
 1

Data Freshness and Data Accuracy: A State of the Art

Verónika Peralta

Instituto de Computación, Facultad de Ingeniería, Universidad de la República*†
URUGUAY

vperalta@fing.edu.uy

Technical Report

March 2006

Abstract. In a context of Data Integration Systems (DIS) providing access to large amounts of data extracted

and integrated from autonomous data sources, users are highly concerned about data quality. Traditionally,

data quality is characterized via multiple quality factors. Among the quality dimensions that have been

proposed in the literature, this report analyzes two main ones: data freshness and data accuracy. Concretely,

we analyze the various definitions of both quality dimensions, their underlying metrics and the features of

DIS that impact their evaluation. We present a taxonomy of existing works proposed for dealing with both

quality dimensions in several kinds of DIS and we discuss open research problems.

Keywords: Data freshness, data accuracy, data quality evaluation, data integration systems

1. Introduction

The technological advances of the last years allowed the development of information systems of wide scope,

which offer access to large volumes of information distributed in multiple heterogeneous data sources. Although

these systems have been proposed and used for more than a decade, they became more important in the last

years, both at academic and industrial level. The increasing interest in this type of systems is mainly due to the

proliferation of data available in remote sites, frequently stored in diverse platforms and with diverse formats. In

particular, the World Wide Web has become a major source of information about all areas of interest, which can

be used by information systems as any data supplier.

The needs of accessing in a uniform way to information available in multiple data sources are increasingly

higher and generalized, particularly in the context of decision making applications which need a comprehensive

analysis and exploration of data. The Data Integration Systems (DISs) appeared in response to these needs. A

DIS is an information system that integrates data of different independent data sources and provides the vision of

a unique database to users. Users pose queries via an access interface and the DIS answers their queries with

information obtained and synthesized from source data. Examples of DISs are Mediation Systems [Wiederhold

1992], which provide access to data extracted from several sources and integrated in a transparent way in

response to user queries. Data Warehousing Systems [Inmon 1996], also extract, transform and integrate data

from various, possibly heterogeneous, sources, aggregate and materialize information from this data and make it

available for strategic analysis to the decision makers. Other examples of DISs are Web Portals, which provide

access to subject-oriented information acquired and synthesized from Web sources, generally caching important

amounts of data [Bright+2002].

*

†
 This work was partially financed by the Comisión Sectorial de Investigación Científica (CSIC), Universidad de la

República, Montevideo, Uruguay

Data Freshness and Data Accuracy: An State of the Art

2

In a context of DISs providing access to large amounts of data from alternative sources and conveying

alternative query answers to users, information quality is becoming a first class property increasingly required by

end-users. As the potentially retrieved data grows, users are more concerned about data quality [Wang+1996]

[Gertz+2004] [Ballou+1998]. Some surveys and empirical studies have showed the importance of data quality

for end users, in particular, when dealing with heterogeneous data coming from distributed autonomous sources

[Wang+1996] [Mannino+2004] [Shin 2003].

Traditionally, information quality is described or characterized via multiple attributes or factors which help to

rank the data delivered to users (e.g. freshness, accuracy, completeness) or the processes that manipulate this

data (e.g. response time, reliability, security). Many lists of quality factors have been proposed, some of them

containing a great number of quality definitions. For example, Redman identified four dimensions of data

quality: accuracy, completeness, currency and consistency [Redman 1996] while Wang and Strong analyzed the

various quality attributes from the user perspective [Wang+1996].

However, there is no consensus in the definition of quality factors, which may be overlapping and contradicting.

Each application domain has its specific vision of data quality as well as a battery of (generally ad hoc) solutions

to solve quality problems [Berty-Equille 2004]. Furthermore, even if quality factors are frequently treated as

being independents, there exist lots of relationships among them. Several works studied some relationships for

specific systems, for example [Ballou+1995] [Bright+2002] [Cappiello+2002] [Theodoratos+1999] [Han+2003].

The great number of quality factors and their inter-relations cause quality evaluation to be a complex problem of

many variables. To improve the quality of a system corresponds to optimize a problem of N variables, which

may have a great complexity if done in a general context. As a consequence, it is difficult to consider all quality

factors at a time. In order to study data quality in depth, it is necessary to study separately each quality factor as

well as the properties of the environment that impact in it.

Among the quality factors that have been proposed, this report analyzes two main ones: data freshness and data

accuracy. The following sections describe both quality factors: Section 2 presents an analysis of data freshness

and its various underlying metrics, describing some dimensions that impact freshness evaluation as well as the

relevant works proposed for dealing with freshness in several kinds of DIS. Analogously, Section 3 analyzes

data accuracy, also describing metrics, dimensions that impact its evaluation and relevant works. The analysis of

both quality factors suggests open problems in the specification of user expectations, the acquisition of source

quality measures and the formulation of cost models for the DIS. This knowledge can be used for developing

techniques for data quality auditing and techniques for designing a system driven by quality expectations. An

overview of such research problems is presented at the end of each section. We conclude, in Section 4,

summarizing the analysis.

2. Data freshness

Data freshness has been identified as one of the most important attributes of data quality for data consumers

[Shin 2003] [Wang+1996]. Some surveys and empirical studies have proved that data freshness is linked to

information system success [Wang+1996] [Mannino+2004] [Shin 2003]. Then, achieving required data

freshness is a challenge for the development of a large variety of applications. Furthermore, the increasing need

to access to information that is available in several data sources introduces the problem of choosing among

alternative data providers and of combining data having different freshness values.

This section presents an analysis of data freshness and its various underlying metrics. We analyze some

dimensions that impact the evaluation and enforcement of data freshness and we present a taxonomy that

summarizes this discussion. The taxonomy is used for the analysis and classification of existing work. At the end

of the section we discuss some open problems.

2.1. Freshness definitions

Intuitively, the concept of data freshness introduces the idea of how old is the data: Is it fresh enough with

respect to the user expectations? Has a given data source the more recent data? Is the extracted data stale? When

was data produced?

But data freshness has not a unique definition in the literature. Several freshness definitions have been proposed

for different types of data integration systems. The traditional freshness definition, called currency

[Segev+1990], is related to view consistency when materializing data and describes how stale is data with

respect to the sources. Recent proposals incorporate another notion of freshness, called timeliness [Wang+1996],

 Verónika Peralta

 3

which describes how old is data. Therefore, freshness represents a family of quality factors or a quality

dimension, each one representing some freshness aspect and having its own metrics. For that reason freshness is

commonly mentioned as a quality dimension [Jarke+1999]. Each factor best suites a particular problem or type

of system. For example, in a replication system the number of refresh operations that have to be applied to a

replica relation in order to reflect the changes made in a master relation is a good freshness metric, but in a data

warehousing system the time passed from the update of an object to its delivery may be more relevant. In this

sub-section we present an analysis of data freshness definitions.

We distinguish two quality factors for this quality dimension:

� Currency factor [Segev+1990]: The currency factor expresses how stale is data with respect to sources.

Data is extracted from sources, processed (possibly stored for some time) and delivered to the users, but

source data may have changed since data extraction and the user may receive stale data. The goal is to

return the same data that is stored at sources so currency captures the gap between data extraction and

data delivery. For example, currency indicates how stale is the account balance presented to the user with

respect to the real balance at the bank database.

� Timeliness factor [Wang+1996]: The timeliness factor expresses how old is data (since its creation/update

at the sources). The age of the data may be not appropriate for a given application. The goal is to return

data that is valid (not too old) so timeliness captures the gap between data creation/update and data

delivery no matter when data was extracted from sources. For example, when retrieving a top 10 CD

ranking, timeliness indicates how old such ranking is: when was it created and stored in the CD seller

source.

Figure 1 illustrates the gaps each factor aims to capture.

currency

timeliness

extraction

time

delivery

time
creation /

update time

time

Figure 1 – Currency and timeliness factors

Note that both definitions are stated with respect to source databases. None of existing proposals compare with

real world. The major argument is that capturing real world changes is not easy while capturing source changes

is feasible (either querying, polling, subscribing…). However, for specific systems where real world changes are

known both definitions can be enlarged to compare with real world data, i.e. how stale is delivered data (with

respect to real world data) and how old is data (since its creation/update in real world). Examples of such

systems are real-time registration of events (e.g. supermarket sales), sensor measurements and administrative

documents (with specific timestamps).

2.2. Freshness measurement

A metric is a specific instrument that can be used to measure a given quality factor. There might be several

metrics for the same quality factor. We describe the metrics proposed in the literature for measuring data

freshness, classified by freshness factor:

� Metrics for the currency factor:

� Currency metric: It measures the time elapsed since the source data changed without being reflected

in the materialized view (if changes are propagated immediately then currency is 0) [Segev+1990]. In

practice, as the precise change time may be difficult to obtain, currency is estimated as the difference

between data extraction time and data delivery time. This estimation is used in data warehousing

systems [Theodoratos+1999]. In caching systems it has been defined as recency or age, representing

respectively the time elapsed since an object was cached [Bright+2002] and the time elapsed since an

object became stale [Cho+2000]. In replication systems it is called age and measures the time since

the oldest tuple of a relation has been waiting for the first refresh transaction [Gancarski+2003].

Data Freshness and Data Accuracy: An State of the Art

4

� Obsolescence metric: It measures the number of updates to a source since the data extraction time. It

can be measured from source logs or delta files or using change detection techniques

[Hammer+1995]. Knowing the obsolescence of a source relation, the update frequency can be

estimated and vice versa. Obsolescence is often called age in caching systems, meaning the number of

times an object has been updated at the remote server since it was cached [Huang+1994]. In query

processing systems, it is defined as the number of insertions, deletions and modifications since the

data materialization time [Gal 1999]. In replication systems it is called order and measures the number

of refresh transactions that have been committed in the master node but have not yet been propagated

to the slave node [Gancarski+2003].

� Freshness-ratio metric: It measures the percentage of extracted elements (tuples or attributes) that are

up-to-date, i.e. their values equal the source relation ones. It can be estimated from the knowledge one

has about data sources and from the way data is updated [Cho+2000]. It was defined as freshness in

caching systems, meaning the number of elements of the cache that are up-to-date over the total

number of elements [Cho+2000]. In [Labrinidis+2003], freshness is measured as the percentage of

web pages that are fresh (not stale) in the cache but considering that the pages may have portions that

are fresh and portions that are not.

� Metrics for the timeliness factor:

� Timeliness metric: It measures the time elapsed since data was updated. It can be measured from

source logs or delta files or using change detection techniques [Hammer+1995]. In [Braumandl 2003]

it is measured from data timestamps, when they are available. Timeliness is generally estimated as the

time elapsed from the last update to a source and bounded using the update frequency of the source

data [Naumann+1999]. It was used in mediation systems [Naumann+1999] and web systems

[Gertz+2004]. In [Ballou+1998], the metric is calculated as delivery time minus extraction time,

adding the age of data at extraction time; some authors called it currency.

Previous data freshness metrics have been used as input for more complex indicators, for example, in

[Ballou+1998] a freshness indicator is defined as*:

max {(1 - timeliness / volatility), 0}s

where volatility is measured in terms of shelf-life and the exponent s controls the sensibility of the ratio.

Table 1 presents a summary of freshness factors and their corresponding metrics.

Factor Metric Description

Currency The time elapsed since data was extracted from the source (the difference

between delivery time and extraction time).

Obsolescence The number of updates transactions / operations to a source since extraction

time.

Currency

Freshness ratio The percentage of tuples in the view that are up-to-date (have not been updated

since extraction time).

Timeliness Timeliness The time elapsed from the last update to a source (the difference between query

time and last update time).

Table 1 – Summary of freshness factors and metrics

2.3. Dimensions for freshness analysis

In this sub-section we analyze some dimensions that impact the evaluation and enforcement of data freshness.

We analyze the nature of data, the architectural techniques and synchronization policies of the underlying

system. In next-subsection we present a taxonomy composed of these dimensions, which allows comparing

different proposals for freshness evaluation.

*
 In [Ballou+1998] the timeliness metric is called currency, and the composed indicator is called timeliness. We have changed their names

for homogeneity purposes.

 Verónika Peralta

 5

Dimension 1: Nature of data

According to its change frequency, we can classify source data into three categories:

� Stable data: It is data that is improbable to change. Examples are scientific publications; although new

publications can be added to the source, older publications remain unchanged. Other examples are person

names, postal codes and country names.

� Long-term-changing data: It is data that has a very low change frequency. Examples are the addresses of

employees, country currencies and hotel price lists in a tourist center.

� Frequently-changing data: It is data that has intensive change, such as real-time traffic information,

temperature sensor measures and sales quantities.

The concept of “low frequency” is domain dependent; in an e-commerce application, if the stock of a product

changes once a week it is considered to be low-frequency change while a cinema that changes its playbills

weekly has a high-frequency change for spectators.

The nature of data is important because it is related to the notion of freshness that users are interested in. When

working with frequently changing data, it is interesting to measure how long data can remain unchanged and

minimize the delivery of expired data (i.e. evaluate currency). However, when working with stable or long-term

changing data, these questions have no sense since data does not change very often. It is more interesting to

measure how often new data is created or how old is the data (i.e. evaluate timeliness).

The changes can occur in a random way or with a defined frequency. For example restaurant menus, which are

updated every morning, have a defined change frequency, but the account balances, which are updated with

every account movement, have not got a defined frequency. In such cases, we can use data properties to develop

specialized techniques, for example, synchronizing applications to extract data at the best moment.

Certain types of data have a lifecycle which describes explicitly its states and changing events. Some examples

are the marital status of a person, the moon phases or the status of a semaphore. Sometimes, the events that make

the states change are well known and can be predicted (as the semaphore). The fact that states are known in

advance may allow the development of specialized techniques and treatments.

Dimension 2: Architectural techniques

The freshness of the data delivered to the user depends on source data freshness (the freshness of source data at

extraction time) but also on the execution delay of the DIS processes (the amount of time from data extraction to

data delivery). The DIS processes are very relevant in freshness evaluation because they can introduce

significant delays. These delays may be relevant or not depending on freshness requirements. For example, in a

given system, the evaluation of a query (minutes) is irrelevant compared to timeliness requirements (weeks),

while in another system the aggregation processes may have the same order of magnitude of currency

requirements (hours).

Specific cost models should take into account different parameters. These parameters depend on the system

architectural techniques. We distinguish three main families of architectural techniques: those that calculate data

when a new query is posed, those that cache the data most frequently used, and those that materialize the data

needed to answer user queries. The features of these three categories of techniques are summarized below:

� Virtual techniques: The system does not materialize any data so all queries are calculated when they are

posed. The system queries the relevant sources and merges their answers in a global answer that is

delivered to the user. Examples are pure virtual mediation systems and query systems in database

federations.

� Caching techniques: The system caches some information, typically data that is frequently accessed or the

result of some frequent queries, and invalidates it when the time-to-live (TTL) has expired. If the

information required to answer a user query is stored in the cache, the system delivers it to the user; if not,

the system queries the sources as in virtual systems. Examples are caching systems.

