
struct{ Ae_ e1; PLUS {LeftAss, 2} add; Ae_ r1;}

{dp_Fn(c5_Add),"e1","r1"} addProd;
struct{ Ae_ e2; TIMES {LeftAss, 3} times; Ae_ r2;}

{dp_Fn(c5_Mul),"e2","r2"} mulProd;
struct{ Ae_ e3; MINUS {LeftAss, 2} minus; Ae_ r3;}

{dp_Fn(c5_Sub),"e3","r3"} subProd;
struct{ Ae_ e4; DIV {LeftAss, 3} div; Ae_ r4;}

{dp_Fn(c5_Dvd),"e4","r4"} dvdProd;
struct{ MINUS {LeftAss, 4} um; Ae_ e; }

{dp_Fn(c5_Umi),"e"} uminusProd;
} uu;
int disc;

} *AritihmeticExp;
main(){

AritihmeticExp aexp;
addComment("||","\n");
C5_printf(C5_compil(C5_scanf(DT_pair(AritihmeticExp,aexp))));
}

For example, this calculator accepts the input 10 + 2 * 4 / - 2 - 2

and produces the output 4.

XML checker.

The example below shows a partial and simplified version of a well-formed
XML document checker.

DT_typedef char *{"[^<&>]+"} charD;
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DT_typedef struct{ char {’<’} l; char *id; char {’>’} r; } {"id"} STag;
DT_typedef struct{ char l[3] {"</"}; char *id; char {’>’} r;} {"id"} ETag;
DT_typedef struct{ char {’<’} l; char *id; char r[3]{"/>"};} EmptyElemTag;

DT_typedef struct{
union{ charD chd; char * id; } UU;
int discriminator;
} CharData;

DT_typedef struct CharDL{
union{

emptyProd nil;
struct{ struct CharDL *c; CharData cd;} CDls;
} DU;

int discriminator;
} *CharDataList;

DT_typedef struct{
CharDataList cdl;
struct XML_EL_LS *els;
} {"els"} XMLcontent;

int c5_cmpstr( char * s1, char * s2, int rec){
if(strcmp(s1,s2))

printf("Error: incorrect nested tags %s %s.\n",s1,s2);
return(rec);
}

DT_typedef struct XML_EL{
union{

EmptyElemTag eet;
struct{ STag start; XMLcontent c; ETag end; }

{dp_Fn(c5_cmpstr),"start","end","c"} elem;
} DU;

int discriminator;
} *XMLelement;

DT_typedef struct XML_EL_LS{
union{

emptyProd {0} nil;
struct{ struct XML_EL_LS *next; struct XML_EL *el;}

{"next","el"} els;
} DU;
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int discriminator;
} *XMLelementList;

main(){
XMLelement xmldoc;
C5_compil(C5_scanf(DT_pair(XMLelement,xmldoc)));
}

This program accepts the following XML document

<message>

<to>juanma@adinet.com</to>

<from>marcos@adinet.com</from>

<subject>XML test </subject>

<text>

--Can you check this with C5_scanf? ...

</text>

</message>

However, it rejects this input text with incorrect nested tags:

<message>

<subject> XML test of nested tags. </message>

</subject>

Notice that in the case of a successful check, the variable xmldoc contains a
structured XML document that can easily be inspected or processed.

4.2 Related work

Most parsers in use today are based on efficient linear-time algorithms that
accept a subset of CFGs (LL,LR or LALR) [21].

The primary objection to the Earley’s algorithm is not functionality but
with its run-time response.

Nevertheless, the practical use of Earley parsing has become an interesting
alternative in the last years: Accent [10] is the first Earley parser generator
along the lines of Yacc and DEEP [20] is an efficient directly-executable
Earley parsing.

Finally, we did not found parser generators that accept grammars denoted
with C types to produce transparent parsing as C5 scanf does.
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4.3 Conclusions

The generic function C5 scanf show that a static typed language extended
with DPTs (dynamics) and TIEs can be powerful enough to express a wide
class of generic functions in a straightforward, compact and safe way.

The improvements of version 0.98 of the C5 compiler have transformed
C5 scanf, C5 compil, C5 lenSearch and C5 idxSearch in a powerful parsing
framework.

The most remarkable property of C5 scanf is the transparent parsing.
The programmer just need to define a type and the parsing result is an
object of that type. Then, the resulting object can be processed using the
C5 compil,C5 lenSearch and C5 idxSearch functions.
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Chapter 5

Graphics programming in C5.

When a C library is presented, we usually expect the syntactical and seman-
tical description of a set of functions.

In C5, we can introduce a library by describing the meaning of types
related to a certain task. The most remarkable property of this kind of C5
libraries is that we can use the library by doing type declarations instead of
function callings. This is an important change of the programming method-
ology: type declarations can now be a very expressive member of a program.
Furthermore, as we will see later, a type declaration can be the main code of
a program.

In this chapter 1, we start presenting the OPM machine, a small graphics
library based on the art concepts of the Uruguayan painter Joaqúın Torres
Garćıa.

Finally, we show how the OPM machine is used by the generic function
opm image cons to achieve a powerful page-description language.

5.1 Torres Garćıa’s art conception.

The Oriented Port Machine (OPM)is a constructive graphic machine based
on the color plane concept of the Uruguayan painter Joaqúın Torres Garćıa
(1874-1949).

At the same time, the graphic representation rules of the image construc-
tor opm image cons were designed inspired by the Constructive Universalism
of the Uruguayan painter.

Torres Garćıa has proposed an art conception that stands out for under-
stand the constructive painting like a symbols structure. [25]

He produced an art movement based on two concepts:

1This chapter is based on the Master Thesis of Pablo Queirolo[28].

55
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Figure 5.1: A Torres Garćıa’s painting programmed by Pablo Queirolo.

Structure : in order to give a unity to the construction (“Color planes and
lines combined with art, will build a real structure.”[11]).

Abstraction : since he withdrew form imitation of nature, he defined
ideograms to represent things and simple ideas in order to use uni-
versal representations (“The painter is not interested in the object, he is
interested in the color plane and the geometry of its structure.”[11]).

Torres Garćıa created a constructive painting based on a composition
(structure) of rectangles (color planes) and ideograms.

A constructive imaging model, following Torres Garćıa ideas, can be pre-
sented in this way:

• construct the color planes of the page.

• construct a rectangle structure representing the image structure.

• for every ractangle of the structure, stamp an ideogram or construct a
structure representing the rectangle image ...

Continue this structuring process until the desired image is obtained.

This imaging conception –taking color rectangle structures as basic graphic
objects– unifies the foreground-background duality; the classical duality of
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the painting model:

“In the unity of the composition, the idea of thing and background should
disappear. ... Then, there are not the thing and the background, all is thing
and all is background.”[11].

And when this duality disappear, the duality point-plane of the graphic
machine disappear too, producing an important change: it is possible to
design abstract graphic machines with independence of the pixel machine.

Torres Garćıa’s concept of color plane has inspired the oriented port ma-
chine.

This concept of port is a generalization (unification) of the traditional
concepts of port and pixel in Computer Graphics.

In Torres Garćıa’s paintings we can find structures, ideograms and
color planes. In C5, these concepts are implemented by type expressions
with TIEs, DPTs and oriented ports.

5.2 The Oriented Port Machine

An oriented port is either a null port or a port representing a rectangular
region of the page. The attributes of an oriented port are the coordinates,
the color list and the orientation of the rectangular region. There are four
different orientations: Right,Down, Left and Up. The current color of a
non-null port is the first element of the color list. If the color list is null then
the current color is White.

The oriented port machine is a C library based on the Port List abstract
data type:

• Port List opm null()

The function returns a null port list.

• Port List opm page(Color List cl)

The function yields a one port list which is Right oriented, has the
page size and the color list cl (Appendix A contains the defined colors
of the Graphics Library).

• Port List opm inters(Port List pl1, Port List pl2)

The function yields a port list constructed from the intersections (of
the rectangular regions) of the cross product of the lists pl1 and pl2.

The color and orientation of the resulting ports are taken from the
corresponding lp1 ports. If the intersection is a line, a point or empty,
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then a null port is constructed.

• Port List opm rot(int rot nr,Port List pl)

The function applies the rotation function to every port of the list pl.

The ports are rotated r times according to the rotation rules for port
orientation: rotate(Right) = Down, rotate(Down) = Left, rotate(Left) =
Up and rotate(Up) = Right.

Figure 5.2: sel split example for n = 5 and i = 2.

• Port List opm selsplit(int n,int i,Port List pl)

The function applies the function sel split to every port of the list
pl.

If n> 0 and i belongs to the range {1,n} then the function

Port sel split(int n,int i,Port p)

splits the port p into n sub-rectangles and returns a port with the coor-
dinates of the ith sub-rectangle. The orientation and color information
are taken from p. Figure 5.2 shows the four different results of sel split
depending on the four possible orientations of p. If i is outside the
range (i< 0 or n<i) then the function returns a null port.

Finally, in case of n≤ 0, the function returns a port equal to p for all
value of i.

• Port List opm partition(float f,Port List pl)

The function applies the function partition to every port of the list
pl.
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Figure 5.3: A partition example for f = 0.75

If 0 <f< 1 then the function Port partition(float f, Port p) di-
vides the port p into two rectangles proportionally to the floating num-
ber f and returns a port representing the first sub-rectangle.

The orientation and color information are taken from port p. Fig-
ure 5.3 shows the four different results depending on the four possible
orientations of p (f= 0.75).

The function returns a null port if f≤ 0 and a port equal to p if f≥ 1.

• Port List opm set color(int n, Port List pl)

The function applies the function drop color to every port of the list
pl.

The function Port drop color(int n, Port p) yields a port with the
p color list discarding the first n elements if n> 0. The other attributes
of the returned port are equal to those of p.

5.2.1 An opm example

Figure 5.4 shows a C program using the opm library. The function opm cat

concatenates two port lists and opm print prints the graphic representation
of the port list argument. The function scale is defined for scaling the letter
a in the upper left and lower right corners.

The result of this example is an image (see Figure 5.5) with two black a

letters in a gray background.

5.3 The C5 Graphics Library

Since a detailed description of the C5 Graphics Library is out of the scope of
this chapter, we will concentrate our attention in the most important function
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typedef struct{
int y, x;
} Ccoords;

typedef Ccoords Point_set[15];
Point_set points={

{ 6, 1 }, { 6, 2 }, { 5, 0 }, { 5, 3 },
{ 4, 3 }, { 3, 1 }, { 3, 2 }, { 3, 3 },
{ 2, 0 }, { 2, 3 }, { 1, 0 }, { 1, 3 },
{ 0, 1 }, { 0, 2 }, { 0, 4 }
};

Port_List scale(double right, double down,
double left, double up, Port_List lp){

return(
opm_inters(opm_partition(right,opm_rot(0,lp)),
opm_inters(opm_partition(down ,opm_rot(1,lp)),
opm_inters(opm_partition(left ,opm_rot(2,lp)),

opm_partition(up ,opm_rot(3,lp)))))
);

}
main(){

int i;
Port_List pl=opm_page(Gray85, Black, NULL), pl_2a;
opm_print(pl);
lp_2a=opm_cat(scale(0.8,0.8,0.4,0.4,opm_set_color(1,pl)),

scale(0.4,0.4,0.8,0.8,opm_set_color(1,pl))
);

for(i=0;i<15;i++)
opm_print(opm_inters(

opm_selsplit(6+1,points[i].y+1,opm_rot(-1,pl_2a)),
opm_selsplit(4+1,points[i].x+1,pl_2a))
);

}

Figure 5.4: A simple opm example
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Figure 5.5: The letter a example.

of the library:

Port List opm image cons(DPT dt, Port List pl)

This function is an image constructor with a dependent pair argument.
The semantics of the function opm image cons is informally explained by
describing the graphic meaning of types with TIEs:

• Integer numbers: DT typedef int {m,n} Int Def;

An int TIE is a two integers sequence {m,n} defining the visible range
where m and n are the first and last visible integers respectively. If the
dependent pair argument of opm image cons is DT pair(Int Def,i),
then the function returns the port list constructed by
opm selsplit(n-m+1,i-m+1,pl).

