
IPoIM: Internet Protocol over Instant Messaging
Ariel Sabiguero Yawelak, Pablo Rodrı́guez-Bocca and Laura Rodrı́guez Mendaro

Instituto de Computación - Facultad de Ingenieŕıa
Universidad de la Reṕublica - Montevideo, Uruguay

Architecture et Modèles de Ŕesaux (ARMOR)
Institut de Recherche en Informatique et Systèmes Aĺeatoires - Rennes, France

e-mail: {asabigue,prbocca }@{fing.edu.uy,irisa.fr }, lrodrigu@irisa.fr

asabigue@ieee.org

Abstract— This work proposes a novel utilization of Instant
Messaging (IM) services as an ubiquitous network layer for
protocol encapsulation and transmission. As more than 70% of
organizations and almost all home users do not block IM traffic,
this work evidences a latent vulnerability of the technology that
can be exploited. A working prototype was implemented using
Open Source Software. The prototype combines an IM client with
a tunnel that was used through public IM services to transmit
arbitrary content. The measured bandwidth is of the same order
of the one provided by a dial-up modem. Preliminary experi-
mental results are presented and initial security considerations
suggested.
Keywords: Instant Messaging, Internet Protocol, tunnel, VPN,
OpenVPN, GAIM

I. I NTRODUCTION

Instant Messaging (IM) is a new set of communication
applications and protocols that have widely spread all over
Internet. It is a new medium of communications over the
Internet. Instant Messaging is a means for sending small, sim-
ple messages that are delivered immediately to online users.
Acceptable delay and jitter of the applications allows users
to establish one-to-one or one-to-many written conversations,
which complement classical e-mail and phone communication
mechanisms. The speed of this deployment is not only due
to the fact that it is a useful application, but that it was from
the beginning freely available and simple to use. A regular
user can download and install an IM client and set it up. IM
clients are designed to require almost no configuration and
they can adjust their communication mechanism to bypass
firewalls or HTTP proxies. This facts inverted the way appli-
cations are deployed in organizations. Network administrators
found themselves with a new application already deployed,
and being used not only by employees but managers. The
general misconception is that text messages are harmless: it
is only text. Thus, the most common security scenario for IM
deployment within organizations is to allow only text messages
and block other exchanges.

With this in mind a proof of concept prototype was devel-
oped: IPoIM. The IPoIM is a modified IM client that allows IP
traffic tunneling through publicly available IM servers. When
a IM connection is established between two IPoIM clients, the
IM channel is turned into an IP tunnel. Moreover, TLS is used
to provide end-to-end encryption and privacy. The IP tunnel

allows to route IP traffic between connected sites.
This paper is organized as follows. Section II introduces

relevant concepts and motivates the work. In Section III, a
conceptual architecture of the components and the complete
solution is presented. The software components used are pre-
sented in Section IV. In Section V first results of experiments
are introduced. Main contributions of this work are collected
in Section VI and the paper concludes in Section VII.

II. M OTIVATION

Instant Messaging has become ubiquitous and is expected to
extend the reach of e-mail and make overall messaging market
grow. IM plays a key role in the Interactive Collaborative
Environments (ICE) markets and the focus of its development
is based on commercial aspects like market penetration. A
wide variety of problems exist and can include IM messages
sent in clear text, no local routing, no namespace control, no
auditing or logging, easy introduction of threats and more,
depending on the IM protocol.

Currently, 34% of e-mail users also uses IM and penetration
into organizations raised to 54% after 40% in 2002 [1].
Despite of the growth in the organizations, consumer IM
clients continue to dominate the use of IM in the workplace
and in the Internet.

During Q1 2005, 71.2% of the organizations did not block
IM traffic. Moreover, most home computers do not block IM
traffic either. The most common threat associated to IM is the
loss of productivity, and organizations are mostly concerned
of constraining personal contacts to work-related contacts. In
some special fields, like some banking organizations, there are
special regulations that force all the traffic to be recorded, for
auditing purposes. As IM isonly text, it is mostly considered
to be harmless.

