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SUMMARY
Observational data of asteroids can be explained by considering them as an agglomerate of
granular material. Understanding the mechanical properties of these objects is relevant for many
scientific reasons: space missions design, evaluation of impact threats to our planet, and under-
standing the nature of asteroids and their implication in the origin of the solar system. In-situ
measurements of mechanical properties require complex and costly space missions. Here a
laboratory-scale characterization of wave propagation in granular media is presented using a
novel experimental setup as well as numerical simulations. The pressure inside an asteroid is
still a matter of debate, but it definitely presents a pressure gradient towards the interior. This
is why impact characterization needs to be performed as a function of the confining pressure.
Our experimental setup allows for the simultaneous measurement of the external confining
pressure, internal pressure, total strain, and acceleration in a 50 cm side squared box filled up
with a billion grains. We study the propagation of impact-generated and shaker-born seismic
body waves in the 500 Hz range. Through subsequent compression-relaxation cycles, it was ob-
served that the granular media behaves on average like a solid with a constant elastic modulus
during each compression. Effective medium theory (EMT) for granular media explains the data
at low pressure. After each compression-relaxation cycle, the elastic modulus increases, and a
high hysteresis is observed: relaxation shows a more complex behavior than compression. We
show that seismic waves generated by both impact and vibration travels at the pressure wave
speed. Thanks to a numerical model, we measure a strong wave attenuation α ∼ 3.4 Np/m.
We found that the wave speed increases with the confining pressure with a p1/2 dependency,
in disagreement with theoretical models that predicts a shallower dependency. The dependency
of the elasticity with the confining pressure can be explained by a modified EMT model with
a coordination number proportional to the pressure, or equivalently by a mesoscopic nonlinear
model based on third-order nonlinear elastic energy. The interpretation of these models is a
deep reorganization in the particle contact network.

Key words: PHYSICAL PROPERTIES: Elasticity and anelasticity GEOGRAPHICAL: Ex-
traterrestrial SEISMOLOGY: Acoustic properties, Wave propagation, Body waves

1 INTRODUCTION

Granular media are often used as laboratory-scale systems for com-
plex natural phenomena such as seismic fault gauges (Planet et al.
2015). There are clear observations that asteroids are agglomer-
ates of rocks like the rubble-pile asteroid, Itokawa, observed by
Hyabusa (Fujiwara et al. 2006); as well as many other observational
pieces of evidences like the rotational spin-barrier on asteroids
larger than a few hundred meters and the crater chains observed
in the surface of the Galilean satellites (see e.g. Walsh (2018). This
work is thus motivated by the need for experimental data to under-
stand how asteroids respond to impacts. Understanding the nature
of asteroids is relevant for earth collision hazard assessment and
asteroids exploration (Hestroffer et al. 2019). It may also be impor-
tant to comprehend the collisional processes in the formation and

evolution of our solar system (Holsapple 1993). More particularly,
we are also interested in understanding the nature of the so-called
active asteroids (Jewitt 2012); asteroids that show a temporary tail,
that could be generated by a shaken mechanism induced by the
propagation of seismic waves into the interior (Tancredi 2015; Tan-
credi et al. 2022).

One of the alternatives to deflect an asteroid on course to col-
lide with the Earth is kinetic impact: hitting the body with a massive
object to transfer a linear impulse that changes its course. NASA
launched the DART mission to test this technology; the experiment
successfully occurred on Sept. 26, 2022 (Rivkin et al. 2021). The
efficiency of this process depends on the cratering event (Stickle
et al. 2022), the propagation of the impact-induced seismic wave
into the interior of the body (Tancredi et al. 2022), and the ejecta
distribution (Fahnestock et al. 2022). The images released at the

ar
X

iv
:2

21
0.

09
34

2v
1 

 [
ph

ys
ic

s.
ge

o-
ph

] 
 1

7 
O

ct
 2

02
2



2 Gallot et. al.

time of impact showed that the target, the 160m asteroid Dimor-
phos, resembles a rubble-pile. With the NASA-DART mission, im-
pacting an asteroid to deflect its trajectory is not science fiction
anymore. The Impact creates an important material ejection ob-
served seconds after the impact, but the brightness increase is still
measurable two weeks after ?. This means that materials escape at
very low velocity, and that the direct impact is not the only reason
for ejection, seismic waves propagating from the impact all around
the asteroid are also responsible for the material ejection (Tancredi
et al. 2022).

A few experimental works study impacts on grains in uncon-
fined (Yasui et al. 2015) or confined (van den Wildenberg et al.
2013; Martı́nez et al. 2021) media. The micro-gravity on asteroids
confers mechanical properties to granular media that are not easy
to reproduce on earth (Altshuler et al. 2014; Villalobos et al. 2022).
However, these experiments are fundamental to validate numerical
models, in particular Discrete Element Models (DEM) (Schöpfer
et al. 2009; Wang & Mora 2009) for the complex physics of granu-
lar mechanics (Duran 2012).

Inhomogeneity of grain packing (Liu et al. 1995; Jaeger et al.
1996), together with material relaxation (Alexander 1998), explain
most of the complexity in granular media. The contacts between the
grains form a network that reorganizes under stresses (Mueth et al.
1998b; Howell et al. 1999; Cambau et al. 2013). Because of this
reorganization, most of the numerical and laboratory experiments
on grains begin with the preparation of the material. The quasi-
static problem of stress distribution has been addressed by Janssen
model (Nedderman et al. 1992). The observation of the chain force
provides some insight to discuss the model limitation due to corre-
lation length, microscopic features, reorganization, and hysteresis
(Ovarlez et al. 2003; Ovarlez & Clément 2005a; de Gennes 1999).

A spectacular consequence of reorganization is a jamming
transition from fluid to solid state (Cates et al. 1999; Liu & Nagel
1998; van Hecke 2009). Wave propagation in grains is an amazing
probing tool for mechanical parameters in granular media (Som-
fai et al. 2005; Jacob et al. 2008; Silbert et al. 2005), but its un-
derstanding is still challenging (Luding 2005), because of a va-
riety of phenomena such as nonlinear propagation (Zhang et al.
2020), nonlinear constitutive equations (Renaud et al. 2013; God-
dard 1990; Trarieux et al. 2014), wave dispersion (Chrzaszcz 2016;
Cheng et al. 2020), multiple scattering (Jia 2004; Tell et al. 2020;
Langlois & Jia 2015; Trujillo et al. 2011; Brunet 2006; Page et al.
1996), or path-dependent propagation (Hua & Van Gorder 2019;
Owens & Daniels 2011).

Effective Medium Theory (EMT) (Walton 1987) predicts a
scaling of the coherent wave speeds with pressure between p1/6

for Hertzian contact, or p1/3 considering non-Hertzian contact or
variation in the coordination number C (Goddard 1990). Discrete
Element Models (DEM) and experimental observations confirmed
these numbers (see Jia et al. 2021, for a non-exhaustive review).
The contact between two grains can be described by Hertz-like
models; then, EMT stipulates that the macroscopic response of a
medium is the sum of an averaged grain-grain contact (Ovarlez &
Clément 2005b; Kocharyan & Karanjgaokar 2022). This strong hy-
pothesis of linearity explain why EMT fail to explains many ob-
servations where the scaling law exponent is shown to depend on
the pressure range (Makse et al. 2004), stress history (Cheng et al.
2020), wave macroscopic amplitude (Wichtmann & Triantafyllidis

? See NASA News: https://www.nasa.gov/feature/nasa-dart-imagery-
shows-changed-orbit-of-target-asteroid

2004), and local amplitude around force chains (Owens & Daniels
2011).