� Materialization techniques: The system materializes large volumes of data which is refreshed

periodically. The users pose their queries and the system answers them using the materialized data.

Examples are data warehousing systems and web portals that support materialization.

Data Freshness and Data Accuracy: An State of the Art

6

Virtual techniques allow to query sources and to return data immediately, so data is almost current. The

processing and communication costs are the delays that influence currency. Caching techniques are conceived to

return data as current as possible, estimating the TTL of each object for deciding when to invalidate it. However,

materialized systems can tolerate some level of staleness. Data is stored for some time in the DIS repositories,

which decreases its freshness; the refreshment frequency is an important delay.

Dimension 3: Synchronization policies

The way DIS are implemented influences the freshness of the data delivered to the users. Particularly, the

synchronization among the sources, the DIS and the users has impact in data freshness because it introduces

delays. For example, a DIS that synchronizes updates each end of the day may provide data which is not fresh

enough with respect to the expectations of a given user.

According to the interaction among the DIS and the sources, the extraction processes can have pull or push

policies. With pull policy, the DIS queries the sources to obtain data and with push policy, the source sends data

to the DIS. In the latter, the notification of new available data can be sent by an active agent, for example

initiated by a trigger, or can be determined by the DIS continuously polling the source. Active sources can have

their own policies as sending each updated tuple, or sending sets of tuples every regular periods of time or when

changes surpass a threshold. Pull policies can also be driven by temporal or non-temporal events.

According to the interaction among the DIS and the users, the query processes can also have pull or push

policies. With pull policy, users directly pose queries to the DIS. With push policy users subscribe to certain

queries and the DIS regularly conveys response data to the users. Pull and push policies can also be driven by

temporal or non-temporal events.

Combining the previous interactions among users, DIS and data sources leads to six possible configurations

which are shown in Figure 2. With synchronous policies, the user directly accesses source data. With

asynchronous policies, the DIS answers user queries using materialized data and asynchronously, the

materialized data is refreshed from source data. We name each configuration with the user-DIS policy followed

by the DIS-source policy. Asynchronism is represented by a slash (/), synchronism by a dash (-):

� Pull-pull (arrow (a)): The interaction is fully synchronized. When a user poses a query (pull), it is

decomposed and sent by the DIS to the sources (pull). This configuration is common in virtual mediation

systems.

� Pull / pull (arrows (b) and (c)): When a user poses a query (pull) the DIS answers it using materialized

data. Asynchronously, the DIS queries the sources in order to refresh materialized data (pull). It is

common in data warehousing systems.

� Pull / push (arrows (b) and (e)): When a user poses a query (pull) the DIS answers it using materialized

data. Asynchronously, the sources send data which refresh materializations (push). It is also used in data

warehousing systems.

� Push / push (arrows (d) and (e)): When sources send data to the DIS (push), it is used to refresh the

materializations. Asynchronously, the DIS conveys data to the users (push). It is used in publish/subscribe

environments.

� Push / pull (arrows (d) and (c)): Materialized data is conveyed asynchronously to the users (push) and

also asynchronously, the DIS queries the sources in order to refresh the materialized data (pull). It

represents certain user applications (e.g. data marts) that are regularly fed from warehouse data.

� Push-push (arrow (f)): The interaction is synchronized. When sources send data to the DIS (push), the

DIS conveys it to the users (push). This configuration is specific to some real time systems (alert systems)

which capture events from sensors and conveys them to users but maintain also a history of these events.

This configuration is not usually implemented in the three architectural techniques described previously.

Asynchronous policies introduce delays. The refresh frequency of the DIS repository is important to evaluate the

freshness of retrieved data. When pushing data to the user, the push frequency is also important.

In systems where there are heterogeneous data sources with different access constraints and users with different

freshness expectations, it is important to support and combine several kinds of policies.

 Verónika Peralta

 7

Users

Sources

pull

pull push

push

(a)

(b)

(c)

(d)

(e)

(f)

Data Integration

System

Figure 2 – Combination of synchronization policies

In next sub-section we present a taxonomy that relates these three dimensions summarizing their analysis.

2.4. A taxonomy for freshness measurement techniques

In this section we present a taxonomy that summarizes the discussion and allows comparing different proposals

for freshness evaluation. The taxonomy is composed of the previously described dimensions: (i) nature of data,

(ii) architectural techniques and (iii) synchronization policies.

Nature of data is a user-oriented dimension which qualifies the properties of source data from a user point of

view. But not all the combinations of nature of data and freshness factors are interesting. On the one hand, when

data changes very frequently, there is no interest in measuring timelines, which captures stable data behavior. On

the other hand, there is no sense to evaluate the currency of long-term and stable data because they are almost

always current as they do not change very often. In the latter case, the system can assure currency even without

explicit evaluation. The other combinations need evaluation to determine the freshness level. For them, the

development of evaluation tools is interesting. Table 2 shows the relation, indicating when data freshness can be

assured without evaluation and when it is interesting to evaluate it (�) or not (�).

Nature of data

Freshness factor

Frequently

changing

Long-term

changing
Stable

Timeliness � � �

Currency � assured assured

Table 2 – Interesting combinations of freshness factors and nature of data

Architectural techniques, synchronization policy and process complexity are system-oriented dimensions which

describe the system relation with data freshness. There is a correlation between architectural techniques and

synchronization policies, since virtual techniques only support the synchronous pull-pull configuration, caching

techniques are conceived for user pulls and materialization techniques support the asynchronous configurations.

Table 3 shows the interrelations among them, indicating the valid combinations.

However, a priori, all combinations of nature of data and architectural techniques are possible, i.e. virtual,

caching or materialization techniques (with their valid combinations of synchronization policies and process

complexities) can be built to query different types of data.

Data Freshness and Data Accuracy: An State of the Art

8

 Sync. policies

Arch. techniques
pull-pull pull/ pull pull/ push push/ pull push/ push

Materialized � � � � �

Caching � � � � �

Virtual � � � � �

Table 3 – Valid combinations of architectural techniques and synchronization policies

In addition, system-oriented dimensions are also orthogonal to the freshness factors, i.e. users may be interested

in both freshness factors, independently of the way the system is implemented. But taking into account the

particularities of the systems and the availability of metadata and estimations, the different metrics are generally

more related to some kinds of systems. For example, in virtual systems the main interest is the response time, so

the currency metric is appropriate; in caching systems all the metrics have been identified as interesting, as

different existent applications evaluate them [Bright+2002] [Huang+1994] [Cho+2000]; in materialized systems,

currency and obsolescence have been used [Theodoratos+1999] [Gal 1999]. Table 4 shows the correlation

among all the taxonomy dimensions and freshness metrics.

Nature of data

Arch. techniques

– Sync. policies

Frequently

changing

Long-term

changing

Stable

Virtual Pull-pull Currency Timeliness Timeliness

Caching

Pull-pull

Pull/pull

Pull/push

Currency

Obsolescence

Freshness-ratio

Timeliness Timeliness

Materialized

Pull/pull

Pull/push

Push/pull

Push/push

Currency

Obsolescence
Timeliness Timeliness

Table 4 – Correlation of all the taxonomy dimensions

The technical problems to solve for each cell of the taxonomy are quite different. For example, enforcing

currency in a materialized system implies developing efficient update propagation algorithms to deal with

consistency problems, while evaluating timeliness in virtual systems is quite independent on the query rewriting

algorithms and is dominated by source data timeliness. In Sub-section 2.6 we discuss evaluation problems.

2.5. Some systems that consider data freshness

In this sub-section we analyze several types of systems that evaluate freshness and we describe the goals and

problems that they present. At the end of the sub-section, Table 5 summarizes the proposals in terms of the

taxonomy presented before.

Data Warehousing systems

In data warehousing systems, freshness is studied through the currency factor in the context of view

materialization.

The materialization of some views over source databases allows speeding up OLAP queries and reduces the

overload of the sources. Traditional query optimization algorithms are extended to take into account the

materialized views. In [Gal 1999], a cost model has been proposed for analyzing and comparing query plans,

which can access to virtual and materialized data. The cost model strikes a balance between the query generation

and data transmission cost on the one hand, and the obsolescence cost on the other hand.

Materialization introduces potential inconsistencies with the sources and warehouse data may become out-of-

date [Hammer+1995]. The notion of consistency means that the DW state reflects an actual source state at some

 Verónika Peralta

 9

“recent time” [Zhuge+1997]. The view maintenance problem consists in updating a materialized view in

response to changes arisen at source data. Most of the work concentrates in assuring DW consistency for

different types of views and refresh strategies. A classification of view maintenance algorithms is presented in

[Gupta+1995]. A key problem in the last years has been the selection of a set of views to materialize in order to

optimize the query evaluation and/or the maintenance cost, possibly in the presence of some constraints

(commonly storage constraints). There are several works in this area [Harinarayan+1996] [Gupta 1997]

[Theodoratos+1997] [Yang+1997] [Baralis+1997].

Data freshness is implicitly considered when defining the update propagation processes. Changes can be notified

by active sources or can be monitored by the system accessing logs, querying the sources or comparing

successive source snapshots [Widom 1995]. In most works, the update propagation processes are triggered by

sources when the amount of changes is greater than a threshold or are executed periodically [Hull+1996]

[Theodoratos+1997] [Baralis+1997] (pull/push and pull/pull policies). In [Theodoratos+1999], data currency is

introduced as a quality factor in DW design. They propose an algorithm that takes as input the user expectations

for data currency and determines the minimal update frequencies that allow achieving these values (pull/push

policy).

Mediation systems

In classical mediation systems, freshness is also studied through the currency factor. In [Hull+1996], they

formally define the concept of guaranteed freshness. A view is guaranteed fresh within a time vector, if it always

corresponds to recent states of the source databases, that is, the difference between actual time and the time the

view was calculated is always lower than the given time vector. Authors propose the construction of Squirrel

mediators, which combine virtual and materialized data, and formally proof that they satisfy guaranteed

freshness. Squirrel mediators combine pull-pull and pull/pull policies.

New proposals take into account the timeliness factor. It is used as a quality metric to compare among sources

and to filter the data returned to the user. In [Naumann+1999], they introduce quality factors in a mediation

system, which include timeliness. They study how to propagate a set of quality factors from several

heterogeneous sources to the mediator. The propagation consists basically of merge functions that combine

actual values of two sources through a relational operator. They propose a virtual scenario with pull-pull policy.

Caching systems

In caching systems, data is considered fresh when it is identical to data in the sources, so freshness is represented

by the currency factor, and measured with the above mentioned metrics (currency, obsolescence, freshness-

ratio).

An important problem is keeping cache data up-to-date. Traditional cache proposals manage the idea of

invalidation. The system estimates the time-to-live (TTL) of an object as the time the object is supposed to be up

to date, so the cache can store frequently changing data as well as long-term changing data. When the TTL has

expired the object is invalidated in the cache, so the next access to the object will be directly read from the

source and the cache will be refreshed (pull-pull and pull/pull policies). In some contexts the source can send

invalidation information to the cache.

In [Cho+2000], they study the synchronization policies for cache refreshment and experimentally verify their

behavior. They measure freshness with two metrics: currency (called age in the paper) and freshness-ratio. In

[Li+2003], they focus on the fine tuning of the caching policy of a dynamic content page cache, balancing

response time and invalidation cycles for assuring data currency. In [Bright+2002], they propose the use of

latency-recency profiles to adapt caching algorithms to user currency requirements, that is, if users demand more

current data it will be extracted from the remote site paying communication times, but if currency of cached data

is enough for user needs the user has an immediate response from the cache.

Newer proposals combine caching and materialization techniques. In [Labrinidis+2003], an adaptive algorithm

has been proposed to combine view materialization and caching, balancing performance and data freshness.

They combine a cache with server-side invalidation and a set of materialized WebViews (html fragments derived

from a database) which are updated following a pull/push policy. As materialization degrades currency, the

proposed algorithm selects which WebViews to materialize without exceeding a given currency threshold.

Data Freshness and Data Accuracy: An State of the Art

10

Replication systems

In a replication context, data at a slave node is totally fresh if it has the same value as the same data at the master

node, i.e. all the refresh transactions for that data have been propagated to the slave node [Gancarski+2003].

Freshness is studied by means of the currency factor for frequently changing data.

A freshness model in a mono-master replication environment that supports OLTP transactions and OLAP

queries has been presented in [Gancarski+2003]. Their goal is to determine the minimum set of refresh

transactions needed to guarantee that a node is fresh enough with respect to the user freshness requirements for a

given query. If data is not fresh enough, some refresh transactions are applied, then we can consider the

mechanism as a cache invalidation method. The proposal consists in the evaluation of the freshness of slave

nodes and the proposition of a load-balancing algorithm that takes freshness into account to decide when to

refresh a replica. They follow pull-pull and pull/pull policies.

Works Measurement Nature of data
Arch.

techniques
Synch. policy

Materialization for query processing

[Gal 1999]

Obsolescence Frequently changing Virtual,

materialized

Pull-pull,

pull/pull

View maintenance [Gupta+1995]

[Hammer+1995] [Zhuge+1997]

Currency Frequently changing Materialized Pull/pull,

pull/push

View maintenance policy

[Theodoratos+1999]

Currency Not specified Materialized Pull/pull

Selection of views to materialize

[Harinarayan+1996] [Gupta 1997]

[Theodoratos+1997] [Yang+1997]

[Baralis+1997]

Currency Frequently changing Materialized Pull/pull,

pull/push

Mediation design combining virtual

and materialized approaches

[Hull+1996]

Currency Not specified Virtual,

materialized

Pull-pull,

pull/pull

Source selection in virtual mediation

[Naumann+1999]

Timeliness Not specified Virtual Pull-pull

Cache refreshment [Bright+2002]

[Huang+1994] [Cho+2000] [Li+2003]

Currency,

obsolescence,

freshness-ratio

Frequently changing /

Long-term changing

Caching Pull-pull,

pull/pull,

pull/push

Cache refreshment [Labrinidis+2003] Freshness-ratio Frequently changing Caching,

materialized

Pull-pull,

pull/push

Replica refreshment [Gancarski+2003] Currency,

obsolescence

Frequently changing Caching Pull-pull,

pull/pull

Table 5 – Summary of proposals

2.6. Research problems

Although data freshness has been studied in various ways in many papers, the analysis of the state of the art has

shown that many problems remain unsolved or insufficiently treated. This sub-section summarizes these

problems and mentions, when they exist, the references which have done significant contributions in each class

of problem.

The freshness evaluation process needs to know about (i) the users’ and source profiles, i.e. metadata about

users’ expectations and source properties, and (ii) the cost models used to extract source data, to maintain cached

or materialized data and to evaluate query answers in different architectural configurations. Such elements

should be adequately combined in order to evaluate the freshness of data conveyed to users. Freshness evaluation

can be used for auditing an existing DIS or for designing a new DIS under quality constraints. In the following,

we discuss these problems.

 Verónika Peralta

 11

Defining users’ and source profiles

Evaluating data freshness implies testing whether user’s freshness expectations can be satisfied from source data

freshness. One of the first problems is how and where to specify user expectations and how to define data source

properties which impact data freshness.