The other immediate key feature of the IM is it’sinstantane-
ity. A normal chat session requires a minimal communication
delay. There is already enough delay on the fact that messages
get transmitted only when the user sends it.

The broad diffusion, lack of control and instantaneity
suggests that all the requirements for data transmission are
already present. In the following Subsections will develop this
concepts together.



A. Conceptual grounds

The security related aspects, together with the capabilities
of the technology, suggested thatanythingcan be transmitted.
The reader can perform a simple experiment, consisting in
uuencoding 1 an arbitrary file to obtain atextual represen-
tation of the file. Afterward, using cut-n-paste on thesender
side into the IM client message window, it is possible to
transmit the image. On thereceiver side, again using cut-n-
paste, it is possible to reassemble the possibly various instant
messages, anduudecode to exact a copy of the original
file. Most IM clients provide means for file-exchange, but
the implementation isoutbound, an additional connection is
created, generally between both ends, for such purpose. This
experiment, and IPoIM, shall be understood asinbound. We
will explore in Section III-A further aspects of general IM
architecture.

This näıve confirmation allows us to practically see that we
can turn digital content into some IM-compatible represen-
tation format and transmit it as a standard IM sequence of
messages.

What different types of content can be transmitted? What
is this good for? The first answer we found was to develop
a communication-like API wrapper that automatizes the cod-
ing/decoding process. The API (named IM sockets) would
provide a Berkeley-like set of socket primitives, but has the
drawback that software has to be developed to use it. The
design decision was taken so as to favor fast development
and software reuse both for development and testing. The
simplest way of reusing existing communication software is
to provide communication services at the OS level, so client
applications would communicate through it. Interfacing the
solution to existing software is automatically achieved. Adding
an interface allows any network application to ”just” use it.

B. Design considerations

Key issues during the development of the solution were
software reuse and portability. The prototype implementation
shall concentrate on communication aspects more than on OS
integration and IM client implementation.

Several problems are faced when connecting to public IM
services. There is no up-to-date or standard definition of most
publicly available IM protocols. The exception is the protocol
Jabber [2]–[5] which has a standard and up-to-date definition.
Services based on it (like Google Talk) can be accessed
with clients based on a standard specification. Protocols like
Microsoft MSN [6] and Mirabilis ICQ OSCAR [7] were
standardized in their original versions, but protocol further
evolution was not standardized. Implementations of standard
MSN protocol do not interoperate with current on-line servers.
The standard solution is to reverse-engineer the protocols,
which was out of the scope of the work. To work around
the lack of standards and to avoid the complexity of protocol
development, the decision was taken in favor of software-
reuse.

1A binary to ASCII converter.

Provisioning of a software network device was also ad-
dressed by software reuse. There exist several projects that
provide the required network services.

We opted for Open/Free solutions that provide platform
independence, clean and documented implementation.

III. A RCHITECTURE

Architectural decisions were based on software-reuse and
not on a from-scratch design. The solution is built as the
composition of existing software components. Their combi-
nation allows the encapsulation and transmission of network
traffic through IM. Before presenting the details of selected
building blocks, we will present general characteristics of
instant messaging and tunneling tools.

A. General IM architecture

Following description deals with instant message traffic,
leaving aside services like VoIP services or file transfers. The
general framework and terminology for IM is taken from [8].
Instant Messaging applications use non standard and non
interoperable protocols from different vendors. Despite of that
fact, commercially deployed IM services share several com-
mon characteristics. There exist a group of Instant Messaging
solutions which are classified asserverless. They are generally
deployed inside small organizations and their protocols do not
scale properly.

Internet
Client A Client B

IM Server Farm

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

Fig. 1. General Instant Messaging Architecture

Internet wide solutions are based on servers, as represented
in Figure 1. Due to load requirements, the general case is that
several servers are deployed and different tasks are distributed
amongst them.