In this work we propose an experimental study of laboratory
scaled asteroid impacts. We use granular media as a model aster-
oid. There are two fundamental differences between a real asteroid
and our experiment: the gravity conditions and the impact velocity.
Self gravity induces a pressure distribution inside an asteroid that is
not well known (see different estimates by: Cheng 2004; Sharma
2013; Zhang et al. 2018); but it certainly presents a pressure gradi-
ent with increasing values towards the interior of the body. For this
reason, the granular media is confined and the impacts are realized
for different confining pressure steps. As regard to the low velocity
of our impactors, we did study neither the crater geometry nor the
energy transfer that would depend on the impact velocity. Instead
we were interested in the wave propagation outside of the impact
zone.

In the present experimental work, we face the whole complex-
ity of the quasi-static and dynamic mechanical response of granular
media. In Section 2 we present the experimental setup, the charac-
teristic of the materials and the devices used in the experiments.
This is why our main parameter is confining pressure of the granu-
lar media. In Section 3 we present the quasi-static response in glass
beads. Then, the results of the impact-generated and shaker-born
seismic waves as a function of the confining pressure are presented
in Section 4.

2 EXPERIMENTAL SETUP

The experimental approach focuses on the propagation of short
waves generated by perturbations due to impacts or vibration on
the surface of a box containing a confined granular media. The box
is a cube of side L = 50 cm (internal distance between the lat-
eral walls, Fig. 1). The walls are made of 14 mm thick transparent
acrylic. The cube rests on a moving platform with a sliding top lid.
A circular opening of 16 cm in diameter allows the direct impact
of the projectile or the contact of the shaker with the material. The
inner top lid is stationary as it is welded to the hydraulic press struc-
ture. The box is uplifted by the hydraulic jack (Enerpac RC106 with
a 15-cm stroke), compressing the material. The hydraulic press has
been designed for a 10 tonnes maximum load.

Experiments are performed using three different granular ma-
terials: glass beads (artificial), sand, and gravel (both natural). Size
distributions are shown in Fig. 2, while angularity, sphericity, den-
sity, and volume fraction are described in Table 1. The granular ma-
terial, stored in a 100-liter barrel, is positioned over the hydraulic
press structure using an electric winch. A plug at the bottom of the
barrel is removed releasing the material, filling up the box through
its upper aperture. By the end of this process, the accelerometers
and pressure sensors inside the box are completely covered (see be-
low for a description of the location of these devices). The barrel is
weighted in order to have 195±1 kg of grains inside the box. After
discharge, the pile needs to be manually even. Material preparation
consists of a series of five compression-relaxation cycles from 0
to 5 tonnes. This procedure rearranges the grains on the top of the
pile, flattening the surface.

The coordinate system (−→x ,−→y ,−→z ) has its origin at the impact
point as shown in Fig. 1. The perturbations are generated along the
x-direction. An array of 3-axis accelerometers (Analog Devices,
ADXL327, ±2g sensitivity 0.42 V/g) embedded in the granular
media registers the vibrations. The accelerometers were located in a
vertical array, at a horizontal distance of y0 = 9 cm from the impact
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Figure 1. A 50-cm side acrylic cubic box filled with granular material is
set on a moving platform. The granular media is confined inside the box
lifted by a hydraulic jack while the top cover, welded on the structure, stays
unmoved. The top lid aperture allows direct contact between the granular
media and the projectile or shaker. Internal pressure is monitored with six
sensors placed half on a lateral wall and half on the floor of the box. The
vibrations generated at the aperture are registered by a vertical array of 3-
axis accelerometers immersed in the media, at a horizontal distance of 9 cm
from the centre of the lid aperture.
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Figure 2. Size distribution of (1) Sand with quartz-feldspathic composition.
(2) Gravel of mainly lithic composition with mostly granite clasts. (3) Glass
beads.

Table 1. Characteristics of the granular media used in the experiments:
(1) Glass beads, with zero angularity and a high spherical shape ratio. (2)
Sand grains are angular to sub-angular and have a shape ratio of medium
sphericity. (3) Gravel grains are angular and of very low sphericity. The
Diameter is the mode of the size distribution of Fig. 2.

Material Diameter Grain size Density Vol. frac.
d(µm) (Wentworth scale) ρ (g/ml) φ

Glass beads 250 fine to medium sand 1.63 0.66

Sand 500 coarse sand 1.66 0.64

Gravel 1500 medium to coarse gravel 1.66 0.63

zone, to prevent the destruction of the devices by the penetrating
bullet. Hydraulic jack pressure is measured using a pressure trans-
mitter (Wika A-10). We deduce the hydraulic force

−→
F by consider-

ing the cylinder effective area (manufacturer data 14.5 cm2). Also,
piezo-resistive gauge pressure sensors (LEEG, LG190H704G) are
positioned along the walls, in direct contact with the granular ma-
terial, to measure internal stresses. The sensors have a 18-mm di-
ameter circular active area, much larger than the grain sizes. The
sensitivity of each gauge is calibrated using a 3 m water column to
check repeatability and linearity.

The box displacement is monitored with a digital camera with
a 1-s time-lapse (Pixelink PL-D722). Assuming a displacement in
the −→x direction, the gray-scaled image can be averaged along the
−→y -axis. The correlation between the first image and all the follow-
ing is then computed. The position of maximum correlation gives
an estimation of the box displacement, ux, with a 50-µm uncer-
tainty. Particle Image Velocimetry trials were performed, but no
box deformation nor relative displacement of the grains could be
measured.

The experiment requires measuring the following physical pa-
rameters: (1) confining pressure, (2) internal pressure, (3) box dis-
placement, and (4) acceleration of seismic waves, all at the same
time. The acquisition of these quantities is performed by the afore-
mentioned devices: (1) pressure sensor in the hydraulic jack piston;
(2) six pressure transmitters placed on the walls of the box (repre-
sented by gray cylinders in Fig. 1); (3) a digital camera; and (4) 3D
accelerometers array embedded in the media positioned every 3 cm
from x = 10 cm to x = 37 cm, at y = 9 cm and z = 0 (rep-
resented by gray squares in Fig. 1). The acquisition is performed
by two digitizer cards (National Instrument USB-6010, 250 kHz,
16 channels) controlled by Matlab. Reading the internal PC clock
is needed to synchronize two Matlab sessions running in parallel
to control each card; one for the pressure, and one for accelera-
tion. Additionally, one of the cards switches on a led for camera
synchronization.

Two different experiments are performed on each granular ma-
terial. In the first one, waves are generated by projectiles impacting
the media. In the second one, waves are generated by a shaker in
contact with the media through the top lid aperture (see Fig. 1). For
impacts, projectile shots are triggered manually. Adequate ear and
eye protection was used. Verbal coordination between two opera-
tors was needed to capture the impact within a 5-s acquisition of the
sensors. Three devices were used to accelerate spherical projectiles:
a spring-piston air rifle, a CO2 pistol, and a crossbow. The bullets
and guns are described in Table 2. A function generator sends an
input signals for the shaker and triggers the acquisition cards for
synchronization.