• Floating point numbers: DT typedef float {s,t} Float Def;

A float TIE is a two floating point numbers sequence {s,t} defining
the visible range of the elements of this type. If the dependent pair
argument of opm image cons is DT pair(Float Def,f) and s<t, then
the function returns the port list constructed by
opm partition((f-s)/(t-s),pl)

In case of s≥t , the function returns a port list equal to pl.

• Characters: DT typedef char {c1,c2,...,c8} Char Def;

If dt is a pair with a char type definition including a TIE of eight float-
ing point numbers, then the function opm image cons yields a port list
representing the character font defined by the TIE values (see Appendix
B for more information).

• Structures: DT typedef struct{f0, f1, ..., fn}{r} Struct Def;

A struct TIE is an integer {r} that defines the field rotation. The func-
tion opm image cons returns the port list generated by the intersection
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of the graphic representation of the struct fields previously rotated r×i
times ( 0 ≤ i ≤ n), where i is the index of the ith field of a structure of
n + 1 fields.

The intersections and rotations are implemented with opm inters and
opm rot respectively.

The next C5 program is a short example using a structure of an integer
and a floating point number:

DT_typedef int {0,2} Int_nr;
DT_typedef double {0.0,1.0} Double_nr;
DT_typedef struct{

Int_nr n;
Double_nr x;
} {1} Struct_nx;

main(){
Int_nr n=1;
Double_nr x=0.6;
Struct_nx nxs;
nxs.n=n;
nxs.x=x;
opm_print(opm_image_cons(DT_pair(Int_nr,n),

opm_page(Gray85,NULL)));
opm_print(opm_image_cons(DT_pair(Double_nr,x),

opm_rot(1,opm_page(Gray85,NULL)));
opm_print(opm_image_cons(DT_pair(Struct_nx,nxs),

opm_page(Black,NULL)));
}

Notice that Int nr and Double nr are printed in gray while the struct
Struct nx is represented in black. This makes easier to see that the
struct is the intersection of the representation of n and a Π/2 rotated
x (see figure 5.6).

Figure 5.6: A simple struct declaration.
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• Arrays: DT typedef Elems type Array Def[Max] {r,m,n};
An array TIE is a three integer sequence {r,m,n} where r defines the
rotation of the elements of the array and m and n define the first and
last visible array elements respectively.

If m and n belong to the range {0,Max-1} then the elements of the array
are represented according to the following rule: the ith element of the
array is graphically represented on the port list constructed by

opm rot(r,opm selsplit(n-m+1,i-m+1,pl))

• Unions: DT typedef union{f0, f1, ..., fn}{c} Union Def;

A union TIE is an integer {c} that defines the color of the fields. The
function opm image cons returns the port list generated by the graphic
representation of the valid union field with a current color defined by

opm set color(r×i,pl) ( 0 ≤ i ≤ n)

where i is the index of the ith field of an union of n + 1 fields.

Since C unions are not discriminated , the function opm image cons

accepts a struct declaration with two fields, where the first is an union
and the second an integer, like a discriminated union. In this case, the
integer field is supposed to keep the information about the current field
of the union. The discriminated union with TIE is the way to express
in C5 the color structure of images.

• Pointers: DT typedef Ref Obj * {r} Ptr def;

A pointer TIE is an integer {r} that defines the rotation of the refer-
enced object. The function opm image cons returns the graphic repre-
sentation of the referenced object on a r times rotated pl.

• Type definitions: DT typedef Prev Def {r,c} Def Def;

Type definitions may include type declarations previously defined. In
this case, the type definition TIE is a two integer sequence {r,c} where
r and c set the rotation and current color of the defined type respec-
tively.

A detailed version of the C5 Graphics Library including the specification
of opm image cons can be found in Appendix C.
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DT_typedef struct{

int {0,6} y;

int {0,4} x;

} Ccoords;

DT_typedef Ccoords {3,1} Point_set[15] {0,1,0};

Point_set pts={

{ 6, 1 }, { 6, 2 }, { 5, 0 }, { 5, 3 },

{ 4, 3 }, { 3, 1 }, { 3, 2 }, { 3, 3 },

{ 2, 0 }, { 2, 3 }, { 1, 0 }, { 1, 3 },

{ 0, 1 }, { 0, 2 }, { 0, 4 }

};

DT_typedef struct{

double {0.0,1.0} right, down, left, up;

} Scale_2[2] {0,1,0};

Scale_2 scs={{0.8,0.8,0.4,0.4},{0.4,0.4,0.8,0.8}};

main(){

Port_List lp=opm_page(Gray85, Black, NULL);

opm_print(lp);

opm_print(opm_image_cons(DT_pair(Point_set,pts),

opm_image_cons(DT_pair(Scale_2,scs),lp)));

}

Figure 5.7: A C5 version of the opm example.
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5.3.1 A C5 version of the opm example

Figure 5.7 shows a C5 version of the opm example presented in figure 5.4.

The most relevant difference between both programs is that what the
C5 program really do is mainly specified (programmed) in three DT typedef

declarations, while the rest of the program itself deals with the variables
pts and scs construction and the image printing. Furthermore, the type
definition Scale 2 is enough expressive to substitute for the function scale

of the C program.

5.4 Programming images in C5

The C5 Graphics Library transforms C5 in a high level page-description lan-
guage, i.e., a language capable of describing the appearance of text, graphic
shapes and images on a page. The use of DPTs and TIEs increase the ab-
straction level of the language producing a readable and compact code for
graphics programs.

The image presented in figure 5.8 is generated by a 5 Kb C5 source
program.

Some statistics will help us to show why this library produce such a
compact code:

The program uses twelve graphics functions of the Standard Output Li-
brary in 103305 callings where 92 of them are invoked explicitly in the pro-
gram and the others 103213 are called implicitly through 15 invocations of
opm image cons which is the only Standard Output Library function with
a DPT argument. Seven of these callings answer for the font construction
involving 60% of the total quantity of callings.

Eight DT typedef declarations were required by the 15 opm image cons

invocations, remarking that types with TIEs are the heart of the design of
programs that use this kind of libraries.

Finally, C5 translates this program into a 22 Kb C code which produces,
when compiled and executed, a 3.1 Mb PostScript [3] file.

5.5 Related work

Constructive methodologies are not new in Computer Graphics. Construc-
tive Solid Geometry (CSG) has been widely used in 3D Solid Modeling. The
main idea in CSG is to describe a solid object as a composition of primi-
tive objects (cylinders, spheres, cubes) combined with Boolean set operators
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Figure 5.8: An image programmed in C5
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such as union, intersection and difference. An objet is stored as a tree with
operators at the internal nodes and simple primitives at the leaves [14] [1] .

Although CSG is a simple and compact way of representing solids that
induces to a constructive thinking when defining a 3D object, it is neither
a constructive programming language nor a formal system with well-known
properties.

There are also several approaches to express pictures with structured
datatypes and functional programming producing low-cost prototypes that
are easy-to-use for non expert graphics programmers [27] [9] [31].

The main difference with the C5 Graphics Library is that the graphics
functions of these packages are based on the painting model. In other words,
they define the line as a primutuve graphics function.

These approaches are an interesting innovation from the programming
methodologies side but the lackness of a coherent imaging or page-description
model reduced them to a friendly interface of other standard graphics pack-
ages or page-description languages like PostCript.

5.6 Conclusions

The results of the experimentation with the C5 Graphics Library indicates
that:

• The Graohics Library of C5 is powerful enough to express complex
images. The language do not require large function libraries to reach
an acceptable expressiity level.

• The readability and reusability of the C5 Graphics Library is better
than other graphics libraries of C based on the painting model.

• Most computing students who tested C5 and the Graphics Library
consider that an important amount of time is required to learn the basic
concepts of C5 and the constructive model of the Graphics Library.

• In the other hand, the students declare that the programming task was
done in a short time and the resulting programs were very compact and
easy to reuse.
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Chapter 6

The C5 Graphics Tutorial

Let us begin with a quick introduction to the C5 Graphics Library. Our aim
is to show the use of DPTs and TIEs in real programs, but without getting
bogged down in details, formal rules or theoretical concepts.

6.1 Getting Started

The first program to write is the same for all languages:

Print the words HELLO WORLD

In C5, the program to print HELLO WORLD is

#define Max_Char 40
#define Str_TIE {0,0,Max_Char-1}
DT_typedef char Arial String[Max_Char] Str_TIE;
main(){

String str="HELLO WORLD";
opm_print(opm_image_cons(DT_pair(String,str),

opm_page(Black,NULL)));
}

and the resulting image is showed in figure 6.1. The type definition has two
TIEs: Arial and Str TIE. The first is attached to the char type specifying
the font to be used when a character is printed and the second to the array
type. The array TIE is a three integer expression with the following form:

{rotation,first visible element,last visible element}

where rotation is an integer specifying a clockwise rotation of the array ele-
ments with an angle of rotation×Π/2, and the first visible element and last

69
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Figure 6.1: Hello World

visible element are integers defining the sequence of array elements that will
be printed. In our program the TIE values {0,0,Max Char-1} mean that the
characters will be rotated 0 degree and all the array characters are visible for
printing.

In the body of the main function, the function opm page is a page con-
structor whose arguments are the colors (see apendix A) required by the
image to be printed on that page. When the page is created , the current
color is specified by the first argument (Black in our program ). The type
of the range of this function is Port List. This is the type of the second
argument of opm image cons –the case-type function of the library– and the
argument of opm print too. Notice that pages and images are represented
by the same data structure.

6.2 Integer numbers

The C printf translates integer numbers to a digit character sequence start-
ing with the minus character if the number is a negative integer.

Instead of this character oriented translation, the image constructor
opm image cons represents integer numbers by simple geometric images based
on color rectangles.

Let us see a short C5 program that prints the number 2 for a quick
understanding of the way C5 produce the graphic representation of an integer:

DT_typedef int {0,3} intnr;
main(){

intnr n=2;
opm_print(opm_page(Gray85,NULL)); /* A gray background */
opm_print(opm_image_cons(DT_pair(intnr,n),

opm_page(Black,NULL)));
}
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The int TIE is a two integer sequence with the following form:

{ first visible integer , last visible integer }

where the first visible integer and last visible integer are integers defining the
printable range of numbers. The default TIE for the int type is {0,1}.

In our program the TIE values {0,3} mean that the integers 0, 1, 2 and
3 are visible for printing.

In this case, the page is virtually divided in four vertical rectangles. Start-
ing from the left side of the page , the first rectangle represents the number
0, the second the number 1, the third the number 2 and the last rectangle the
number 3. Accordingly, when printing the number 2, opm print will print
the third rectangle painted in black.

Figure 6.2 shows the resulting page.

Figure 6.2: An integer number representation.

What would this program do if we try to print a number outside the
range {0,3}? Suppose we have the number 11 for printing. Just the gray
background will be printed because 11 is not a visible number in this range.

There is a way to express the range { −∞, +∞ } by declaring a int TIE
of the form {m, n} where m > n. For example, the TIE {1, 0} specifies that
all the integer numbers are visible. The graphic representation of an integer
with infinite visibility is the complete page painted with the current color.

6.3 Floating point numbers

A visible floating point number is graphically represented by the first (left)
rectangle of a proportional partition of the page.

A program that prints the number 2.5 shows how C5 produce the graphic
representation of floating point numbers:

DT_typedef double {0.0,4.0} float_nr;
main(){

float_nr f=2.5;
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opm_print(opm_page(Gray85,NULL)); /* A gray background */
opm_print(opm_image_cons(DT_pair(float_nr,f),

opm_page(Black,NULL)));
}

The double or float type TIE is a two floating point number sequence with
the following form:

{ first visible float , last visible float }

where the first visible float and last visible float are floating point numbers
delimiting the printable range of numbers. The default TIE for double or
float types is {0.0,1.0}.

In our program the TIE values {0.0,4.0} mean that a floating point
number f is visible if f≥ 0.0 and f≤ 4.0. In this case, the page is partitioned
in two rectangles with a f dependent size. The graphic representation of f
is the left rectangle painted with the current color. If f > 4.0 the graphic
representation will be the complete page painted with the current color and
if f < 0.0 no action is produced and the resulting image is the page painted
with the background color.

Figure 6.3 shows the resulting page.

Figure 6.3: A floating point number representation.

6.4 Structures

The type struct is represented by the intersection of its fields rotated with
an angle determined by the field index and the struct TIE.

