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Abstract:

Consider a network where the links are subject to randam, independent fail ures.
The diameter constrained network reli ability parameter R(G,K,D) measures the
probabili ty that the set K of terminals of the network are linked by operational
paths of length less or equal to D. This parameter generalizes the dassca
network reliability, alowing to reflect performance objedives that restrict the
maximum length of a path in the network. This is the case, for example, when
the transmisgons between every two terminal nodes in the subset K are required
to experience amaximum delay D.T (where T is the delay experienced at a
single nock or link); then the probability that after randam falures of the
communicaion links, the surviving network meds the maximum delay
requirement is the diameter constrained reliability R(G,K,D).

This paper defines the diameter constrained network reliability, and gives a
formulation in terms of events correspondng to the operation d the (length
constrained) paths of the network. Based onthis formulation, the exad vaue of
the diameter constrained reliabili ty is derived, for the special case where K={ st}
and the upper boundD of the path length is 2. For other values of K and D an
exad evaluation algorithm based on a factorization approad is propaosed. As
this algorithm has exporentia worst case mmplexity, upper and lower bounds
for K={ st} are developed, which in some caes may be used insteal of the exad
value.
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1. Introduction

The system under study is an undirected, connected communication (or transport) network
G =(V, E, K) consisting of a set of nodes V, a set of connecting links E and a set of terminasK (a
fixed subset of the node-set V). Nodes do not fail, but each link e is assigned an independent
probability of failure ge (called link unreliability). In the classical reliability measure, the network is
supposed to work when all the terminal nodes can be connected using the operationa links (i.e,
when there is an operationa path between each pair of nodes in K). This is a random event, which
has probability R(G). The problem of evaluating R(G) or its complement, Q(G) = 1-R(G), isusually
caled the K-termina reliability problem. There is a vast literature on this problem; the works by
Colbourn (1987) and Rubino (1998) provide good starting points. One of the fundamental resultsin
this area is that the exact evaluation of the K-terminal reliability problem R(G) is an NP-hard
problem Ball(1979). This is also true for the specia cases of K={st} (source-termina or two-
termina reliability, see Vaiant (1979)) and K=V (all-terminal reliability, Provan and Ball (1983)).

There are many situations where it is not enough that the terminal nodes are connected, but is also
necessary that the length of the connecting paths (measured by the number of links) is smaller or
equal to a given upper bound. This is the case for example where at each node (or at each link)
there is a transmission delay T, and the total communication time between two terminals must be
less than D times this delay; then it is necessary that the operational paths which connect the
terminals have at most length D. There is currently much research in this area, which has been
mainly oriented to deterministic models, which do not take into account reliability measures. For
example, the current work by Gouveia and Magnanti (2000) on finding diameter-constrained
minimum cost spanning trees, and by Kortsarz and Peleg (1999) on diameter-constrained minimum
cost for Steiner trees, can be used as the basis for network design when all components are perfect
and there is no failure possibility. Another approach is to find families of large graphs with given
degree and diameter (see for instance Gomez et a (1999)); aso here the components of the network
are supposed to operate perfectly without failures. Other interesting line of work (exemplified by
Farago et a (1999) and by Nikoletseaset al (2000)) is to study families of random graphs
(representing networks with independent, equiprobable edge faults), and investigate different
asymptotic properties of these families, among which the connectivity and the diameter of the
surviving networks.

In this work we present the Diameter-Constrained Reliability measure as a generdization of the
classical K-terminal reliability problem, taking into account path length restrictions in the definition
of the model (diameter is the maximum of the distances between pairs of nodes of a network). In
the Diameter-Constrained Reliability problem, the network is up if for each pair of nodesin K, there
is a path of length no greater than D which connects them. We denote by R(G,K,D) (the diameter-
constrained reliability of G) the probability of this event. In particular, if G has n nodes, the
diameter-constrained reliability R(G,K,n-1) corresponds to the classica K-terminal
reliability R(G).

In next section we give aformulation for the Diameter-Constrained Reliability in terms of the paths
of the network. Sections 3 and 4 discuss computationally efficient exact formulas for the cases
where D=1 (trivial case) and where K={ st} and D=2. Section 5 presents exact recursive formulas,
for the general case, based on a factoring theorem. Section 6 presents recursive bounds for the case
where K={s,t}. Finally, Section 7 presents conclusions and future work.



2. A path-based formulation for Diameter Constrained Reliability

In this section, we develop a formulation for the Diameter Constrained Reliability based on the

paths of the network. We will use the following notation:

« G=(V, E, K): anundirected network topology

 V ={1,..,n}: thenode-set of G

o E={ey,....en}: thelink-set of G

+ K:theterminal set of G

e m,n,k: the number of [links, nodes,terminals] of G

o diam(G): the diameter of G, i.e. the maximum distance between two any nodes of the graph

* Xe State of the link e; we take state 1 when the link e is up (operational), and state O when it is
down (failed). Sometimes we will denote a link by its extremities, for example e=(s;t); in this
case X Will be an alternative notation for the state of link e.