3 QUASI-STATIC CHARACTERIZATION

Since dynamic parameters are to be measured as a function of the
confining pressure, the distribution of stress inside the granular me-
dia needed particular attention. In this section, we neglect the ef-
fects of the aperture on the top lid, and the friction on the side
walls. This assumption is justified by the three orders of magnitude
between the grains and the box sizes. Under these odeometric con-
ditions, the granular media only experiences external compressive
stress from the six side walls. We adopt the classical stress ten-
sor notation in a solid (Landau et al. 1986), where the compressive
stresses are positive.

The confining pressure is controlled by the hydraulic force
−→
F
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Table 2. Characteristics of the shooting devices and their bullets. Guns:
spring-piston air rifle, CO2 pistol, and crossbow. For each gun, we listed
the characteristics of the corresponding projectile: diameter, mass and ma-
terial. The velocity was measured with a bullet chronograph (PosChrono
DLX). The uncertainty was computed as the standard deviation over 35
shoots. The energy column refers to the kinetic energy e = mv2/2, with
1% uncertainty omitted in the table.

Device Projectile properties

Gun Diameter Mass Material Velocity Energy
(mm) m (g) v (m/s) e (kJ)

Riffle 5.5 1.0 lead 239± 4 28.6

Pistol 4.5 0.35 steel 171± 3 5.1

Crossbow 6 0.9 copper 66± 2 1.9

applied on the bottom wall. It is defined as p =‖
−→
F ‖ /S, with

the contact area S = 0.25 m2. The confining pressure is not a
volumetric pressure but a macroscopic stress. As a granular media
presents heterogeneities, the quantities measured locally are named
Qwhile the effective measurements on the whole confined medium
are named Q. Fig. 3 shows the relative vertical strain εxx = ε as
a function of the confining pressure. Five compression-relaxation
cycles were recorded. The minimum pressure pmin = 7.6 kPa cor-
responds to the material weight distributed over the box floor area.
The maximum pressure is set manually at pmax = 164±5 kPa. To
picture hysteresis, the pale red dots correspond to the compression
phase; while the gray dots correspond to the relaxation phase.

3.1 Granular media as a quasi-elastic solid

During compression, strain increases linearly above 25 kPa. Since
the system is considered to be non-dissipative, confining pressure
and effective stress are the same throughout the box: σxx = p. The
slope corresponds to the inverse of the apparent elastic modulusM :

p = Mε (1)

This linear stress-strain relationship corresponds to a macroscop-
ically homogeneous linear elastic media with no horizontal stress
(εyy = εzz = 0). The elastic modulus is given by M = λ + 2µ,
where λ and µ are the Lame’s parameters (see Appendix A, ec.
A.2). The inset of Fig. 3 shows the variation of the elastic modulus
over five cycles (square dots). An increase from 10 MPa to 20 MPa
is visible due to the compaction of the media at the macro-scale af-
ter each cycle: the granular media is a different elastic media after
each compaction.

After each compression-relaxation cycle i, the strain does not
return to zero. We observed a small material leaking through the
edges of the sliding top lid. If the total strain ε ∼ 3% would cor-
respond to a material leaking, a mass variation dm = εm ≈ 5kg
should be observed. Instead, the grains recollected outside the box
after a few cycles weights less than 10 gr and leaking effect can be
neglected. Therefore, we conclude that the granular media experi-
ence a new compaction state because of material reorganization.

Figure 4 shows internal stresses as a function of confining
pressure p. σxx is measured by three sensors oriented along the
−→x -negative direction (facing upwards) at the bottom of the box,
x=50 cm, centered in the −→z −direction, z = 0 cm, and at y={-3,
0, 3} cm (see Fig. 1). Similarly, σyy is measured with three sensors
attached to the left side wall, y = 25 cm, oriented along the y-
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Figure 3. Evolution of the strain ε as a function of the confining pressure
p during five oedometric cycles. Compression episodes exhibit proportion-
ality between ε and p. The inverse of the slope is the elastic modulus M ,
represented as red squares in the inset. Pressure decreases much faster than
strain during relaxation episodes in gray. After five cycles of compression-
relaxation, the final strain is 3% corresponding to a 15 mm displacement of
the box. Compaction is pictured by the maximum strain εri for each cycle i.
The increase of the elastic modulus is a consequence of compaction.
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Figure 4. Compressive stresses averaged on three sensors in glass beads
are shown to be proportional to the confining pressure p applied by the hy-
draulic press during compression (red straight line for σxx and red dashed
line for σyy). Relaxation in gray shows a s-like shape for σxx and a con-
stant σyy until collapsing around 25 kPa. Pale dots represent raw data for
the six sensors with the same color code.
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negative direction and facing the grains. The sensors were located
at depths of x={22, 25, 28} cm.

All stresses are plotted in red during compression and gray
during relaxation. The pale dots represent raw data from the six
sensors over five compression-relaxation cycles. The average of
σxx for each confining pressure over the five cycles and for the
three sensors,< σxx >, is represented as thick full lines. The same
for < σyy > represented in thick dashed lines.

The stress measured by the sensors showed a significant spa-
tial variability; around 30% for σxx and 20% for σyy . The variabil-
ity between each cycle is under 5% at any confining pressure. Aver-
age internal stress increases proportionally with the confining pres-
sure only during compression. During relaxation, we observe a s-
shape for< σxx >, and a plateau collapsing at low p for< σyy >.
Above p = 100 kPa, all stresses are larger during relaxation than
compared to compression. This means that elastic energy is stored
at the beginning of the relaxation and released when the confining
pressure decreases under p = 100 kPa.

Linear regressions for the apparent-linear portions (p >50
kPa) have coefficients of determination (R2) of 0.99 for < σcxx >
and 0.96 for < σcyy >, where the c superscript stands for stress
during compression.

< σcxx >= 1.4p, (2)

< σcyy >= 0.2p. (3)

A linear coefficient higher than 1 in eq. (2) can be explained by:
(1) the limited area of measurement (around a thousand grains)
together with the high spatial variability observed in other exper-
iments (Erikson et al. 2002; Mueth et al. 1998b); and (2) the high
probability of finding vertical forces higher than the average estab-
lished experimentally (Liu et al. 1995; Mueth et al. 1998a).

Evesque & de Gennes (1998) introduced a quasi-elastic model
for granular media where the stress redirection :

σyy = σzz = Kσxx, (4)

gives a coefficient of redirection K = λ
(λ+2µ)

; (see Appendix A
for details). Remembering that p = σxx, the redirection coefficient
can be estimated experimentally as K ≡ <σc

yy>

p
= 0.2 (see eq.

3). This corresponds to a Poisson ratio ν = K
1+K

= 0.16 and is
in agreement with measurement in unconsolidated sands with K
ranging from 0.1 to 0.3 (Avseth & Bachrach 2005; Spencer Jr et al.
1994). The estimation of the redirection factor allows to compute
the Lame’s parameters (see Eq. A.5). During compression in glass
beads, we estimate an average λ = 2.4 MPa and µ = 4.8 MPa.

Despite a high spatial variability of the internal stresses, the
granular media behaves macroscopically as a quasi-elastic me-
dia during each compression and for p > 50 kPa. After each
compression-relaxation cycle, the elastic modulus increases due to
compaction. We observed that the elastic energy is stored and re-
leased during the relaxation.