Let be the following struct declaration of n + 1 fields:

DT typedef struct{ d0, .., di, .., dn } {r} sd;

where d0, .., di, .., dn are C5 type declarations. The graphic representation for
the struct type is the intersection of the rotated graphic representation of
d0, .., di, .., dn. The rotation angle for the ith field of the struct sd is
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r × i× Π/2

where r is the rotation declared in the struct TIE. The default struct TIE
is 1. The struct representation will be painted with the current color of the
first field.

The next program shows how the graphic representation of the type
struct is generated by opm image cons:

DT_typedef int {0,2} int_nr;
DT_typedef double {0.0,1.0} double_nr;
DT_typedef struct{

int_nr n;
double_nr x;
} {1} nx_Struct;

main(){
int_nr n=1;
double_nr x=0.6;
nx_Struct nxs;
nxs.n=n;
nxs.x=x;
opm_print(opm_image_cons(DT_pair(int_nr,n),

opm_page(Gray85,NULL)));
opm_print(opm_image_cons(DT_pair(double_nr,x),

opm_rot(1,opm_page(Gray85,NULL)));
opm_print(opm_image_cons(DT_pair(Struct_nx,nxs),

opm_page(Black,NULL)));
}

Notice that int nr and double nr are printed in gray while the struct
Struct nx is represented in black. This makes easier to see that the struct
is the intersection of the representation of n and a Π/2 rotated x (see figure
6.4).

Figure 6.4: A simple struct declaration.

The struct type with TIEs is an expressive programming resource of the
C5 Graphics Library. The code of opm scale illustrates how a member of
this library has been programmed:



74 CHAPTER 6. THE C5 GRAPHICS TUTORIAL

DT_typedef struct{
double {0.0,1.0} x2,y1,x1,y2;
} {1} dp2;

Port_List opm_scale(double left, double right,
double up, double down,
Port_List pl){

dp2 margs;
margs.x1= left ;
margs.x2= right;
margs.y2= up;
margs.y1= down;
if(pl==NULL) return(NULL);
else return(opm_cat(

opm_image_cons(DT_pair(dp2,margs),
opm_cons(opm_hd(pl),NULL)),

opm_scale(left,right,up,down,opm_tl(pl))));
}

The function opm cat is the concatenation operator for port lists and the
functions opm hd and opm tl return the head and the tail of a port list
respectively.

Let us look closer at the struct declaration because there are two interest-
ing things to note here. First, since the rectangles representing the variables
x2, y1, x1 and y2 are rotated 0, 1, 2 and 3 times Π/2 respectively, the in-
tersection produced by the struct dp2 will be a scaled rectangle defined by
the values of the x2,y1,x1 and y2 variables. Second, what the function
opm scale really do is mainly specified (programmed) in the struct decla-
ration while the body of the function itself deals with the margs variable
assigning and the port list pl recursive handling.

6.5 Arrays

In the next program the function sin is visualized using an array of floating
point numbers. This example is interesting because it shows the graphic
power of this type for function visualization:

#define Max 100
DT_typedef double {-1.0,1.0} func_visual[Max] {3,0,Max-1};
main(){

func_visual fn;
double rn=0.0;
int i;
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for(i=0;i<Max;i++){
fn[i]= sin(rn);
rn= rn + 2.0*M_PI/Max; /* M_PI=3.1416... */
}

opm_print(opm_page(Gray85,NULL)); /* A gray background */
opm_print(opm_image_cons(DT_pair(func_visual,fn),

opm_page(Black,NULL)));
}

The array TIE specifies that all the array elements are visible and will be
rotated 3×Π/2 before printing. The array fn is assigned with sin values in
the range {0, 2Π} and then visualized.

Figure 6.5 shows the sin function visualization.

Figure 6.5: The sin function visualization.

6.5.1 The Set mode

As we did for the integer TIE, it is possible to define an infinite range TIE
for arrays.

We call the Set Mode representation to an array declaration with TIEs of
the form

{ rot, m ,n }

where rot specifies the rotation of the array elements and m and n are integers
so that m > n.

In this case , the elements of the array are represented directly on the
page following the order indexed by the array starting from 0.

The next program shows the Set Mode representation in an array decla-
ration of integer structures:

DT_typedef struct{
int {0,6} y;
int {0,4} x;
} ccoords;
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DT_typedef ccoords point_set[15] {0,1,0};

point_set pts={
{ 6, 1}, { 6, 2}, { 5, 0}, { 5, 3}, { 4, 3},
{ 3, 1}, { 3, 2}, { 3, 3}, { 2, 0}, { 2, 3},
{ 1, 0}, { 1, 3}, { 0, 1}, { 0, 2}, { 0, 4} };

main(){
opm_print(opm_page(Gray85,NULL));
opm_print(opm_image_cons(DT_pair(point_set,pts),

opm_rot(3,opm_page(Black,NULL)));
}

This is an important array declaration because it simulates a two dimensional
Cartesian Coordinate System. In the program, the points are pairs of integers
where the first element is the Y axis coordinate and the second, the X axis.
Notice again that the kernel of the program is the type declaration.

The resulting image is a 15 points Cartesian representation of the letter
a.

Figure 6.6: The Set Mode Representation.

6.5.2 Matrices.

Matrix representation is obtained in C5 by the double array declaration with
finite range TIEs. The following program produce the same output than the
previous but now the letter a is represented by a 7× 5 matrix:

DT_typedef int {1,1} matrix[5] {0,0,4} [7] {3,0,6};
matrix mtx={ 0,1,1,0,0,

1,0,0,1,0,
0,0,0,1,0,
0,1,1,1,0,
1,0,0,1,0,
1,0,0,1,0,
0,1,1,0,1 };
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main(){
opm_print(opm_page(Gray85,NULL));
opm_print(opm_image_cons(DT_pair(matrix,mtx),

opm_rot(1,opm_page(Black,NULL))));
}

There are some interesting details here. First, since the integer TIE range is
{1, 1} , only one number –the number one– is visible for printing. Second, the
way the double array mtx is initialized makes easy the graphic design of the
matrix. Third, the port list opm page(Black,NULL) is rotated by opm rot

so that the printed matrix (in this case , the letter a) is coincident with the
mtx initialization.

6.6 Unions

C Unions are not interesting for C5 programs because there is no way to
know the current field of an union.

Instead of this kind of union , C5 recognizes discriminated unions as a
special case of the struct type.

6.6.1 Discriminated unions

A struct declaration with two fields where the first is an union and the second
is an integer is recognized as a discriminated union. In this case, the integer
field is supposed to keep the information about the current field of the union.
The discriminated union with TIEs is the way we express the color structure
of the images printed by opm printf.

The graphic representation of the discriminated union follows the struct
rules and the representation of the union field is the representation of the
current field painted with a color determined by the union TIE and the place
of the field.

The form of a discriminated union is:

DT typedef struct{
union{ d0, .., di, .., dn } {c} < id >;
int {m,n} < id >;
} { r } < id >;

where d0, .., di, .., dn are the fields of the union, and c is an integer number
defining the color factor of the union.
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The current color of the ith field of the union is the (c× i + 1)th element
of the color list of the page.

The next program shows a discriminated union example:

DT_typedef struct{
union{

int {0,9} foreground;
double {0.0,1.0} background;
} {2} cu; /* the color factor is 2 */

int {1,0} idx;
} disc_union ;

main(){
Port_List pl=opm_page(Black,Red,Gray85,NULL);
disc_union du1,du2;
du1.idx=1;
du1.cu.background=0.75; /* Gray85 */
du2.idx=0;
du2.cu.foreground=4; /* Black */
opm_print(opm_image_cons(DT_pair(disc_union,du1),pl));
opm_print(opm_image_cons(DT_pair(disc_union,du2),pl));
}

The variable foreground –the first field of the union cu– is printed with the
color Black because the equation fieldplace × colorfactor + 1 is 0 × 2 + 1
and this implies that the current color is the first color of the page. In the
case of the variable background, the resulting equation is 1× 2 + 1, that is,
the third color of the page ( Gray85).

Figure 6.7: A discriminated union representation.

The output of opm print is presented in Figure 6.7.

6.7 Pointers and recursion

The rule for the graphic representation of a pointer type declaration is the
representation of the pointed object with a rotation specified by the pointer
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TIE. The default TIE for pointers is {0}. If the referenced object is a char,
C5 will try to represent a NULL terminated string likewise an array of char-
acters.

The form of a pointer TIE is { rotation } where rotation is an integer.
In the C language, recursive type declarations are expressed by a struct

declaration including a field with a pointer to itself. This kind of recursive
declarations is required when implementing lists, trees or any other dynamic
data structure.

When C5 recognizes a recursive struct declaration, it represents the ob-
jects of this type in Set Mode, i.e., the fields of the struct are printed in an
ordered sequence, discarding the intersection operator that is applied in non
recursive struct declarations.

The program below shows a recursive type declaration for implementing
a list of points:

DT_typedef struct{
double {-500.0,10000.0} y;
int {-100,100} x;
} point;

DT_typedef struct NODE{
point pt;
struct NODE *next;
} {0} *node_list;

DT_typedef struct NODE * {3} Node_List;

node_list ucons(double y, int x, node_list l){
node_list p;
p= (node_list) malloc(sizeof(struct NODE));
p->pt.y=y;
p->pt.x=x;
p->next=l;
return(p);
}

main(){
Node_List nl=NULL;
int x;
for(x=-100;x<=100;x++) nl=ucons((double) x*x,x,nl);
opm_print(opm_page(Gray55,NULL));
opm_print(opm_image_cons(DT_pair(Node_List,nl),

opm_page(Black,NULL)));
}

The point struct produce the intersection of y and x while the struct NODE
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is recursive and therefore it generates the image of the fields without inter-
sections.

In order to keep the y and x coordinates vertical and horizontal respec-
tively, the pointer Node List is declared including a TIE that specifies a
rotation 3× Π/2.

The visualization of the function f(x) = x2 is predented in Figure 6.8.

Figure 6.8: A recursive type representation.

6.7.1 Color expressions

Dynamic data structures like lists or binary trees with nodes including unions
are natural implementations for color expressions in C5. As a good example,
let us write the type declaration of Color Serie which is the output type of
the function opm colors, the color expression constructor of the C5 Graphics
Library.

DT_typedef struct OPMTON{
dp2 scale;
struct{ /* discr union */

union{
int bg;
struct OPMTON *next;
} un;

int{1,0} idx; /* infinite range */
} du;

}{0} *Color_Serie;

The next program shows how color tones are structured with text using
opm colors:

DT_typedef struct{
Color_Serie * {3} c;
char Antique_Draft_S string[20] {0,0,19};
} {0} Color_String;

main(){
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Port_List lp1,lp2;
Color_String cst;
Color_Serie obj=opm_colors(4,2*TONES_NR,1.0,0.0);
cst.c=&obj;
strcpy(cst.string,"AB");
lp1=opm_page(opm_col2col( White, Gray50, TONES_NR),

opm_col2col(Gray50, White, TONES_NR),
NULL);

lp2=opm_page(opm_col2col( Black, White, TONES_NR),
opm_col2col( White, Black, TONES_NR),
NULL);

opm_print(opm_image_cons(DT_pair(Color_Serie,obj),
opm_scale(0.75,0.75,0.90,0.90,opm_rot(1,lp1))));

opm_printf(opm_image_cons(DT_pair(Color_String,cst),lp2));
}

The function opm col2col is a compressed notation for color series. For
example, the color serie denoted by

opm col2col(White,Black, 4)

is, when expanded, equivalent to the color series

(White,Gray67,Gray33,Black)

.

Figure 6.9: Color tones and text.

Figure 6.9 shows the output of opm print .

6.8 Type definitions and enumerations

Type definitions may include type declarations previously defined. In this
case, the TIE is of the form:
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{rotation, color}

where rotation and color are integers that work similar to the struct and
union TIE respectively. The default TIE for type definitions is {0, 0}.

The rule for representing enumerations is quite simple. Let be the type
declaration

DTtypedefenum{id0, id1, ..., idn}enum id;

where idi are n + 1 non equal identifiers. The objects of this type will be
represented in a similar way to the type declaration

DT_typedef int {0,n} enum_index;



Chapter 7

About the C5 compiler.

The first version of the C5 compiler was developed in 1999 at the Instituto
de Computación (InCo) , Montevideo, Uruguay. The compiler translates C5
programs into C code.