When a Client A initiates a connection to another
Client B , both of them connect to the IM server pool, not
directly between them. Each message exchanged is relayed
through the IM servers. Most protocols open a TCP connection
between client and server, which is closed after some seconds
of inactivity to minimize stale connections at the servers.
Many protocols provide some level of encryption in the
connection between the client and the server, but messages are
decrypted and encrypted back while being relayed. From the
client’s privacy point of view, the relaying process introduces
a vulnerability in the end-to-end communication.



Also related to privacy is the fact that endpoints of the
communication do not know the IP address of their counter-
part. They only need to access well-known IM Servers. The
user trusts the IM Service provider his originating connection
address.

B. Tunnel overview

Tunneling techniques are widely deployed and currently
mostly associated with security. In the general case, atunnel
implements atunneling protocol, a network protocol which
encapsulates one protocol inside another. When protocolP is
encapsulated within protocolQ, P treatsQ as it would be a
data link layer as it provides point-to-point services. Details
of Q network are isolated fromP . Tunneling can be used
for providing Virtual Private Network (VPN) functionality
features like encryption and privacy through public networks.
Different tunneling/VPN solutions exist like IPSec, GRE,
IPoIP, L2TP, TLS, etc.

Client A Client B

Network

Fig. 2. General Tunneling Architecture

The general case is that both ends of the tunnel are con-
nected using services of the networkP without a central or
dedicated special component. The general tunnel architecture
can be graphically depicted in Figure 2. If compared to
Figure 1, tunneling does not present a single convergence point
of all concurrently connected users. This leads to the fact that
there is no single point that connects all the tunnels. Moreover,
there is no intermediate that decrypts and encrypts communi-
cation flows. The immediate privacy result is that, provided
proper encryption schemes, an adequate level of privacy is
achieved, without the need of trusting an intermediate service
provider. As endpoints of a tunnel are directly connected, they
need to know each other’s IP address, with the loss of privacy
generated by the fact that both endpoints know where is their
counterpart.

C. IPoIM architecture

IPoIM is built merging a tunnel with an instant messaging
service. Basically, the tunnel is used to perform network
interface level handling and provide end-to-end privacy. The
decision of providing end-to-end privacy is not a requirement
for IPoIM encapsulation, but it is a powerful value added.
The end-to-end privacy combined with the fact that the IM
architecture abstracts the actual IP address of each endpoint
combines strengths of both approaches.

The tunnel is interfaced with the IM client, so that every
packet exchange is redirected through the IM server farm. IM

messages are transmitted inside a TCP stream, over IP packets.
An IP packet that is about to be transmitted through the tunnel
is caught at the tunnel interface, encrypted and compressed by
the tunnel. Afterward it is converted into an IM compatible
representation and sent as an IM message inside a TCP/IP
stream.

IM message

TCP segment

Network packet

Textual representation 

IP packet

Fig. 3. Abstract traffic encapsulation representation

Figure 3 shows the successive encapsulation stages per-
formed. It is notorious that any particular implementation of
this solution would pay an important overhead price.

From the architectural point of view, the resulting solution
will provide the same end-to-end services of the tunnel, but
messages are interchanged through IM servers. Figure 4 shows
a conceptual representation of IPoIM. The tunnel is built
on top of the IM service and provides the same end-to-end
features as a standard tunnel.

IM Server Farm

Client A Client B

Internet
IM

 m
es

sa
ge

s IM
 messages

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

IM tunnel

Fig. 4. Conceptual architecture of IPoIM

IV. BUILDING BLOCKS

This Section introduces the basic building blocks directly
used to implement our prototype. Focus is placed on the facts
that guided our decisions, which proved to be accurate by
means of results.

A. GAIM

Gaim [9], [10] is a multiplatform, multi-protocol instant
messaging client. It is compatible with MSN Messenger [11],
Yahoo! Messenger [12], AOL Instant Messenger [13] and ICQ
[14], IRC [15], Jabber [16] and Google Talk [17], among
others.

The Gaim project starts in 1998. It is an Open Source
development licenced under the GNU General Public License



(GPL). Currently, it is in active development, and it has good
documentation for end users and developers [10].