3.2 Effective granular media

In this section, the effect of compaction is removed from the strain
to help interpreting the data with the effective medium theory.
Compaction between cycles is quantified by ∆i = εri+1 − εri ,
where εri stands for the strain at the beginning of each relaxation
cycle i (see Fig. 3). In Fig. 5, the non-reversible compaction ∆i is
removed for each cycle i + 1 during both compression and relax-
ation. The strain at the beginning of the compression for each cycle

0 0.5 1 r

p
min

50

100

p
max

Figure 5. Confining pressure ( p = σxx) is represented as a function of
axial strain (ε = εxx) over 5 oedometric cycles. Averaged data in full line
shapes a closed stress-strain curve. Compared to Fig. 3, the non-reversible
compaction ∆i is removed. Data are shown in red during compaction and
gray during relaxation. Raw data in pale dot shows a high variability during
compression and low variability during relaxation. According to eq. (6),
fitted curves are represented in dashed lines with S = 580 kPa in black,
and S = 105 kPa in red.

is set to zero. Similarly, the starting strain for the relaxation is set at
εr = 1.7 to close the hysteretic loop. The data points in each cycle
are represented with small dots in red during compaction and gray
during relaxation. Averaged data represented as a full line in Fig. 5
results in a closed pressure-strain curve. This representation high-
lights that relaxation follows the same path for each cycle and does
not depend on compaction stage. On the other hand, compression
path changes after each compaction stage.

EMT considers Hertz contact with average stress between
each grain (Makse et al. 1999). A typical expression of the inter-
grain force can be summarized as:

−→
F =

√
ξnReff [knξn

−→n + ksξs
−→s ] , (5)

where kn, ks are the normal and shear elastic stiffness, respectively,
ξn, ξs are the normal, and shear displacements between grains,
and Reff is the effective radius. According to such a contact law,
the EMT predicts the following relationship between pressure and
strain (Roux (2015) see Appendix B):

p = Seε
3/2, (6)

where Se is the oedometric effective stiffness. Stress-strain curves
in Fig. 5 are fitted using this expression. During compression, the
best fit for the average data gives Se = 105 MPa. Compaction ex-
plains why Se is ranging from 77 MPa to 152 MPa for the first and
last cycle, respectively. For high pressure, (p > 130 Pa), the EMT
model overestimates the confining pressure. During relaxation from
pmax down to about 50 kPa, the media is five times stiffer than dur-
ing compression, where Se = 580 MPa. Under p = 50 kPa the
apparent elasticity decreases quickly, and tends to zero.

EMT gives an expression for the oedometric effective stiffness
Se = b3/2 φCkn

6π
defined in eq. (6), with b = 9/10 for a friction-

less and b = 43/30 when friction is included (see Appendix B).
The coordination number, or the average number of contacts per
particle, is estimated to be C = 6 in a friction-less 3D packing
(Makse et al. 1999). For glass beads, the normal effective stiff-
ness is kn = 145 GPa; the oedometric effective stiffness should
be Se = 26 GPa for a friction-less media, and Se = 52 GPa when
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friction is included. The EMT predicts a stiffness two orders of
magnitudes more than the experimental results. This gap between
observations and a theory based on granular mechanics is also ob-
served in soils (Di Donna & Laloui 2015); and suggests that, in
the low-pressure range (p < 200 kPa), cohesion and plastic de-
formation play an important role in the quasi-static response of a
granular media. Adding friction to the EMT model gives a stiffness
two times higher than a friction-less media. This suggests that fric-
tion is not the only reason why elasticity is five times higher during
relaxation than compression.

The redirection factor can be estimated from the effective
modulus ratio according to different hypothesis (see Appendix B).
In the case of a friction-less media (ks = 0), consisting of per-
fectly smooth spheres, the coefficient of redirection is calculated as
K = 1/3. The opposite limit for infinite friction between grains
corresponds to K = 0.02. The experimental estimation of 0.2 in-
dicates that compression friction plays a limited role during com-
pression. During relaxation, < σyy > is constant from 150 kPa to
50 kPa, meaning that K tends to zero. This indicates that friction
forces cannot be neglected during relaxation.

Explaining hysteresis requires reconsidering the hypothesis of
no-slip (ξs = 0) or perfect slip (ks = 0) in eq. (5). To do so, a
kinematic friction coefficient µ and viscosity γ between the spheres
should be introduced. The sliding condition requires computing ξs
for every time step to check for sliding. In this case the inter-grain
force can be written as a function of the normal and tangential com-
ponents of the displacement (Makse et al. 2004):

−→
F =

(
ξn
−→n + γnξ̇n

)
kn
√
ξnReff

−→n+min
(
µFn, ks

√
ξReffξs

)−→s .
(7)

(Garcı́a & Medina 2006) compute numerical response of oedomet-
ric cycles with stress-strain hysteretical curves for both axial and
lateral stress qualitatively in agreement with Figs. 3 and 4. They
also retrieve the evolution of the apparent elastic modulus M due
to compaction.

EMT model better explains the stress-strain curve during com-
pression at low pressure up to p ∼ 130 kPa. Nevertheless, the abso-
lute value of the oedometric effective stiffness is not in agreement
with the experiment. The redirection factor indicates that friction is
strong during relaxation, and weak during compression. The com-
paction changes the effective stiffness between each compression,
but the relaxation path is very stable. Relaxation data, hysteresis
and evolution of the response between each cycle can be explained
quantitatively by numerical simulations with an inter-grain force
expressed in eq. (7).

In section 4.3 we will come back to the analysis of the quasi-
static characterization compared to the dynamic one, which is pre-
sented in the next section.

4 DYNAMIC CHARACTERIZATION

Seismic waves traveling through granular media can be character-
ized by recording the acceleration of the material (Fig. 6a). The x-
component is the main component of the wave propagating along
the −→x -axis, but a −→y -component is also recorded. The direct wave
propagation is observable from 0 to 2 ms.

An average of the maximum amplitudes over the different
confining pressures is presented in Fig. 6b. The propagation dis-
tance is defined as: d =

√
x2 + y20 . An exponential decrease is ob-

served with amplitudes proportional to d−n, with n = 2.2 for the
pistol and n = 2.4 for the crossbow. In the case of Riffle, a sensor
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Figure 6. a) Experimental time signals of a seismic wave produced by
the impact of a projectile in a granular media. Ten accelerometers are dis-
tributed along the −→x -axis (from x =13 to 38 cm depth, see Fig. 1). This
example corresponds to a confining pressure of 20 kPa. At this low pres-
sure, the−→x -component of the acceleration (gray) is one order of magnitude
higher than the −→y -component (light red). The inset shows the time delay
τ between two signals computed by cross-correlation to estimate the wave
speed. b) Amplitude of the peak acceleration as a function of the propaga-
tion distance. The peak acceleration, averaged over the confining pressure,
is represented for the different sources as indicated in the colored legend.
The dashed lines correspond to the numerical simulation, with an attenua-
tion coefficient α = 2.3 Np/m (see Section 4.2).

saturation occurs above 6 m/s2. We observe a strong wave attenu-
ation compared to the case of an infinite non-attenuated media, for
which n = 1, corresponding to the conservation of energy along a
spherical surface.