Specification of freshness expectations

Users have freshness expectations for their applications which should be formulated according to some factors

and metrics among those we have seen in Sub-sections 2.1 and 2.2. The specification of these factors and metrics

pose a number of questions:

− Which language or formalism to use? Alternatives can vary from the simple specification of <property-

value> pair [Bright+2002][Theodoratos+1999][Li+2003] associated to each object type, to the definition

of a specialized language if a preference order is introduced among freshness of different object types.

− At what level freshness expectations should be specified? We distinguish four levels: (i) for the whole

system (for all users and data sources), (ii) for each data source (for all users), (iii) for each user or group

of users, and (iv) for each user query. Each level implies different technical problems. When defining

freshness expectations for the whole system or per source, individual user expectations should be

reconciled. The expectations per user can be specified in a user quality profile. The definition of accurate

profiles that allow users to understand the different freshness metrics and to express their expectations is

an open problem. A first approach for introducing freshness in a user profile was presented in

[Bright+2002]. Query languages such as Preference SQL [Kieβling+2002] can be extended to express

freshness expectations in each user query.

Acquisition of source data freshness

The evaluation of data freshness at source level implies the selection of a freshness factor and the definition of

metrics and measurement processes for it. The definition of new factors and metrics is an interesting area. Most

existing works concentrate in the currency factor, but new types of DIS applications require the evaluation of

other aspects of data freshness such as timeliness. Furthermore, several surveys have demonstrated the user

interest in timeliness [Wang+1996] [Mannino+2004] [Shin 2003]. The acquisition of source data freshness poses

some questions:

− Which source metadata is necessary to represent freshness in a source profile? In order to characterize

source actual freshness some metadata should be obtained, for example the source update frequency

[Cho+2003].

− How to acquire such metadata from sources? Some sources can provide useful information as the last

update time or the update frequency, but for other sources these values must be learned or estimated from

statistics elaborated during the data source exploitation. Existing techniques as comparing successive

snapshots [Hammer+1995] or executing sampling queries [Jermaine 2003] can be adapted for freshness

metadata acquisition. Techniques for specific metadata should be developed as in [Cho+2003].

Defining cost models

The freshness of the data delivered to the users depends on source actual freshness but also on the propagation

delay from the sources to the user. Two main costs constitute this delay: the query evaluation cost and the update

propagation cost. Depending on the taxonomy defined in Sub-section 2.4, these costs can be modeled differently:

Modeling of query evaluation cost: Query evaluation cost models for classical and distributed databases have

been studied for a while and are well understood. Some proposals provide cost models for queries to cached or

materialized data [Li+2003] [Abiteboul+1998] [Cho+2003] and hybrid systems that combine materialization

techniques in virtual or caching contexts [Labrinidis+2003] [Hull+1996]. Despite the existence of several

proposals for specific systems, putting such capabilities to use in complex heterogeneous systems still requires

modeling effort. Furthermore, existing cost models do not represent the cost of complex data processing

involving ad hoc transformations and cleaning procedures such as in data warehousing systems. Several

specialized tools, e.g. Ajax [Galhardas+2000] and Potter’s Wheel [Raman+2001], require user interaction whose

cost, although hard to estimate, should also be integrated.

Data Freshness and Data Accuracy: An State of the Art

12

Modeling of update propagation cost: Several cost models have been proposed to evaluate update propagation

into materialized views [Chirkova+2001] [Yang+1997] [Hull+1996]. But as for query evaluation cost models,

the update propagation cost models should be extended to represent complex workflow contexts with long

transactions or interactive processes.

The challenge is the combination of all relevant parameters in a unified cost model in order to represent complex

and hybrid architectures. Examples of such architectures are systems that extract data from heterogeneous

sources with different synchronization policies and constraints. Some existing works combine several

synchronization strategies [Segev+1990] [Theodoratos+1999] and temporal storage [Labrinidis+2003], but the

land of hybrid systems is almost unexplored.

Several related questions are:

− Which DIS metadata is necessary to store in a DIS profile? Useful metadata will depend on the cost

models used for modeling query evaluation cost and update propagation cost. For example, in

[Hull+1996] several parameters are proposed for modeling the update propagation delay: announcement

delay (amount of time between a source update and its announcement to the DIS), communication delay

(amount of time needed for communicating with the source), update holding delay (amount of time

between update announcement and start of update processing) and update processing delay (amount of

time needed for processing an update). Large metadata should be studied for more complex cost models

representing hybrid architectures.

− How to acquire such metadata from the DIS? For some metadata, as the query processing delay,

acquisition techniques have been studied for classical and distributed databases [Abiteboul+1998]

[Chirkova+2001]. Further metadata should be learned or estimated from statistics elaborated during DIS

exploitation. Techniques for new types of metadata are also needed.

Auditing data freshness

Having users and source profiles and having cost models, one of the challenging problems is how to combine

these elements in order to evaluate the freshness of the data conveyed to users. The main questions are: How

should the different parameters of the source profile be combined for evaluating data freshness? What is the

impact of update propagation cost and query cost in the freshness of data?

An additional question is how to combine several source actual values to obtain a global quality estimation.

There are proposals only for specific environments. The combination of timeliness values within a virtual system

is studied in [Naumann+1999]. The combination function is very simple (maximum of the input values) because

they consider only simple views in a virtual context, but when dealing with materialization and complex

calculation activities (which represent a bigger spectrum of DISs), other DIS properties (e.g. update propagation

costs) should be considered. The combination of currency values within a materialized system is treated in

[Theodoratos+1999]. They consider a DW architecture where source images are refreshed periodically and the

propagation of changes to other materialized views follows push policies. Data currency is estimated adding the

propagation cost of each materialized view and the refreshment period. But there are stills many combinations of

freshness factors and types of systems for which there are no proposals. In particular, the combination of

freshness values in hybrids systems, that manage data of different nature, different types of storage and

synchronization policies is an open problem.

Freshness evaluation techniques can be used in the development of auditing tools, responsible for the evaluation

of data quality. Several kinds of auditing tools can be conceived, for example:

− Prediction tools, for predicting the quality of data that can be returned in response to a query, without

executing the query.

− Integrated evaluation tools, for measuring data quality during query execution and labeling delivered data

with its quality levels. These tools can be integrated to the query evaluation process.

− Statistical tools, for taking samples of data quality during query execution and storing statistics. These

tools can serve the first two categories.

The tools should use the query execution cost model and metadata describing the sources, the DIS and user

expectations. They can be used at design time to evaluate the system, for example to test if user expectations can

be achieved, or they can be used at run time for example, to predict the quality of the data delivered by

alternative processes in order to choose the process that best suites user quality expectations.

 Verónika Peralta

 13

Quality-driven engineering

Quality-driven engineering consists in designing a DIS under quality constraints. This kind of techniques may

help in the selection among several design choices:

− Selection among alternative query plans that access alternative data sources.

− Specific optimization techniques as indexing and materialization

− Optimization of extraction and transformation algorithms.

Although several kinds of techniques have been explored in depth for specific systems, adapting their

capabilities to heterogeneous systems requires addressing additional problems, as the combination of source data

with different quality values, or even the comparison of data source profiles.

Obviously, quality-driven engineering techniques are based on quality auditing techniques, but the use of the

latter ones may differ from evaluating an existing system and evaluating design alternatives. The challenge in

quality-driven engineering is in the identification of the variables that influence data freshness and the

proposition of techniques to achieve such improvements. There is few work done in this line, especially the

study of synchronization policies [Cho+2000] [Li+2003] [Segev+1990] or performance [Labrinidis+2003].

As improving freshness is not the unique quality goal for a given system, the relationship with other quality

properties becomes a major challenge in DIS design. Research described in [Naumann+1999] has introduced

quality factors to drive the design of virtual mediation systems; but quality factors are treated independently and

only combined by means of a weighted sum.

The relationship among freshness and other quality properties has been only partially studied. There are two

main lines: (i) tuning other properties in order to optimize freshness, and (ii) relaxing freshness in order to

optimize other quality factors. In the former, the challenge is in the identification of related quality properties

and the proposition of techniques that take advantages from these relationships in order to improve the global

quality of data. Existing works in this line mainly concern the balance of freshness and performance

[Labrinidis+2003] [Segev+1990] [Li+2003]. In the latter, the expected freshness level is taken as a constraint.

The main interest of existing works is performance or maintenance cost improvement [Bright+2002]

[Gancarski+2003] [Theodoratos+1999] but the relation with other quality factors is still unexplored.

Next section analyzes data accuracy.

3. Data accuracy

Most data quality studies include accuracy as a key dimension for different types of DIS [Gertz+2004] [Shin

2003] [Vassiliadis+2000] [Mecella+2002] [Gertz+1998] [Missier+2001]. However, although the term has an

intuitive appeal, there is no commonly accepted definition of what it means exactly. For example, in

[Naumann+1999], accuracy is characterized as “the percentage of objects without data errors such as

misspellings, out-of-range values, etc.”, and in [Redman 1996], it is described as “the degree of agreement

between a collection of data values and a source agreed to be correct”. Then, accuracy represents a family of

quality factors, or a quality dimension, with different associated metrics. Each factor best suites a particular

problem or type of system.

This section presents an analysis of data accuracy and its various underlying metrics. We analyze some

dimensions that impact the evaluation and enforcement of data accuracy and we present a taxonomy that

summarizes this discussion. The taxonomy is used for the analysis and classification of existing work.

3.1. Accuracy definitions

Data accuracy is concerned with the correctness and precision with which real world data of interest to an

application domain is represented in an information system [Gertz+2004]. Intuitively, the concept of data

accuracy introduces the idea of how precise, valid and error-free is data: Is data in correspondence with real

world? Is data error-free? Are data errors tolerable? Is data precise enough with respect to the user expectations?

Is its level of detail adequate for the task on hand?

Data Freshness and Data Accuracy: An State of the Art

14

Data accuracy has not a unique definition in the literature. The most common definitions concern how correct,

reliable and error-free is the data [Wang+1996] and how approximate is a value with respect to the real world

[Redman 1996]. But there are various definitions (and variants of such definitions) concerning different concepts

and metrics, which are mainly due to the different objectives of the systems where they are used. Furthermore, as

data accuracy is highly related to other quality factors (e.g. data completeness, data consistency and data

freshness), definitions are commonly confusing and overlapping. In this sub-section we present an analysis of

data accuracy definitions.

Data accuracy comprises a family of quality factors, each one representing some accuracy aspect and having its

own metrics. For that reason accuracy is commonly mentioned as a quality dimension [Jarke+1999]. We

distinguish three quality factors for this quality dimension:

� Semantic correctness factor*: It concerns the correctness and validity degree of the data [Wang+1996]

[Pipino+2002], describing how well data represent states of the real-world [Shanks+1999]. The concept

of correctness implicitly or explicitly involves a comparison with the real world or with reference data

agreed to be correct. It captures the gap (or the semantic distance) between data represented in the system

and reference data. For example, the degree of concordance between the set of students that assist to a

course and the list of students enrolled into this course.

According to this definition, every set of data should represent a real world situation [Bobrowski+1998].

Different forms of incorrectness are: data without real world correspondent (mismembers), data

referencing a wrong correspondent and data with erroneous attribute values [Kon+1995]. For example,

data about a student may reference an inexistent person, reference an incorrect person or reference the

correct person but having erroneous attributes (e.g. telephone).

� Syntactic correctness factor†: It expresses the degree to which a set of data is free of syntactic errors such

as misspellings [Naumann+1999] and format discordances. Data is argued to be correct, in a syntactic

way, if it satisfies syntactic rules and constraints imposed by users. Such constraints are not necessarily

defined as integrity constraints of source databases, and generally cannot be added to data sources

because of source autonomy; however, they correspond to the rules and constraints that DIS users expect

that data verifies. Examples of constraints are: “inter-company telephone numbers have 4 digits” or

“streets names must be registered in a street catalog”. Typical constraints assure that data is always

presented in the same format and is compatible with previous data [Wang+1996].

� Precision factor‡: It concerns the quantity of data to be stored and how precise this data must be [Redman

1996]. Data precision involves the level of detail of data representation [Bobrowski+1998]

[Bouzeghoub+2002]. For example, the weight of a person may be stored in kilos (e.g. 88 Kg.) or with a

greater precision (e.g. 88,25 Kg.). Analogously, a birthday may be represented by a year (e.g. 1973), by

month and year (e.g. September 1973), a date (e.g. 19/9/1973) or even including time. In all cases there is

a partial hierarchy inside each domain that allows deciding if a representation is more precise than

another.

Note that considering the nature of the definitions, the semantic correctness and syntactic correctness factors

attempt to quantify the quantity of data errors while the precision factor intends to quantify the precision of data.

However, considering the type of comparison, the syntactic correctness and precision factors verify rule

satisfaction focusing on syntactic aspects (data representation and constraints) while the semantic correctness

factor compares to real world focusing on semantic aspects (data significance).

The following example will be used along the document:

*
 In the literature, this quality factor has been called semantic correctness [Missier+2001], correctness [Bobrowski+1998], semantic

accuracy [Fugini+2002], accuracy [Wang+1996] [Gertz+2004] [Redman 1996] [Shanks+1999] [Wand+1996] [Naumann+2001]

[Missier+2003] [Altareva 2004] [Gertz+1998], free-of-error [Pipino+2002], soundness [Motro+1998], validity [Müller+2003] and data

quality [Ballou+1998]. Another alternative name is precision [Motro+1998].
†
 In the literature, this quality factor has been called syntactic correctness [Missier+2001], correctness [Missier+2003], syntactic accuracy

[Fugini+2002], accuracy [Naumann+1999], structural consistency [Redman 1996], representational consistency [Wang+1996], format
consistency [Missier+2003], consistency [Schurr+2002] and schema conformance [Müller+2003].

‡
 In the literature, this quality factor has been called precision [Bobrowski+1998] [Missier+2003] [Motro 1995], accuracy [Gertz+1998],

level of detail [Redman 1996] and ambiguity [Wand+1996].

 Verónika Peralta

 15

Example 2.1. Consider an information system that handles information about students (Table 6) and

consider real-world data about students (Table 7). Attributes describing students are: stid (the student

identification number), name, address, telephone, interview (initial level determined by interviews; taking

values ‘high’, ‘medium’ or ‘low’) and test (initial test result; taking values between 0 and 1). The key of the

relation is {stid}.

Considering semantic correctness, stid 21 and 22 do not exist in real-world (mismembers), and stid 58

references the wrong student. Other students present matching errors or null values in some attributes

(value inaccuracy), for example: student 43 has wrong address and telephone and student 102 has no

registered address. However, note that even not written in the same way, some attribute values are good,

e.g. the name of student 103 and the address of student 57. The address of student 56 is also ok;

discrepancies are because the street name was changed some years ago, but postal office keeps the old

name so address can be found.

Regarding syntactic correctness, note that some names and addresses do not follow standard rules, e.g.

name of student 103 and addresses of students 21 and 57. The address of student 22 is not in an address

catalog because of typing errors (Coloniaa instead of Colonia), and the test attribute of student 58 has an

out of range value (9).