In this chapter, we present the version 0.98 of the C5 compiler (September,
2006), some references to related work and the conclusions of the experimen-
tation with C5.

7.1 The version 0.98 of the C5 compiler

The C5 parser is a extended C parser with few grammatical modifications
(the syntax of C5 is presented in Appendix E). The compiler consists on about
5500 lines where 900 of them are the actual type checker. The compiler parses
C5, does type checking of DPT constructors and translates the generated
syntax tree to C code.

In case of a successful compilation, C5 produces three C files:

1. C5 defs.h

Type definitions and extern declarations.

2. C5 out.c

It includes the functions C5 gos and C5 fapply, and the type database
required by the DPT library.

3. C5 prog.c

This file has the translated C5 source code.

The C5 type checker is mainly concerned with the constructor DT pair:

DT pair( A , a )

83
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where A is a C5 type definition

DT typedef < type expr > A ;

and a is a variable of type A.
When a DT pair invocation is detected, the C5 compiler checks statically

if the first argument is a DT typedef type definition and if the second is a
variable of type equal to the value of the first argument.

The current implementation of the C5 compiler (Version 0.98, September
2006) is available for the Linux operating system.

The C5 compiler and a sample of C5 programs can be found on the Web
at

http://www.fing.edu.uy/~jcabezas/c5

7.2 Related work

The statically typed programming languages Amber [7] and Modula-3 [26]
include notions of a dynamic type and a typecase statement. This idea can
also be found in functional programming [23] [29] [18] and in type-safe C
dialects like Ccured [12] where dynamics are used for converting C in a type
safe language.

Although C5 may assign accurate types to untyped C programs like
printf, it is not a type-safe C dialect but rather a C-based framework for
generic programming.

In our knowledge, C5 is the first C extension with dynamics developed
for generic programming.

The extension of functional languages with dependent types is another
interesting alternative for generic programming: Cayenne [4] –a Haskell-like
[17] language with dependent types– is powerful enough to encode predicate
logic at the type level and thus express generic functions like printf without
restrictions.

In a close research line to dependent types, the Generic Programming
community [6][15]. is developing another approach. PolyP [19] is an exam-
ple of this work that achieves an expressive power similar to that of depen-
dent types by parameterizing function definitions with respect to data type
signatures.

7.3 Conclusions

Generic programming is a complex task. C5 has been designed to be a low
cost C extension to obtain a generic programming framework.
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The practice with C5 allows us to affirm that C5 is a useful generic
programming framework.

The most important conclusion of the experimentation with C5 is that
a static typed language extended with DPTs (dynamics) and TIEs can be
powerful enough to express a wide class of generic functions (i.e. C5 scanf)
in a straightforward, compact and safe way.

The C5 version of Inodoro’s dream examples shows clearly the abstraction
level that this language can achieve.

TIEs seem to be a friendly way of providing parameters for generic func-
tions without affecting the static C type system. In the case of C5 compil,
the use of TIEs with C5 functions allows C5 to express a generic function in
a very compact and readable way.

Even though the communication between static and dynamic types is also
restricted to avoid typing conflicts, we have not detected practical limitations
when implementing complex generic functions like C5 scanf.

The improvements of version 0.98 of the C5 compiler have transformed
C5 scanf, C5 compil, C5 lenSearch and C5 idxSearch in a powerful parsing
framework.

Finally, we like to remark that the results of the C5 experimentation is
not limited to the C language. DPTs and TIEs are generic concepts and they
can be applied in other static typed programming languages. For instance,
a new version of generic Haskell inspired on the C5 ideas was developed at
InCo in 2006 [30].
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Chapter 8

Epilog

The main goal of the C5 project is to experiment with programming lan-
guages that support static and dynamic typing in coexistence mode. Thus,
the way the static and dynamic universes are communicated is a critical point
of the programming behavior of such languages.

The practice with C5 showed that the way C5 communicates between
the static and the dynamic universes provides the expressiveness required to
program generic functions defined for the entire type system.

This is an important empirical result since the communication from the
dynamic to the static universe in C5 is restricted to atomic types, and this
is a strong restriction compared with Cardelli’s typecase statement.

The experimentation with C5 convinced us that C5 gos and C5 fapply

give to C5 an equivalent expressiveness than Cardelli’s typecase statement.
However, what the practice really showed was the importance of the TIEs

when programming complex programs like the parser generator or the image
constructor.

In such cases, generic functions cannot be properly defined using just the
–one dimension– function arguments.

The functions C5 compil, C5 scanf or opm image cons are relevant ex-
amples to see how useful are TIEs for generic programming.

DPTs are necessary for generic programs to answer the question

What is the type of this object?

but TIEs are required to answer an even more important question

What do you want to do with this object?

The power of generic functions has an obvious counterpart: programming
generic functions is a complex task. The practice with C5 confirmed this
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assertion. The design, implementation and testing of functions like C5 scanf

or opm image cons required a considerable effort.
In the other hand, the practice showed also that the use of generic func-

tions do not present special difficulties.
For instance, about 400 undergraduate computing students at InCo showed

that they can use C5 libraries (including generic functions with DPTs and
TIEs) to construct small C5 programs (100-300 lines) as good as they do
with other standard programming languages like C. C++ or Java. However,
60% of the students declare that they required –in comparison with C++ or
Java– additional time to understand properly the new concepts of C5.

In the case of graduate students with C language and functional pro-
gramming knowledge, we have not detected specific difficulties for generic
programming in C5.

Finally, we like to present some statistics about the C5 project in order
to give a global vision of its significance.

C5 statistics
program prog. languages program size (lines) man-hours

C5 compiler C YACC LEX 5500 1800
DPT Library C5 1600 1200
Graphics Library C5 3400 1400
C5 scanf C5 2200 950
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[11] Joaqúın Torres Garćıa. Lo aparente y lo concreto en el arte (1947).
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: de Barcelona a Paŕıs. Ediciones de la Banda Oriental, 1992.

[26] Luca Cardelli and James Donahue and Lucille Glassman. Modula-3
report (revised). Technical report, DEC SRC-RR-52, 1989.

[27] Peter Henderson. Functional Geometry. In ACM symposium on LISP
and functional programming., pages 179–187, 1982. ISBN 0-89791-082-6.

[28] Pablo Queirolo. Typed Windos: An Implementation of a Programming
Language for Graphic Design. Technical Report Master Thesis - 97-02,
InCo PEDECIBA-Informática, 1997.
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Appendix A

Defined colors in the C5
Graphics Library.

AliceBlue

AntiqueWhite

AntiqueWhite1

AntiqueWhite2

AntiqueWhite3

AntiqueWhite4

Aquamarine

Aquamarine1

Aquamarine2

Aquamarine3

Aquamarine4

Azure

Azure1

Azure2

Azure3

Azure4

Beige

Bisque

Bisque1

Bisque2

Bisque3

Bisque4

Black

BlanchedAlmond

Blue

Blue1

Blue2

Blue3

Blue4

BlueViolet

Brown

Brown1

Brown2

Brown3

Brown4

Burlywood

Burlywood1

Burlywood2

Burlywood3

Burlywood4

CadetBlue

CadetBlue1

CadetBlue2

CadetBlue3

CadetBlue4

Chartreuse

Chartreuse1

Chartreuse2

Chartreuse3

Chartreuse4

Chocolate

Chocolate1

Chocolate2
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Chocolate3

Chocolate4

Coral

Coral1

Coral2

Coral3

Coral4

CornflowerBlue

Cornsilk

Cornsilk1

Cornsilk2

Cornsilk3

Cornsilk4

Cyan

Cyan1

Cyan2

Cyan3

Cyan4

DarkGoldenrod

DarkGoldenrod1

DarkGoldenrod2

DarkGoldenrod3

DarkGoldenrod4

DarkGreen

DarkKhaki

DarkOliveGreen

DarkOliveGreen1

DarkOliveGreen2

DarkOliveGreen3

DarkOliveGreen4

DarkOrange

DarkOrange1

DarkOrange2

DarkOrange3

DarkOrange4

DarkOrchid

DarkOrchid1

DarkOrchid2

DarkOrchid3

DarkOrchid4

DarkSalmon

DarkSeaGreen

DarkSeaGreen1

DarkSeaGreen2

DarkSeaGreen3

DarkSeaGreen4

DarkSlateBlue

DarkSlateGray

DarkSlateGray1

DarkSlateGray2

DarkSlateGray3

DarkSlateGray4

DarkSlateGrey

DarkTurquoise

DarkViolet

DeepPink

DeepPink1

DeepPink2

DeepPink3

DeepPink4

DeepSkyBlue

DeepSkyBlue1

DeepSkyBlue2

DeepSkyBlue3

DeepSkyBlue4

DimGray

DimGrey

DodgerBlue

DodgerBlue1

DodgerBlue2

DodgerBlue3

DodgerBlue4

Firebrick

Firebrick1

Firebrick2

Firebrick3

Firebrick4

FloralWhite

ForestGreen

Gainsboro

GhostWhite

Gold
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Gold1

Gold2

Gold3

Gold4

Goldenrod

Goldenrod1

Goldenrod2

Goldenrod3

Goldenrod4

Gray

Gray0

Gray1

Gray10

Gray100

Gray11

Gray12

Gray13

Gray14

Gray15

Gray16

Gray17

Gray18

Gray19

Gray2

Gray20

Gray21

Gray22

Gray23

Gray24

Gray25

Gray26

Gray27

Gray28

Gray29

Gray3

Gray30

Gray31

Gray32

Gray33

Gray34

Gray35

Gray36

Gray37

Gray38

Gray39

Gray4

Gray40

Gray41

Gray42

Gray43

Gray44

Gray45

Gray46

Gray47

Gray48

Gray49

Gray5

Gray50

Gray51

Gray52

Gray53

Gray54

Gray55

Gray56

Gray57

Gray58

Gray59

Gray6

Gray60

Gray61

Gray62

Gray63

Gray64

Gray65

Gray66

Gray67

Gray68

Gray69

Gray7

Gray70

Gray71

Gray72



96APPENDIX A. DEFINED COLORS IN THE C5 GRAPHICS LIBRARY.