The actual experiment has three main difference compared
the fore-mentioned ideal case. First, the media has a finite size of
around a wavelength, where interference between incident and re-
fracted waves occurs. Second, in this sub-wavelength region P- and
S-waves interact together in a near field term with a n = 2 slope
(Aki & Richard 1980). Third, the amplitude decrease is also driven
by the source extension that cannot be considered punctual com-
pared to both the size of the media and the wavelength. The com-
plexity of propagation in this sub-wavelength region is observed
experimentally in the following Section 4.1 and numerically mod-
eled in section 4.2.

4.1 Pressure-dependent wave properties

The shaker input signal is a Heaviside step function resulting in
a wave propagating, with an average frequency peak of ∼ 400
Hz, in the whole pressure range from 7 to 160 kPa (see Fig. 7a).
Impact-born waves present a center frequency ranging from 200 Hz
to 500 Hz. It appears that the projectile energy (see Table 2) doesn’t
change significantly the frequency content after ten centimeters of
propagation.

In Fig. 7b, peaks acceleration of the −→x (gray dots) and −→y
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Figure 7. a) Peak frequency as a function of confining pressure for glass
beads. Different symbols represent experiments with different projectiles,
guns, and the shaker. b) Maximum acceleration as a function of confining
pressure for crossbow signals. The −→x -component of the maximum accel-
eration is shown in orange, and the −→y -component in magenta. The dashed
lines represent acceleration peaks for simulated waves (see Section 4.2).

(red dots) components at x = 16 cm, are represented for different
confining pressures. The −→x -component of the maximum acceler-
ation is shown to decrease with pressure, while the −→y -component
is much smaller and nearly constant. Experimental amplitudes are
compared to simulated data (dashed lines in Fig. 7b, with the same
color code for the −→x and −→y components) (see section 4.2).

The wave speed (V = δx/τ ) was measured by estimating
the time lag (τ ) between two sensors signals separated by δx. An
estimate of the time lag τ is shown in the inset of Fig. 6. The maxi-
mum of the cross-correlation is estimated with quadratic interpola-
tion to improve precision. This method is known to be very robust
(Cespedes et al. 1995). All possible pairs of the five accelerome-
ters within the measuring depth (15-27 cm) are used to estimate
experimentally the wave speed using the cross-correlation method
illustrated in Fig. 6. The wave speed as a function of the confining
pressure is shown in Fig. 8a. For impacts, each wave speed is an av-
erage over five attempts at a constant pressure. Error bars represent
the standard deviation.

A clear increase in wave speed from 200 m/s at pmin, up to
800 m/s (±100) at 160 kPa is observed in Fig. 8a. Despite the wide
range in kinetic energy of the projectiles (see Table 2), the wave
speed measurements do not reflect a clear dependency on it.

Shaker-born waves present a very similar confining pressure
dependency than impact-born waves (see Fig. 8a). Wavespeeds
measured during compression are represented with red dots, and
those during relaxation with gray dots. There is no measurable dif-
ference between compression and relaxation, except at low pres-
sure (p < 50 kPa). Contrary to the stress-strain relationship in the
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Figure 8. a) Wave speed as a function of the confining pressure. Differ-
ent symbols represent experiments with different projectiles, guns, and the
shaker. For the shaker, we show data during several runs of the compression
(gray dots) and relaxation (red dots) phases (see the cycles in Fig. 5). For
the different impacts, we compute the mean and standard deviation in each
pressure step. b) The average shaker velocity as a function of the confining
pressure is shown with a thick black line. Trends lines with p1/6, p1/3 and
p1/2 dependencies are shown in fuchsia corresponding to EMT models in
dashed lines and mesoscopic model with βc = 4.7× 103 (or equivalently
modified EMT model) in full line.

quasi-static regime, there is no significant hysteresis in the wave
speed measurements.

The apparent wave speed V measured in Fig. 7 extends from
200 to 800 m/s. The corresponding frequencies f spans from 200
to 500 Hz according to Fig. 8, and the wavelengths λ = V/f
ranges from 0.5 m to almost 2 m. These values are three orders
of magnitude larger than the grains (d ∼ 0.5 mm, see Fig. 2). In
this λ/d >> 10 regime, coherent waves propagate in an equiva-
lent homogeneous material (Le Gonidec & Gibert 2007). There is
no reflection at each grain contact and thus no multiple-scattering.
A wavefront cannot sense an individual grain but an equivalent
media. This is different from the diffusive regime of propagation
where the energy spread and decay are related to a mean free path.
This regime requires wavelength of the same order as the grain size
(Langlois & Jia 2015).

4.2 Wave propagation: numerical simulation

Taking into account the propagation regime described in the previ-
ous section, a conventional wave propagation simulation in a linear
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Figure 9. a) Numerical simulation of an elastic wave propagating in an
infinite 3D media as a function of time and along the ~x−axis at y = 9

cm from the source, with Vp = 200 m/s, Vs = 115 m/s, and the source
frequency f = 400 Hz. The color scale indicates the wave amplitude nor-
malized at each depth (arbitrary units). x-coordinate is normalised by the
P-wavelength λ = 0.5 m. The 8-cm diameter source is centered at the ori-
gin. The propagation time is indicated by a red full line for Vp and a dotted
line for Vs. b) Black line represents the wave speed estimation based on
the correlation method. Vp and Vs are indicated in red full and dotted lines
respectively. In a near-field region (x < λ/4) the apparent wave speed
is higher than Vp due to the extended source size. In the far-field region
(x > λ/4), P and S-waves begin to separate and the estimated wave speed
tends to Vp. Between these two regions, a single wave is traveling at a wave
speed smaller than Vp.

homogeneous elastic media was chosen. The granular nature of the
media, important in the quasi-static characterization, is taken into
account only when the confining pressure changes, not during the
propagation phenomena. This hypothesis implies that a simulation
corresponds to a particular confining pressure. The wave propaga-
tion is considered to be linear, while the quasi-satic perturbation
is nonlinear. This is a usual hypothesis in the dynamic nonlinear
characterization of rocks (Guyer & Johnson 2009).

Numerical simulations were performed using Matlab toolbox
k-wave (Treeby et al. 2018; Treeby & Cox 2010; Treeby et al.
2012), based on a pseudo-spectral method. We use a 3D elastic
code to fully understand the underlying wave physics. The medium
is considered to be homogeneous with a density ρ = 1650 kg/m3.
EMT gives a P- to S- ratio Vp/Vs =

√
3 for the friction-less case

(see Appendix B). The P-wave speed is set between 200 to 500 m/s.
Considering the Janssen model (see Appendix C), even at low ex-
ternal pressure a homogeneous media is suitable to understand the
experiment.

The impact of the projectile is considered as a temporal force.
Crater properties are not studied in detail (see e.g. Crassous et al.
2007). Instead, we focus on body wave propagation. The force is
applied along the −→x -axis on an 8cm diameter disc in the −→z -−→y
plane, centered at the coordinate’s origin. The source radius was
chosen as an estimate of the crater size. Between 4 and 10 cm, the
source diameter does not influence the quantities of interest (rela-

Figure 10. a) Numerical simulation of an elastic wave propagating in a
closed 3D media as a function of time and along the ~x−axis under the
source (y = 0 cm). The color scale indicates the wave amplitude normal-
ized at each depth (arbitrary units). The red line indicates the propagation
time at the P-wave speed model Vmodel = 300m/s. b) Apparent wave
speeds estimated by correlation are normalized by the model P-wave speed
ranging from 200 to 400 m/s as indicated with the color legend. The wave
speed in open media is represented in black for comparison (λ = 0.5 m).
The measuring depth gray zone indicates the accelerometer position in the
experiment. In this region, the averaged wave speed estimation ranges from
-2% to 10% of the P-wave speed model.

tive amplitude and apparent wave speed). The source was set as a
time dependent force: a Gaussian pulse with a 0.7 bandwidth cen-
tered at 400 Hz, according to Fig. 7. Sensors are distributed along
the −→x -axis, and at a distance y0 = 9 cm from the impact center.
The time step is set automatically (form 5 µs or 15 µs, depending
on the frequency and wave speed), and the spacial grid step is set
at 1 cm.