Finally, regarding precision, note that some test values are rounded (e.g. student 57) leading to lose of

precision while other ones are more precise. The address of student 21 is also imprecise (Carrasco is the

name of a neighborhood, not a detailed address). □

stid name address telephone interview test

21 María Roca Carrasco 6001104 low 1.0

22 Juan Pérez Coloniaa 1280/403 9023365 medium .5

43 Emilio Gutiérrez Irigoitía 384 3364244 high .8

56 Gabriel García Propios 2145/101 low .5

57 Laura Torres Maldonado & Yaro 099628734 medium .7

58 Raúl González Rbla Rca Chile 1280/1102 4112533 high 9

101 Carlos Schnider Copacabana 1210 094432528 high .9701

102 Miriam Revoir 9001029 medium .7945

103 A. Benedetti Charrúa 1284/1 7091232 low .9146

104 Luis López Sixtina s/n high .8220

Table 6 – Students relation

stid name address telephone interview Test

43 Emilio Gutiérrez Potosi 934 6019945 high .8000

56 Gabriel García Batlle y Ordoñez 2145/101 5143029 low .5130

57 Laura Torres Maldonado 864 099628734 medium .6965

58 Horacio Acher Soca 2315 7079428 medium .7600

59 Renzo Quinteros Juan Paullier 635/001 4037690 low .5505

101 Carlos Schnider Copacabana 1210 094432528 high .9701

102 Miriam Revoir Canelones 1524 9001029 medium .7945

103 Ana Benedetti Charrúa 1284/1 7091232 low .5146

104 Luis López Sixtina s/n high .8218

Table 7 – Real world students

Other quality factors related to accuracy

Data accuracy is a quality measure for the relative amount of erroneous data accessed and manipulated by a

system. In the past, accuracy was known as “data quality” and proposals devoted to evaluate and enforce data

Data Freshness and Data Accuracy: An State of the Art

16

quality centered in accuracy (see for example [Ballou+1998]). For that reason, several accuracy definitions

include other quality aspects as completeness or freshness, i.e. incomplete and expired data is considered

inaccurate. In [Redman 1996], Redman distinguishes four quality dimensions for data values: accuracy (in the

sense of correctness), freshness (in the sense of timeliness)*, completeness and consistency, but remarks that

accuracy is the most fundamental one, with freshness, completeness and consistency being special cases.

In this sub-section we discuss larger definitions of data accuracy and its relation with other quality factors.

Accuracy and Completeness

Completeness is commonly defined as the degree to which all data relevant to an application domain have been

recorded in an information system [Gertz+2004]. It expresses that every fact of the real world is represented in

the information system [Bobrowski+1998]. It is possible to consider two different aspects of completeness: (i)

whether all required entities for an entity class are included, and (ii) whether all data values are present (not null)

for required attributes. In [Redman 1996], the first aspect is called entity completeness and the latter attribute

completeness, but other authors use different terms. Most works of literature define completeness as one or both

of the previous definitions.

Some works consider accuracy and completeness as a same family of problems. In [Kon+1995], authors study

error measurment and classify them into three categories: value innacuracy (errors or null values in some

attributes), class mismembership (system data references inexistent real-world data) and class incompleteness

(there is real-world data not referenced). They treat null values as a case of innacuracy and inexistent data as

incompleness. Analogous definitions are presented in [Parssian+1999].

Accuracy and Consistency

Consistency expresses the degree to which a set of data satisfies a set of integrity constraints [Redman 1996].

Data is argued to be consistent if it satisfies the constraints†. Examples of constraints are: “the age of an

employee accords its birthday year” (e.g. “Paul has 18 years” is inconsistent with “Paul was born in 1943”) or

“employee codes are unique”. The most common constraints checks for null values, key uniqueness, duplicates

and functional dependencies. In this sense, constraints state that two or more values do not conflict each other

[Mecella+2002]. In particular, duplicate detection is one of the current challenges.

Semantic correctness (as previously defined) is very difficult to check, however, automated checking of

constraints is feasible. In this direction, consistency checks provide a cost-effective way to identify data values

that are not valid, knowing that satisfaction of constraints does not assure that data is semantically correct.

Redman says that two data values are inconsistent if they cannot be correct simultaneously, so argues that

defining consistency rules helps in the identification of data values that cannot be correct [Redman 1996]. The

reader should note that such consistency rules may be defined for the integrated data (to be delivered to users),

so, they may be not defined as constraints in the sources. While in traditional database systems all consistency

rules are automatically checked by database engine and tuples not verifying them are rejected from the database,

in DIS, consistency rules may represent expected rules (and may be not implemented as constraints), so the

achievement of constraints can be measured as other quality factors (e.g. as a rate).

Accuracy and Freshness

As data values change with time, a lag between the time real-world data changes and the time changes are

represented in the system is inherent. Data timeliness measures this lag, expressing the degree to which the

recorded data are up-to-date.

Data changes have also an impact in data accuracy. As argued in [Redman 1996], a datum value is up-to-date if

it is correct in spite of a possible discrepancy caused by time-related changes to the correct value; a datum is

outdated at time t if it is incorrect at t but was correct at some time preceding t. In this sense, being out of date is

simply a specific type of inaccuracy.

*
 Timeliness is called currency in [Redman 1996]

†
 Analogously to syntactic constraints, integrity constraints are not necessarily defined in the source databases. They correspond to the

constraints that DIS data is expected to verify.

 Verónika Peralta

 17

In next sub-section we analyze accuracy metrics for measuring accuracy quality factors.

3.2. Accuracy measurement

In this sub-section we describe accuracy metrics. We firstly introduce three types of metrics for measuring the

accuracy of individual data items* and we discuss some aggregation functions for them; then, we explain the

specific metrics that have been proposed in the literature.

We highlight three types of metrics:

− Boolean metric: It is a Boolean value (1=true, 0=false) that indicates if a data item is accurate (correct,

precise) or not [Motro+1997].

− Degree metric: It is a degree that captures the impression or confidence of how accurate is data

[Laboisse 2005]. Such degree is commonly represented in the [0-1] range.

− Value-deviation metric: It is a numeric value that captures the distance between a system data item

and a reference one (e.g. its real-world correspondent entity) [Kon+1995]. Such distance is generally

normalized to the [0-1] range.

In order to provide the user with a global accuracy measure for a whole relation (or a query result), an

aggregated accuracy measure has to be synthesized. Given a set of data items S, with n elements (|S|=n)†, and a

set of accuracy values {ai} where ai is the accuracy value of the i-th element of S, 1 ≤ i ≤ n, aggregation functions

build a synthesized accuracy value for S. Typical aggregation functions are:

− Ratio: This technique calculates the percentage/ratio of accurate data of the system [Motro+1998]. This

percentage is calculated as the number of accurate data items in the system divided by the total number of

data items in the system. The accuracy of data items is expressed with Boolean metrics, i.e. ai ∈ {0, 1},

1≤ i ≤ n. The accuracy of S is calculated as:

AccuracyRatio(S) = |{ai / ai = 1}| / n

A generalization can be done for the other types of metrics, considering the number of data items whose

accuracy values are greater than a threshold θ, 0 ≤ θ ≤ 1:

AccuracyRatio(S) = |{ai / ai ≥ θ}| / n

− Average: This technique calculates the average of the accuracy values of data items [Ballou+1998]. The

accuracy of data items can be expressed with any type of metric. The accuracy of S is calculated as:

AccuracyAvg(S) = (Σi ai) / n

This technique is the most largely used, for the three types of metrics. Note that if accuracy of data items

are Boolean values the aggregated accuracy value coincides with a ratio.

− Average with sensibilities: This technique uses sensibilities to give more or less importance to errors

[Ballou+1998] and calculates the average of the sensitized values. Given a sensitivity factor α, 0 ≤ α ≤ 1,

the accuracy of S is calculated as:

AccuracySens(S) = (Σi ai
α) / n

− Weighted average: This technique assigns weights to the data items, giving more or less importance to

them [Ballou+1998]. Given a vector of weights W, where wi corresponds to the i-th data item, Σi wi =1,

the accuracy of S is calculated as:

Accuracyweight(S) = Σi wi ai

*
 Generally, the term data item refers to an attribute of a tuple (a cell), but in some application contexts it refers to the whole tuple.

†
 |A| denotes the cardinality (number of elements) of the set A.

Data Freshness and Data Accuracy: An State of the Art

18

Considering the three types of metrics and the aggregation functions, we describe the metrics proposed in the

literature for measuring data accuracy, classified by accuracy factor.

� Metrics for the semantic correctness factor:

� Semantic correctness ratio metric: It measures the percentage of semantically correct data in the

system [Motro+1998]. This percentage is calculated as the number of system data items that match

real world data divided by the number of system data items. This metric has been used in several

works, for example [Shankaranarayan+2003] [Redman 1996] [Motro+1998].

In practice, comparing all data against real world may be not viable, so correctness-ratio is commonly

estimated via sampling. A portion of system data is taken as a sample, which is validated against real-

world [Motro+1998] or a reference system considered reliable enough [Missier+2003]. For some

types of data as postal addresses, telephone numbers or emails, there exist referential catalogs. When

there are several available data sources, the most reliable one is usually taken as reference to perform

the comparison; the appearance frequency could also be taken into account to decide whether data is

correct or not [Shankaranarayan+2003] [Fugini+2002]. Other strategies consist in taking into account

other quality factors to determine the most reliable data source, e.g. data consistency [Redman 1996].

Source providers or domain experts can also provide error ratio estimations based on their

knowledge/experience with the data. Other specific methods are currently used to perform further

validations [Laboisse 2005]; they include enquiries, automatic-generated emails or telephone calls to

validate data with customers, even if such methods are very expensive and time consuming.

Additional metrics have been defined to measure special cases of inaccuracies [Parssian+1999]

[Kon+1995]:

� Mismembership ratio metric: It measures the percentage of mismembers, i.e. the percentage of

system data without correspondent in real-world.

� Value inaccuracy ratio metric: It measures the percentage of system data containing errors in

some attributes values or containing null values.

� Semantic correctness degree metric: It captures the impression or confidence of how correct is data

[Laboisse 2005]. The calculation can be done manually by a domain expert or it can be estimated

based on historical data or statistics. Most common degrees are in [0-1] range (or translations) or any

ad-hoc classification such as “good”, “medium” and “low”.

This metric is typically used in automatic input-processing systems, e.g. optical character recognition,

image recognition and address searching. For example, in optical character recognition applications,

each symbol is compared to the alphabet characters; the most similar one is returned with its similarity

degree. For example, for a certain application the three symbols of Figure 3 may be recognized as the

character “C”, but the confidence of such recognition may be 80, 100 and 65 respectively.

In order to compute the correctness degree of a set of elements, weighted average is typically used as

an aggregation function, assigning different weights to the attributes according to their relative

importance [Laboisse 2005].

Figure 3 – Character recognition examples

� Semantic correctness deviation metric: It measures the semantic distance between a system datum and

its real-world correspondent datum [Kon+1995] [Fugini+2002]. The calculation of such distance

depends on the data type and the application, for example, for numeric data, it can be calculated as the

difference between values (normalizing or not) [Shankaranarayan+2003] or for string data counting

the number of characters to change (add, delete or modify) [Navarro 2001] or considering the

soundness of words [USNARA 2000]. Values are generally normalized (translated to the [0-1]

interval).

In practice, if a comparison with real-world data is not possible, the comparison is done against a

reference value which can be obtained from other data source or synthesized from several source

values, e.g. using statistics of appearance frequency [Morey+1982] or taking an average value

[Shankaranarayan+2003] [Fugini+2002].

 Verónika Peralta

 19

For some attributes (belonging to a discrete domain), a similarity relationship among domain values

may be defined, indicating to what extent each pair of labels resemble each other. When such

relationship is defined, the similarity degree can be used as accuracy estimation. For example, Table 8

shows a possible similarity relationship for the interview attribute of the Students relation of Example

2.1, so the accuracy of the interview value of student 58 is 0.5. A similarity relationship can be

defined by users according to its expectations or can be taken from some domain convention (e.g.

color similarity ratios). Some types of fuzzy values (those of a discrete non-ordered dominion) have

associated a similarity relationship (see [Galindo+2004] for a description of fuzzy values).

In order to compute the value-deviation of a set of elements, simple or weighted averages are typically

used as aggregation functions, in the latter assigning different weights to the attributes according to

their relative importance [Motro+1998].

 low medium high

low 1 0.5 0

medium 0.5 1 0.5

high 0 0.5 1

Table 8 – Similarity relationship among values of the interview domain

� Metrics for the syntactic correctness factor:

� Syntactic correctness ratio metric: It measures the percentage of syntactically correct data of the

system [Pipino+2002]. This percentage is calculated as the number of system data that satisfies

syntactical rules divided by the number of system data. This metric is largely used in the literature; see

for example [Naumann+2000] [Pipino+2002] [Naumann+1999].

Note that when evaluating semantic correctness metrics, when the tuple is a mismember, all the

attribute values are inaccurate and when the key is not accurate most of the attribute values are

inaccurate (except for hazard coincidences). This is the desired effect. So, semantic correctness

metrics evaluate if an attribute corresponds to the real world object represented by the key. However,

when evaluating syntactic correctness, the metric semantics depends on the precise rules; for example,

syntax constraints or belonging to a range can be checked independently of the key attributes.

The most typical syntactical rules checks for illegal values (e.g. out-of-range), non-standard format or

embedded values (e.g. “Paris, France” in a city attribute).

� Syntactic correctness deviation metric: It measures the syntactic distance between a system datum and

some neighbor data that is syntactically correct [Fugini+2002]. The calculation of such distance (and

neighbor determination) depends on the type of constraint, the data type and the application, for

example, for string domain conformity checks (data belongs to a catalog) the distance to most similar

element can be used [Navarro 2001] [Gravano+2001] [USNARA 2000] or for out of range checks the

distance to the nearest range can be calculated. As an example, consider the Name attribute of Table 7

as a reference catalog for students’ names. The nearest element for “A. Benedetti” is “Ana Benedetti”

and the value-deviation metric can be calculated using some edit distance function.

In order to compute the value-deviation of a set of elements, simple or weighted averages are typically

used aggregation functions, assigning different weights to the attributes according to their relative

importance [Laboisse 2005].

� Metrics for the precision factor:

� Scale metric: For numeric values, precision is commonly associated to the measurement scale (or

error-ratio of the measurement instrument). For example, if the length of a certain table is 87 ±1 cm,

then imprecision is ±1 cm. A relative imprecision metric can be obtained dividing by the data value,

i.e. 1/87; the precision metric is obtaining subtracting imprecision from 1, i.e. 1 – 1/87. When the

error-ratio is not given, a confidence degree in the measurement process can be used, generally

measured as the units of the least significant digit of a measurement, e.g. in 17,130 meters imprecision

is millimeters (0,001 m) [Wikipedia 2006].