Gray73

Gray74

Gray75

Gray76

Gray77

Gray78

Gray79

Gray8

Gray80

Gray81

Gray82

Gray83

Gray84

Gray85

Gray86

Gray87

Gray88

Gray89

Gray9

Gray90

Gray91

Gray92

Gray93

Gray94

Gray95

Gray96

Gray97

Gray98

Gray99

Green

Green1

Green2

Green3

Green4

GreenYellow

Grey

Grey0

Grey1

Grey10

Grey100

Grey11

Grey12

Grey13

Grey14

Grey15

Grey16

Grey17

Grey18

Grey19

Grey2

Grey20

Grey21

Grey22

Grey23

Grey24

Grey25

Grey26

Grey27

Grey28

Grey29

Grey3

Grey30

Grey31

Grey32

Grey33

Grey34

Grey35

Grey36

Grey37

Grey38

Grey39

Grey4

Grey40

Grey41

Grey42

Grey43

Grey44

Grey45

Grey46

Grey47

Grey48

Grey49
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Grey5

Grey50

Grey51

Grey52

Grey53

Grey54

Grey55

Grey56

Grey57

Grey58

Grey59

Grey6

Grey60

Grey61

Grey62

Grey63

Grey64

Grey65

Grey66

Grey67

Grey68

Grey69

Grey7

Grey70

Grey71

Grey72

Grey73

Grey74

Grey75

Grey76

Grey77

Grey78

Grey79

Grey8

Grey80

Grey81

Grey82

Grey83

Grey84

Grey85

Grey86

Grey87

Grey88

Grey89

Grey9

Grey90

Grey91

Grey92

Grey93

Grey94

Grey95

Grey96

Grey97

Grey98

Grey99

Honeydew

Honeydew1

Honeydew2

Honeydew3

Honeydew4

HotPink

HotPink1

HotPink2

HotPink3

HotPink4

IndianRed

IndianRed1

IndianRed2

IndianRed3

IndianRed4

Indianred

Ivory

Ivory1

Ivory2

Ivory3

Ivory4

Khaki

Khaki1

Khaki2

Khaki3

Khaki4

Lavender
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LavenderBlush

LavenderBlush1

LavenderBlush2

LavenderBlush3

LavenderBlush4

LawnGreen

LemonChiffon

LemonChiffon1

LemonChiffon2

LemonChiffon3

LemonChiffon4

LightBlue

LightBlue1

LightBlue2

LightBlue3

LightBlue4

LightCoral

LightCyan

LightCyan1

LightCyan2

LightCyan3

LightCyan4

LightGold

LightGoldenrod

LightGoldenrod1

LightGoldenrod2

LightGoldenrod3

LightGoldenrod4

LightGoldenrodYellow

LightGray

LightGrey

LightPink

LightPink1

LightPink2

LightPink3

LightPink4

LightSalmon

LightSalmon1

LightSalmon2

LightSalmon3

LightSalmon4

LightSeaGreen

LightSkyBlue

LightSkyBlue1

LightSkyBlue2

LightSkyBlue3

LightSkyBlue4

LightSlateBlue

LightSlateGray

LightSlateGrey

LightSteelBlue

LightSteelBlue1

LightSteelBlue2

LightSteelBlue3

LightSteelBlue4

LightYellow

LightYellow1

LightYellow2

LightYellow3

LightYellow4

LimeGreen

Linen

Magenta

Magenta1

Magenta2

Magenta3

Magenta4

Maroon

Maroon1

Maroon2

Maroon3

Maroon4

MediumAquamarine

MediumBlue

MediumOrchid

MediumOrchid1

MediumOrchid2

MediumOrchid3

MediumOrchid4

MediumPurple

MediumPurple1

MediumPurple2
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MediumPurple3

MediumPurple4

MediumSeaGreen

MediumSlateBlue

MediumSpringGreen

MediumTurquoise

MediumVioletRed

MidnightBlue

MintCream

MistyRose

MistyRose1

MistyRose2

MistyRose3

MistyRose4

Moccasin

NavajoWhite

NavajoWhite1

NavajoWhite2

NavajoWhite3

NavajoWhite4

Navy

NavyBlue

OldLace

OliveDrab

OliveDrab1

OliveDrab2

OliveDrab3

OliveDrab4

Orange

Orange1

Orange2

Orange3

Orange4

OrangeRed

OrangeRed1

OrangeRed2

OrangeRed3

OrangeRed4

Orangered

Orchid

Orchid1

Orchid2

Orchid3

Orchid4

PaleGoldenrod

PaleGreen

PaleGreen1

PaleGreen2

PaleGreen3

PaleGreen4

PaleTurquoise

PaleTurquoise1

PaleTurquoise2

PaleTurquoise3

PaleTurquoise4

PaleVioletRed

PaleVioletRed1

PaleVioletRed2

PaleVioletRed3

PaleVioletRed4

PapayaWhip

PeachPuff

PeachPuff1

PeachPuff2

PeachPuff3

PeachPuff4

Peru

Pink

Pink1

Pink2

Pink3

Pink4

Plum

Plum1

Plum2

Plum3

Plum4

PowderBlue

Purple

Purple1

Purple2

Purple3
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Purple4

Red

Red1

Red2

Red3

Red4

RosyBrown

RosyBrown1

RosyBrown2

RosyBrown3

RosyBrown4

RoyalBlue

RoyalBlue1

RoyalBlue2

RoyalBlue3

RoyalBlue4

SaddleBrown

Saddlebrown

Salmon

Salmon1

Salmon2

Salmon3

Salmon4

SandyBrown

SeaGreen

SeaGreen1

SeaGreen2

SeaGreen3

SeaGreen4

Seashell

Seashell1

Seashell2

Seashell3

Seashell4

Sienna

Sienna1

Sienna2

Sienna3

Sienna4

SkyBlue

SkyBlue1

SkyBlue2

SkyBlue3

SkyBlue4

SlateBlue

SlateBlue1

SlateBlue2

SlateBlue3

SlateBlue4

SlateGray

SlateGray1

SlateGray2

SlateGray3

SlateGray4

SlateGrey

Snow

Snow1

Snow2

Snow3

Snow4

SpringGreen

SpringGreen1

SpringGreen2

SpringGreen3

SpringGreen4

SteelBlue

SteelBlue1

SteelBlue2

SteelBlue3

SteelBlue4

Tan

Tan1

Tan2

Tan3

Tan4

Thistle

Thistle1

Thistle2

Thistle3

Thistle4

Tomato

Tomato1



101

Tomato2

Tomato3

Tomato4

Turquoise

Turquoise1

Turquoise2

Turquoise3

Turquoise4

Violet

VioletRed

VioletRed1

VioletRed2

VioletRed3

VioletRed4

Wheat

Wheat1

Wheat2

Wheat3

Wheat4

White

WhiteSmoke

Yellow

Yellow1

Yellow2

Yellow3

Yellow4

YellowGreen
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Appendix B

Fonts of the C5 Graphics
Library

In C5, fonts are represented by port lists. Fonts are the images associated to
the char type. The char type TIE selects the desired font in a C5 program.
There is a small set of predefined fonts (TIEs).

The rules for font names are

<Font>_<Draft|Letter|Ultra>_<UC|C|S|D|UD>

where Font is the font name (for example Roman), Draft, Letter and
Ultra is the font resolution (quality) and the separation between fonts is
represented by UC ultracompact, C compact, S standard, D disperse and UD

ultra disperse.
The following is the form of a char type TIE:

{recnr,ftype,vert1,vert2,hor,serif,incl,disp}

B.1 A list of font TIES

#define Roman {-1.0,1.0,0.1,0.4,0.15,0.2,0.0,0.7 }
#define Roman_Draft_C {-1.0,1.0,0.1,0.4,0.15,0.2,0.0,0.7 }
#define Roman_Letter_C {-2.0,1.0,0.1,0.4,0.15,0.2,0.0,0.7 }
#define Roman_Ultra_C {-3.0,1.0,0.1,0.4,0.15,0.2,0.0,0.7 }

#define Roman_Draft_UC {-1.0,1.0,0.1,0.4,0.15,0.2,0.0,0.8 }
#define Roman_Letter_UC {-2.0,1.0,0.1,0.4,0.15,0.2,0.0,0.8 }
#define Roman_Ultra_UC {-3.0,1.0,0.1,0.4,0.15,0.2,0.0,0.8 }
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Figure B.1: C5 fonts
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#define Roman_Draft_S {-1.0,1.0,0.15,0.4 ,0.15,0.25,0.0,0.6 }
#define Roman_Letter_S {-2.0,1.0,0.15,0.4 ,0.15,0.25,0.0,0.6 }
#define Roman_Ultra_S {-3.0,1.0,0.15,0.4 ,0.15,0.25,0.0,0.6 }

#define Roman_Draft_D {-1.0,1.0,0.2,0.4,0.2,0.3,0.0,0.4 }
#define Roman_Letter_D {-2.0,1.0,0.2,0.4,0.2,0.3,0.0,0.4 }
#define Roman_Ultra_D {-3.0,1.0,0.2,0.4,0.2,0.3,0.0,0.4 }

#define Roman_Draft_UD {-1.0,1.0,0.25,0.4,0.25,0.35,0.0,0.1 }
#define Roman_Letter_UD {-2.0,1.0,0.25,0.4,0.25,0.35,0.0,0.1 }
#define Roman_Ultra_UD {-3.0,1.0,0.25,0.4,0.25,0.35,0.0,0.1 }

#define Romans_Draft_UC {-1.0,1.0,0.1 ,0.25,0.1 ,0.15,0.0,0.8}
#define Romans_Letter_UC {-2.0,1.0,0.1 ,0.25,0.1 ,0.15,0.0,0.8}
#define Romans_Ultra_UC {-3.0,1.0,0.1 ,0.25,0.1 ,0.15,0.0,0.8}

#define Romans_Draft_C {-1.0,1.0,0.1 ,0.3,0.1 ,0.2,0.0,0.7 }
#define Romans_Letter_C {-2.0,1.0,0.1 ,0.3,0.1 ,0.2,0.0,0.7 }
#define Romans_Ultra_C {-3.0,1.0,0.1 ,0.3,0.1 ,0.2,0.0,0.7 }

#define Romans {-1.0,1.0,0.1 ,0.3,0.15,0.25,0.0,0.6 }
#define Romans_Draft_S {-1.0,1.0,0.1 ,0.3,0.15,0.25,0.0,0.6 }
#define Romans_Letter_S {-2.0,1.0,0.1 ,0.3,0.15,0.25,0.0,0.6 }
#define Romans_Ultra_S {-3.0,1.0,0.1 ,0.3,0.15,0.25,0.0,0.6 }

#define Romans_Draft_D {-1.0,1.0,0.2,0.3,0.2,0.3,0.0,0.4 }
#define Romans_Letter_D {-2.0,1.0,0.2,0.3,0.2,0.3,0.0,0.4 }
#define Romans_Ultra_D {-3.0,1.0,0.2,0.3,0.2,0.3,0.0,0.4 }

#define Romans_Draft_UD {-1.0,1.0,0.2,0.3,0.2,0.3,0.0,0.2 }
#define Romans_Letter_UD {-2.0,1.0,0.2,0.3,0.2,0.3,0.0,0.2 }
#define Romans_Ultra_UD {-3.0,1.0,0.2,0.3,0.2,0.3,0.0,0.2 }

#define Antique_Draft_C {-1.0,1.0,0.13,0.3,0.13,-0.28,0.0,0.76}
#define Antique_Letter_C {-2.0,1.0,0.13,0.3,0.13,-0.28,0.0,0.76}
#define Antique_Ultra_C {-3.0,1.0,0.13,0.3,0.13,-0.28,0.0,0.76}

#define Antique {-1.0,1.0,0.13,0.3,0.13,-0.31 ,0.0,0.6}
#define Antique_Draft_S {-1.0,1.0,0.13,0.3,0.13,-0.31 ,0.0,0.6}
#define Antique_Letter_S {-2.0,1.0,0.13,0.3,0.13,-0.31 ,0.0,0.6}
#define Antique_Ultra_S {-3.0,1.0,0.13,0.3,0.13,-0.31 ,0.0,0.6}
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#define Antique_Draft_D {-1.0,1.0,0.13,0.3 ,0.13,-0.32,0.0,0.4}
#define Antique_Letter_D {-2.0,1.0,0.13,0.3 ,0.13,-0.32,0.0,0.4}
#define Antique_Ultra_D {-3.0,1.0,0.13,0.3 ,0.13,-0.32,0.0,0.4}

#define Antique_Draft_UD {-1.0,1.0,0.13,0.3,0.13,-0.33,0.0,0.1}
#define Antique_Letter_UD {-2.0,1.0,0.13,0.3,0.13,-0.33,0.0,0.1}
#define Antique_Ultra_UD {-3.0,1.0,0.13,0.3,0.13,-0.33,0.0,0.1}

/* Arial gorda bold */
#define Arialb_Draft_UC {-1.0,0.0,0.4,0.4,0.4,0.0,0.0,0.85}
#define Arialb_Letter_UC {-2.0,0.0,0.4,0.4,0.4,0.0,0.0,0.85}
#define Arialb_Ultra_UC {-3.0,0.0,0.4,0.4,0.4,0.0,0.0,0.85}

#define Arialb_Draft_C {-1.0,0.0,0.4,0.4,0.4,0.0,0.0,0.70}
#define Arialb_Letter_C {-2.0,0.0,0.4,0.4,0.4,0.0,0.0,0.70}
#define Arialb_Ultra_C {-3.0,0.0,0.4,0.4,0.4,0.0,0.0,0.70}

#define Arialb {-1.0,1.0,0.4,0.4,0.4,0.0,0.0,0.50}
#define Arialb_Draft_S {-1.0,1.0,0.4,0.4,0.4,0.0,0.0,0.50}
#define Arialb_Letter_S {-2.0,1.0,0.4,0.4,0.4,0.0,0.0,0.50}
#define Arialb_Ultra_S {-3.0,1.0,0.4,0.4,0.4,0.0,0.0,0.50}

#define Arialb_Draft_D {-1.0,1.0,0.42,0.42,0.42,0.00,0.0,0.3 }
#define Arialb_Letter_D {-2.0,1.0,0.42,0.42,0.42,0.00,0.0,0.3 }
#define Arialb_Ultra_D {-3.0,1.0,0.42,0.42,0.42,0.00,0.0,0.3 }