Elastic propagation in a 3D open homogeneous media is han-
dled thanks to a large Perfectly Matched Layer (20 points). The−→x -
component of the particle velocity, ux (x, t), as a function of time
and depth, is presented in Fig. 9a, for a P-wave speed of Vp = 200
m/s. To help visualization, the waveform is normalized by A (x),
the maximum amplitude at each depth. Fig. 9b represents the esti-
mated wave speed by cross-correlation as a function of depth. Close
to the source position, the wave speed is above Vp, due to the ex-
tended source size. In the sub-wavelength region (x < λ), the ap-
parent wave speed is only 87% of Vp, because of the interaction
with the S-wave. This 13% difference depends on the sensor posi-
tion along the −→y −axis, since the compressive-to-shear amplitude
ratio varies according to the relative source position. At x = λ,
pressure and shear waves begin to separate and the apparent wave
speed increases and reaches Vp around 2λ.

The confining pressure dependency can be introduced in the
simulation code by changing the wave speed according to the mea-
surements represented in Fig. 8b. We add to Fig 7a the simulated
maximum amplitudes in dotted lines. The same arbitrary ampli-
tude is set for each wave-speed (or pressure) simulation. Numeri-
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cal simulations show a similar trend for both components, which
is explained only by the wavelength growth and the relative P- to
S-wave contribution at this particular spot.

The maximum amplitudes computed numerically at each
depth are shown in Fig. 6, including an attenuation in the form
Aα (d) = e−αdA (d), with α = 2.3 Np/m. This attenuation co-
efficient is 4 orders of magnitude higher than in rocks (Liu et al.
2020). In similar conditions, attenuation measurement is 0.6± 0.6
Np/m for S-waves at 450 Hz in water-saturated sand (Brunson &
Johnson 1980), and 0.15 Np/m in dry sand at 500 Hz (Koerner et al.
1976; Leinov et al. 2015).

The effect of a closed media on an elastic wave with no atten-
uation was studied. Abrupt changes in the mechanical properties
are not easily handled from a numerical point of view. The nor-
mal incidence reflection of P-waves is characterized by the con-
trast impedance (Z = ρVp) between two media (r12 = Z1/Z2).
Densities are similar for the granular media and the acrylic walls.
The wave speed in acrylic is ∼ 1000 m/s. The contrast impedance
between acrylic and granular media ranges from 0.2 to 0.7. The
14-mm thick acrylic walls (two orders of magnitude smaller than
λ) have almost no effect on the propagation; including the walls in
the simulation results in a negligible 2% perturbation of the wave
speed. On the other hand, air is three orders of magnitude lighter
than the granular media, meaning an impedance ratio of 4 × 102.
Such a contrast cannot be handled numerically. Instead, the sur-
rounding media has both density and wave speed ten times smaller
than the propagating media achieving a 102 impedance contrast.
This corresponds to a reflection of 2% of the wave amplitude in-
stead of 1% with air.

In such a closed media the relative amplitude decay in the re-
gion of interest is the same as in an open space. An interference be-
tween −→x -negative and −→x -positive propagation direction is seen in
Fig. 10a. Fig. 10b represents the apparent wave speed as a function
of depth estimated by cross-correlation, for a variety of modeled
wave speeds. The estimated wave speed from the numerical simu-
lations are normalized by the P-wave speed value. The positions of
the accelerometers in the experimental set-up are indicated with a
gray zone. At this depth range, the averaged wave speed shows a
difference of 3%, 9%, and -2% between the measured wave speed
and the model P-wave speed, being 200, 300 and 400 m/s respec-
tively .

The numerical analysis demonstrates that despite the interfer-
ences in a closed elastic medium, we measure the actual P-wave
speed in the experimental configuration with an error smaller than
10%. In addition, there is no trend with the absolute P-wave speed
of the model. In conclusion, this numerical study ensures confi-
dence in the experimental estimation of the mechanical parameters
of the granular media. The following section focuses on the anal-
yses of the P-wave speed dependency on the confining pressure
represented in Fig. 8b.

4.3 Discussion on the elasticity pressure dependency
properties

Most of the literature reports a pe dependency on the wave speed
(P or S-wave), with an exponent e between 1/4 to 1/6 (Zimmer
et al. 2007; Garcı́a & Medina 2006; Jia et al. 2021), as it stands in
the EMT P-wave speed expression (Makse et al. 1999):

Vemt =
3√
10ρ

(
φknC

6π

)1/3

p1/6, (8)

where C is the coordination number or the average number of con-
tacts per particle. Taking into account other effects, the EMT trend
reaches a 1/3 exponent (Goddard 1990; Wichtmann & Triantafyl-
lidis 2004; Agnolin & Roux 2007; Zimmer et al. 2007). These
trends are represented in Fig. 8b, where C is computed to fit the
data at pmin. Any pressure value can be chosen to compute C. In
Fig. 8b we present several curves trend curves with different expo-
nents (1/2, 1/3, 1/6), all of them fitted at = pmin. We observe that
e = 1/2 is the best fit. e between 1/3 and 1/6 show considerable
departures respect to the measurements.

We propose to modify the EMT of eq. (8) by including a pres-
sure dependency on the coordination number as C = p

pmax
Cmax.

The resulting wave speed is:

Vmod =
3√
10ρ

(
φknCmax
6πpmax

)1/3

p1/2. (9)

The modified EMT suits very well the observations, as shown in
Fig. 8b in fuchsia. The coordination number is changing from 0.6
to 13. This variation seems exaggerated but it is in agreement with
experimental measurements in unconsolidated sand with variations
from 2 to 18 (Wright et al. 2021). Nevertheless, such an increase
of contacts per grain is explained by the authors by a filling fac-
tor changing from 0.3 to 0.8, while in the present measurement the
variation dφ = ε ∼ 3% is negligible. The lowest 0.6 contact num-
ber is not physically possible. Instead of this modified EMT, we
propose another approach to explain the data.

Rocks are an aggregate of minerals and can be considered
cemented granular media. Elasticity in rocks presents mesoscopic
nonlinearity based on nonlinear elastic energy considerations. The
elastic energy can be written as function of three invariant of the
Lagrangian strain. At the third order in energy, the elasticity of
a solid is Msolid = Mo (1 + βcε), with βc the third order non-
linear parameter defined with a positive compressive strain. M0

is the elasticity with no external perturbations (Guyer & Johnson
2009). Granular media, as contrary to rocks, do not have any elas-
ticity without external force. A mesoscopic nonlinearity for granu-
lar media is then M = Moβcε. Including a non-hysteretical linear
pressure-strain relationship, ε = p/M0 gives a simple dependency
of M with pressure:

M = βcp. (10)

The associated wavespeed V 2
meso = M/ρ is then deduced:

Vmeso =

(
βc
ρ
p

)1/2

. (11)

This expression gives the same trend as the modified EMT. The βc
parameters were computed by minimizing the sum of the squared
difference between the model and data. A reasonable agreement is
observed between experimental data and the wave speed computed
with eq. (11), with βc = 4.7× 103.