� Standard error metric: In contexts where a data item is obtained taking several measures of some

phenomena (e.g. temperature or traffic flow), imprecision is usually characterized in terms of the

standard deviation of the measurements, called the measurement process's standard error [Wikipedia

Data Freshness and Data Accuracy: An State of the Art

20

2006]. This metric, even largely used in scientific environments, is rarely used in data integration

systems because metadata about data production is not frequently available.

� Granularity metric: It involves the number and coverage of attributes that are used to represent a

single concept [Redman 1996]. For example, an address may be represented by only a country name

(e.g. Uruguay) or by a set of attributes like street name, door number, city, postal code and country

(e.g. Cubo del Norte, 3840, Montevideo, 11700, Uruguay). The second set of attributes provides a

more granular view of data. A simple metric consists in counting the data values (non-null values)

representing a concept.

Table 9 summarizes accuracy factors and their corresponding metrics.

Factor Metric Description

Semantic correctness ratio The percentage of system data that match real-world data.

Mismembership ratio The percentage of system data without correspondent in real-world.

Value inaccuracy ratio The percentage of system data containing errors in some attributes

representation.

Semantic correctness

degree

The confidence (degree) on the correctness of data

Semantic

Correctness

Semantic correctness

deviation

The semantic distance between a system datum and its

correspondent real-world datum.

Syntactic correctness ratio The percentage of system data that satisfies syntactical rules. Syntactic

Correctness Syntactic correctness

deviation

The syntactic distance between a system datum and a reference one

considered as syntactically correct.

Scale The precision associated to the measurement scale.

Standard error The standard deviation of a set of measurements.

Precision

Granularity The number of attributes used to represent a single concept.

Table 9 – Summary of accuracy factors and metrics

3.3. Dimensions for accuracy analysis

In this sub-section we analyze some dimensions that impact the evaluation and enforcement of data accuracy.

We analyze the granularity of the measurement, the typology of errors, the data types and the architectural

techniques of the underlying system. In next-subsection we present a taxonomy composed of these dimensions,

which allows comparing different proposals for accuracy evaluation.

Dimension 1: Granularity of measurement

The techniques for accuracy acquisition may vary according to the evaluation granularity. Traditionally, a global

accuracy measure was used to qualify a whole relation [Kon+1995] or a view over a relation [Naumann+1999].

In addition, some measurement techniques consider the relationship among relations [Rahm+2000]. Recent

proposals, especially industrial works, focus on the measurement of the accuracy of individual cells* [Laboisse

2005]. We describe these three levels of granularity:

� Cell granularity: In this approach, an accuracy value is associated to each cell, measured either as a

Boolean value (accurate / not accurate), a deviation from the correct value or a degree of accuracy. The

accuracy measure is generally obtained evaluating each cell of the relation. This is a very costly task but

industrial investment in accuracy measurement and improvement [Laboisse 2005] [Amat+2005] [Graveleau

2005] indicate its importance despite the cost.

*
 The term cell refers to an attribute of a tuple.

 Verónika Peralta

 21

� Set granularity: In this approach, a unique accuracy value is estimated for a whole relation or view,

typically measured as the number of accurate cells over the number of cells (ratio metric). The accuracy

measure can be obtained evaluating each cell of the relation or each cell of a sample; statistical techniques

can also be used. In several cases, the experience or confidence of experts can be used as estimation.

� Relationship granularity: In this approach, a unique accuracy value is associated to the relationship among

relations or views, typically measured as the number of accurate cells over the number of cells (ratio

metric). The accuracy measure is generally obtained applying arithmetic operations to the accuracy of

relations or views (e.g. multiplying such values [Naumann+1999]).

The main problem of associating an accuracy value to a whole relation is that it does not show where

inaccuracies are concentrated (some attributes, some sets of tuples). As argued in [Motro+1998] information

sources are rarely of uniform quality, so a unique accuracy value may be a very crude estimation of the accuracy

of specific data. On the other hand, cell granularity is sometimes too detailed, as sets of attributes or tuples may

have the same behavior. This causes great overhead in measurement and excessive additional storage.

An intermediate solution consists in partitioning the source relation in areas that are highly homogeneous with

respect to their accuracy [Motro+1998] and assigning an accuracy value to each area (thus remaining in set

granularity). Homogeneity means that any sub-area of a highly homogeneous area would maintain roughly the

same accuracy as the initial area. Areas are defined as views, which may involve selection and projection.

Partitioning may be done by source providers considering their knowledge about data, for example which

attributes are more probable to have errors or which sets of tuples (e.g. those corresponding to foreign sales) are

more probable to be inaccurate. In [Motro+1998], Motro and Rakov propose an algorithm to perform

partitioning in an automatic way, testing different partitioning criteria. Even if the algorithm has a great

complexity, heuristics can be considered for specific cases. Furthermore, authors argue that the partitioning

could be done only once, at design time, so the cost may be tolerated. The accuracy measure for each area can be

obtained in the same way as for the whole relation.

Example 2.2. Consider the Students relation of Example 2.1 and the measurement of semantic correctness

on it. The source database administrator provides the following information:

− Addresses and telephones of old students (id < 100) is very inaccurate (accuracy=0.25) because of

data obsolescence.

− Stid, name, interview and test of old students have accuracy of 0.50 due to typing errors and lack of

automated checking in an old information system.

− Data about new students (id ≥ 100) is almost accurate (accuracy=0.90).

A horizontal partition with two areas can be defined, with the following predicates: (i) stid < 100, and (ii)

stid ≥ 100. The first area is also vertically partitioned in two sub-areas for the {stid, name, interview, test}

and {address, telephone} sets of attributes respectively. Table 10 illustrates the partitioning coloring areas

(and sub-areas) with different colors. □

stid Name address telephone interview test

21 María Roca Carrasco 6001104 low 1.0

22 Juan Pérez Coloniaa 1280/403 9023365 medium .5

43 Emilio Gutiérrez Irigoitía 384 3364244 high .8

56 Gabriel García Propios 2145/101 low .5

57 Laura Torres Maldonado & Yaro 099628734 medium .7

58 Raúl González Rbla Rca Chile 1280/1102 4112533 high .9

101 Carlos Schnider Copacabana 1210 094432528 high .9701

102 Miriam Revoir 9001029 medium .7945

103 A. Benedetti Charrúa 1284/1 7091232 low .9146

104 Luis López Sixtina s/n high .8220

Table 10 – Partition of the Students relation (π address, telephone (σstid < 100 (Students)),

 π stid, name, interview, test (σstid < 100 (Students)), and σstid ≥ 100 (Students))

Data Freshness and Data Accuracy: An State of the Art

22

Regarding storage, cell granularity needs more storage space. Accuracy values are stored for each cell, for

example in an accuracy matrix [Motro+1998] where columns represent attributes, rows represent tuples and

values in the table correspond to the accuracy of the tuple attribute (cell). In the proposal of [Motro+1998],

authors store Boolean metrics of semantic correctness but the matrix can be used with the other types of metrics

and factors.

Example 2.3. Continuing Example 2.1, Table 11 and Table 12 show two accuracy matrixes for the

Students relation, both measuring semantic correctness, the former with a Boolean metric and the latter

with a value-deviation metric. The value deviation metric is calculated as the distance between the actual

value (v) and the database one (v’), normalized and subtracted from 1. For the test attribute (numeric

value), the arithmetic difference is used as distance and the actual value is used for normalization:

 accuracy (v’,v) = max { (1 – |v –v’| / v) , 0 }

For the name attribute (string value), the string edit distance is used, counting the number of characters that

must be changed (added, deleted or modified) in order to transform the database value into the actual one;

the size of the actual value is used for normalization:

 accuracy (v’,v) = max { (1 – string_distance(v –v’) / size(v)) , 0 }

For the address attribute, a GIS application is used in order to determine if addresses match. A value of 1

corresponds to addresses that completely match (no matter typing errors), 0 corresponds to addresses that

do not match and intermediate values correspond to addresses that partially match (e.g. same street but

different door-numbers). Note that incomplete addresses can be useful (for example, letters can arrive to

destination), however little errors in telephone numbers causes that the person cannot be contacted; so, for

the telephone attribute, the distance is calculated by a Boolean function. For the interview attribute

(enumeration with values low, medium and high), their similarity degrees are used as distance (given in

Table 8). □

 stid name address telephone interview test

21 0 0 0 0 0 0

22 0 0 0 0 0 0

43 1 1 0 0 1 1

56 1 1 1 0 1 1

57 1 1 1 1 1 1

58 1 0 0 0 0 0

101 1 1 1 1 1 1

102 1 1 0 1 1 1

103 1 1 1 1 1 0

104 1 1 1 1 1 1

Table 11 – Accuracy matrix of the Students relation (semantic correctness, Boolean metric)

 stid name address telephone interview test

21 0 0 0 0 0 0

22 0 0 0 0 0 0

43 1 1 0 0 1 1

56 1 1 1 0 1 0.9974

57 1 1 0.5 1 1 0.9950

58 1 0 0 0 0.5 0.8444

101 1 1 1 1 1 1

102 1 1 0 1 1 1

103 1 0.8333 1 1 1 0.5627

104 1 1 1 1 1 0.9998

Table 12 – Accuracy matrix of the Students relation (semantic correctness, value-deviation metric)

 Verónika Peralta

 23

An alternative storage way is extending the relation with additional attributes, each attribute for storing the

accuracy of each data attribute. For example, Table 13 shows the Students relation with additional attributes (Asti,

Anam, Aadd, Atel, Aint and Ates) which store the accuracy values corresponding to the stid, name, address,

telephone, interview and test attributes respectively.

For the set granularity only an accuracy value is stored for the whole relation or view. Following previous

example, a semantic correctness ratio of 0.6 (ratio metric) or an average of 0.6247 (value-deviation metric) can

be stored for the Students relation. In the particular case of partitions (areas are views), an accuracy value is

stored for each area. For example, the semantic correctness ratios of 0.25, 0.50 and 0.9 are associated to the areas

defined in Example 2.2 respectively. For the relationship granularity an accuracy value is stored for the

relationship.

stid Asti name Anam address Aadd telephone Atel interview Aint test Ates

21 0 María Roca 0 Carrasco 0 6001104 0 low 0 1.0 0

22 0 Juan Pérez 0 Coloniaa 1280/403 0 9023365 0 medium 0 .5 0

43 1 Emilio Gutiérrez 1 Irigoitía 384 0 3364244 0 high 1 .8 1

56 1 Gabriel García 1 Propios 2145/101 1 0 low 1 .5 1

57 1 Laura Torres 1 Maldonado & Yaro 1 099628734 1 medium 1 .7 1

58 1 Raúl González 0 Rbla Rca Chile

1280/1102

0 4112533 0 high 0 .9 0

101 1 Carlos Schnider 1 Copacabana 1210 1 094432528 1 high 1 .9701 1

102 1 Miriam Revoir 1 0 9001029 1 medium 1 .7945 1

103 1 A. Benedetti 1 Charrúa 1284/1 1 7091232 1 low 1 .9146 0

104 1 Luis López 1 Sixtina s/n 1 1 high 1 .8220 1

Table 13 –Students relation enlarged with accuracy values (semantic correctness, Boolean metric)

Dimension 2: Typology of errors

As measuring accuracy corresponds to quantifying data errors or data imprecisions, measurement techniques are

closely related to the types of errors or anomalies that arise to data. We use the term error in a wide sense,

including not only incorrect and malformed values but also values that do not follow user expectations, for

example, values that do not follow certain representation standard.

Several error classifications have been proposed in the literature, particularly in the domains of data cleaning and

data mining [Rahm+2000] [Oliveira+2004] [Müller+2003] [Quass 1999] [Berti-Equille 2004]. We grouped such

types of errors in 7 categories:

� Value errors: This category encloses syntactical errors in cells, such as out-of-range values, misspellings

and other typing errors.

� Standardization errors: This category includes values that are syntactically correct but do not follow an

expected standard, e.g. standard format or standard units.

� Embedded values: This category represents cell values that correspond to multiple values (e.g. an address

attribute embedding street, door number, city and postal code).

� Missing values: This category corresponds to dummy or null values for mandatory attributes.

� Integrity rule violations: This category encloses violations to integrity rules among attributes and among

tuples, such as functional dependencies or uniqueness constraints.

� Duplicates: This category corresponds to values that are duplicated in the database, either consistently or

contradictorily.

� Wrong values: This category represents values that do not correspond to real-world entities.

Data Freshness and Data Accuracy: An State of the Art

24

Table 14 presents a summary of error types proposed in the literature, detailing a name for the problem*, a brief

description and an example; the type column corresponds to our classification.

The classification of missing values is debatable; they can also be considered as value errors or integrity rule

violations. We have chosen to classify them in a separate category because many works concentrate in null

values, for example [Naumann+1999] [Redman 1996]. However, note that null values are generally related to

the consistency and completeness quality factors but not to accuracy; to the former because having null values

for mandatory attributes violates data integrity and to the latter because they cause incomplete descriptions of

real world entities. Similarly, integrity rule violations and duplicates categories do not refer to accuracy but

consistency problems, i.e. errors in the relationships among values and violations of dependencies among them.

We described them here in order to be consistent with existent error classifications but we will omit them in the

rest of the section.

Type Problem Descripcion Example

Illegal values Values outside of domain range date = 30/13/70

Misspellings Values incorrectly written; usually typos and

phonetic errors

city=”Paaris”

V
a
lu
e erro

rs Misfielded values Value entered in the wrong attribute city=”France”

Cryptic values Cryptic values and abbreviations occupation=”DB Prog.”

Use of synonyms Expression syntactically different but semanti-

cally equivalent

occupation=”professor”

occupation=”teacher”

Word transpositions Word transpositions, usually in a free-form field name= “J. Smith”

name=”Smith J.”

No standard format Values appear in different formats date=”13/08/1974”

date=”1974/08/13”

S
ta
n
d
a
rd
iza
tio
n

erro
rs

No standard units Values appear in different units value=123 (euros / dollars)

E
m
b
ed
-

d
ed

v
a
lu
es

Embedded values Multiple values entered in one attribute (e.g. in a

free-form field)

name=”J. Smith 12.02.70 New

York”

M
issin

g

v
a
lu
es

Missing values Dummy or null values for mandatory attributes phone=9999-999999

Attribute dependency

violations

Attribute dependency violation age=22; date=12/02/70

Uniqueness violations Uniqueness violation emp1=<”John Smith”,832>

emp2=<”Peter Miller”,832>
In
teg
rity
 ru
le

v
io
la
tio
n
s Referential integrity

violations

Referential integrity violation emp1=<”John Smith”, D127>

department D127 not defined

Duplicated records Same information represented twice (e.g. due to

some data entry errors)

emp1=”John Smith”

emp2=”J. Smith”

D
u
p
lica
tes

Contradicting records Same information is described by different

(contradicting) values

emp1=<”John Smith”, 12/02/70>

emp2=<”John Smith”, 22/02/70>

Incorrect values Value does not correspond to real world situation age=35

actual age is 37

W
ro
n
g

v
a
lu
es Wrong references

Referenced value is defined but wrong emp=<”John Smith”, D127>

actual department is D157

Table 14 – Typology of errors

Dimension 3: Data types

Measurement techniques are closely related to data types. Example 2.3 motivated this fact, where specific

formulas were proposed in order to calculate value deviations for different data types. In the literature, most

efforts are dedicated to evaluating distances among numeric values [Ballou+1998] and among string values

*
 When different names were proposed we take the most frequently used.