* r=Pr(xe=1): operating probability of link e.

e Q=Pr(xe=0)=1-re: failure probability of link e

Suppose we have a network G = ( V, E, K), and we want to compute its diameter constrained
reliability R(G,K,D), for a given value of D. For any pair of nodes s, t belonging to K, we define
P«(d) as the set of paths between s and t, of length at most d. We will denote by E(p) the event in
which all thelinksin p are operational. The probability of event E(p) is the probability of finding all
the links composing the path p in operationa state; by the hypothesis of independence between the

states of the links, it can be computed as the product of the links reliabilities: Pr(E(p))=[Tr. -
&p

The diameter-constrained reliability measure can then be expressed in function of these events:

R(G,K,D) = PrHﬂ U E(p)%.
A0K [ pOPst(D)
Unfortunately, the events correspondng to the paths are neither independent from each ather, nor
digoint, so this formula is not suitable for dired computation o the reliability measure.
Nevertheless ore important consequence is that for any link elE, if it is not used in any path
between terminals of length at most D, then the link is irrelevant for computing R(G,K,D). In this
case, it is posgble to reduce the graph, eliminating e, and oliaining a new network G-e which will
have the same reli abili ty as the original one: R(G,K,D)=(G-¢,K,D).

If the network has maximum degree &, a brute force approadh can identify al the relevant paths by
using asimple DFS procedure in time O((k(k-1)/2x3°).

3. Exact formulasfor thetrivial case: D=1

When D=1, the only relevant links are those anong the nodes of K (as only paths with at most one

link will be considered). In this case, if the the subgaph d G induced by K is not a dique, then the
reliability R(G,K,D) = 0. Suppacse then that the subgaph d G induced by K isa dique (i.e, for all



st 0K, thereisalink e=(s;t) in E). In this case, the network is operational if and ony if all the links
of this clique ae operational:
R(G,K,D) = |_| (o

s,t0K

4. Exact formulas for source-terminal Diameter Constrained Reliability
with D=2

We will now look at the cae K = {st} (source-terminal diameter-constrained reliability), and D=2.
In this case, an applicdion d the “digoint prodwcts’ tedhnique (standard for classcal reliabili ty
problems, see for example Colboun(1987) p.21), will enable us to find a formulation for
R(G,{s },2) which can be dficiently computed.

We start by observing that in this case, the only relevant paths are those belonging to
P«(2) = {(st)} I{(s,i,t), iOV\{st}, (si)UE,(i,t)0E}. In order to simplify the formulation, we will
suppacse that for any pair of nodes (i,j), the link (i,)) exists, eventualy with reliability 0. We will
order arbitrarily the paths in Pg(2) (starting with the single link peth p=(s;t)), and we will say that
p1 < p. if p precades p,. We can then write

R(G{s 1.2 =P [ JE(p E (p)ﬂ%jﬁa)%
OPst(2) DPst(Z) <p
).

where E(qg)is the complement of event E(q Observing that the events E p)ﬂ%} (q )E

digoint (by construction), we have

R(G.{51).2) = EE o %WT)%
pDPst(Z)

What is more, asthe links states are independent, and there are no links repeated among the pathsin
P«(2), the events involved in each term of the sum are independent, which alows us to write

RGist.2= Y PrEP)[] Pr(E(q)).

pOPst(2) a<p
Finally, as each event E(p) is the intersection of the independent events corresponding to the
operational state of the composing links (which are independent), we can substitute the terms
Pr{E(p)} by their values (keeping in mind that the first path has only one link, and the subsequent
ones have two links):

RG{s 8.2 =r, +{-r,) > []&-rr)
iVWs,t} j<i,Jov\{s;t}

This formula can be evaluated very efficiently (in time linear in the number of nodes of the
network). Unfortunately, it is not easy to generalize the formula to other values of D and K. The
problem arises because in the general case, the paths involved have links in common, and then the
corresponding events are not independent, and their intersection cannot be computed as efficiently;
Boolean algebra methods are applicable in this case, sometimes combined with heuristics for
reordering the terms of the general expression.



5. Recursivefactoring formulasfor Diameter Constrained Reliability

This section is devoted to the evaluation of R(G,K,D) for arbitrary K and D. We introduce some
definitionsfirst. Let there be a network G=(V ,E,K):

e Link deletion: for a given link e, G-e denotes the network with node-set V and link-set derived
from E by removing link e. The target set of G-eisequal to K.

» Link contraction: for a given link e=(u,v), Gle denotes the network derived from G by setting
thelink reliability of eto 1 (link e cannot fail). The target set of Gleisequal to K.