Experimental results from quasi-static (Fig. 5) and dynamic
acquisitions (Fig. 8) can be represented in the same plot by com-
puting the elastic modulus from the P-wave speed, Md = ρV 2

p and
stress-strain curves Ms = ∂p

∂ε
. Fig. 11 represents the dynamic and

the quasi-static elasticity for both compression and relaxation. Ten-
dency curves are also represented in thin lines. These are based on
eq. (10) for the dynamic curve, and eq. (6) for compression. The
p5/4 dependency of the relaxation is purely empirical. The elas-
ticity difference between compression and relaxation, already dis-
cussed in Section 3.2, mainly originates from friction differences
and energy storage.

The dynamic elasticity is at least one order of magnitude
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Figure 11. Elastic modulus as a function of the confining pressure mea-
sured through wave propagation (Dynamic in black), quasi-static compres-
sion (red), and quasi-static relaxation (gray). Pressure dependency trends
indicated in thin lines corresponds to respectively a mesoscopic nonlinear-
ity or equivalently a modified EMT, EMT and empirical fit.

above the quasi-static elasticity. We should quantify the mechanical
perturbations of these phenomena to discuss this important differ-
ence. The times scales are 30 s for an oedometric cycle and 1ms for
half a period for the dynamic wave. The strain scale is not straight-
forward and require to use the numerical simulation. The volu-
metric stress σv = σii/3 (with Einstein summation convention),
can be set as an output of the numerical wave propagation model
(see Section 4.2). The compressive strain is then εv = σv/V

2
p ρ.

The strain is found to be εv = 1.4 × 10−4 in the vicinity of
the source (x = 0) for the higher strain scenario: riffle impact
with VP = 200 m/s. This dynamic stress should be compared
to a volumetric strain computed from the quasi-static axial strain
εxx: εv = εxx (1 + 2K) /3. With 3% a maximum axial strain and
K = 0.2, the maximum volumetric strain is εv = 1.4× 10−2.

In conclusion the quasi-static perturbation is ten thousand
times slower and a hundred times larger in strain than the dy-
namic one. These order of magnitudes explains why no hystere-
sis is observed during wave propagation because sliding requires
more stress and grain reorganization takes more time. These phe-
nomena occur only during quasi-static compression. Furthermore,
EMT that includes neither slipping nor reorganization predicts an
elasticity in the same order of magnitude than the dynamic mea-
surement (Ms = 380 at p = 80 kPa). This suggests that the
dynamic measurement probes the grain contact mechanics, while
quasi-static relates preferentially to the sliding and cohesion effect.

4.4 Results in natural media

The wave speed as a function of confining pressure is shown in
Figs. 12a and 13a for sand and gravel, respectively. Data analysis
is the same as for glass beads, explained in Section 4.1 and there
were no significant differences between the materials on the peak
frequencies or amplitudes of Figs 6 and 7. Trends are the same in
natural granular media as in glass beads.In Figs.12 b and 13b, we
show the average of the wave speed for the shaker with a black
line, along with the mesoscopic model with a fuchsia line. We con-
firm the p1/2 dependency of the wavespeed. The nonlinear βc pa-
rameters measured in sand and gravel are βc = 3.5 × 103 and

Figure 12. The wave speed as a function of the confining pressure for sand.
Similar caption as Fig. 8. The the mesoscopic model has βc = 3.9× 103.

βc = 3.9 × 103, respectively. These estimates have the same or-
der of magnitude than measurements in a dense granular media by a
nonlinear harmonic generation with ultrasound (Brunet et al. 2008),
with βc between 500 to 1500. For consolidated granular material,
the βc parameter is found to be an order of magnitude smaller: e.g.
for concrete is (βc ∼ 100−200) (Spalvier et al. 2020), and in rocks
is between 0.5 to 2×103 (Gallot et al. 2015; D Angelo et al. 2008).
This indicates that nonlinearity seems to decrease with grain’s an-
gularities.

5 CONCLUSION

We performed a mechanical characterization of confined granular
media for both a quasi-static and dynamic ( 500 Hz) regime. Dur-
ing each quasi-static compression in the 50 − 200 kPa confining
pressure range, a quasi-elastic behavior with a pressure-constant
elasticity was measured. EMT better explain the observations in
the 0 − 130 kPa confining pressure range, with p1/3 elasticity de-
pendency. Each compression-relaxation cycles result in an increase
of the elasticity. It was observed that the quasi-static response of the
material can be well described by a quasi-elastic model (de Gennes
1999), exclusively during compression. The estimation of the redi-
rection factor indicates that friction is only important during relax-
ation and can be neglected during compression. On the other way,
relaxation reveals a highly hysteretic stress-strain relationship. Re-
laxation follows neither a quasi-elastic nor an EMT. We observe an
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Figure 13. The wave speed as a function of the confining pressure for
gravel. Similar caption as Fig. 8. The the mesoscopic model has βc =

3.5× 103.

elastic energy storage during the beginning of the relaxation; which
is then released at lower pressure.

For each confining pressure step, impacts and vibrations in
granular media generate highly attenuated elastic waves propagat-
ing in a homogeneous media with similar characteristics. The ab-
sence of a wave diffusion-like process is due to a difference of three
orders of magnitude between grain size and wavelength. The gran-
ular nature of the material is only relevant to understand the con-
fining pressure incidence on the equivalent homogeneous elastic-
ity of the media. This conclusion is supported by the agreement
between numerical simulation models and experiments regarding
wave speed, amplitude, and polarization of the elastic wave. We
also demonstrate that the wavefield is mainly compressional, propa-
gating at the P-wave speed. The impact-generated waves are shown
to be P-waves, with a dependency with the confining pressure of
the type: p1/2. We also present similar results of wave properties
generated by impacts and shaker are very similar. Finally, the P-
wave speed is shown to increase more than expected with a EMT
model with a constant coordination number, C. A modified EMT
model, with a C proportional to the pressure, results in the same
pressure dependency : p1/2, as a mesoscopic nonlinear model based
on third-order nonlinear elastic energy. Both models fit the obser-
vations. The interpretation of these models is a deep reorganization
in the particle contact network during the quasi-static perturbation.
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Brunet, T., Jia, X., & Johnson, P. A., 2008. Transitional nonlinear elas-
tic behaviour in dense granular media, Geophysical Research Letters,
35(19).

Brunson, B. A. & Johnson, R. K., 1980. Laboratory measurements of
shear wave attenuation in saturated sand, The Journal of the Acoustical
Society of America, 68(5), 1371–1375.

Cambau, T., Hure, J., & Marthelot, J., 2013. Local stresses in the janssen
granular column, Physical Review E, 88(2), 022204.

Cates, M., Wittmer, J., Bouchaud, J.-P., & Claudin, P., 1999. Jamming
and static stress transmission in granular materials, Chaos: An Interdis-
ciplinary Journal of Nonlinear Science, 9(3), 511–522.