 Verónika Peralta

 25

[Navarro 2001] [USNARA 2000], but some works propose specialized techniques for particular cases, such as

addresses, telephones and emails [Amat+2005].

We observe data types from the user point of view, i.e. which is the type of the data that users expect. Note that

data types may be different at sources, e.g. a date may be embedded in a string attribute. Furthermore, different

sources may provide the same data but with different data types; for example, sex may be represented by integer

numbers (0 and 1) and by strings (“male”, “female”, “M”, “F”, etc.). As a consequence, it may be possible that

source data does not comply with the data types expected by users. In some cases appropriate transformation

functions can be applied in order to standardize data (e.g. sex attribute of previous example), but in other cases,

as in free-form strings, functions are very hard to abstract (e.g. free form address attributes). The most detailed

the data types are specified, the easier data errors and anomalies may be identified and corrected.

We propose a classification of data types in some basic categories and discuss some special cases for each one:

� Numeric types: They constitute the easiest data type to check for imprecisions and deviations, allowing

the definition of precise arithmetic functions to estimate data accuracy. As a special case, range

specification allows detecting further anomalies.

� Date types: As dates are precisely typed, it is also easy to check for invalid values (e.g. 30/02/2006),

format discrepancies (e.g. 02/20/2006 when expecting DD/MM/YYYY format) and imprecise values (e.g.

February-2006 when also expecting the day). Deviations can be easily calculated with standard date-

difference functions.

� Enumeration types: They enclose all data types representing a finite set of elements, e.g. month names,

which can be mapped to naturals. Out of range checking is easy; the distance to the closer element can be

used to correct errors (e.g. transform “Fevruary” into “February”). Lots of special cases can be defined,

generally using term glossaries, domain ontologies or reference catalogs for comparing with valid

elements. Most common examples are code lists (e.g. airport international codes) and name catalogues

(e.g. street names). The increasing definition of domain ontologies allows checking for belonging of

additional attributes, as technical terms (e.g. disease names) and the detection of synonyms and

abbreviations. Mapping functions may also be defined in order to transform from an enumeration type

(used at a source) to another one (expected by users), for example for translating technical terms from

English to Spanish.

� String types: They constitute the most widely used data type and the most difficult to check for errors. In

some special cases, attribute domains may be described by grammars, which allow the detection of value

errors (e.g. personal names following the format “name initial dot surname” as “J. Smith”). Free form

strings are very hard to treat and generalize; embedded values and lists of elements may appear. However,

many special cases have been sufficiently treated for some specific domains, for example, customer

addresses, emails and telephones in CRM* applications.

Further data types can be defined for specific applications, for example, streams, pictures, video, etc.

Dimension 4: Architectural Techniques

The accuracy of the data delivered to the user depends on source data accuracy (the accuracy of source data at

extraction time) but also on the errors introduced or corrected by DIS processes. The architectural techniques

dimension discussed for data freshness also have impact in data accuracy because some detection and correction

techniques can be executed only in particular environments. We recall the three main families of architectural

techniques discussed in Sub-section 2.3:

� Virtual techniques: The system does not materialize any data so all queries are calculated when they are

posed. The system queries the relevant sources and merges their answers in a global answer that is

delivered to the user. Examples are pure virtual mediation systems and query systems in database

federations.

� Caching techniques: The system caches some information, typically data that is frequently accessed or the

result of some frequent queries, and invalidates it when the time-to-live (TTL) has expired. If the

information required to answer a user query is stored in the cache, the system delivers it to the user; if not,

the system queries the sources as in virtual systems. Examples are caching systems.

*
 CRM = Customer Relationship Management

Data Freshness and Data Accuracy: An State of the Art

26

� Materialization techniques: The system materializes large volumes of data which is refreshed

periodically. The users pose their queries and the system answers them using the materialized data.

Examples are data warehousing systems and web portals that support materialization.

When materializing data, complex transformations can be applied to data, including routines for error correction

or format standardization. Such processes can also introduce errors, for example, rounding numbers can lose

precision or normalizing addresses can cause values to be not longer semantically correct. Virtual techniques

must provide query answers within short delays, so such complex transformation cannot be applied, however,

simple format transformations and arithmetic operations are sometimes included in such systems. So even in less

degree, some errors can be introduced by virtual techniques. Caching techniques only copy data from sources, so

no errors are introduced no corrected during the process.

In addition, some measurement techniques, especially those comparing to real-world, which needs greats

amounts of time for executing, only can be implemented for materialized data.

In next sub-section we present a taxonomy that relates these four dimensions summarizing their analysis.

3.4. A taxonomy of accuracy measurement techniques

In this sub-section we present a taxonomy that summarizes the discussion and allows comparing different

proposals for accuracy evaluation. The taxonomy is composed of the previously described dimensions:

(i) granularity of measurement, (ii) typology of errors, (iii) data types, and (iv) architectural techniques.

Firstly, there is a close relation between the typology of errors and the accuracy factors, since factors allow

quantifying data errors, i.e. inaccuracies. Some relations are quite intuitive; semantic correctness is related to

wrong values (values that do not match real world situations) and syntactic correctness is related to value errors,

standardization errors and embedded values (all of them representing syntactic errors). However, the relation of

the precision factor with some types of errors is less evident to see. Commonly, lack of precision appears as a

standardization error (e.g. 143 when expecting a value with two decimal digits). In addition, some value errors,

specifically out of domain values (e.g. 1974 when expecting a date value) correspond to imprecision. However,

although embedded values may contain incomplete information (e.g. “John” when expecting the whole name)

they are very hard to quantify and are not considered as lacks of precision. Table 15 shows the relation among

accuracy factors and error types, indicating the valid (�) and invalid (�) combinations.

Accuracy factor

Error type
Semantic correctness Syntactic correctness Precision

Value errors � � �

Standardization errors � � �

Embedded values � � �

Wrong values � � �

Table 15 – Relation among accuracy factors and typology of errors

There is also a relation among the data types and the typology of errors, specifying the kind of errors that can

appear in each data type. For example, for some special cases of string data (as addresses) embedded values are

frequent. Specific techniques for error detection and correction have been developed for specific data types and

specific error types. But note that the relationship between these dimensions is merely syntactical; the

correspondence with real world is independent of data types, and consequently, wrong values (values that do not

match real world situations) are not related to specific data types. Table 16 shows the interrelations among these

dimensions categories, indicating the valid combinations; value and standardization errors can appear for all data

types, however, embedded values are most frequent for the string type.

Architectural techniques are related to error types. Specifically, the evaluation of wrong values generally implies

the comparison with real world, which is generally very costly (in time); therefore, assessment techniques only

can be executed when data is materialized. The checking of embedded values also requires expensive routines.

Virtual and caching techniques only can execute simple assessment functions, looking for value and

standardization errors. Table 17 shows the interrelations among these dimensions categories, indicating the valid

combinations; value and standardization errors can appear for all types of techniques, however, embedded and

wrong values are treated only by materialized techniques.

 Verónika Peralta

 27

Data type

Error type
Numeric Date Enumeration String

Value errors � � � �

Standardization errors � � � �

Embedded values � � � �

Wrong values no matter data type

Table 16 – Relation among typology of errors and data types

Architectural techniques

Error type
Virtual Caching Materialization

Value errors � � �

Standardization errors � � �

Embedded values � � �

Wrong values � � �

Table 17 – Relation among typology of errors and architectural techniques

A priori, all combinations of granularities of measurement and error types are possible, i.e. cell, set or

relationship granularity can be used in the evaluation of the different types of errors (with their valid

combinations of data types and architectural techniques).

In addition, granularity of measurement is also orthogonal to the accuracy factors, i.e. users may be interested in

any accuracy definition, independently of the way accuracy measures are stored. But taking into account the

particularities of the systems and the availability of metadata and estimations, the different metrics are generally

more related to some levels of granularity. Concretely, semantic correctness ratio and syntactic correctness ratio

metrics are not appropriate for cell granularity and scale metric (precision) have no sense for string data types. In

addition, as argued in Sub-section 3.2 the standard error metric (precision) is rarely used in DIS applications.

Table 18 shows the correlation among all taxonomy dimensions and accuracy factors (some metrics are marked

in brackets when not all the metrics are appropriate).

Granularity

Error type – Data type – Arch. techniques
Cell granularity Set granularity

Relationship

granularity

Value errors

Numeric

Date

Enumeration

String

Virtual

Caching

Materialization

Syntactic correctness

(deviation)

Precision

Syntactic

correctness

Precision

Syntactic

correctness

Precision

Standard.

errors

Numeric

Date

Enumeration

String

Virtual

Caching

Materialization

Syntactic correctness

(deviation)

Precision (scale,

granularity)

Syntactic

correctness

Precision (scale,

granularity)

Syntactic

correctness

Precision (scale,

granularity)

Embedded

values
String Materialization

Syntactic correctness

(deviation)

Syntactic

correctness

Syntactic

correctness

Wrong

values

No matter data

type
Materialization

Semantic correctness

(degree, deviation)

Semantic

correctness

Semantic

correctness

Table 18 – Correlation among taxonomy dimensions

The technical problems to solve for each cell of the taxonomy are quite different. For example, measuring

semantic correctness at cell granularity requires costly evaluation processes, sometimes requiring human

interaction, while counting the ratio of cells do not satisfying a syntactic rule can be easily implemented and

executed. In Sub-section 3.6 we discuss evaluation problems.

Data Freshness and Data Accuracy: An State of the Art

28

3.5. Some systems that consider data accuracy

In this sub-section we analyze several types of systems that evaluate accuracy and we describe the goals and

problems that they present. We do not try to be exhaustive because there exist lots of propositions that take into

account data accuracy; we intend to present an overview of the problems. At the end of the sub-section, Table 19

summarizes the discussed proposals in terms of the taxonomy presented before.

Data Warehousing systems

In data warehousing systems, accuracy is studied in the context of data cleaning techniques. The main objective

is to detect and correct errors. There is a great variety of techniques for detecting specific errors, generally

specialized for some application domains. The most used ones consists in format parsing [Raman+2001], outliers

detection [Maletic+2000] and frequency distribution analysis [Quass+1999]. In [Oliveira+2005], authors present

a taxonomy of data quality errors (that refines the categories presented in Sub-section 3.3) and some methods

(based on decision trees) for deciding which types of errors may arise to data. Regarding error correction, most

automatic correction techniques consist in applying user defined functions [Lee+2000] [Galhardas+2000]

[Sattler+2000] or simply deleting erroneous values [Vassiliadis+2001] [Sattler+2000]. When errors cannot be

automatically corrected, they are reported in a log [Vassiliadis+2001] or interactively presented to the user

[Raman+2001] [Galhardas+2000] in order to be manually corrected.

Several cleaning tools have been proposed in the literature, e.g. AJAX [Galhardas+2000], FraQL [Sattler+2000],

Potter’s Wheel [Raman+2001], ARKTOS [Vassiliadis+2001] and IntelliClean [Lee+2000]. An overview and

comparison of tools and the underlying techniques can be found in [Müller+2003] [Oliveira+2004]. The tools

bring support for detecting and correcting a wide range of errors, specifically value errors (basically detecting

illegal formats and replacing with some derived value), standardization errors (mapping abbreviations and

formats to the standard ones), embedded values (looking for frequent patterns and breaking into separate

attributes) and missing values (filling-in with derived values). Tools also provide support for detecting and

correcting consistency problems, however, they do not treat wrong values (corresponding to semantic

correctness problems).

But cleaning techniques do not deal with measuring accuracy levels and informing them to users. Only few

works focus on reporting data quality to users. In [Moura+2004], authors build multidimensional cubes to show

aggregations of data warehouse quality, some of the dimensions corresponding to indicators related with data

accuracy.

In [Zhu+2002] the quality of external sources is evaluated in order to select the most appropriate sources. They

study and compare different methods for building quality indicators that aggregate several quality measures; the

syntactic correctness ratio is one of the proposed quality metrics.

Mediation systems

In mediation systems, syntactic correctness is used as a quality metric to compare among sources and to filter the

data returned to the user. In [Naumann+1999], they introduce quality factors in a mediation system, which

include syntactic correctness. They study how to propagate a set of quality factors from several heterogeneous

sources to the mediator. The propagation consists basically of merge functions that combine actual values of two

sources through a relational operator. They use the syntactic correctness ratio metric with a relation/view

granularity; considered errors are value errors (misspellings, out-of-range values, etc.).

Cooperative systems

A Cooperative Information System (CIS) is a large scale information system that interconnects various systems

of different and autonomous organizations, geographically distributed and sharing common objectives

[Mecella+2002]. A service-based framework and an overall architecture for managing data quality in CIS is

proposed in [Mecella+2002]. Their architecture allows each organization to export data with associated quality

information and to retrieve data specifying quality requirements. Their quality model includes, among other

quality factors, the semantic correctness factor, measured as a value-deviation. Quality values are associated to

each cell (data is represented in XML documents; quality values follows the same structure). In [Fugini+2002],

authors evaluate semantic correctness and syntactic correctness (value errors), both measured as value-deviations

 Verónika Peralta

 29

and associated to cells. They use quality measures to support the exchange of trusted data, enabling

organizations to assess the suitability of data before using it.

A model for quality management in CIS is presented in [Missier+2001]. They propose an extensive use and

exchange of quality metadata. They measure different accuracy factors: semantic correctness, syntactic

correctness (value and standardization errors) and precision (scale and granularity). They store the validation

history of each cell (validating an item value means testing it, using either some external reference data or some

checking algorithm) and discuss its use for data quality enforcement. They use the model in a case of study in the

domain of public administration [Missier+2003]. Source data presents a number of problems, e.g. addresses

become stale (and then no correspond with real-world), different address formats, same names with multiple

spellings and typing errors (generally misspellings). They study assessment methods for their data, classify

errors and recommend cleaning techniques for correcting major errors (other errors are lead to manual

correction, but their number is substantially reduced).

Other applications

Other types of applications, specifically those managing customers’ data, need precise information of the

accuracy of each data item. For example, CRM applications manage customer relationship information, generally

accessing to multiples sources in order to collect all relevant information and to abstract a customer profile;

external sources are increasingly being incorporated. In these applications, business and advertisement

information is frequently sent to customers, so having accurate contact information is a major goal. Other

information, useful for classifying customers (e.g. profession, income level and preferences), should be accurate

enough in order to define good targets for promotions and advertising.

Information quality and particularly information accuracy is indispensable in such applications [Laboisse 2005]

[Amat+2005] [Graveleau 2005]. The major goal is achieving semantic correctness. They use a great variety of

techniques for detecting and correcting errors, sometimes checking for syntactic correctness in order to find

Works Measurement
Granularity

measurem.