The core communication functionality, located in
libgaim , is implemented as a software library. It can
be invoked and used independently from the graphical
interface, making it suitable for a system-like daemon
process. Based on the API documentation, it is possible to
use the core library without considering the particular details
of the IM protocols.

To use this prototype in real networks it is specially impor-
tant to choose a multi-platform software, like Gaim. It runs
on a number of platforms, including Linux, MacOS X, and
Microsoft Windows.

Considering source code and good documentation avail-
ability, Gaim is a multi-protocol and multi-platform software
perfectly suitable for our needs.

B. OpenVPN

OpenVPN [18] is an Open Source project licensed under the
GNU General Public License (GPL). OpenVPN is a software
solution which allows networks at different locations to be
securely connected (tunneled), using a public network as
the communication layer. In each endpoint, OpenVPN uses
TUN/TAP [19] virtual interfaces, that can be manipulated by
programs in the user space. The end-to-end connection uses
the industry standard SSL/TLS [20] to provide privacy and
authentication. OpenVPN works as follow: after two hosts are
authenticated and connected, it creates a virtual interface (TUN
or TAP), that others programs can easily use like any other
interface. When a IP packet arrives to the TUN/TAP virtual
interface, OpenVPN encrypts, encapsulates and sends it to the
remote connected machine. At the remote machine, the IP
packet is decrypted, authenticated, and de-encapsulated, and
finally put in its virtual TUN/TAP interface.

OpenVPN has clean source code and good documentation.
It runs on different platforms, including Linux, MacOS X, and
newest Microsoft Windows. It is easy to configure in these
platforms, and smoothly integrate same software ports (like
winpcap [21] for Windows).

Basing our solution on Gaim and OpenVPN projects, we
achieve a simple and portable implementation.

V. I MPLEMENTATION AND FIRST RESULTS

The following two Subsections give a more specific and
technical insight in how the solution was developed and
present some of the preliminary results and benchmarks.
The first Subsection deals with some implementation details,
including required modifications and usage patterns of the
building blocks. The last one specifies some of the different
test case configurations deployed, together with initial mea-
surements gathered during the execution of these tests.

A. IPoIM implementation

The core of the prototype is based on a modification
of OpenVPN’s main block. Behavior regarding local node

processing is preserved, what is bypassed through the IM
server is inter-node communication.

OpenVPN creates a virtual interface in the host that is
executed. According to the assigned network address and
the defined routing table in the host, packets might need to
be transmitted through that interface. OpenVPN establishes
a SSL/TLS connection between endpoints, which is used
for all required communications. Packetsentering the virtual
interface are forwarded through the secure connection to
the counterpart for further routing. IPoIM implementation
replaces the direct SSL/TLS connection between OpenVPN
clients with IM messages. Berkeley socket handling routines
like accept , connect etc. are replaced by IM connection
handling primitives.

OpenVPN presents some distinctive characteristics com-
pared to other tunneling technologies. Particularly, as it uses
SSL/TLS for transport, it utilizes services of the application
layer. OpenVPN allows the configuration of SSL/TLS connec-
tions both over UDP or TCP. This enhances usability, as it is
pretty simple to configure connections over firewalls.

For the implementation purposes, it is beneficial the fact
that it is able to run over UDP: it already splits the traffic
into a single sequence of datagrams. A simple to implement
approach is to bypass UDP communication using a sequence
of text messages through an IM service. This configuration
permit us abstract communication issues like persistence, frag-
mentation, retransmission, congestion control, etc., which is
already implemented in OpenVPN over UDP. Implementation
delegates this work to OpenVPN implementation, which is
already tested and validated by its user community.

The only constraint that has to be imposed is that IM
services does not provide arbitrary length messages. Valid
UDP messages range from 0 to216 − 1 bytes in length,
which does not apply for IM messages. As we do not want to
implement some fragmentation protocol when converting UDP
datagrams into IM messages, we opted to limit maximum UDP
message size. We indirectly limit UDP size by configuring
appropriately the MTU size of the interface. This parameter
depends on the IM service, but all of them impose some limits
to maximum message size. The set of software building blocks
and their interconnection are depicted in Figure 5.