Cespedes, I., Huang, Y., Ophir, J., & Spratt, S., 1995. Methods for es-
timation of subsample time delays of digitized echo signals, Ultrasonic
imaging, 17(2), 142–171.

Cheng, A. F., 2004. Collisional evolution of the asteroid belt, Icarus,
169(2), 357–372.

Cheng, H., Luding, S., Saitoh, K., & Magnanimo, V., 2020. Elastic wave
propagation in dry granular media: effects of probing characteristics and
stress history, International journal of solids and structures, 187, 85–99.

Chrzaszcz, K., 2016. Waves in granular media: from microscopic scale to
macroscopic scale., Ph.D. thesis, Université Paris-Saclay.
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APPENDIX A: MICROSCOPIC QUASI-ELASTICITY

If we consider granular media as a homogeneous linear medium
at the macroscopic scale (average notation is omitted in this sec-
tion), typically larger than ten times the average size of a grain, the
Hooke’s law is:

σij = λδijεii + 2µεii. (A.1)

With an axi-symmetry around the −→x -axis (σzz = σyy and
εzz = εyy), it becomes:{

σxx = (λ+ 2µ) εxx + 2λεyy

σyy = 2 (λ+ µ) εyy + λεxx
. (A.2)

Considering non-deformable walls along the y and z-direction
(εyy = εzz = 0), the previous equation becomes:{

σxx = (λ+ 2µ) εxx

σyy = λεxx
, (A.3)

In this ideal case, the ratio between σxx and εxx is the P-wave
modulus: M = λ+ 2µ, as written in eq. (1). Eq. A.3 also gives an
expression of the redirection factor (eq. 4):

K =
σyy
σxx

=
λ

λ+ 2µ
. (A.4)

From this definition we can compute the Lame’s coeficients in
function of M and K: {

λ = KM

µ = 1−K
2
M

, (A.5)

In order to evaluate the hypothesis of non-deformable walls, let’s
consider a wall deformation as an equivalent spring along the wall:
σyy = Sεyy , with S being the equivalent stiffness. The redirection
factor KS , within the granular media, is then:

KS = K
1

1− E
S

(1 +K)
, (A.6)

with σyy = KSσxx. If the spring stiffness is much stronger
than the Young modulus E, the wall can be considered as non-
deformable (KS ≈ K). From eqs (3) and (4) redirection can be
estimated as Ks ≈ 0.2 in glass beads, and we know that the strain
is lower with a wall deformation: K < KS . A wall deformation
also redirects the strain along the −→y -axis:

εyy = −Kεεxx, (A.7)

with Kε = λ
[2(λ+µ)−S] . This should create a displacement along

the −→y -axis, but it is not detectable with our measurement system,
with an uncertainty order of 0.01% in strain. Considering a maxi-
mum strain εxx of 1%, the order of magnitude of Kε is 10−2. The
stress and strain ratio Ms, in the case of deformable walls, is:

MS = M (1− 2KKε) . (A.8)
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The wall deformation tends to underestimate the elastic modulus.
Nevertheless, the maximum variation is around 0.14%. We con-
clude that the non-deformable wall hypothesis is reasonable.

APPENDIX B: EFFECTIVE MEDIUM THEORY

The Effective Medium Theory (EMT) considers that the macro-
scopic stress is equal to the average stress on each grain (Makse
et al. 1999). Effective quantities can be established such as the nor-
mal effective stiffness:

kn =
4µg

1− νg
, (B.1)

with µg and νg the shear and Poisson’s ratio of the grain material,
respectively. Typical values of these parameters for glass are µg =
29 GPa and νg = 0.2. In the case of a friction-less media, the bulk
and shear moduli are:

Ke = 1
2

(
φCkn
6π

)2/3
p1/3

µe = 3
10

(
φCkn
6π

)2/3
p1/3

, (B.2)

with φ the volume fraction, andC the coordination number (the av-
erage number of contact per particle). This gives an effective mod-
uli ratio re = Ke/µe = 20/12. Recording the equation relating
effective Lame’s coefficients (λe, µe) andKe: λe = Ke− 2

3
µe, and

substituting in Eq. A.4 gives a redirection factor that only depends
on re:

K =
3
2
re − 1

3
2
re + 2

. (B.3)

This is K = 1/3 for friction-less granular media. Including tan-
gential forces modify the shear modulus as:

µe =
kn + 3

2
ks

20

(
6φ2C2

knπ2
p

)1/3

,with ks =
8µg

2− νg
. (B.4)

In this case the moduli ratio becomes re = Ke
µe

=
5(2−νg)
3(5−4νg)

=

5/7, and K = 1/43 ≈ 0.02.
The elastic modulus can be expressed as Me = Ke + 4

3
µe =

Ke

(
1 + 4

3re

)
, giving Me = 9

5
Ke for the friction-less EMT me-

dia, and Me = 43
15
Ke when friction is included. During relax-

ation, the apparent elastic modulus is varying, but no better agree-
ment can be found with the EMT. The effective elasticity Me can
also be used to established an effective stress-strain relationship
σxx = p = Meεxx with the following pressure dependence strain
for quasi-static comparison:

εxx =

(
p

Se

)2/3

, (B.5)

with the oedometric effective stiffness given by Se =
(
M3
e /p
)1/2

. The friction-less case gives Se =
(

9
10

)3/2 φCkn
6π

, while Se =(
43
30

)3/2 φCkn
6π

when friction is included. P- and S-wavespeed

are given by VP =
√

Me
ρ

and VS =
√

µe
ρ

respectively. The

wavespeed ratio is then:

VP
VS

=
√
Me/µe =

√
re + 4/3. (B.6)

For friction-less ratio Vp/Vs =
√

3, and Vp/Vs =
√

2 when fric-
tion is included.

APPENDIX C: JANSSEN MODEL

According to the Janssen model (Ovarlez et al. 2003; Ovarlez &
Clément 2005a), the apparent mass at the bottom of a silo is ex-
pressed as:

ma = msat

[
1− exp

(
−mfill

msat

)]
, (C.1)

where the saturation mass is given by msat = ρπR3

2Kµs
, µs is the

Coulomb static friction coefficient between the grains and the wall,
mfill the filling mass, and R the radius of the silo. In the case of
a squared silo of size L, we substitute the radius by the average
distance from the center:

R′ =
2L

π

∫ π/4

0

cos θdθ =
2L

π
ln
(√

2 + 1
)
≈ 0.56L (C.2)

Choosing a friction µs = 0.5 for PMMA-glass (PolyMethyl
MethAcrylate), as measured in Cambau et al. (2013), and our esti-
mate of K = 0.2 (Section 3.2), the saturation mass is msat = 572
kg. Since the full box mass, Mfill = 195 kg, is smaller than the
saturation mass, the pressure at the bottom given by the equivalent
mass (eq. ) is p = Ma/S = 6.6 kPa, which it is very close to
the hydro-static pressure pmin = 7.6 kPa. Eq. (C.1) becomes a
depth-dependent (x) pressure by considering a constant density to
describe the filling mass: mfill = xρS:

p (x) =
msat

S
g

[
1− exp

(
− xρS
msat

)]
. (C.3)

This pressure profile, only alid when no external pressure is applied
can be used in the numerical simulation. Nevertheless, the differ-
ence with a homogeneous model is only significant at the surface.
In the geometry of the experiment, at 15 cm depth, the wave speed
reaches 93% of its average in the measuring zone.
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