#define Arialb_Draft_UD {-1.0,1.0,0.42,0.42,0.42,0.00,0.0,0.0 }
#define Arialb_Letter_UD {-2.0,1.0,0.42,0.42,0.42,0.00,0.0,0.0 }
#define Arialb_Ultra_UD {-3.0,1.0,0.42,0.42,0.42,0.00,0.0,0.0 }

/* Arial standard */
#define Arial_Draft_UC {-1.0,0.0,0.2,0.2,0.2,0.0,0.0,0.90}
#define Arial_Letter_UC {-2.0,0.0,0.2,0.2,0.2,0.0,0.0,0.90}
#define Arial_Ultra_UC {-3.0,0.0,0.22,0.22,0.20,0.0,0.0,0.90}

#define Arial_Draft_C {-1.0,0.0,0.2,0.2,0.2,0.0,0.0,0.7 }
#define Arial_Letter_C {-2.0,0.0,0.2,0.2,0.2,0.0,0.0,0.7 }
#define Arial_Ultra_C {-3.0,0.0,0.22,0.22,0.20,0.0,0.0,0.7 }

#define Arial_Draft_S {-1.0,1.0,0.2,0.2,0.2,0.0,0.0,0.60}
#define Arial_Letter_S {-2.0,1.0,0.2,0.2,0.2,0.0,0.0,0.60}
#define Arial_Ultra_S {-3.0,1.0,0.2,0.2,0.2,0.0,0.0,0.60}
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/* This is the default font */
#define Arial {-1.0,1.0,0.22,0.22,0.22,0.00,0.0,0.3 }
#define Arial_Draft_D {-1.0,1.0,0.22,0.22,0.22,0.00,0.0,0.3 }
#define Arial_Letter_D {-2.0,1.0,0.22,0.22,0.22,0.00,0.0,0.3 }
#define Arial_Ultra_D {-3.0,1.0,0.21,0.21,0.21,0.00,0.0,0.3 }

#define Arial_Draft_UD {-1.0,0.0,0.30,0.30,0.30,0.00,0.0,0.1}
#define Arial_Letter_UD {-2.0,0.0,0.30,0.30,0.30,0.00,0.0,0.1}
#define Arial_Ultra_UD {-3.0,0.0,0.30,0.30,0.30,0.00,0.0,0.1}

/* Arial delgada */
#define Arialn_Draft_C {-1.0,0.0,0.09,0.09,0.08,0.0,0.0,0.75}
#define Arialn_Letter_C {-2.0,0.0,0.09,0.09,0.08,0.0,0.0,0.75}
#define Arialn_Ultra_C {-3.0,0.0,0.07,0.07,0.06,0.0,0.0,0.75}

#define Arialn {-1.0,0.0,0.09,0.09,0.08,0.0,0.0,0.55}
#define Arialn_Draft_S {-1.0,0.0,0.09,0.09,0.08,0.0,0.0,0.55}
#define Arialn_Letter_S {-2.0,0.0,0.09,0.09,0.08,0.0,0.0,0.55}
#define Arialn_Ultra_S {-3.0,0.0,0.07,0.07,0.06,0.0,0.0,0.55}

#define Arialn_Draft_D {-1.0,0.0,0.09,0.09,0.08,0.0,0.0,0.25}
#define Arialn_Letter_D {-2.0,0.0,0.09,0.09,0.08,0.0,0.0,0.25}
#define Arialn_Ultra_D {-3.0,0.0,0.07,0.07,0.06,0.0,0.0,0.25}

/* Courier */
#define Courier_Draft_C {-1.0,3.0,0.2 ,0.2 ,0.2 ,-0.4,0.0,0.5}
#define Courier_Letter_C {-2.0,3.0,0.2 ,0.2 ,0.2 ,-0.4,0.0,0.5}
#define Courier_Ultra_C {-3.0,3.0,0.22,0.22,0.20,-0.4,0.0,0.5}

#define Courier_Draft_S {-1.0,3.0,0.2,0.2,0.2,-0.47,0.0,0.4 }
#define Courier_Letter_S {-2.0,3.0,0.2,0.2,0.2,-0.47,0.0,0.4 }
#define Courier_Ultra_S {-3.0,3.0,0.2,0.2,0.2,-0.47,0.0,0.4 }

#define Courier {-1.0,3.0,0.24,0.24,0.24,-0.5,0.0,0.2}
#define Courier_Draft_D {-1.0,3.0,0.24,0.24,0.24,-0.5,0.0,0.2}
#define Courier_Letter_D {-2.0,3.0,0.24,0.24,0.24,-0.5,0.0,0.2}
#define Courier_Ultra_D {-3.0,3.0,0.24,0.24,0.24,-0.5,0.0,0.2}

#define Courier_Draft_UD {-1.0,3.0,0.30,0.30,0.30,-0.5,0.0,0.1}
#define Courier_Letter_UD {-2.0,3.0,0.30,0.30,0.30,-0.5,0.0,0.1}
#define Courier_Ultra_UD {-3.0,3.0,0.30,0.30,0.30,-0.5,0.0,0.1}



108 APPENDIX B. FONTS OF THE C5 GRAPHICS LIBRARY



Appendix C

The C5 Graphics Library

C.1 The Graphics Library

1. opm page

Port_List opm_page(Color, Color, Color, ..., NULL)

opm page returns a port list with a Right oriented port. The size of the
port is the entire page and the color list is constructed with the Color

arguments that are not equal to NULL. The function accepts up to 12
arguments. (see opm Page for constructing a page with an unbounded
color list).

2. opm Page

Port_List opm_Page(Color_List)

opm Page returns a port list with a Right oriented port. The size of
the port is the entire page and the color list is the argument. The
constructor of color lists is LCC so LCC(Red, LCC(Green,NULL)) is a
valid color list of two elements.

3. opm print

void opm_print(Port_List)

opm print translates the port list argument into a PostScript format
file using the standard output.

4. opm scale

109
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Port_List opm_scale(double left, double right,

double up, double down,Port_List)

0.0 <= left <=1.0

0.0 <= right <=1.0

0.0 <= up <=1.0

0.0 <= down <=1.0

opm scale scales the ports of the argument according to the values of
the arguments left, right, up and down.

5. opm rot

Port_List opm_rot(int rotnr,Port_List)

opm rot rotates rotnr ×Π/2 the ports of the list argument.

6. opm image cons

Port_List opm_image_cons(DTP,Port_List)

opm image cons returns an image (a port list) which is the graphic
representation of the object member of the DPT argument printed on
a page (the port list argument).

7. opm set color

Port_List opm_set_color(int color_idx,Port_List)

opm set color sets the current color of the ports of the list argument
according to the color idx value. if color idx is greater than the
color list length of the port then the current color is White.

8. opm colors

DT_typedef struct{double x2,y1,x1,y2;} dp2;
DT_typedef struct OPMTON {

dp2 scale;
struct{ /* discr union */

union{
int{0,10} bg;
struct OPMTON *next;
} un;

int{1,0} idx;
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} du;
}{0} *Color_Serie;

Color_Serie opm_colors(int mode,int tones_nr,
double coef1,double coef2)

opm colors constructs a list of color scaled rectangles. The mode ar-
gument sets the scaling mode:

• mode=0 sets the four sides of the rectangle for decreasing concentric
scaling.

• mode=1 sets the right side of the rectangle for decreasing concentric
scaling.

• mode=2 sets the right and down sides of the rectangle for decreas-
ing concentric scaling.

• mode=3 sets the right, down and up sides of the rectangle for
decreasing concentric scaling.

• mode=4 sets the left and right sides of the rectangle for left to right
sequencing scaling.

• mode=5 sets the up and down sides of the rectangle for up to down
sequencing scaling.

• mode=10 sets the right and left sides of the rectangle for decreasing
concentric scaling.

• mode=20 sets the up and down sides of the rectangle for decreasing
concentric scaling.

The tones nr argument defines the length of the color list and the
coef1 and coef2 arguments are the scaling factor of the active and
inactive sides respectively. The standard values of these arguments are
1.0 and 0.0.

9. opm col2col

Color opm_col2col(Color from, Color to, int tones_nr)

opm col2col is a compressed notation for the colors of a port. The
function represents a color serie starting from from to to of tones nr

tones.

10. rgb
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Color rgb(int, int, int)

The function rgb constructs a color object according to the values of
the red, green and blue arguments. The range of the arguments is
(0,255).

The White color is represented by rgb(0,0,0) and Black by rgb(255,255,255).

11. opm bcurv4

Port_List opm_bcurv4(int rec_nr,
double y1_U,double y2_U,double y3_U,double y4_U,
double y1_D,double y2_D,double y3_D,double y4_D,
Port_List pl)

The function opm bcurv4 paints the shape limited by two Bezier curves
of four points where the upper curve is defined by (0.0,y1 U), (0.25,y2 U),
(0.5,y3 U), (0.75,y4 U) and the lower curve by (0.0,y1 D), (0.25,y2 D),
(0.50,y3 D),(0.75,y4 D). The visible range of the y ... arguments is
(0.0,1.0). rec nr is the resolution level where 10 is the top manual
resolution and -1, -2 , -3 and -4 are the automatic resolution for the
draft, standard, high and ultra level respectively.

Figure C.1 shows the image produced by the four opm bcurv4 examples
of the next program:

main(){
Port_List lp=opm_page(Black,Gray65,NULL),lp1,lp2,lp3,lp4;
lp1=opm_scale(1.0,0.45,0.9,0.45,lp);
lp2=opm_scale(0.45,1.0,0.9,0.45,lp);
lp3=opm_scale(1.0,0.45,0.45,0.9,lp);
lp4=opm_scale(0.45,1.0,0.45,0.9,lp);
opm_print(opm_set_color(1,opm_concat(lp1,opm_concat(lp2,

opm_concat(lp3,lp4)))));
opm_print(opm_bcurv4( 4, 1.0, 0.2, 1.0, 0.0,

1.0, 0.0, 0.8, 0.0, lp1));
opm_print(opm_bcurv4(-4, 1.0, 0.2, 1.0, 0.0,

1.0, 0.0, 0.8, 0.0, lp2));
opm_print(opm_bcurv4(-3, 0.4, 1.2, 1.2, 0.4,

0.2, 1.0, 1.0, 0.2, lp3));
opm_print(opm_bcurv4(-4, 1.0, 0.35,0.35,1.0,

0.5, 0.5, 0.5, 0.5, lp4));
}

There is also a 5 points version called opm bcurv5.
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Figure C.1: 4 opm bcurv4 examples

12. opm bcurv4p

Port_List opm_bcurv4p(int rec_nr,
double r1_U,double r2_U,double r3_U,double r4_U,
double r1_D,double r2_D,double r3_D,double r4_D,
Port_List pl)

The function opm bcurv4p paints the surface limited by two Bezier
curves of four points where the upper curve is defined in polar coor-
dinates by (Π/2,r1 U), (0.66×Π/2,r2 U), (0.33×Π/2,r3 U), (0.0,r4 U)
and the lower curve by (Π/2,r1 D), (0.66×Π/2,r2 D), (0.33×Π/2,r3 D),(0.0,r4 D).
The visible range of the radius r ... arguments is (0.0,1.0). rec nr

is the resolution level where 10 is the top manual resolution and -1, -2
, -3 and -4 are the automatic resolution for the draft, standard, high
and ultra level respectively.

Figure C.2 shows the image produced by the four opm bcurv4p exam-
ples of the next program:

main(){
Port_List lp=opm_page(Black,Gray65,NULL),lp1,lp2,lp3,lp4;
lp1=opm_scale(1.0,0.45,0.9,0.45,lp);
lp2=opm_scale(0.45,1.0,0.9,0.45,lp);
lp3=opm_scale(1.0,0.45,0.45,0.9,lp);
lp4=opm_scale(0.45,1.0,0.45,0.9,lp);
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opm_print(opm_set_color(1,opm_concat(lp1,opm_concat(lp2,
opm_concat(lp3,lp4)))));

opm_print(opm_bcurv4p( 4, 1.0, 0.2, 1.0, 0.0,
1.0, 0.0, 0.8, 0.0, lp1));

opm_print(opm_bcurv4p(-4, 1.0, 0.2, 1.0, 0.0,
1.0, 0.0, 0.8, 0.0, lp2));

opm_print(opm_bcurv4p(-3, 0.4, 1.2, 1.2, 0.4,
0.2, 1.0, 1.0, 0.2, lp3));

opm_print(opm_bcurv4p(-4, 1.0, 0.35,0.35,1.0,
0.5, 0.5, 0.5, 0.5, lp4));

}

Figure C.2: 4 opm bcurv4p examples

There is also a 5 points version called opm bcurv5p.