Modifications performed to OpenVPN’s source code com-
prises three different sections of the code. The first modifi-
cation concerns access toconfiguration file. IM connection
descriptors are required. Configuration parameters added are:

• protocol: IM protocol name to be used in the connection.
• account: name of the IM account to be used by current

endpoint.
• account-to: name of the IM counterpart for the commu-

nication link.
The rest of the necessary information for the IM commu-
nication (e.g.: account’s password) is gathered from Gaim’s
configuration parameters through the pair account-protocol.

The second modification was introduced at the beginning
of the main communication block. It involves theinitialization
and setup of Gaim module. It establishes the IM connection to



the IM server, authenticates the given account and initiates a
wait loop until the communication counterpart gets connected.

The third processing block that was altered is associated
with IM message reception and transmission. IM transmission
corresponds to the reception of an IP packet through the tunnel
interface that has to be sent to the other end of the tunnel. In
this case the implementation must transmit the received packet
through the IM connection. Additional information needs to be
appended to the packet so as to mock counterparts OpenVPN
and simulate message arrival. The necessary information for
the other side of the communication link to understand the
delivery, includes the virtual IP address of the original sender
and the network packet itself.

IM Messages are of structured types referred asinformation-
blocks. Information-blocks are composed by:

• from-addr: local (virtual) IP tunnel address
• data-len: length of the packet
• to-send: original packet to be sent

The new object, composed of this three items, is copied to
memory. As transmission through an IM service only allows
data in text format, the messages have to be converted into
some textual representation. We opted for the well known
and extensively usedBase64 [22]. Using Base64 the
information-block is converted into its textual representation
and transmitted.

Upon reception of the information-block at destination, it
is decoded and accessed in its binary format. Based on the
information-block received, the OpenVPN block is feed with
all the signals required to mimic a standard packet reception.
Afterward, control is passed to the OpenVPN, which can
continue the local processing.

IPoIM
OpenVPN

Gaim
Virtual
Interface

TUN/TAP DEVICE
Network
InterfaceBase64

communication
emulation

UDP

API

Fig. 5. General architecture of IM Software

To meet asynchronous requirements of the signals handled,
the implementation was decoupled in two threads; one for
each service. The first thread is in charge of attending the
IM service, it has to send and receive all the messages
(encapsulated packets) through the IM communication. The
second one is in charge of attending the virtual communication
link, and it has to send and receive the packets from/to the
virtual interface. These two threads have to share the appli-
cation’s context, which contains all required communication
parameters including tunnel and IM static information and also
information about the different states (p.e.: received new IM
message). Access to this structure has to be serialized to avoid
inconsistencies due to concurrent access.

The methodology followed based on the interfacing of
existing solutions provides a modular implementation with

several benefits. First of all, it abstracts our implementation
from the underlying problems (i.e. no IM communication
protocol was implemented). This also allows execution over
any IM protocol that Gaim implements. Additionally, it allows
the individual replacement of some of the different involved
blocks. This implementation could be altered by replacing, the
IM block (Gaim) or the codification algorithm. For replacing
the IM block the only modification needed is theAPI for the
IM service. All the necessary information and functionality is
encapsulated there. In this case we use the Gaim block for
the service but it is quite easy and understandable to change
it for another IM service implementation. The replacement
of the codification algorithm is quite different because there
is an abstract interface that allows the programmer to have
several implementation algorithms at the same time. Each time
algorithm related functions are called, the programmer must
specify the algorithm.

As an implementation conclusion its important to remark
that the design decisions were made based on the idea of
making an initial prototype for testing and not for end-users.
It was implemented for POSIX and Windows platforms, and
tested on Linux and Microsoft Windows. Interfacing issues are
almost identical for both implementations.

B. Preliminary test results

During development phase a stable and working prototype
was developed. One of the initial concerns was regarding the
efficiency of the solution. Conversion toBase64 and further
encapsulation into IM messages adds overhead. In Figure 6
we plot the overhead added to incoming traffic. Size of IM
transmitted messages over MSN service is plotted over the
size of original packets. Data was gathered sniffing real traffic,
produced using ICMP messages with different sizes.