Typology of

errors

Data

type

Arch.

techniques

Data cleaning

[Galhardas+2000]

[Sattler+2000][Lee+2000]

[Raman+2001]

[Vassiliadis+2001]

Syntactic correctness Cell Value errors,

standard. errors,

embed. values

All Materialization

Reporting warehouse

quality [Moura+2004]

Syntactic correctness,

precision

Set Value errors,

standard. errors,

embed. values

All Materialization

Source selection

[Zhu+2002]

Syntactic correctness

(ratio)

Set Value errors Not

specified

Materialization

Quality-based integration

[Naumann+1999]

Syntactic correctness

(ratio)

Set,

relationship

Value errors Not

specified

Virtual

Retrieving quality data in

cooperative systems

[Mecella+2002]

Semantic correctness

(deviation)

Cell Wrong values Not

specified

Materialization

Trusted data exchange in

cooperative systems

[Fugini+2002]

Semantic correctness

(deviation), syntactic

correctness(deviation)

Cell Value errors,

wrong values

Not

specified

Materialization

Exchange of quality

metadata [Missier+2001]

[Missier+2003]

Semantic correctness,

syntactic correctness,

precision (scale,

granularity)

Cell Value errors,

standard..errors,

wrong values

All Materialization

Data cleaning in CRM

[Laboisse 2005]

[Amat+2005]

Semantic correctness,

syntactic correctness,

precision (scale)

Cell All All Materialization

Table 19 – Summary of proposals

Data Freshness and Data Accuracy: An State of the Art

30

possible semantic errors (e.g. an email that is syntactically incorrect will fail to be delivered). Reference

dictionaries (e.g. address dictionaries) are used to verify the existence of data values. But most of the effort

corresponds to expensive manual verification tasks, as telephone calls and emails for verifying the exactitude of

customer data. In order to involucrate customers in the process (motivate them to answer questions) special

promotions and prix are created, further increasing the quality enforcement process. Furthermore, verification

and cleaning techniques are often delegated to third party organizations specialized in quality control [Laboisse

2005] [Amat+2005].

3.6. Research problems

Data accuracy has been largely studied for various types of DIS, however, many problems remain unsolved or

insufficiently treated. This sub-section summarizes these problems and mentions, when they exist, the references

which have done significant contributions in each class of problem. Most of the problems coincide with those

ones studied in Sub-section 2.6 for data freshness, so we give only a brief description of the problems and we

remit to Sub-section 2.6 for details.

The accuracy evaluation process needs to know about the users’ and source profiles, i.e. metadata about users’

expectations and source properties. Such elements should be adequately combined in order to evaluate the

accuracy of data conveyed to users. Accuracy evaluation can be used for auditing an existing DIS or for

designing a new DIS under quality constraints. In the following, we discuss these problems.

Defining users’ and source profiles

Evaluating data accuracy implies testing whether user’s accuracy expectations can be satisfied from source data

accuracy. One of the first problems is how and where to specify user expectations and how to define data source

properties which impact data accuracy.

Specification of accuracy expectations

Users have accuracy expectations for their applications which should be formulated according to some factors

and metrics among those we have seen in Sub-sections 3.1 and 3.2. The specification of these factors and metrics

pose a number of questions:

− Which language or formalism to use? Alternatives can vary from the simple specification of ratios

[Kon+1995] [Naumann+1999] [Li+2003] [Redman 1996] associated to each object type, to the definition

of a specialized language if a preference order is introduced among accuracy of different object types.

− At what level accuracy expectations should be specified? Analogously to data freshness, we distinguish

four levels: (i) for the whole system, (ii) for each data source, (iii) for each user or group of users, and (iv)

for each user query. Technical problems are similar.

Acquisition of source accuracy

The evaluation of data accuracy at source level implies the selection of an accuracy factor and the definition of

metrics and measurement processes for it. The definition of new factors and metrics is an interesting area. Most

existing works concentrate in the syntactic correctness factor, while industry is increasingly demanding better

techniques for evaluating semantic correctness and precision. Furthermore, the current development of third

party service societies specialized in the hosting and measurement of accuracy of enterprise data confirms its

importance [Laboisse 2005]. The acquisition of source data accuracy poses some questions:

− Which source metadata is necessary to represent accuracy in a source profile? In order to characterize

source actual accuracy some metadata should be obtained, for example error distribution. This metadata

will depend on the level of granularity (cell, set or relationship) choose for expressing accuracy metrics.

− How to acquire such metadata from sources? Some sources (or domain experts) can provide useful

information as the confidence degree for certain attributes, but for other sources these values must be

learned or estimated from statistics elaborated during the data source exploitation. There is a large

 Verónika Peralta

 31

collection of techniques and functions for measuring some types of errors, commonly known as error

detection techniques. The most used ones consists in format parsing [Raman+2001], outliers detection

[Maletic+2000] and frequency distribution analysis [Quass+1999]. Several cleaning tools have been also

proposed, e.g. AJAX [Galhardas+2000], FraQL [Sattler+2000], Potter’s Wheel [Raman+2001], ARKTOS

[Vassiliadis+2001] and IntelliClean [Lee+2000]. Both techniques and tools bring support for detecting a

wide range of syntactical errors (value errors, standardization errors and embedded values) but do not

treat wrong values (corresponding to semantic correctness problems). Techniques for specific metadata

should be also developed as in [Laboisse+2005].

Auditing data accuracy

Having users and source profiles, one of the challenging problems is how to combine these elements in order to

evaluate the accuracy of the data conveyed to users. The main questions are: How should the different

parameters of the source profile be combined for evaluating data accuracy? What is the impact of error

distribution in the accuracy of data?

An additional question is how to combine several source actual values to obtain a global quality estimation.

There is a proposals for combining accuracy ratios within SQL operators, following gross hypothesis of uniform

distribution of errors [Naumann+1999]. The combination function is very simple (product of the input values).

Error models that better represent source data should be analyzed. An important contribution in this line was

presented in [Motro+1998], partitioning source data according to error distribution. The impact of complex

operations such as data cleaning processes are not treated at all.

Accuracy evaluation techniques can be used in the development of auditing tools, responsible for the evaluation

of data quality. Several kinds of auditing tools can be conceived, for example:

− Prediction tools, for predicting the quality of data that can be returned in response to a query, without

executing the query.

− Integrated evaluation tools, for measuring data quality during query execution and labeling delivered data

with its quality levels. These tools can be integrated to the query evaluation process.

− Statistical tools, for taking samples of data quality during query execution and storing statistics. These

tools can serve the first two categories.

The tools should use metadata describing the sources, the DIS and user expectations. They can be used at design

time to evaluate the system, for example to test if user expectations can be achieved, or they can be used at run

time for example, to predict the quality of the data delivered by alternative processes in order to choose the

process that best suites user quality expectations.

Quality-driven engineering

Quality-driven engineering consists in designing a DIS under quality constraints. This kind of techniques may

help in the selection among several design choices:

− Selection among alternative query plans that access alternative data sources.

− Specific error correction techniques as duplicate elimination.

− Relaxation of selection or join conditions, replacing crisp predicate for approximate ones.

Although several kinds of techniques have been explored in depth for specific systems, adapting their

capabilities to heterogeneous systems requires addressing additional problems, as the combination of source data

with different quality values, or even the comparison of data source profiles.

The challenge in quality-driven engineering is in the identification of the variables that influence data accuracy

and the proposition of techniques to achieve such improvements. Most existing work consists in automating

error detection and correction, either applying user defined functions [Lee+2000] [Galhardas+2000]

[Sattler+2000] or simply deleting erroneous values [Vassiliadis+2001] [Sattler+2000]. When errors cannot be

automatically corrected, they are reported in a log [Vassiliadis+2001] or interactively presented to the user

[Raman+2001] [Galhardas+2000] in order to be manually corrected. Existing cleaning tools bring support for

detecting and correcting a wide range of errors, specifically value errors (basically detecting illegal formats and

replacing with some derived value), standardization errors (mapping abbreviations and formats to the standard

Data Freshness and Data Accuracy: An State of the Art

32

ones) and embedded values (looking for frequent patterns and breaking into separate attributes). However, they

do not treat wrong values (corresponding to semantic correctness problems).

Certain works propose the selection of pertinent sources according to their quality [Zhu+2002] [Mihaila+2000]

[Naumann+1998]. In particular, data accuracy is taken into account in [Zhu+2002]. They compare different

methods for building quality indicators that aggregate several quality measures, in order to rank sources

according to such indicators. None of the proposals takes into account user expectations.

As improving accuracy is not the unique quality goal for a given system, the relationship with other quality

properties becomes a major challenge in DIS design. The relationship among accuracy and other quality

properties has been only partially studied. There are two main lines: (i) tuning other properties in order to

optimize accuracy, and (ii) relaxing accuracy in order to optimize other quality factors. In the former, the

challenge is in the identification of related quality properties and the proposition of techniques that take

advantages from these relationships in order to improve the global quality of data. Existing works in this line

mainly concern the balance of semantic correctness and timeliness [Ballou+1995], syntactic accuracy and

completeness [Ballou+2003], semantic correctness, completeness and timeliness [Cappiello+2002] and semantic

correctness, process timeliness and cost [Han+2003]*. The latter is not treated in the literature.

4. Conclusion

In this report we described two of the most used quality dimensions: data freshness and data accuracy. We

analyzed several factors and metrics proposed in the literature to measure them and we explored the dimensions

that influence their evaluation, which were organized in taxonomies. Guided by the taxonomies, we classified

some works that consider data freshness and data accuracy and we analyzed open research problems. Both

analyzes, for data freshness and for data accuracy, shown that existing work concentrates for some specific types

of DIS, specific characteristics (e.g. materialized data, some types of errors) or specific metrics but other

configurations remain untreated.

As research problems we identified the specification of user expectations, acquisition of source data quality,

formulation of cost models, data quality auditing and quality-driven engineering.

References

[Abiteboul+1998] Abiteboul, S.; Duschka, O.: “Complexity of answering queries using materialized views”. In

Proc. of the 1998 ACM Int. Symposium on Principles of Database Systems (PODS’98), USA, 1998.

[Altareva 2004] Altareva, E.: “Improving Integration Quality for Heterogeneous Data Sources”. PhD Thesis,

Universität Düsseldorf , 2004.

[Amat+2005] Amat, G. ; Laboisse, B.: “B.D.Q.S. Une gestion opérationnelle de la qualité de données”. 1
st

workshop on Data and Knowledge Quality (DKQ’2005), Paris, France, 2005.

[Ballou+1995] Ballou, D.; Pazer, H.: “Designing Information Systems to Optimize the Accuracy-timeliness

Tradeoff”. Information Systems Research, Vol. 6 (1): 51-72, March 1995.

[Ballou+1998] Ballou, D.; Wang, R.; Pazer, H.; Tayi, G.: “Modelling Information Manufacturing Systems to

Determine Information Product Quality”. Management Science, Vol. 44 (4), April 1998.

[Ballou+2003] Ballou, D.; Pazer, H.: “Modeling Completeness versus Consistency Tradeoffs in Information

Decision Contexts”. IEEE Transactions on Knowledge Data Engineering (KDE’2003), Vol. 15(1):

240-243, 2003.

[Baralis+1997] Baralis, E.; Paraboschi, S. Teniente, E.: “Materialized view selection in a multidimensional

database”. In Proc. of the 23
rd
 Int. Conf. on Very Large Databases (VLDB’97), Athens, Greece, 1997.

[Berti-Equille 2004] Berti-Equille, L.: “Un état de l'art sur la qualité des données”. Ingénierie des systèmes

d’information (ISI), Hermès, Vol. 9(5-6) :117-143, 2004

*
 Semantic correctness is called accuracy in [Ballou+1995], [Cappiello+2002] and [Han+2003]; syntactic accuracy (specifically the

conformance to a standard) is called consistency in [Ballou+2003] and timeliness is called currency in [Cappiello+2002].

 Verónika Peralta

 33

[Bobrowski+1998] Bobrowski, M.; Marré, M.; Yankelevich, D.: “A Software Engineering View of Data

Quality”. 2nd Int. Software Quality Week Europe (QWE'98), Brussels, Belgium, 1998.

[Bouzeghoub+2002] Bouzeghoub, M.; Kedad, Z.: “Quality in Data Warehousing”. Information and database

quality, Piattini, M.; Calero, C.; Genero, M. (eds), Kluwer Academic Publisher, 2002.

[Braumandl 2003] Braumandl, R.: “Quality of Service and Optimization in Data Integration Systems”. In Proc.

Of GI-Fachtagung Datenbanksysteme für Business, Technologie und Web (BTW'2003), Leipzig,

Germany, 2003.

[Bright+2002] Bright, L.; Raschid, L.: "Using Latency-Recency Profiles for Data Delivery on the Web". In Proc.

of the 28th Int. Conf. on Very Large Databases (VLDB'02), Hong Kong, China, 2002.

[Cappiello+2002] Cappiello, C; Francalanci, C; Pernici, B.: “A Model of Data Currency in Multi-Channel

Financial Architectures”. In Proc. of the 7
th
 Int. Conf. on Information Quality (IQ 2002), Cambridge,

USA, 2002.

[Chirkova+2001] Chirkova, R.; Halevy, A.; Suciu, D.: "A formal perspective on the view selection problem". In

Proc. of 27
th
 Int. Conf. on Very Large Databases (VLDB'01), Roma, Italy. 2001.

[Cho+2000] Cho, J.; Garcia-Molina, H.: "Synchronizing a database to improve freshness". In Proc. of the 2000

ACM Int. Conf. on Management of Data (SIGMOD'00), pages 117-128, Dallas, USA. 2000.

[Cho+2003] Cho, J.; Garcia-Molina, H.: "Estimating Frequency of Change". ACM Transactions on Internet

Technology, Vol. 3 (3): 256–290, August 2003.

[Fugini+2002] Fugini, M.; Mecella, M.; Plebani, P.; Pernici, B.; Scannapieco, M.: “Data quality in cooperative

web information systems”. Technical Report, 2002.

[Gal 1999] Gal, A.: "Obsolescent materialized views in query processing of enterprise information systems". In

Proc. of the 1999 ACM Int. Conf. on Information and Knowledge Management (CIKM'99), pages

367-374, Kansas City, USA. 1999.

[Galhardas+2000] Galhardas, H.; Florescu, D.; Shasha, D.; Simon, E.: “An extensible framework for data

cleaning”. In Proc. of the Int. Conf. on Data Engineering (ICDE’2000), San Diego, Dallas, USA,

2000.

[Galindo+2004] Galindo, J.; Urrutia, A.; Piattini, M.: "An Approach for Implementing Fuzzy Relational

Databases in Classic DBMS". In Proc. of the XII Congreso Español sobre Tecnologías y Lógica

Fuzzy (ESTYLF'2004), Jaén, Spain, 2004.

[Gancarski+2003] Gancarski, S.; Le Pape, C.; Valduriez, P.: "Relaxing Freshness to Improve Load Balancing in

a Cluster of Autonomous Replicated Databases". In Proc. of the 5
th
 workshop on Distributed Data and

Structures (WDAS), Thessaloniki, Greece. 2003.

