

Nombre de la unidad curricular: Álgebra Lineal Numérica
Forma parte de la Oferta Estable: No
Licenciaturas: Matemática
Frecuencia y semestre de la formación al que pertenece: 0 (última vez dada en 2016)
Créditos asignados: 12, Área A, Subárea Análisis numérico, Nivel Avanzado
Nombre del/la docente responsable: Diego Armentano
E-mail: diegoax@gmail.com
Requisitos previos: Álgebra Lineal I, Álgebra Lineal II.

Ejemplos de unidades curriculares de Facultad de Ciencias u otros que aportan dichos conocimientos: Álgebra Lineal I, Álgebra Lineal II

Conocimientos adicionales sugeridos: Computación

Objetivos de la unidad curricular:

a) Herramientas, conceptos y habilidades que se pretenden desarrollar

Dominio teórico de fundamentos dados en el curso, además dominar la implementación numérica de problemas dados en el curso en programa computacional (tipo. python, julia)

b) En el marco del plan de estudios

Temario sintético de la unidad curricular:

Fundamentos y repaso de álgebra lineal descomposición QR estabilidad y condicionamiento sistemas de ecuaciones valores propios métodos iterativos.

Temario desarrollado:

Programa detallado del Curso

- 1. Fundamentos y repaso de álgebra lineal
- (a) Multiplicación de matrices.
- (b) Vectores y matrices ortogonales
- (c) Normas
- (d) Descomposición en valores singulares
- 2. Descomposición QR
- (a) Proyecciones
- (b) Descomposición QR
- (c) Ortogonalización de Gram-Schmidt
- (d) Triangulación Householder
- (e) Problema de mínimos cuadrados
- 3. Estabilidad y condicionamiento
- (a) Número de condición
- (b) Aritmética del punto flotante
- (c) Estabilidad
- (d) Estabilidad de triangulación Householder y sustitución backward

Programa Semestre Par 2022

- (e) Condicionamiento y estabilidad de problema de mínimos cuadrados
- 4. Sistemas de ecuaciones
- (a) Eliminación gaussiana
- (b) Pivoting
- (c) Estabilidad de eliminación gaussiana
- (d) Descomposición Cholesky
- 5. Valores propios
- (a) Problema de valores propios
- (b) Panorama sobre algoritmos utilizados
- (c) Reducción a forma tridiagonal de Hessenberg
- (d) Cocientes de Rayleigh, iteración inversa
- (e) Algoritmo QR sin, y con, shifts
- (f) Otros algoritmos
- (g) Cálculo de SVD
- 6. Métodos iterativos
- (a) Panorama sobre métodos iterativos
- (b) Iteración de Arnoldi
- (c) Cómo Arnoldi localiza valores propios
- (d) Residuos mínimos generalizados
- (e) La iteración de Lanczos
- (f) De Lanczos a cuadratura de Gauss
- (g) Gradientes conjugados
- (h) Métodos de bi-ortogonalización
- (i) Precondicionamiento

Bibliografía

a) Básica:

- L. Trefethen, D. Bau: Numerical linear algebra, SIAM: Society for Industrial and Applied Mathematics null edition (1997).
- J. Demmel: Applied numerical linear algebra, ,SIAM: Society for Industrial and Applied Mathematics null edition (1997).
- J-P Dedieu, L. Amodei: Analyse numérique matricielle, Dunod, Science Sup, (2008). ## El curso seguirá de cerca el libro de Trefethen-Bau ##

b) Complementaria:

Sistema de APROBACIÓN final

Tiene examen final: Si

Modalidad cursada: Curso teórico presencial con entrega de ejercicios
Metodología de enseñanza:
Duración en semanas: 15
Carga horaria total: 180
Carga horaria detallada:
a) Horas aula de clases teóricas: 60
b) Horas aulas de clases prácticas: 20
c) Horas de seminarios: 0
d) Horas de talleres: 0
e) Horas de salida de campo: 0
f) Horas sugeridas de estudio domiciliario durante el período de clase: 100

Programa Semestre Par 2022

Se exonera el examen final: No Sistema de GANANCIA a) Características de las evaluaciones: Examen final oral. examen práctico o proyecto b) Porcentaje de asistencia requerido para ganar la unidad curricular: 0 c) Puntaje mínimo individual de cada evaluación y total: 25 d) Modo de devolución o corrección de pruebas: Habilitada a rendir en calidad de examen libre: No* * Por resolución del Consejo de Facultad de Ciencias de fecha 24/02/2022 este ítem no fue aprobado dado que se encuentra en un proceso de revisión institucional **COMENTARIOS o ACLARACIONES:**