Fig. 6. IPoIM overhead

A simple linear approximation of the overhead is given
by o(x) = 1.3x + 355, where x is the length of the IP
packet to be transmitted. It is not completely simple to model
the overhead function, as it is dependent of the payload.
OpenVPN performs LZO compression to the traffic before



its transmission. Structure of a standard IM message adds
an almost fixed-size control structure. We conclude that the
burden added to small messages is very big, compared to real
network protocols, reaching an overhead of about 500% for
64 byte ICMP messages.

The next logical step was to validate communication capa-
bilities of the solution and to obtain some benchmark results.
Testing tools were selected from the RFC 2398 ”Some Testing
Tools for TCP Implementors” [23], which suggests a group of
tools for this purpose. Not all the tools presented there were
used, as some of them were not ported to our target OS and
others were not suitable for our purposes.

The selected tools were: NetPerf [24], TcpTrace [25] and
TTcp [26]. These tools are all known, maintained and suitable
for this kind of tests. Test tools generate and observe traffic
between two processes running on different hosts. Figure 7
shows the network configuration used during the tests.

IM Server Farm

Client A Client B

Internet
IM

 m
es

sa
ge

s IM
 messages

Network A Network B
Test host A Test host B

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

IM tunnel

Fig. 7. Test configuration.

Even though it is possible to run selected validation tools
from client hosts, we decided to separate the hosts that run the
IPoIM client from those used for testing. IPoIM client run on
client A and Client B hosts, turning them into routers which
connect networks A and B through MSN service.

The following tests were executed:
• Test 1 - Basic Functionality: The objective of this test

is to get the first performance indicators under a normal
situation. Both IPoIM clients A and B uses GNU/Linux
as Operating System. The IM service used was Microsoft
MSN.

• Test 2 - Interoperability: IPoIM Linux Client vs Microsoft
Windows Client: The main objective of this test is to
validate cross-platform capabilities of the solution. The
IM service used was Microsoft MSN.

• Test 3 - Local Area Network Test - Wide vs Local: The
objective of this test is to evaluate prototype performance
using a local IM server. The IM service used was a local
Jabber server.

All previous tests were executed without any abnormal
result, and gave consistent results through different tools
and configurations. A remarkable fact is that results were
consistent all through the different tests, time of day and
geographical distribution of networks A and B. Tests executed
using Microsoft’s MSN service produced a consistent through-
put of about 22Kbps, with mean Round Trip Time (RTT) of
550ms. The measured throughput was consistent using TCP
and UDP transport protocols. In different tests, Networks A

and B were physically close to each other and also, deployed
in different continents. In all cases, RTT and throughput were
consistent. It suggests that the bandwidth limit is imposed by
the IM service provider and not by the solution.

The third test using a local IM server showed better perfor-
mance results than the first two executed through the Internet.
Measured bandwidth was of 138Kbps and RTT was 100ms.

This initial results validates the concept and show that it is
possible to use IM forseriouscommunication purposes. For
our team, it is a clear confirmation that it is worth making
the effort of releasing IPoIM as a product and completing
evaluation of communication capabilities.

VI. F INAL REMARKS

The first relevant and remarkable fact is that it works.
During the development process there always existed a shadow
of a doubt about the actual possibility that there might exist
some classification rules from the server side. We were not
able to doubtlessly know it until we finally implemented
our first version of the tool. After we managed to transfer
several megabytes of information through publicly available
IM services, we confirmed our guess that it is not only
theoretically possible but practically usable. Bit-rate, latency
and jitter were better than expected.

Even though the implementation cannot be considered more
than a proof-of-concept prototype implementation, it allowed
us to do several tests using this novel transport. First of all,
after having the connection established, we concentrated in
validating the communication channel as already presented
in V-B. Despite of that, we alsoplayed aroundwith the
tunnel. We managed to run smoothly interactivetelnet
and ssh sessions with very good responsiveness. Another
test performed was to browse Internet through the IPoIM
tunnel by setting up a proxy on one end of the connection
and configuring the browser accordingly on the other end.
Browsing experience is not completely satisfactory for up-to-
date standards, but can be compared to dial-up, modem based
access. Another application that was tested wasftp , with
satisfactory results.