[Gertz+1998] Gertz, M.; Tamer Ozsu, M.; Saake, G.; Sattler, K.: “Managing Data Quality and Integrity in

Federated Databases”. In Proc. of the 2nd Working Conf. on Integrity and Internal Control in

Information Systems (IICIS'98), Warrenton, USA, 1998.

[Gertz+2004] Gertz, M.; Tamer Ozsu, M.; Saake, G.; Sattler, K.: “Report on the Dagstuhl Seminar: Data

Quality on the Web”. SIGMOD Record Vol. 33(1), March 2004.

[Gravano+2001] Gravano, L.; Ipeirotis, P. Jagadish, H.V.; Koudas, N. Muthukrishnan, S.; Srivastava, D.:

“Approximate String Joins in a Database (Almost) for Free”. In Proc. of the 27
th
 Int. Conf. on Very

Large Data Bases (VLDB’2001), Roma, Italy, 2001.

[Graveleau 2005] Graveleau, D.: “SILURE, mise en œuvre d’un meta-modèle associant traçabilité et qualité des

données pour la constitution d’une base de référence multi-sources en veille technologique”. 1
st

workshop on Data and Knowledge Quality (DKQ’2005), Paris, France, 2005.

[Gupta+1995] Gupta, A. Mumick, I.: “Maintenance of Materialized Views: Problems, Techniques, and

Applications”. Data Engineering Bulletin, June 1995.

[Gupta 1997] Gupta, H.: “Selection of Views to Materialize in a Data Warehouse”. Conf. on Database Theory,

1997.

[Hammer+1995] Hammer, J.; Garcia-Molina, H.; Widom, J.; Labio, W.; Zhuge, Y.: “The Stanford Data

Warehousing Project“. IEEE Data Engineering Bulletin, Volume 18, Number 3. June 1995.

Data Freshness and Data Accuracy: An State of the Art

34

[Han+2003] Han, Q.; Venkatasubramanian, N.: “Addressing Timeliness/Accuracy/Cost Tradeoffs in Information

Collection for Dynamic Environments”. In Proc. of the 24
th
 IEEE Int. Real-time Systems Symposium

(RTSS'03), Cancun, Mexico, 2003.

[Harinarayan+1996] Harinarayan, V.; Rajaraman, A.; Ullman, J.: “Implementing Data Cubes Efficiently”. In

Proc. of the 1996 ACM Int. Conf. on Management of Data (SIGMOD’96), Montreal, Canada, 1996.

[Huang+1994] Huang, Y.; Sloan, R.; Wolfson, O.: "Divergence caching in client-server architectures". In Proc.

of the 3
rd
 Int. Conf. on Parallel and Distributed Information Systems (PDIS 94), pages 131-139.

Austin, USA. 1994.

[Hull+1996] Hull, R.; Zhou, G.: "A Framework for Supporting Data Integration Using the Materialized and

Virtual Approaches". In Proc. of the 1996 ACM Int. Conf. on Management of Data (SIGMOD'96),

pages 481-492, Montreal, Canada. 1996.

[Inmon 1996] Inmon, W.: “Building the Data Warehouse”. John Wiley & Sons Inc., 1996.

[Jermaine+2003] Jermaine, C.: “Robust Estimation With Sampling and Approximate Pre-Aggregation”. In Proc.

of the 29
th
 Int. Conf. on Very Large Data Bases (VLDB’2003), Berlin, Germany, 2003.

[Jarke+1999] Jarke, M.; Jeusfeld, M.A.; Quix, C.; Vassiliadis, P.: “Architecture and Quality in Data

Warehouses: An Extended Repository Approach”. Information Systems, vol. 24(3), 1999.

[Kieβling+2002] Kieβling, W.; Kôstler, G.: “Preference SQL - Design, Implementation, Experiences”. In Proc.

of the 28th Int. Conf. on Very Large Databases (VLDB'02), Hong Kong, China, 2002.

[Kon+1995] Kon, H.; Madnick, S.; Siegel, M.: “Good Answers from Bad Data:a Data Management Strategy”.

Working paper 3868-95, Sloan School of Management, Massachusetts Institute of Technology, USA,

1995.

[Labrinidis+2003] Labrinidis, A.; Roussopoulos, N.: “Balancing Performance and Data Freshness in Web

Database Servers”. In Proc. of the 29
th
 Int. Conf. on Very Large Data Bases (VLDB’03), Berlin,

Germany, 2003.

[Laboisse 2005] Laboisse, B.: “BDQS, une approche dans la mesure de la qualité de données d’un CRM :

principes de base (les attributs de la qualité), intégration des outils métier de marketing direct dans la

mesure”. Séminaire CRM & Qualité des Données, Paris, France, 2005.

[Lee+2000] Lee, M.L.; Ling, T.W.; Lu, H.; Ko, Y.T.: “Cleansing Data for Mining and Warehousing”. In Proc.

of the 10
th
 Int. Conf. on Database and Expert Systems Applications (DEXA '99), Florence, Italy, 1999.

[Li+2003] Li, W.S.; Po, O.; Hsiung, W.P.; Selçuk Candan, K.; Agrawal, D.: “Freshness-driven adaptive caching

for dynamic content Web sites”. Data & Knowledge Engineering (DKE), Vol. 47(2):269-296, 2003.

[Maletic+2000] Maletic, J.I.; Marcus, A.: “Data Cleansing: Beyond Integrity Analysis”. In Proc. of the Int. Conf.

on Information Quality (IQ’2000), Cambridge, USA, 2000.

[Mannino+2004] Mannino, M.; Walter, Z.: “A Framework for Data Warehouse Refresh Policies”. Technical

Report CSIS-2004-001, University of Colorado at Denver, 2004.

[Mecella+2002] Mecella, M.; Scannapieco, M.; Virgillito, A.; Baldoni, R.; Catarci, T.; Batini, C.: “Managing

Data Quality in Cooperative Information Systems”. In Proc. on the Confederated Int. Conf. DOA,

CoopIS and ODBASE (DOA/CoopIS/ODBASE'02), Irvine, USA, 2002.

[Mihaila+2000] Mihaila, G.; Raschid, L.; Vidal, M.E.: “Using Quality of Data Metadata for Source Selection

and Ranking”. In Proc. of the 3
rd
 Int. Workshop on the Web and Databases (WebDB'2000), Dallas,

USA, 2000.

[Missier+2001] Missier, P.; Scannapieco, M.; Batini, C.: “Cooperative Architectures: Introducing Data

Quality”. Technical Report 14-2001, Dipartimento di Informatica e Sistemistica, Universita' di Roma

"La Sapienza", Roma, Italy, 2001.

[Missier+2003] Missier, P.; Lalk, G.; Verykios, S.; Grillo, F.; Lorusso, T.; Angeletti, P.: “Improving data quality

in practice: a case study in the Italian public administration”. Distributed and Parallel Databases, Vol.

13(2): 135-160, 2003.

[Morey+1982] Morey, R.: “Estimating and improving the quality of information in MIS”. Communications of

the ACM, Vol. 25(5): 337-342, 1982.

 Verónika Peralta

 35

[Motro 1995] Motro, A.: “Management of Uncertainty in database Systems”. Modern Database Systems, ACM

Press and Addison-Wesley, ISBN 0-201-59098-0, pages 457-476, 1995.

[Motro+1997] Motro, A.; Rakov, I.: “Not all answers are equally good: estimating the quality of database

answers”. In Flexible Query-Answering Systems (T. Andreasen, H. Christiansen, and H.L. Larsen,

Eds.), Kluwer Academic Publishers, 1997, Ch. 1, pp. 1–21.

[Motro+1998] Motro, A.; Rakov, I.: “Estimating the quality of databases”. In Proc of the 3
rd
 Int. Conf on

Flexible Query Answering Systems (FQAS'98), Roskilde, Denmark, 1998.

[Moura+2004] Moura, G.; Machado, M.L.: “AQUAWARE: A Data Quality Support Environment for Data

Warehousing”. In Proc. of the 19
th
 Brazilian Symposium on Databases (SBBD’2004), Brasilia, Brazil,

2004.

[Müller+2003] Müller, H.; Freytag, J.C.: “Problems, Methods, and Challenges in Comprehensive Data

Cleansing”. Technical Report, HUB-IB-164, Humboldt University Berlin, Berlin, Germany, 2003.

[Naumann+1998] Naumann, F.; Freytag, J.C.; Spiliopoulou, M.: “Quality Driven Source Selection Using Data

Envelope Analysis”. In Proc. of the MIT Conference on Information Quality (IQ'98), Cambridge,

USA, 1998.

[Naumann+1999] Naumann, F.; Leser, U.; Freytag, J.C.: "Quality-driven Integration of Heterogeneous

Information Systems". In Proc. of the 25th Int. Conf. on Very Large Databases (VLDB'99), Scotland,

1999.

[Naumann+2000] Naumann, F.; Rolker, C.: “Assessment Methods for Information Quality Criteria”. In Proc. of

the MIT Conf. on Information Quality (IQ'00), Cambridge, USA, 2000.

[Navarro 2001] Navarro, G.: “A guided tour to approximate string matching”. ACM Computing Surveys, Vol.

33(1):31-88, 2001.

[Oliveira+2004] Oliveira, P.; Rodrigues, F.; Henriques, P.: “Limpeza de Dados - Uma Visão Geral”. In Proc. of

Data Gadgets Workshop, Malaga, Spain, 2004.

[Oliveira+2005] Oliveira, P.; Rodrigues, F.; Henriques, P.; Galhardas, H.: “A Taxonomy of Data Quality

Problems”. In Proc. of 2nd Int. Workshop on Data and Information Quality (DIQ’2005), Porto,

Portugal, 2005.

[Parssian+1999] Parssian, A.; Sarkar, S.; Jacob, V.S.: “Assessing Data Quality for Information Products”. In

Proc. of the 20
th
 Int. Conf. on Information Systems (ICIS'1999), Charlotte, USA, 1999.

[Pipino+2002] Pipino, L.L.; Lee, Y.W.; Wang, R.: “Data Quality Assessment”. Communications of the ACM,

vol. 45, No. 4ve, April 2002.

[Quass 1999] Quass, D.: "A framework for research in data cleaning" Draft, Brigham Young University, 1999.

[Rahm+2000] Rahm, E.; Do, H. H.: “Data Cleaning: Problems and Current Approaches”. IEEE Data

Engineering Bulletin, Vol. 23(4): 3-13, 2000.

[Raman+2001] Raman, V.; Hellerstein, J.: “Potter's Wheel: An Interactive Data Cleaning System”. In Proc. of

the 27th Int. Conf. on Very Large Data Bases (VLDB’01), Roma, Italy, 2001.

[Redman 1996] Redman, T.: “Data Quality for the Information Age”. Artech House, 1996.

[Sattler+2000] Sattler, K.U.; Conrad, S.; Saake, G.: “Adding Conflict Resolution Features to a Query Language

for Database Federations”. In Proc. of the 3rd Workshop on Engineering Federated Information

Systems (EFIS’2000), Dublin, Ireland, 2000.

[Schurr+2002] Schurr, P.; Chengalur-Smith, I.; Pazer, H.: “Information Quality and Online B2B Relationships

After the Purchase”. Draft paper. School of Business, University at Albany, USA, 2002.

[Segev+1990] Segev, A.; Weiping, F.: “Currency-Based Updates to Distributed Materialized Views”. In Proc. of

the 6
th
 Int. Conf. on Data Engineering (ICDE’90), Los Angeles, USA, 1990.

[Shanks+1999] Shanks, G.; Corbitt, B.: “Understanding Data Quality: Social and Cultural Aspects”. In Proc. of

the 10th Australasian Conference on Information Systems, Wellington, New Zealand, 1999.

Data Freshness and Data Accuracy: An State of the Art

36

[Shankaranarayan+2003] Shankaranarayan, G.; Ziad, M.; Wang, R.: “Managing data quality in dynamic

decision environments: an information product approach”. Journal of Database Management, Vol.

14(4):14-32, 2003.

[Shin 2003] Shin, B.: “An exploratory Investigation of System Success Factors in Data Warehousing”. Journal of

the Association for Information Systems, Vol. 4: 141-170, 2003.

[Theodoratos+1997] Theodoratos, D.; Sellis, T.: "Data Warehouse Configuration". In Proc. of the 23rd Int.

Conference on Very Large DataBases (VLDB’1997), Athens, Greece, 1997.

[Theodoratos+1999] Theodoratos, D.; Bouzeghoub, M.: "Data Currency Quality Factors in Data Warehouse

Design". In Proc. of the Int. Workshop on Design and Management of Data Warehouses (DMDW'99),

Heidelberg, Germany. 1999.

[USNARA 2000] U.S. National Archives & Records Administration: “The Soundex Indexing System”. URL:

http://www.archives.gov/research_room/genealogy/census/soundex.html. Accessed on June 2005.

[Vassiliadis+2000] Vassiliadis, P.; Bouzeghoub, M.; Quix, C.: “Towards Quality-oriented Data Warehouse

Usage and Evolution”. Information Systems, Vol. 25(2): 89-115, May 2000.

[Vassiliadis+2001] Vassiliadis, P.; Vagena, Z.; Skiadopoulos, S.; Sellis, T.: “ARKTOS: towards the modeling,

design, control and execution of ETL processes”. Information Systems, Vol 26(8): 537-561, 2001.

[Wang+1996] Wang, R.; Strong, D.: "Beyond accuracy: What data quality means to data consumers". Journal

on Management of Information Systems, Vol. 12 (4):5-34, 1996.

[Wand+1996] Wand, Y.; Wang, R.: "Anchoring Data Quality Dimensions in Ontological Foundations".

Communications of the ACM, Vol. 39(11):86-95, 1996.

[Widom 1995] Widom, J.: “Research Problems in Data Warehousing”. In Proc. of the 4
th
 Int. Conf. on

Information and Knowledge Management (CIKM’95), Baltimore, USA. 1995.

[Wiederhold 1992] Wiederhold, G.: “Mediators in the architecture of future information systems”. IEEE

Computer, Vol. 25(3):38-49, 1992.

[Wikipedia 2006] Wikipedia. URL: www.wikipedia.org. Last accessed on August 2006

[Yang+1997] Yang, J. Karlapalem, K. Li, Q.: “Algorithms for materialized view design in data warehousing

environment”. In Proc. of the 23
rd
 Int. Conf. on Very Large Databases (VLDB’97), Athens, Greece,

1997.

[Zhuge+1997] Zhuge, Y.; Garcia-Molina, H.; Wiener, J.: “Multiple View Consistency for Data Warehousing”. In

Proc. of the 13
th
 Int. Conf. on Data Engineering (ICDE'97), Birmingham, UK.1997.

[Zhu+2002] Zhu, Y.; Buchmann, A.: “Evaluating and Selecting Web Sources as External Information Resources

of a Data Warehouse”. In Proc. of the 3
rd
 Int. Conf. on Web Information Systems Engineering

(WISE'02), Singapore, 2002.