The factoring formulais based on considering the two possible states of an arbitrary link e, which
is non perfect (subject to failures). If link e is failed, it can be deleted from the network; if it is
operating, it can be contracted. As the state of link e is independent from the state of the other
components of the network, we have the following expression (sometimes known as the Factoring
Theorem) :

R(G,K,D) =r,R(G|eK,D)+(1-r,)R(G -eK,D).

If we repeat the operation for the remaining links (those whose state has not yet been fixed) in the
resulting networks, the process corresponds to a state enumeration agorithm. Nevertheless, it is
very often possible to stop the recursion earlier; when we delete alink e, it may be the case that the
resulting network G-e does not have any possible paths between a pair s;t of lenght bounded by D,
independently from the state of the other links, and then has reliability O; aso, when contracting a
link e, it may be the case that the terminals become connected by paths made only of perfect links,
and the network will always operate independently from the failure of the remaining links, and has
then reliability 1. In those cases, it is needless to continue the recursion.

This formula, complemented with the previous observations, can be used as the basis of a recursive
algorithm. In order to check whether to continue or to stop the recursive calls, a number of auxiliary
structures and precomputed datawill be handy. First of al, we will suppose that we have previously
computed the set of paths of length at most D between s and t, Pg(D), for al the pairs of terminals
stinK (using for example the procedure mentioned in Section 2); we will denote by P(D) the union
of al the sets P4(D). We will define the following auxiliary data structures:

* npg: the number of paths of length at most D between s and t in the network being considered.
* links,: the number of non-perfect links (links e such that re < 1) in path p, for every pOP(D).

» feasible,: this is a flag, which has value False when the path is not longer feasible, i.e. it
includes alink wich isfailed; and True otherwise.

» connectedy: thisis aflag, which has value True when s and t are connected by a perfect path of
length at most D and Fal se otherwise.

» connectedpairs:. thisis the number of connected pairs of terminals (those between which thereis
aperfect path of length at most D).

* P(e): the set of paths of P(D) which includelink e.



The following pseudocode arresponds to the propased fadoring procedure. We have followed C
language convention for including comments (which are bracketed between /* * /).

Procedure FACTO(G,D)

Inpu:
» network G=(V,E,K); path length boundD;

 auxili ary structures Pg(D), P(e), npy, links,, feesible,, conrededy, connededpairs
Output: diameter-constrained reli ability R(G,K,D)

Initi ali zation:
/* RContrad: partial result correspondng to contrad branch */
/* RDelete: partia result correspondng to delete branch */
Initi ali ze RContrad=0
Initi ali ze Rdelete=0
Seled an arbitrary link e such that O<re<1

"Contrad" branch:
Compute Gle
/* Now we mnsider all feasible paths which include seleded link e*/
For each p=(s,...t) [JP(e) such that feasible, = True do
Deaement the number of non-perfect links of p: links,=links,-1
If conrectedy = False and links, =0 Then /*p includes only perfect links*/

[* thereisnow a perfect path between sandt*/
conrededg = True

conrededpairs = connededpairs+l
If conrectedpairs = n(n-1)/2) then /*all pairs of terminal are mwnneded*/

[* by perfect paths; the network is always operational ™/
Rcontrad= 1

Goto to "Delete” branch
Endf
Endif
EndFor
Call the procedure recursively: RContrad=FACTO( Gle,D)

"Delete" branch:

Compute G-e

/* Again we @nsider al feasible paths which include seleaed link e/

For each p= (s,...t)JP(€) such that that feasible, =True do
feasible, =False /* Now pisunfeasible, becauselink eis deleted */
nps=npg -1 /*Deaement the number of feasible paths between s and t*/

If npg= 0 Then /*the network G-e can nolonger be operational*/
RDelete =0
Goto to Final Computations
Endf
Endfor
Call the procedure recursively: RDelete=FACTO(G-¢,D)

Final computations:
R(G,K,D) = rexRContrad + (1-r¢)xRDelete
Return R(G,K,D)




This code can be made more efficient, by cheding out some @ndtions before cnsidering the
different paths (for example, when a pair of terminals are drealy connected by a perfect path, it is
no longer productive to consider other paths between them). The dgorithm will work corredly with
any choiceof link e a general open questionis to study the influence of this choice on the running
time of the dgorithm (or equivalently onthe size of the reaursiontree.

A quick worst case complexity analysis of the dgorithm can be done observing that the number of
reaursive cdls (i.e, the size of the reaursion tree) will be & most 2™, with m being the number of
links of the network. At each call, the more wstly operation is the the iteration ower al the paths
which include the selected link e. If the network has maximum degree 9, there are & most k(k-
1)/2x3° relevant paths; as we work with simple networks, the maximum degree is always lessthan
the number of nodes of the network, 3<n. We have then worst case mmplexity of order O(2™k?3°),
exporentia in the number of links m andin the bound & the path length, D.