We were not able to establish an adequate VoIP connection
through the IPoIM tunnel. We tested H.323 and SIP based
soft-phone clients, with TCP and UDP transports, but we did
not manage to obtain a flux with the required quality for real-
time audio. Ongoing work is addressing the technical issues
at this point, but we believe that there is some buffering
problem that delivers messages in bursts instead of keeping
the original cadence. The soft-phone discards most packets
for arriving out of time. We are still unsure if the buffering
problem is inside our solution or from the IM server side.
While performing these tests, we found that when the amount
of traffic transmitted through the tunnel gets close to the
bandwidth limit, the jitter grows. While this behavior is normal
for low-bandwidth connections, the user perception is that it
behaves worse that an equivalent connection. Also ongoing
work addresses this issue to determine where the buffering,
and thus, the jitter is introduced and to try to correct it as



much as possible. It is possible to attach some packet scheduler
to the tunnel device, but we need to know better the traffic
characteristics to be accurate and use as much as possible of
the available bandwidth.

Our prototype evidenced some random stability problems.
They could not be associated to traffic patterns or other usage
factors so far and is being addressed currently.

An important benefit found due to the fact that we used an
existing IM client instead of developing the protocol inside our
solution, is that we are able to adapt easily to different protocol
versions and details easily. As an example, we were able to
use Microsoft’s MSN service both with the direct connection
to the servers and by proxying the traffic through a HTTP
Proxy. From the connection establishment point of view, the
only requirement is to modify configuration files and launch
the client that is behind the proxy. The immediate result is that
jitter grew from about 500ms to about 4000ms. This is due
to the fact that messages reach the client through an HTTP-
polling mechanism that is constantly checking if there are
new instant messages relayed at the IM servers waiting to
be transmitted. In this scenario everything that worked before
still works, but interactive sessions are difficult to use and
bandwidth is noticeably reduced.

Despite of previous facts, we believe that results are an
adequate proof of the idea and also are able to point out a
latent security issue regarding IM usage.

It is possible to imagine a user leaving his IM session
open before going home. From his house, he can access
internal resources of the company, provided that he NAT
the traffic or alter some routing definitions. This usage can
be performed without knowledge of the administrators using
accepted services.

Even though there are companies that forbids IM or audit
it’s traffic, more than 70% of companies and home users does
not perform any particular control of the traffic. There is a
breach that can be used by viruses, Trojans or other sorts of
malware to transmit information from an user computer with-
out being noticed. This fact, with the additional fact that there
is no way of auditing the destination of the communication,
as the destination of the messages is some sort of an IM user
Id. This IM user Id is not bound to a physical IP address in
other place than in the IM server provider. Moreover, some
IM services do not authenticate the IM user Id, making it
even more difficult to trace. Tracing this kind of attack would
be very difficult. Security related findings open new lines of
applied research. The implementation can be a useful tool for
research groups in the area.

VII. C ONCLUSION

This work shows empirically that IM service can be used
for transport any kind of information. Despite of the overhead
of the encapsulation process, the presented initial results
gives enough information for ascertaining that IPoIM is a
novel communication means. The results of the initial tests

suggests a stable throughput 22 Kbps through different tests
using the Microsoft’s MSN protocol as the IM service. This
communication speed could be compared to a dial-up modem
connexion.

For users of IM services this work exposes an existing
latent risk. The possible malware usage of the IM service,
can be achieved using the initially conceived safe service, that
is ”only text”. It is important to mention that it is not an
exploit, but a simple usage of the service. Considering the
fact that approximately the 70% of enterprises do not control
IM traffic, this work shows a security vulnerability that affect
most of Internet connected user systems.

Presented results provide grounds for future research, and
security testing tools. Team’s ongoing work addresses the
newly exposed security challenges.