13. opm ellipsis

Port_List opm_ellipsis(int rec_nr,double ring,double elipse,
double incl1,double incl2,Port_List pl)

-3 <= rec_nr <= 12
0.0 <= ring <= 1.0
0.0 <= elipse <= 1.0
-1.0 <= incl1 <= 1.0
-1.0 <= incl2 <= 1.0

opm ellipsis paints the surface delimited by the maximal ellipsis of
the port and the ellipsis defined by ring. The elipse argument is
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an elliptical factor. incl1 and incl2 sets the inclination of the major
and minor ellipsis respectively. rec nr is the resolution level where 10
is the top manual resolution and -1, -2 , -3 and -4 are the automatic
resolution for the draft, standard, high and ultra level respectively.

Figure C.3 shows the image produced by the four opm ellipsis exam-
ples of the next program:

main(){
Port_List lp=opm_page(Black,Gray65,NULL),lp1,lp2,lp3,lp4;
lp1=opm_scale(1.0,0.45,0.9,0.45,lp);
lp2=opm_scale(0.45,1.0,0.9,0.45,lp);
lp3=opm_scale(1.0,0.45,0.45,0.9,lp);
lp4=opm_scale(0.45,1.0,0.45,0.9,lp);
opm_print(opm_set_color(1,opm_concat(lp1,opm_concat(lp2,

opm_concat(lp3,lp4)))));
opm_print(opm_ellipsis(-3, 0.0, 0.0, 0.0, 0.0, lp1));
opm_print(opm_ellipsis( 5, 0.90,0.40,0.90,0.20, lp2));
opm_print(opm_ellipsis(-2, 0.55,0.20,0.30,-0.7, lp3));
opm_print(opm_ellipsis(-4, 0.60,0.20,-0.8,1.00, lp4));
}

Figure C.3: 4 opm ellipsis examples

14. opm sector

Port_List opm_sector(int recnr,
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Figure C.4: 4 opm plane sector examples

double angle1, double x1,
double angle2, double x2,
Port_List lp);

0.0 <= x1 <= 1.0
0.0 <= x2 <= 1.0

opm sector paints the intersection of the right plane sector defined
by the line line1 and the left plane sector defined by the line line2.
line1 and line2 are defined by the X coordenates x1 and x2 with
the angles in radians angle1 and angle2 respectively. rec nr is the
resolution level where 10 is the top manual resolution and -1, -2 , -3
and -4 are the automatic resolution for the draft, standard, high and
ultra level respectively.

Figure C.4 shows the image produced by the four opm sector examples
of the next program:

main(){
Port_List lp;
lp=opm_page(Black,Gray85,Beige, NULL);

opm_print(opm_set_color(1,lp));
opm_print(opm_sector(6, M_PI_2-0.07,0.00,

M_PI_4 ,0.00,
opm_scale(1.0,0.5,1.0,0.5,lp)));

opm_print(opm_sector(-1,M_PI_2+0.3, 0.50,
M_PI_2-0.3, 0.50,
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opm_scale(0.5,1.0,1.0,0.5,lp)));
opm_print(opm_sector(6, M_PI_2+M_PI_4, 1.00,

M_PI_2+0.1 , 1.00,
opm_scale(1.0,0.5,0.5,1.0,lp)));

opm_print(opm_sector(-1,0.95, 0.00,
0.95, 0.05,
opm_scale(0.5,1.0,0.5,1.0,lp)));

}

C.2 The specification of C5 image cons.

Array type is denoted T [n] where n is the size and T the type of the elements
of the array.

rTi denotes a recursive pointer type.
Pointer type is denoted ∗ T where T is the type of the referenced object.
Recursive pointer type is denoted r ∗ T where T is the type of the refer-

enced object.

image cons : DPT × Port List → Port List

image cons(< INT, i >, lp) = selsplit(2, i + 1, lp)
image cons(< INT TIE{m,n}, i >, lp) = selsplit(n + 1−m, i + 1−m, lp)

image cons(< DOUBLE, d >, lp) = partition(d, lp)
image cons(< DOUBLE

TIE{r, s : r > s}, d >, lp) = lp

image cons(< DOUBLE

TIE{r, s}, d >, lp) = partition((d− r)/(s− r), lp)
image cons(< CHAR, c >, lp) = fontrep(RomanF ont, c, lp)

image cons(< CHAR TIE, c >, lp) = fontrep(TIE, c, lp)
image cons(< STRUCT{
UNION{T1, .., Tn}, INT},

ai >, lp) = image cons(< Ti, ai >,

= set color(i− 1, lp))
image cons(< STRUCT{

UNION{T1, .., Tn}, INT} TIE{c},
ai >, lp) = image cons(< Ti, ai >,

= set color(c ∗ (i− 1), lp))
image cons(< STRUCT{T1, .., Tn}
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TIE{r}, {a1, .., an} >, lp) = inters(image cons(
< T1, a1 >, rot(0, lp)),

inters(image cons(
< T2, a2 >, rot(r, lp)),

...

image cons(< Tn, an >,

rot(r ∗ (n− 1), lp) ... )
image cons(< STRUCT{T1, .., r ∗ Ti, .., Tn}

TIE{r}, {a1, .., an} >, lp) = concat(image cons(
< T1, a1 >, rot(0, lp)),

concat(image cons(
< T2, a2 >, rot(r, lp)),

...

image cons(< Tn, an >,

rot(r ∗ (n− 1), lp) ... )
image cons(< CHAR [n] , str >, lp) = str rep(< CHAR [n] , str >, lp)

image cons(< T [n] TIE{r, s, t : s > t},
{a0, .., an−1} >, lp) = concat(image cons(

< T0, a0 >, rot(r, lp)),
...

image cons(< Tn−1, an−1 >,

rot(r, lp) ... )
image cons(< T [n] TIE{r, s, t},

{a0, .., an−1} >, lp) = concat(image cons(
< Ts, as >, rot(r, elem(t, lp))),

...

image cons(< Tt, at >,

rot(r, elem(t, lp)) ... )
image cons(< CHAR ∗ , str >, lp) = str rep(< CHAR ∗ , str >, lp)

image cons(< T ∗, pa >, lp) = image cons(< T, a >, rot(0, lp))
image cons(< T ∗ TIE{r}, pa >, lp) = image cons(< T, a >, rot(r, lp))

image cons(< TY PEDEF T id, a >, lp) = image cons(< T, a >, lp)
image cons(< TY PEDEF T id

TIE{r, c}, a >, lp) = image cons(< T, a >,

rot(r, set color ∗ c, lp)))
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image cons(< , >, lp) = lp

Figure C.5: The flying S.

C.3 An example using Bezier curves

The next program combines the functions opm colors, opm co2col and opm bcurv5

to generate a fantasy letter S :

main(){

Color_Serie cs=opm_colors(20,SERIE_NR,1.0,0.33);
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Port_List lp=opm_page(

opm_col2col(Orchid, SlateBlue4,TONES_NR),

opm_col2col(Brown ,Orange, TONES_NR-1), Red,

opm_col2col(DarkGoldenrod , White, TONES_NR),

opm_col2col(Black , Black, TONES_NR),

LightYellow1, Black , NULL);

opm_print(opm_page( Black ,NULL));

opm_print(opm_bcurv5(-1,1.0, 0.1,0.65,1.6,0.0,

1.0,-0.6,0.35,0.9,0.0,

opm_image_cons(DT_pair(Color_Serie,cs),

opm_rot(1,

opm_scale(0.99,0.99,0.88,0.88,lp)))));

}

Figure C.5 shows the resulting image.

Figure C.6: The girl mascot.
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C.4 The mascot of InCo 2006

In 2006, undergraduate students at InCo created 48 mascots programmed in
C5. We present three of them to give an overview of this work.

C.4.1 The girl mascot.

Laura Cuadrado and Cecilia Stevenazzi produced a C5 program (194 lines)
creating the mascot presented in Figure C.6.

C.4.2 The boy mascot.

Andrés Américo, Carlos Baptista and Fernando Mart́ınez produced a C5
program (282 lines) creating the mascot presented in Figure C.7.

Figure C.7: The South Park mascot.



122 APPENDIX C. THE C5 GRAPHICS LIBRARY

C.4.3 The green monster.

iWalmar Laiolo , Nicolás Gerolami and Marcelo Perelmutter produced a C5
program (334 lines) creating the mascot presented in Figure C.8.

Figure C.8: The green monster mascot.



Appendix D

Specification of the C5
structural equality.

D.1 Type equality

Array type is denoted a [n] where n is the size and a the type of the elements
of the array.

Pointer type is denoted ∗ a where a is the type of the referenced object.
Recursive pointer type is denoted r∗ a where a is the type of the referenced

object.
Let m, n : int; a, b, t, ai, bi : type; id : identifier; < type, object >: DPT ;

typeSeq : DPT × DPT → int

typeSeq(< TY PEDEF t id, >,< , >) = typeSeq(< t, >,< , >)
typeSeq(< , >,< TY PEDEF t id, >) = typeSeq(< , >,< t, >)

typeSeq(< INT, >,< INT, >) = 1
typeSeq(< CHAR, >,< CHAR, >) = 1

typeSeq(< DOUBLE, >,< DOUBLE, >) = 1
typeSeq(< STRUCT{a1, .., an}, >,

< STRUCT{b1, .., bm}, >) = m == n &&
typeSeq(< a1, >,< b1, >) &&
...

typeSeq(< an,> , < bm, >)
typeSeq(< UNION{a1, .., an},> ,

< UNION{b1, .., bm}, >) = m == n &&
typeSeq(< a1, >,< b1, >) &&
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...

typeSeq(< an, >,< bm, >)
typeSeq(< a [n], >,< b [m], >) = m == n &&

typeSeq(< a, >,< b, >)
typeSeq(< ∗ a, >,< ∗ b, >) = typeSeq(< a, >,< b, >)

typeSeq(< r ∗ a, >,< r ∗ b, >) = check table(< r ∗ a, >,

< r ∗ b, >)
typeSeq(< r ∗ a, >,< ∗ b, >) = 0
typeSeq(< ∗ a, >,< r ∗ b, >) = 0

typeSeq(< a FUNCTION(a1, .., an), >,

< b FUNCTION(b1.., bm), >) = m == n &&
typeSeq(< a, >,< b, >) &&
typeSeq(< a1, >,< b1, >) &&
...

typeSeq(< an, >,< bm, >)
typeSeq(< , >,< , >) = 0

In the next function, r ∗ a denotes a recursive pointer type that is not
member of the pointer table. The function insert inserts a pointer type in
the pointer table.

tr ∗ a denotes a recursive pointer type which is member of the pointer
table. This pointer has been inserted in the pointer table using the function
insert.

check table : DPT × DPT → int

check table(< r ∗ a, >,< r ∗ b, >) = (insert(r ∗ a));
(insert(r ∗ a));
typeSeq(< a, >,< b, >)

check table(< tr ∗ a, >,< r ∗ b, >) = (insert(r ∗ b));
typeSeq(< a, >,< b, >)

check table(< r ∗ a, >,< tr ∗ b, >) = (insert(r ∗ a));
typeSeq(< a, >,< b, >)

check table(< tr ∗ a, >,< tr ∗ b, >) = 1
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D.2 Object equality

Seq : DPT × DPT → int

Seq(< A, a >, < B, b >) = typeSeq(< A, a >, < B, b >) &&
seq(< A, a >, < B, b >)

seq : DPT × DPT → int

seq(< TY PEDEF t id, obj >,< , >) = seq(< t, obj >,< , >)
seq(< , >,< TY PEDEF t id, obj >) = typeseq(< , >,< t, obj >)

seq(< INT, oa >,< INT, ob >) = oa == ob

seq(< DOUBLE, oa >,< DOUBLE, ob >) = oa == ob

seq(< CHAR, oa >,< CHAR, ob >) = oa == ob

seq(< STRUCT{UNION{T1, .., Tn}, INT},
{{a1, .., an}, i} >,

STRUCT{UNION{T1, .., Tn}, INT},
{{a1, .., an}, j} >) = i == j &&

seq(< Ti, ai >,< Tj , bj >)
seq(< STRUCT{T1, .., Tn}, {a1, .., an} >,

< STRUCT{T1, .., Tn}, {b1, .., bn} >) = seq(< T1, a1 >,< T1, b1 >) &&
...

seq(< Tn, an >,< Tn, bn >)
seq(< ∗ T,NULL >, < ∗ T, >) = 0

seq(< ∗ T, ,< ∗ T,NULL >) = 0
seq(< ∗ char, sa >,< ∗ char, sb >) = strcmp(sa, sb)

seq(< ∗ T, pa >,< ∗ T, pb >) = seq(< T, a >,< T, b >)
seq(< CHAR [n], sa >

< CHAR [n], sb >) = strcmp(sa, sb)
seq(< T [n], {a0, .., an−1} >,

< T [n], {b0, .., bn−1} >) = seq(< T, a0 >,< T, b0 >) &&
...

seq(< T, an−1 >,< T, bn−1 >)
seq(< UNION, >,< UNION, >) = (Undefined) 0
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seq(< FUNCTION, >,< FUNCTION, >) = (Undefined) 0
seq(< , >,< , >) = 0



Appendix E

The syntax of C5.