6. Recursive bounds for source-terminal Diameter Constrained Reliability

Asexad evaluation d the R(G,K,D) measure is a very costly task, in some cases, it may be enough
to know lower and ugper bounds to its value. In this sedion we develop a set of recursive bound
for the spedal case of source-terminal Diameter Constrained Reliability (i.e, K={s,t}).

Let G=(V,E,{st}) the network under study, and D the path length bound.Then we have that the
network is operating if either the terminals sandt are diredly conneded by an operational link (i.e,
if the link e<(s;t) isworking) or if thereisanodei such that thelink (s,i) isworking, and the nocde i
isconneded to the nodet by apath of lenght at most D-1. We can then write down:

RG,{s 1t} D)= Prgxg =y EJ(xg =1NH U E(p)%
v OPit(D-1)
and wsing the fad that the link (s,t) does nat appear in the other invalved paths, we have

RG.{s1 D) = Pr(x, =1)+ @~ Pr(x, =))P] |J (x, =1 UE(p)%

v —{s.t} OPit(D-1)

=r, +(1—rst)PrH U (x4 :1)ﬂ UE(p)%

v {s.t} OPit(D-1)

To oltain ou upper bounds, we use the fad that the probabili ty of the union d a number of events
isaways lessor equal to the sum of the probabiliti es of the events themselves:

RG{st},D)<r, +{-r,) PrgxSi =1NHE U E(p)%
iV —{st{

OPit(D-1)

We observe that R(G - s{i,t}, D-1)=Pr UE(p)E and that the event of the operation a
OPit(D-1)
failure of link (s,i) is independent from the event of operation a failure of the network G-s with
terminals st {i,t}; finaly we obtain
RG{st,D)sr, +({-r,) S r,RG/i 1}, D-1)

iV —{s,t}



which gives an upper bound for the reliability of network G and diameter D in terms of the
reliability of at most n-2 smaller networks, with diameter D-1. In turn, the reliability of those
networks can be bounded above by the same formula.

We now turn to the problem of obtaining alower bound on the reliability. For this, we will observe
that for any two events A and B, it is always the case that AL(AnB), which in turn implies that
Pr(A)=Pr(AnB),; asaparticular case, the following equation holds:

(=007 UE@D6a =305, N =92 UEG)

OPit(D-1) <i,jivV —{s,t}

Substituting in previous equations, we have that

R(G{s1},D)=r, +( PfE U & :1)ﬂE ﬂ(ﬁ)@ﬁ%mm(o 1) %

vV —{s,t} <i,jov st}

Now we can profit from the fact that (by their construction) these events are digoinct; as the
probability of the union of digoinct eventsis the sum of the probability of the individual events, we
obtain

R(G{st},D)=r, +( Z Pr%x —1)ﬂ ﬂ(Xs,- :1)%]% %
iV —{st <| jov—{st} OPit(D-1)

We now take advantage of the fact that the links (s,i) and (s,j) are independent from the other paths
involved in the construction, and we make the same observation as in the case of the upper bound,
in order to arrive at the final formulation:

RG{st},D)=r, +(-r,) Z rsE Ez(c; s{i,t},D-1).
iV —{s;t <i, jD\/—{St}

The computation of these bounds has computational complexity of order O(3°), which is an
important improvement from the complexity of the exact computation, especially for small values
of the path lenght upper bound D.

7. Conclusions

In this paper, we have presented a new reliability measure, called the diameter constrained network
reliability R(G,K,D). As discussed, this parameter generalizes the classical network reliability
(which can be seen as the specia case where D=n-1), adlowing to reflect more stringent
performance objectives that restrict the maximum length of a path in the network.

We have developed exact agorithms (of exponential order) for the general case, and we have aso
given more efficient computation methods for the special case where K={st} and D=2. There is
much open work in this area. In the general case, the problem is NP-hard (because it includes as
particular cases the classical network reliability problems, which are known to belong to this
complexity class), which amost precludes hope in finding polinomia complexity agorithms.
Nevertheless, the complexity of the problem for particular cases remainsto be studied (for example,
the case K={ s,t} and D=2 is shown in this paper to be of linear complexity; it isan open problem to
determine the complexity for general K and D=2).

Another approach is finding bounds. We have given upper and lower bounds for K={s,t}, which
(albeit much faster than exact reliability computation), still take exponential (in D) computation
time. There is need to develop more efficient (for example, polinomial) and more genera (holding
for arbitrary K, for example) bounding methods.



It shoud also be mentioned that Monte Carlo simulation methods, including variance reduction
tedhniques such as those employed by Cancela and ElI Khadiri (1998 and Cancda and Urquhart
(2000 could be used to estimate the diameter constrained network reliability; this may be the
technique which hdds most promise for large networks of medium reli abilit y.
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