REFERENCES

[1] Osterman Research Inc. (2006) http://www.ostermanresearch.com/.
[2] P. Saint-Andre. (2004) Extensible Messaging and Presence Protocol

(XMPP): Core. ftp://ftp.rfc-editor.org/in-notes/rfc3920.txt.
[3] ——. (2004) Extensible Messaging and Presence Protocol

(XMPP): Instant Messaging and Presence. ftp://ftp.rfc-editor.org/in-
notes/rfc3921.txt.

[4] ——. (2004, Oct.) Extensible Messaging and Presence Protocol
(XMPP): . ftp://ftp.rfc-editor.org/in-notes/rfc3922.txt.

[5] ——. (2004, Oct.) Extensible Messaging and Presence Protocol
(XMPP): Extensible Messaging and Presence Protocol (XMPP).
ftp://ftp.rfc-editor.org/in-notes/rfc3923.txt.

[6] R. Movva and W. Lai. (1999) MSN Messenger Service 1.0 Protocol.
http://www.hypothetic.org/docs/msn/ietfdraft.txt.

[7] (2006, May) Oscar Protocol - Open System for Communication in
Realtime. http://iserverd.khstu.ru/oscar/.

[8] M. Day and J. Rosenberg and H. Sugano. (2000) A Model for Presence
and Instant Messaging. ftp://ftp.rfc-editor.org/in-notes/rfc2778.txt.

[9] (2006, May) Gaim - A multi-protocol instant messaging (IM) client.
http://gaim.sourceforge.net/.

[10] S. Egan,Open Source Messaging Application Defelopment: Building
and Extending Gaim, ser. For professionals by professionals. Apress,
2005.

[11] (2006, May) Microsoft Online Services - MSN Messenger Overview.
http://messenger.msn.com/.

[12] (2006, May) Yahoo! Messenger. http://messenger.yahoo.com/.
[13] (2006, May) AIM - AIM homepage. http://www.aim.com/.
[14] (2006, May) ICQ - community, people search and messaging service!

http://www.icq.com/.
[15] (2006, May) IRC.org - Home of IRC. http://www.irc.org/.
[16] (2006, May) Jabber - Open Instant Messaging and a Whole Lot More,

Powered by XMPP. http://www.jabber.org/.
[17] (2006, May) Google Talk - Talk and IM with your friends for free.

http://talk.google.com/.
[18] James Yonan. (2006, May) OpenVPN - An Open Source SSL VPN

solution. http://openvpn.net/.
[19] Maxim Krasnyansky. (2006, May) Virtual Point-to-Point(TUN) and

Ethernet(TAP) devices. http://vtun.sourceforge.net/.
[20] Eric A. Young. (2006, May) OpenSSL - The Open Source toolkit for

SSL/TLS. http://openvpn.net/.
[21] Van Jacobson, Craig Leres and Steven McCanne. (2006, May) WinPcap

- The Windows Packet Capture Library. http://www.winpcap.org/.
[22] S. Josefsson. (2003) The Base16, Base32, and Base64 Data Encodings.

ftp://ftp.rfc-editor.org/in-notes/rfc3548.txt.
[23] S. Parker and C. Schmechel. (1998) Some Testing Tools for TCP

Implementors. ftp://ftp.rfc-editor.org/in-notes/rfc2398.txt.
[24] (2006, May) NetPerf - Benchmarking Methodology Working Group

(BMWG). http://www.netperf.org/netperf/NetperfPage.html.
[25] S. Ostermann. (2006, May) tcptrace - Official Homepage.

http://www.tcptrace.org/.
[26] (2006, May) TTCP is a benchmarking tool for determining TCP and

UDP performance between 2 systems. http://renoir.csc.ncsu.edu/ttcp/.


	Introduction
	Motivation
	Conceptual grounds
	Design considerations

	Architecture
	General IM architecture
	Tunnel overview
	IPoIM architecture

	Building Blocks
	GAIM
	OpenVPN

	Implementation and first results
	IPoIM implementation
	Preliminary test results

	Final remarks
	Conclusion
	References