C5 syntax is a C grammar [16] with few modifications. In particular, the
syntax of TIEs is described by the typeinf rules.

High level definitions.

program := ext def list;
ext def list := ext def list ext def

| / ∗ epsilon ∗ /;
ext def := opt specifiers ext decl list SEMI

| opt specifiers SEMI

| opt specifiers func decl def list compound stmt;
ext decl list := ext decl

| ext decl list COMMA ext decl;
ext decl := func decl

| var decl

| var decl EQUALL initializer;
opt specifiers := specifiers

| / ∗ empty ∗ /;
specifiers := classoconst ttype typeinf

| ttype typeinf

| class oconst type

| type

| class;
type := type specifier;
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Specifiers

type specifier := atomict list

| enum specifier

| struct specifier;
atomict list := atomic specifier

| atomict list atomic specifier;
atomic specifier :=

atostypeinf ;
class := CLASS;
ttype := TTY PE;
atos := TY PE;

oconst :=
| CONST ;

Enumeration

enum specifier := ENUM name opt enum list

| ENUM LC enumerator list RC;
opt enum list := LC enumerator list RC

| / ∗ empty ∗ /;
enumerator list := enumerator

| enumerator list COMMA enumerator;
enumerator := name

| name EQUALL const expr;

Variable declarators

var decl := new name

| var decl LP RP

| var decl LP var list RP

| var decl LB RB typeinf

| var decl LB const expr RB typeinf
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| STAR var decl

| STAR typeinf var decl

| LP var decl RP ;
new name := NAME;

name := NAME;

Function declarators

func decl := STAR func decl

| func decl LB RB

| func decl LB const expr RB

| LP func decl RP

| func decl LP RP

| new name LP RP

| new name LP name list RP

| new name LP var list RP ;

name list := new name

| name list COMMA new name;
var list := param declaration

| var list COMMA param declaration;
param declaration := type var decl

| ttype var decl

| abstract decl

| ELLIPSIS;

Abstract declarators

abstract decl := abs decl

| type abs decl

| CONST type abs decloname

| ttype abs decl

| CONST ttype abs decl oname;
oname :=
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| name;
abs decl := / ∗ epsilon ∗ /

| CONST abs decl

| LP abs decl RP LP RP

| LP abs decl RP LP var list RP

| STAR abs decl

| abs decl LB RB typeinf

| abs decl LB const expr RB

| LP abs decl RP ;

Structures

struct specifier := STRUCT opt tag LC def list RC typeinf

| UNION opt tag LC def list RC typeinf

| STRUCT tag

| UNION tag;
opt tag := tag

| / ∗ empty ∗ /;
tag := name

| ttype;
typeinf := / ∗ C5TIEdeclaration ∗ /

| LC initializer list opt comma RC;

Local variables and function args.

def list := def listdef

| / ∗ epsilon ∗ /;
def := specifiers decl list SEMI

| specifiers SEMI;
decl list := decl

| decl list COMMA decl;
decl := func decl

| var decl

| var decl EQUALL initializer
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| var decl COLON const expr %prec COMMA

| COLON const expr %prec COMMA;
initializer := expr %prec COMMA

| LC initializer list opt comma RC;
opt comma := / ∗ empty ∗ /

| COMMA;
initializer list := initializer

| initializer list COMMA initializer;

Statements

compound stmt := LC local defs stmt list RC;
local defs := def list;
stmt list := stmt list statement

| / ∗ epsilon ∗ /;
statement := expr SEMI

| compound stmt

| RETURN SEMI

| RETURN expr SEMI

| BREAK SEMI

| CONTINUE SEMI

| SEMI

| GOTO target SEMI

| target COLON statement

| SWITCH LP expr RP compound stmt

| CASE const expr COLON

| DEFAULT COLON

| IFTHEN LP test RP statement

| IFTHEN LP test RP statement ELSE statement

| WHILE LP test RP statement

| FOR LP opt expr SEMI test SEMI opt expr RP statement

| DO statement WHILE LP test RP SEMI;
test := expr

| / ∗ epsilon ∗ /;
target := name;
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Expressions

opt expr := expr

| / ∗ epsilon ∗ /;
const expr := expr;

expr := expr COMMA non comma expr

| non comma expr;
non comma expr := non comma expr QUEST non comma expr

COLON non comma expr

| non comma expr assignop non comma expr

| non comma expr EQUALL non comma expr

| or expr;
or expr := or list;
or list := or list OROR and expr

| and expr;
and expr := and list;
and list := and list ANDAND binary

| binary;
binary := binary relop binary

| binary equop binary

| binary STAR binary

| binary divop binary

| binary shiftop binary

| binary AND binary

| binary XOR binary

| binary OR binary

| binary PLUS binary

| binary MINUS binary

| unary;
unary := LP expr RP

| fcon

| icon

| name

| string const %prec COMMA



133

| SIZEOF LP string const RP %prec SIZEOF

| SIZEOF LP expr RP %prec SIZEOF

| SIZEOF LP abstract decl RP %prec SIZEOF

| LP abstract decl RP unary %prec UNOP

| MINUS unary %prec UNOP

| unop unary

| unary incop

| incop unary

| AND unary %prec UNOP

| STAR unary %prec UNOP

| unary LB expr RB %prec UNOP

| unary structop name %prec STRUCTOP

| unary LP args RP

| unary LP RP ;
assignop := ASSIGNOP ;

relop := RELOP ;
equop := EQUOP ;
unop := UNOP ;
incop := INCOP ;
divop := DIV OP ;

shiftop := SHIFTOP ;
structop := STRUCTOP ;

icon := ICON ;
fcon := FCON ;

string const := string string const

| string;
string := STRING;

args := non comma expr %prec COMMA

| non comma expr COMMA args;
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.



Appendix F

Specification and code of
C5 compil.

F.1 The specification of compil

Array type is denoted T [n] where n is the size and T the type of the elements
of the array.

Pointer type is denoted ∗ T where T is the type of the referenced object.
TIE{FUNCTION, A1, .., An} denotes a TIE where the first element is

a function DPT.
{a1, .., an} denotes the fields of a struct or union object.
{a0, .., an} denotes the elements of an array object.
T, T0, .., Tn : type; id : identifier; < type, object >: DPT ;

compil : DPT → DPT

compil(< INT, >) = < INT, >

compil(< CHAR, >) = < CHAR, >

compil(< DOUBLE, >) = < DOUBLE, >

compil(< ”Token”, >) = < ”Token”, >

compil(< STRUCT{
UNION{T1, .., Tn}, INT},

{{a1, .., an}, i} >, = compil(< Ti, ai >)
compil(< STRUCT{

UNION{T1, .., Tn},
INT} TIE,

{{a1, .., an}, i} >, = actions(< Ti, ai >)

135



136 APPENDIX F. SPECIFICATION AND CODE OF C5 COMPIL.

compil(< STRUCT TIE, >) = actions(< STRUCT TIE, >)
compil(< STRUCT, >) = < STRUCT, >

compil(< CHAR [n], >) = < CHAR [n], >

compil(< T [n], >) = < T [n], >

compil(< T [n]TIE, >) = actions(< T [n], >)
compil(< T ∗ TIE{A1, .., An}, NULL >) = A1

compil(< T ∗ , NULL >) = < T ∗ , NULL >

compil(< T ∗ , p → a >) = compil(< T, a >)
compil(< TY PEDEF T id TIE, >) = actions(

< TY PEDEF T id TIE, >)
compil(< TY PEDEF T id, >) = compil(< T, >)

compil(< , >) = < , >

actions : DPT → DPT

actions(<
TIE{FUNCTION, A1, .., An},

>) = fapply(FUNCTION,

map tie(<
TIE{FUNCTION, A1, .., An}, >,

{A1, .., An})
actions(< TIE, >) = hd(map tie(< TIE, >, TIE))

map tie : DPT × DPT List → DPT List

map tie(< , >, nil) = nil

map tie(dp, a : l) = compil(getdp(dp, a)) :
map tie(dp, l)
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getdp : DPT × DPT → DPT

getdp(< A [n], {a0, .., an−1} >,< INT, {0 ≤ i < n} >) = < A, ai >

getdp(< STRUCT{UNION, INT}, >,

< T, a >) = < T, a >

getdp(< STRUCT{A1, .., An}, {a1, .., an} >,

< CHAR ∗, name(Ai) >) = < Ai, ai >

getdp(< STRUCT{A1, .., An}, {a1, .., an} >,

< CHAR ∗, str >) = < CHAR ∗, str >

getdp(< , >,< T, a >) = < T, a >

F.2 The code of C5 compil.

DPT C5_compil(DPT dp){
int i;
if(!strncmp("Token",C5_gname(dp),5)) return(dp);
switch(C5_gtype(dp)){

case CHAR: case DOUBLE: case INT: return(dp);
case STRUCT:

if(isDUnion(dp)){ /* Discriminated Union */
if (C5_TIE_length(dp)==0) /* No TIE */

return(C5_compil(C5_gos(C5_gos(dp,1),
C5_gint(C5_gos(dp,2),0)+1 )));

else return(C5_scanfActions(dp));
}

else{
if (C5_TIE_length(dp)==0) return(dp);
else return(C5_scanfActions(dp));
}

case ARRAY:
if (C5_TIE_length(dp)==0 ||

C5_gtype(C5_gos(dp,0))==CHAR) return(dp);
else return(C5_scanfActions(fp,dp));

case POINTER:
if(C5_is_ptr_nul(dp) ||

C5_gtype(C5_gos(dp,1))==CHAR) return(dp);
case TYPEDEF:
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if (C5_TIE_length(dp)>0) return(C5_scanfActions(dp));
else return(C5_compil(C5_gos(dp,1)));

case FUNCTION: return(dp);
default: fprintf(fp,"Unknown type %s.\n",C5_gname(dp));

return(dp);
}

}

DPT C5_scanfActions(DPT dp){ /* */
DPT tie1= dphd(C5_gtie(dp)); /* first element of the TIE */
if(C5_isFunction(tie1)) /* function application */

return(C5_fapply(tie1,
C5_map_tie(fp,dp, dptl(C5_gtie(dp)))));

else return(dphd(C5_map_tie(dp,C5_gtie(dp))));
}

DPT_list C5_map_tie(DPT dp, DPT_list tie_ls){
if(tie_ls==NULL) return(NULL);
else{

DPT auxdp= C5_compil(C5_gPtrdp(dp,dphd(tie_ls)));
return(dpcons(auxdp,C5_map_tie(dp, dptl(tie_ls))));
}

}

DPT C5_gPtrdp(DPT dp, DPT tie){
DPT out; int i;
char *st;
if(C5_gtype(dp)==ARRAY && C5_gtype(tie)==INT){

int tie_idx=C5_gint(tie,-1);
if(tie_idx<0 || tie_idx>=C5_gsize(dp)) return(dp);
else return(C5_gos(dp,tie_idx));
}

if(C5_gtype(dp)==STRUCT && !isDUnion(dp) && C5_isString(tie)){
char *str= C5_gstr(tie, "C5_gPtrdp error");

for(i=1;i<=C5_gcant(dp);i++)
if(!strcmp(str,C5_gname(C5_gos(dp,i))))

return(C5_gos(dp,i));
return(tie); /* no match */
}

return(tie); /* no string */
}


